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The chronnectome of the human brain represents dynamic connectivity patterns of brain networks among inter-
acting regions, but its organization principle and related transcriptional signatures remain unclear. Using task-free
fMRI data from the Human Connectome Project (681 participants) and microarray-based gene expression data
from the Allen Institute for Brain Science (1791 brain tissue samples from six donors), we conduct a transcriptome-
chronnectome association study to investigate the spatial configurations of dynamic brain networks and their
linkages with transcriptional profiles. We first classify the dynamic brain networks into four categories of nodes
according to their time-varying characteristics in global connectivity and modular switching: the primary senso-
rimotor regions with large global variations, the paralimbic/limbic regions with frequent modular switching, the
frontoparietal cortex with both high global and modular dynamics, and the sensorimotor association cortex with
limited dynamics. Such a spatial layout reflects the cortical functional hierarchy, microarchitecture, and primary
connectivity gradient spanning from primary to transmodal areas, and the cognitive spectrum from perception to
abstract processing. Importantly, the partial least squares regression analysis reveals that the transcriptional pro-
files could explain 28% of the variation in this spatial layout of network dynamics. The top-related genes in the
transcriptional profiles are enriched for potassium ion channel complex and activity and mitochondrial part of the
cellular component. These findings highlight the hierarchically spatial arrangement of dynamic brain networks
and their coupling with the variation in transcriptional signatures, which provides indispensable implications for
the organizational principle and cellular and molecular functions of spontaneous network dynamics.

1. Introduction

The human brain is a highly dynamic and complex system that ex-
hibits spontaneous fluctuations in neural activity over time. The emerg-
ing chronnectomics framework (Calhoun et al., 2014; Hutchison et al.,
2013) describes the time-varying features of the functional covari-
ation pattern among regions of the brain. Functional neuroimaging
techniques (e.g., resting-state functional magnetic resonance imaging,
rfMRI) (Biswal et al., 1995) have demonstrated certain nonrandom
characteristics of dynamic brain networks at a macroscale, such as
time-varying connectivity strength (Allen et al., 2014; Kang et al.,
2011; Liao et al., 2015; Zalesky et al., 2014), modular reconfigura-
tions (Liao et al., 2017) and individual uniqueness (Liu et al., 2018), as
well as cyclical network transitions between states (Allen et al., 2014;
Vidaurre et al., 2017; Zalesky et al., 2014). Importantly, these findings

imply a nonnegligible regional heterogeneity in the human chronnec-
tome (Allen et al., 2014; Kang et al., 2011; Liao et al., 2017; Liao et al.,
2015; Liu et al., 2018; Zalesky et al., 2014), with different brain re-
gions playing distinct roles in the dynamic integration in the functional
network. The spatial ordering of these regions in macroscopic network
dynamics is still an underappreciated issue, although it is critical for
providing insights into our understanding of the dynamic organization
of functional network topologies.

The cortical functional hierarchy spanning from the primary sensori-
motor cortex to transmodal areas is a fundamental organizational prin-
ciple of the human brain (Huntenburg et al., 2018; Mesulam, 1998),
which is also reported in the brains of nonhuman primates and even
mice (Burt et al., 2018; Fulcher et al., 2019). Such a general principle
has been observed both in microstructural characteristics, such as intra-
cortical myelin content (Burt et al., 2018; Glasser and Van Essen, 2011)
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and the development sequence of subcortical white matter myelination
(Fuster, 1997), and in macroscopic properties, such as functional con-
nectivity features (Margulies et al., 2016) and the cycling transitions of
metastates (Vidaurre et al., 2017) of brain functions. From an informa-
tion processing perspective, the functional hierarchical organization of
the brain allows efficient encoding and increased integration of informa-
tion from sensation to cognition (Burt et al., 2018; Fulcher et al., 2019;
Huntenburg et al., 2018; Mesulam, 1998). However, whether the spa-
tial layout of intrinsic dynamic networks of the human brain follows the
principle of cortical functional hierarchical ordering remains unknown.

If the spatial configurations of brain network dynamics reflect the
general cortical functional hierarchy, we speculate that a molecular pro-
gram might exist for coding this layout of the human chronnectome
across the cortex. Recently, the integration of postmortem gene expres-
sion with in vivo neuroimaging data has provided unprecedented op-
portunities for bridging the gap between macroscopic network proper-
ties and the transcriptional signatures of the brain (Fornito et al., 2019;
Hawrylycz et al., 2012; Richiardi et al., 2015). For example, several
previous studies observed that the modular and hub architectures of
static functional networks during rest are associated with gene expres-
sion involving ion channel activity (Richiardi et al., 2015) and oxida-
tive metabolism/mitochondria (Vertes et al., 2016), respectively. During
task states, the convergence of dynamic streams of functional networks
is linked with the expression of synaptic long-term potentiation genes
(Diez and Sepulcre, 2018). Notably, these previous studies mainly fo-
cused on static functional networks or the task state dynamics and did
not provide direct evidence of the transcriptional profiles related to the
intrinsic functional network dynamics that reflect the temporal organi-
zation of spontaneous fluctuations of neural activity in the resting hu-
man brain (Calhoun et al., 2014; Deco et al., 2013). Clarifying this issue
will not only provide insight into the transcriptional correlates of intrin-
sic network dynamics but also have indispensable implications for the
understanding and interpretation of chronnectomics in normal develop-
ment, aging, and disorders.

To address these issues, we conducted a transcriptome-
chronnectome association study to investigate the spatial configu-
rations and related transcriptional profiles of brain network dynamics
by employing rfMRI data from the Human Connectome Project (HCP;
681 participants) (Van Essen et al., 2013) and microarray-based gene
expression data from the Allen Institute for Brain Science (AIBS; 1791
samples from the brains of six donors) (Hawrylycz et al., 2012). We
defined four categories of dynamic brain nodes in terms of their
time-varying patterns in global connectivity variations and modular
switching (See Methods and materials). Specifically, we used temporal
global variability (tGV) to measure the overall fluctuations of a brain
node in connectivity with all of the other nodes within the network
over time (Allen et al., 2014; Choe et al., 2017; Elton and Gao, 2015;
Fong et al., 2019; Kruschwitz et al., 2015; Liu et al., 2018). However,
nodes with the same value of tGV may interact frequently with a set
of very local nodes around them or with a set of distributed nodes
that belong to different modules in the brain network, which could
lead to distinct roles in contribution to the dynamic integration.
Thus, we further used temporal modular variability (tMV) to measure
time-varying extents of a brain node in switching among different
modules (Bassett et al., 2011; Braun et al., 2015; Liao et al., 2017;
Shine et al., 2016; Telesford et al., 2016). As a result, we combined
tGV and tMV together to characterize the roles of network nodes in
dynamic integration by considering both global and modular tempo-
ral variability. Then, we compared the spatial organization of four
categories of dynamic brain nodes with cortical functional hierarchy
(Mesulam, 1998), Tlw/T2w (Glasser et al., 2016; Glasser and Van Es-
sen, 2011), primary connectivity gradient maps (Margulies et al., 2016),
and cognitive term maps (Poldrack et al., 2012) (www.neurosynth.org).
Finally, we established the associations between the expression pro-
files of genes and the spatial pattern of network dynamics across
regions.
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2. Methods and materials
2.1. HCP datasets

The resting-state fMRI (rfMRI) data of 832 participants with four
complete scanning runs were initially obtained from the publicly avail-
able S900 Data Release of the Human Connectome Project (HCP)
(Van Essen et al., 2013). Participants with arachnoid cysts were ex-
cluded according to visual inspection of their T1-weighted images
(n = 25). Then, data from twelve participants were excluded because
of missing time points in the rfMRI data in any of the four runs. Data
from one hundred and fourteen participants with excessive head motion
(above 3 mm or 3° in any direction) in any of the four runs were further
excluded. Finally, data from the remaining 681 participants (age: 28.7 +
3.7 years, range: 22-37 years, 381 females) were used for the following
analyses.

Multiband gradient-echo-planar whole-brain imaging acquisitions
were acquired on a 3T Siemens Connectome Skyra scanner at Wash-
ington University, USA. The rfMRI data were obtained with the follow-
ing sequence parameters: repetition time (TR) = 720 ms, echo time
(TE) = 33.1 ms, flip angle (FA) = 52°, bandwidth = 2290 Hz/pixel,
field of view (FOV) = 208 x 180 mm2, matrix = 104 x 90, 72 slices,
voxel size = 2 x 2 x 2 mm3, multiband acceleration factor = 8, and
1200 volumes (14 min and 24 s) for each run. For each participant,
four rfMRI runs were acquired in two days, where one session contain-
ing two rfMRI runs was performed each day. During the scan, partici-
pants were instructed to keep their eyes open with fixation. After the
HCP minimal preprocessing procedure (Glasser et al., 2013), we further
used SPM12 (www.fil.ion.ucl.ac.uk/spm/) and GRETNA (Wang et al.,
2015) to reduce the biophysical noise in the rfMRI data by regressing
out the linear trend, 24 head motion parameters, cerebrospinal fluid,
white matter, and global signals and performing temporal bandpass fil-
tering (0.01-0.1 Hz).

2.2. AIBS datasets

The microarray-based gene expression data in human brain
tissue were downloaded from the AIBS website (January 2018)
(Hawrylycz et al., 2012). The tissue samples were collected from six
brains of adult donors, two of which were complete brains, while the
remaining four samples were left hemispheres (Table S1). The acquisi-
tion methods and processing procedures of these samples are described
in a technical paper (http://help.brain-map.org/display/humanbrain/
Documentation?preview=/2818165/8454282/WholeBrainMicroarray_
WhitePaper.pdf). Briefly, each hemisphere of the brain was first
dissected into approximately 500 anatomically discrete samples. The
precise number of samples for each donor is presented in Table SI.
Then, each sample was spatially registered to the Montreal Neurological
Institute (MNI) coordinate space according to the T1-weighted image
obtained before dissection, and the locations of all samples are given
in MNI coordinates in SampleAnnot.csv of each donor’s microarray
data files. Normalization processes were conducted to minimize the
potential effects of nonbiological biases and to ensure the gene ex-
pression data were comparable among samples within and across the
brains. The detailed normalization methods are described in a technical
paper for microarray data normalization (http://help.brain-map.org/
display/humanbrain/Documentation?preview=/2818165/5177355/
Normalization_WhitePaper.pdf). The normalized gene expression data
of 58,692 probes were available for each sample.

2.3. Constructing dynamic brain networks

For each participant, whole-brain dynamic functional networks
were constructed based on the preprocessed rfMRI data in each run.
Here, a multimodal brain atlas (Glasser et al., 2016) was employed
to parcellate the cerebral cortex into 360 regions as network nodes.
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Specifically, a volume-based Glasser-360 atlas was generated using the
HCP workbench (www.humanconnectome.org/software/connectome-
workbench). First, the surface-based Glasser-360 atlas (fs_LR 32k sur-
face) and the averaged Tlw volume template from the 210P dataset
(https://balsa.wustl.edu/WN56) (Glasser et al., 2016) were obtained.
The mid-thickness surface template of the surface-based Glasser-360 at-
las was used to determine the coordinates of the voxel extracted from
the T1w volume template, and the inner and outer surface templates of
the surface-based Glasser-360 atlas were used to constrain the bound-
aries of the extraction algorithm. Label-to-volume mapping in the HCP
workbench was then performed using the ribbon-constrained mapping
algorithm to generate the volume-based Glasser-360 atlas. The time se-
ries for each node was extracted by averaging the time courses of all
voxels within the region. The dynamic functional networks were then
constructed using a commonly used sliding window approach. Notably,
the time window had a width of 100 s (i.e., 139 TRs), which was shifted
in time with a step of 0.72 s (i.e., 1 TR), allowing sufficient time points
to estimate dynamic functional connectivity at the low-frequency band
of interest (0.01-0.1 Hz) and to simultaneously capture temporal vari-
ations during a short period (Liao et al., 2017, 2015; Liu et al., 2018;
Telesford et al., 2016). Within each window, we estimated the func-
tional connectivity matrix by calculating the Pearson’s correlation be-
tween any pair of network nodes based on the segments of the time series
in the window. Therefore, for each of the four runs, for each participant
we obtained individual dynamic brain networks with 1062 360 x 360
connectivity matrices (i.e., windows).

2.4. Aligning AIBS datasets to brain atlas

To match the gene expression data from AIBS and the brain parcella-
tion used in dynamic network construction, we performed several pre-
processes for the gene expression microarray data of the brain samples,
including mapping samples to network nodes, probe reannotation and
selection, and normalization across donors. Briefly, a total of 1791 brain
tissue samples from six donors were first referenced to the 360-region
brain parcellation according to their MNI coordinates (Krienen et al.,
2016; Richiardi et al., 2015; Whitaker et al., 2016). Specifically, if a
sample did not fall within any region, we extended the matching range
to a radius of 5 mm to search for the nearest brain region. The final dis-
tribution of the samples covered 84% of the parcellation (i.e., 301/360).
Notably, the assigned samples were distributed evenly among the four
categories of dynamic network nodes. Subsequently, we used the Re-
annotator toolkit (Arloth et al., 2015) to reannotate the gene assign-
ment of probes with the reference genome assembly hgl19 (Kent et al.,
2002) and excluded probes that were not assigned to any gene and
those with more than two mismatches between their sequences and
reference. We also removed the probes without an Entrez ID or with
significant calls in fewer than 50% of the assigned samples across all
donors (the Entrez ID and call information of all probes are available
from AIBS; please find the Probes.csv and PACall.csv files in the data
folder of each donor). These procedures resulted in 32,191 probes cor-
responding to 16,392 genes. Then, for each gene in each donor, we av-
eraged the expression level across probes in each sample, followed by
Z-score normalization (subtracting the mean and dividing by the stan-
dard deviation) across the samples and further averaging of the Z-scores
of all samples within a network node. Finally, a gene expression map
at the group level was obtained by averaging the Z-scores of the gene
expression level across the six donors. Notably, the preprocessing pro-
cedures here are very similar to the seven-step analysis pipeline pro-
posed by Arnatkevic Iute et al. (2019), except for the last two steps,
namely, gene filtering and accounting for spatial effects. These two
steps were related to the hypothesis or research question in the study.
Here, studying the transcriptional profile related to the spatial layout
of dynamic networks, we sought to explore the whole-brain genome-
wide gene expression pattern over any specific gene set. Considering
spatial effects, we employed spin tests (spatial permutation test con-
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sidering spatial autocorrelation) (Alexander-Bloch et al., 2018) (https:
//github.com/jinliu-bnu/Liu-et-al.-2019/tree/master/SpinTest) to re-
duce the potential influence on our findings.

2.5. Estimating dynamic characteristics of brain networks

As described previously, for each participant we obtained individ-
ual dynamic brain networks with 1062 360 x 360 connectivity matrices
(each of four scanning runs). For each network node, we computed two
dynamic measures: tGV, which represents the overall fluctuation am-
plitude of the node’s connections (Liu et al., 2018), and tMV, which
represents the degree of variation in module affiliations across time
(Liao et al., 2017). The procedures in details can be found in our previ-
ous studies (Liao et al., 2017; Liu et al., 2018) and were briefly described
here.

i) tGV. For functional connectivity between node i and node j, we
first calculated its temporal variability, tV(; ) as follows:

F
VD=7 Y A )
Fr=1
where Ag; ;) is the fluctuation amplitude of the functional connectiv-
ity (Allen et al., 2014; Liu et al., 2018) across windows between node
i and node j at a given frequency range f, and F is the number of dis-
crete low frequencies of interest. The low-frequency threshold was set
at 0.08 Hz, corresponding to 80% of the energy of the frequency spec-
trum (Liu et al., 2018). Then, for a given node, we calculated its tGV
by summing the temporal variability of all the functional connections
linking to this node, as follows:

N
GV, = ¥ @
j=1, i#j

where tV(; ;) is the temporal global variability in functional connectivity
between node i and node j, (j = 1, 2, 3, ..., N, i#j), and N is the total
number of nodes (i.e., 360). Notably, tGV; represents the overall fluc-
tuations of connectivity for a given node i over time. Nodes with high
tGV tend to have great temporal changes in the network wiring profile
at the global level.

ii) tMV. For each individual, we first detected the modular architec-
tures of the dynamic functional networks by applying the InfoMap algo-
rithm (Power et al., 2011; Rosvall and Bergstrom, 2008) to the thresh-
olded functional connectivity matrices. The network density was set to
15% as in our previous work (Liao et al., 2017), which can maintain the
connectedness of the dynamic networks for most participants. The mod-
ule detection processes were repeated 100 times for each matrix/time
window, and the modular architecture with the shortest description
length (precluding situations in which there was only one module for
the network) was chosen as the final module partition. Briefly, we first
selected the modular partition of the window with the highest adjusted
mutual information (Vinh et al., 2010) with all the other windows for
each participant. Then, the modular partitions were aligned across all
participants. The typical modular partition was finally obtained by as-
signing each node with its most frequently labeled module among partic-
ipants. Then, for each node, the modular variability, MV;(k, 1), between
two modular affiliations (Steen et al., 2011) of different time windows
in the dynamic networks was calculated as follows:

| Myt 0 M(D] [ M(K) 0 M)

MV.(k,1)=1-
D M, V0]

(3)
where MV;(k, D) denotes the modular variability for a given region i
between time window kand l (k =1,2,3, ..., T; l=1,2,3, ..., T}
k#D; T is the number of time windows; M;(k) and M;(]) are the module
affiliation of node i in time window k and [, respectively; M;(k)nM;(D
represents the shared node set between modules M;(k) and M;(0), and
|M;(k)nM;(D)| is the number of nodes in the shared node set. For a given
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Fig. 1. Diagram of the different categories of network node dynamics. Differ-
ent nodes have distinct patterns of temporal variations in global connectivity
and modular affiliations across time. The strength of network connections from
weak to strong is rendered from light gray to black. Each light circle represents
a unique module composed of a set of nodes. The four categories of nodes are
shown in different colors according to their dynamic metrics compared with the
mean values of each measure: the shaker nodes exhibit large global fluctuations
but limited modular dynamics (yellow); the biactive nodes have notable global
and modular dynamics (red); the switcher nodes show frequent modular vari-
ations but less global dynamics (green); and the stabilizer nodes exhibit very
little global and modular dynamics (blue).

node, the total modular variability across all the windows was further
calculated as follows (Liao et al., 2017):

r
MV, = Y w MVi(k) @)
k=1
where MV;(k) = Y MV(k,1)/(T — 1) denotes the average modular vari-
=]

ability for node i between the modular partition of window k and that
of all of the other windows, and w; is a normalized weight coefficient
considered in the formula to reduce the bias of potential outlier time
windows, which is estimated using the adjusted mutual information. No-
tably, tMV represents the variation degree of modular switching among
different modules for a given node over time. Nodes with high tMV par-
ticipate more frequently in modular reorganization in dynamic networks
than nodes with low tMV.

Finally, for each participant, the two dynamic maps (i.e., tGV and
tMV) were obtained by averaging the dynamic maps between the two
runs for each session.

2.6. Characterizing spatial patterns of brain network dynamics

The tGV and tMV maps were jointly used to characterize the spatial
organization of dynamic brain networks. As shown in the example dia-
gram (Fig. 1), in the current study we combined tGV and tMV together
to classify network nodes into four distinct categories: shaker nodes with
large global variations but limited module switching (1tGV and |[tMV,
yellow), biactive nodes with high dynamics at both the global and mod-
ular levels (1tGV and 1tMV, red), switcher nodes with frequent tran-
sitions between modules but lower global variations ({tGV and ttMV,
green), and stabilizer nodes with relatively stable temporal variations
({tGV and |tMV, blue).
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To obtain the group-level tGV and tMV maps, we first averaged each
dynamic measurement across all participants within each session. Then,
for each dynamic measurement, we assessed the reliability by calculat-
ing Pearson’s correlation on the spatial pattern between the two ses-
sions. Notably, both the tGV and tMV maps were almost identical be-
tween the two sessions (Fig. S1). Thus, we generated the final group-
level tGV and tMV maps by averaging the session-averaged maps across
all individuals. Based on these two group-based, session-averaged maps,
as shown in Fig. 2a, we divided the network nodes into four categories,
according to the comparisons with each mean measurement across all
nodes. Additionally, as a supplementary analysis, we examined whether
a node significantly belonged to a category across the participants.
Briefly, we performed z-score transformation for tGV and tMV for each
participant and explored whether the tGV/tMV was significantly higher
or lower than zeros for each node across participants by using one-
sample t-tests. Then, we divided the network nodes into four categories
according to the statistical results compared with zeros (i.e., mean).

2.7. Association between brain network dynamics and cortical functional
hierarchy/connectivity gradient/microstructural/cognitive term maps

To explore whether the spatial layout of brain network dynamics
can reflect the general cortical hierarchy, we assigned each of the 360
regions to one of four cortical types in the cortical functional hierar-
chy as described by Mesulam (1998) (i.e., primary, unimodal associa-
tion, heteromodal association, and paralimbic/limbic areas) (Fig. S1).
Specifically, the cortical functional hierarchy assignment for each re-
gion followed these criteria: (i) The classical figure/map of cortical hi-
erarchy and descriptions from Mesulam (1998) were taken as a fun-
damental reference in which the Brodmann areas (BAs) have been la-
beled over the whole-brain cortex and allocated among four types of
hierarchy. This map has been widely adopted and cited in several cog-
nitive neuroscience reviews (Ffytche and Wible, 2014; Kiehl, 2006).
(ii) The BA labels for each of the 360-atlas nodes were extracted from
Glasser et al. (2016). For nodes without a clear BA label, we overlaid
them on the BA template provided in MRIcroN and assigned each node
with the BA label corresponding to the area that included the largest
number (which should be more than half) of the voxels within the node.
Then, the nodes were initially assigned to one of the four hierarchical
types according to their BA labels. (iii) For nodes for which a BA label
could not be obtained, we inspected their anatomical locations and their
adjacent landmark gyrus or sulcus, compared them with the cortical hi-
erarchy figure, and assigned the node to one of the four hierarchical
types. (iv) Notably, some BAs were distributed in two or more functional
hierarchies. In these cases, we further examined the anatomical location
and boundary of nodes involving these BAs and finely corrected their hi-
erarchy types according to their adjacent landmark gyrus or sulcus in
the classical figure (Mesulam, 1998, 2000). All visual inspections were
performed by two experienced cognitive neuroscience researchers. The
final cortical hierarchy assignments for Glasser’s 360-atlas are available
at https://github.com/jinliu-bnu/Liu-et-al.-2019.

Within each type of hierarchical area, we calculated the overlapping
percentiles of the four categories of the dynamic network nodes. The
spin test (Alexander-Bloch et al., 2018) (https://github.com/jinliu-bnu/
Liu-et-al.-2019/tree/master/SpinTest), a spatial permutation frame-
work considering the spatial autocorrelation, was used to determine
whether each proportion was significantly larger than that by chance.
Briefly, given that the spin spatial permutation is a surface-based frame-
work, we first mapped the spatial distribution of dynamic network node
types onto the cortical surface, and a node type assignment was obtained
for each vertex. In each permutation, dynamic network node types on
spherical representations of the cortical surface were randomly rotated.
For a given node, the surrogated type was assigned as the type with
the greatest number of vertexes within this node. The permutation was
repeated 10,000 times, and thus, a null model was obtained for the spa-
tial distribution of the four node types. Then, the real overlapping per-
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Fig. 2. Spatial layout and microstructural relevance of the four categories of nodes in dynamic brain networks. a) The group-level maps of global and modular
dynamics were obtained by averaging the individual brain activity maps. b) The spatial distribution of the four categories of nodes in the dynamic brain networks.
c) The spatial distribution of each category of the dynamic network nodes and of each type of cortical hierarchy area (top). The overlapping proportions of the four
categories of network nodes in each type of cortical hierarchy area. Spin tests were conducted to determine whether the proportions were significantly higher than
chance (bottom). d) Between-group differences in the primary gradient (left, Margulies et al., 2016) across four categories of dynamic nodes. The biactive nodes and
the switcher nodes had a significantly higher gradient than the shaker nodes and the stabilizer nodes (right, spin tests). e) Between-group differences in T1w/T2w
(left, Glasser et al., 2016) across the four categories of dynamic nodes. The transmodal nodes exhibited significantly lower T1w/T2w values than the stabilizer nodes,
and the shaker nodes exhibited significantly higher T1w/T2w values than the biactive nodes and the switcher nodes at a marginally significant level (right, spin
tests). f) The overlapping proportion of four categories of network nodes with each cognitive term map available from topic-based meta-analyses (Poldrack et al.,
2012) based on the NeuroSynth metanalytic database. The surface rendering was generated using BrainNet Viewer (www.nitrc.org/projects/bnv/) (Xia et al., 2013)
with the inflated cortical 32K surface (Glasser et al., 2016). *p < 0.05; **p<0.01; ***p<0.001.
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centiles of each category of dynamic nodes on each hierarchical area
were examined based on this null model.

The primary gradient of connectivity has been found to show a cor-
tical hierarchy span from the sensorimotor cortex to the association cor-
tex (Margulies et al., 2016). Here, we compared the distribution of four
types of dynamic nodes with the primary connectivity gradient map
reported by Margulies et al. (2016) by comparing the average gradi-
ent value among four types of dynamic nodes. Moreover, the ratio of
T1- and T2-weighted MRI (Glasser et al., 2016; Glasser and Van Es-
sen, 2011) has been found to be sensitive to the intracortical myelin
content and many other microstructural properties involving cell size
and density, and it has been considered a reliable noninvasive neu-
roimaging measure for indexing cortical hierarchy (Burt et al., 2018).
Here, we compared the T1w/T2w ratio values among the four categories
of dynamic nodes by employing a group-averaged, publicly available
T1w/T2w map (Glasser et al., 2016; Glasser and Van Essen, 2011). Spin
tests were performed to determine whether the mean gradient value or
T1w/T2w was significantly different between each pair of dynamic net-
work node categories (10,000 times). Finally, we sought to establish an
association between four types of dynamic nodes and the cognitive term
maps available from topic-based meta-analyses (Poldrack et al., 2012)
based on the NeuroSynth metanalytic database (www.neurosynth.org).
Specifically, we calculated the ratio of the number of overlapping vox-
els divided by the number of total voxels between each type of dy-
namic nodes and each cognitive term map. To match the cognitive
term maps from NeuroSynth, we first extended the boundaries of mid-
thickness of the surface-based Glasser-360 atlas with 6 mm and gen-
erated the volume-based atlas mask for each type of dynamic node.
Then, we matched each mask with the set of 50 topic terms in Neu-
roSynth (www.neurosynth.org/analyses/topics/v5-topics-50/). Among
50 maps, we removed 27 terms due to nonoverlapping or because they
did not reflect any cognitive function. The 23 topic terms remained for
the analyses.

2.8. Association between brain network dynamics and transcriptional
signatures

To explore the transcriptional profile that could explain the spatial
variation in intrinsic functional dynamic properties of the resting hu-
man brain, we used partial least squares regression (PLSR), which is
applicable when the observations (i.e., 301 nodes/regions) are fewer
than the predictor variables (i.e., 16,392 genes), and it has been used
in several previous studies (Seidlitz et al., 2018; Vertes et al., 2016;
Whitaker et al., 2016). The PLSR analysis can define several compo-
nents, each of which is the linear combination of the gene expression
of predictor variables that can explain most of the variance of dynamic
measurements in response variables. Briefly, the predictor variables ma-
trix X and the response variables matrix Y are first centered, resulting in
X, and Y, respectively. The component i of the PLSR is then weighted
by p; and g; to calculate the component scores T; and U; for X, and Y,
respectively:

T, = Xop, + E ©)

U =Yy +F )

where E and F are the error terms. Then, the weight vector p; and g; and
the component scores T; and U; are estimated to ensure the maximum
covariance between T; and U;. Thus, the regression of predictor variables
and response variables can be defined as follows:

U~ T, (8)
or

Yoq; = By; + By Xop; + G )

Neurolmage 222 (2020) 117296

where G is the error term, and B;; and By; are the regression coefficient
and intercept, respectively. The R? of the fitting for each component
is used to illustrate how much the predictive variables can explain the
variance of the response variables. Here, in our PLSR model, the gene
expression data of brain nodes (301 nodes x 16,392 genes) were set
as the predictor variables X, and the values of tGV and tMV of brain
nodes (301 nodes x 2 measures) were set as the response variables Y.
The PLSR analysis was performed by employing the code shared by
Whitaker et al. (2016), which uses a SIMPLS algorithm. Notably, the
SIMPLS algorithm provides an alternative approach for PLSR that is fast
and easier to interpret. The components are calculated directly as linear
combinations of the original centered data, which avoids deflating the
data by weights during the calculation of new components. Thus, the
number of components chosen for the PLSR model did not influence ev-
ery single component. Here, we initially set the number of components
to 10 in the PLSR to explore the component composition. The output
of components from PLSR was ranked by covariance between predictor
variable X and response variable Y; thus, the first few components could
provide the optimal low-dimensional representation for the covariance
between the two data sets (the gene expression and the dynamic char-
acteristics) with higher dimensions. The statistical significance of the
goodness of fit of the components from PLSR was determined using a
spin test. Briefly, we mapped the spatial distribution of dynamic charac-
teristic (i.e., tGV and tMV) onto the cortical surface, and tGV and tMV
values were obtained for each vertex. In each permutation, dynamic
values of the spherical representations of the cortical surface were ran-
domly rotated. For a given node, the surrogated tGV and tMV values
was assigned as the mean values of vertexes within this node. Then, the
surrogated dynamic values were used as the response variable in PLSR
and the R% was recorded. The permutation was repeated 10,000 times
to generate the null model based on the spin test. The real R? of the first
few components that explained over ten percentages of the variance in
the response variables was compared with this null-model to determine
whether the real R? was significantly larger than that by chance. Then,
for significant components, we used a bootstrapping method to assess
the estimation error of the weight for each gene and further divided
the weight by the estimated error to obtain the corrected weight for
each gene (Whitaker et al., 2016). We ranked the genes according to
their corrected weights, which represent their contribution to the PLSR
component. The Gene Ontology enrichment analysis and visualization
tool (GOrilla, http://cbl-gorilla.cs.technion.ac.il/) (Eden et al., 2009)
was used to identify the enriched Gene Ontology terms of the ranked
genes from each significant component. Specifically, we used a p-value
threshold of 107° in the advanced parameters settings and applied the
Benjamini-Hochberg false discovery rate (FDR) method to correct for
the multiple tests. In the main results, the Gene Ontology terms with an
FDR g-value below 0.01 were reported (Table S2). The Reduce Visualize
Gene Ontology (REVIGO, http://revigo.irb.hr/) tool was used to sum-
marize the obtained Gene Ontology terms by removing redundant terms.
Furthermore, we calculated the average expression of the top-ranked re-
lated genes (top 10%) in each significant component for each category
of dynamic nodes to delineate their different transcriptional features.
Spin tests were performed to determine whether the gene expression
was significantly different between each pair of dynamic network node
categories (10,000 times).

2.8. Validation analyses

To assess the reliability of our results, we performed the following
analyses.

(i) The effect of head motion. We excluded participants with large head
motion (above 3 mm or 3° in any direction and in any run) and re-
gressed out 24 head motion parameters. To further strictly control
the potential influence of head motion on our main findings, we per-
formed spike regression-based scrubbing in the nuisance regression
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procedure (Power et al., 2015; Yan et al., 2013) during preprocess-
ing with the criterion of a framewise displacement above 0.5 mm
and repeated our main analyses above.

(ii) The effect of dynamic network construction. To validate the potential
effect of the sliding window-based network construction approach
on our main results, we employed the framewise dynamic condi-
tional correlation (DCC) method (Lindquist et al., 2014) to recon-
struct the dynamic networks and repeated our analysis. The DCC
is a model-based approach defining dynamic correlations of time
courses. Based on quasi-maximum likelihood methods, the DCC can
effectively estimate all of the model parameters. The DCC algorithm
mainly includes two steps. First, a univariate generalized autoregres-
sive conditional heteroskedasticity model was fit to each time course
and further used to estimate standardized residuals. Second, an ex-
ponential weighted moving average-type approach was applied to
these standardized residuals to compute the time-varying correla-
tion. For details, see Lindquist et al. (2014).

(iii) Effect of the individual differences on dynamic measures. To further
investigate the potential influence of individual differences on dy-
namic characteristics, we performed one-sample t tests of tGV and
tMV for each node. The t maps are controlled for individual differ-
ences by considering variations across participants as compared to
the mean maps. The main analyses were repeated in terms of these
t maps.

(iv) Effect of the negative connectivity and network threshold on tMV calcu-
lation. For the tMV estimation, we applied the infomap algorithm to
detect modular structure in each connectivity matrix/window. This
algorithm has been widely used and has revealed reliable modular
structures across connectome studies (Liao et al., 2017; Power et al.,
2010; Rubinov and Sporns, 2010). Notably, most of the previous
studies applied thresholding operations on the raw correlation ma-
trix to capture the core architecture of the brain network. Thus,
we thresholded the raw correlation matrix to retain the top 15%
connections (i.e., the negative correlations were naturally removed)
for module detection in the main analyses. To explore the poten-
tial influence of negative connectivity and the network threshold,
we re-performed the modular analysis without matrix threshold-
ing and the negative correlations were included. Given that the
infomap algorithm cannot handle negative values, we applied the
Louvain community detection algorithm (Brain Connectivity Tool-
box, www.nitrc.org/projects/bct/) for each matrix/window and es-
timated tMV map for each individual. A group-averaged tMV map
was then calculated by averaging the tMV across runs and partici-
pants.

(v) The reproducibility of results using a half-split strategy. Briefly, we split
the rfMRI data of the HCP datasets into two cohorts matched for age,
gender and handedness and obtained the group-level tGV and tMV
maps within each subgroup (i.e., HCP-cohortl and HCP-cohort2).
For the gene expression data from the AIBS datasets, we split six
brains into two subgroups as in a previous study (Richiardi et al.,
2015), in which each subgroup included a full brain (H0351.2001 or
H0351.2002) and two half-brains from the other donors to balance
the sample size, resulting in six possible subgroup pairs (see Table
S3). For each subgroup pair of AIBS datasets, we repeated the PLSR
with two cohorts of HCP (i.e., 2 subgroups X 6 pairs x 2 cohorts = 24
repetitions). Then, we performed the enrichment analysis for each
repetition and compared the results with those obtained in the main
analysis.

3. Results

3.1. The spatial pattern of the human chronnectome reflects cortical
functional hierarchy

For each individual, we mapped the dynamic network activities in
terms of the tGV and tMV maps. Both maps exhibited a high spatial sim-
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ilarity between sessions (tGV: r = 0.99, tMV: r = 0.97, all p < 0.0001,
Fig. S1). Based on two group-based, session-averaged tGV and tMV maps
(Fig. 2a), the network nodes were further divided into four categories
according to their temporal dynamics in global variations and modu-
lar switching (in comparisons with each mean measurement across all
nodes). As shown in Fig. 2b, the shaker nodes (1tGV and |[tMV) were
primarily located in the sensorimotor cortex, including the primary vi-
sual, motor, somatosensory and auditory cortices; the biactive nodes
(1tGV and 1tMV) were primarily in the lateral and medial frontal and
parietal cortices; the switcher nodes ({tGV and 1tMV) were mainly in
the anterior and middle cingulate cortices, the medial temporal lobe,
and the anterior insula; and the stabilizer nodes ({tGV and |tMV) were
mainly in the sensorimotor association cortices, the supplementary mo-
tor cortices, and the posterior insula. The findings of the four-category
nodes were largely conserved when using a threshold of one standard
deviation above mean (Fig. S1).

We found that the spatial layouts of the four categories of dynamic
network nodes were generally similar to the cortical hierarchy distri-
butions (Fig. 2c, top). Specifically, the brain regions within each hier-
archical type were significantly dominated by a particular category of
dynamic nodes (all p < 0.012, 10,000 permutations, spin tests; the same
bolow): the primary area was mostly occupied by shaker nodes, the uni-
modal association area was largely occupied by stabilizer nodes, the
heteromodal association area was primarily occupied by biactive nodes,
and the paralimbic/limbic area was mainly dominated by switcher
nodes (Fig. 2¢, bottom). Then, we compared the distribution of dynamic
nodes and the principal gradient reported by Margulies et al. (2016) and
found that the transmodal nodes (i.e., biactive and switcher nodes) ex-
hibited significantly higher gradient values than the shaker nodes and
the stabilizer nodes (all p < 0.039, Fig. 2d). Furthermore, the transmodal
nodes exhibited significantly lower T1w/T2w values than the stabilizer
nodes (all p < 0.008), and the shaker nodes exhibited significantly higher
T1w/T2w values than the biactive nodes (p < 0.031, Fig. 2e). Moreover,
by matching the distribution of dynamic nodes and the cognitive term
maps available from NeuroSynth, we found that shakers and stabiliz-
ers were dominantly overlapped by terms related to perception, such
as “visual”, “pain” and “auditory”, while biactive and switchers nodes
emphasized terms involving more abstract and complex functions, such
as “memory”, “emotion” and “reward” (Fig. 2f). These findings suggest
that the spatial configuration of the intrinsic chronnectome reflects a
large-scale cortical functional hierarchy that couples with the primary
connectivity gradient, microarchitecture as well as a cognitive spectrum
from perception to abstract functions.

3.2. Transcriptional profiles are associated with the intrinsic chronnectome

We observed that two significant components from PLSR explained
28% of the variance in the dynamic measurements (p < 0.0048, spin test,
Fig. S2). Specifically, the first component represented an association be-
tween brain network dynamics and a transcriptional profile character-
ized by high expression mainly in the posterior parietal-occipital areas
(Fig. 3a, left). The regional mapping of this component correlated posi-
tively with tGV but negatively with tMV. The second component repre-
sented an association between network dynamics and a transcriptional
profile with high expression predominantly in the anterior prefrontal
and temporal areas (Fig. 3a, right), the regional mapping of which cor-
related positively with both tGV and tMV. Finally, the transcriptional
profile of the first component was significantly enriched in genes related
to the potassium ion channel complex and activity (all g < 0.001), and
the transcriptional profile of the second component was significantly en-
riched with genes associated with the mitochondrial part of the cellular
component (all g < 0.0001) (Figs. 3b, S3 and 4, Table S2).

We further explored the averaged expression of two significant least
squares components among four types of brain nodes (spin tests, 10,000
permutations, Fig. 3c). Specifically, for genes related to the potassium
ion channel, higher expression was observed in the shaker nodes than


https://www.nitrc.org/projects/bct/

J. Liu, M. Xia and X. Wang et al.

PLS1

Neurolmage 222 (2020) 117296

PLS2

? ‘i r!
PLS1 Scores PLS2 Scores
| — ] | __m— ]
45 15 - ; 1.5 1.5 il b,
e e
0.2 0.2
(] il
& a
:.EI 0.1 = 0.1
@ 0 -_-"‘“--._._,___‘ @ o} ——— e
L. i o i
0.1 9-0.1
o rE 046 |re-040 o FeE0.19 =040
0.2 p < 0.0001p < 0.0001 0.2 p < 0,002 P < 0.0001
=3 =1 1 3 -3 -1 1 3 3 =1 1 33 =1 1 3
Global variability Modular variability Global variability Modular variability
b c

Gene enrichment
[

Expression within node dynamics

PLS1 PLS2 5 ##Mw
ﬂ i -[- I ; il
e ] Switcher
E’ 0.2} | b Biactive
@ | g Stabilizer
g | +| Shaker
E 0 [ | Switcher
- } S & Biactive
itochondrial part < —1-TE-T] 3 | =
E' =pLS2 n Stabilizer
——d FOR g-valug '--0.2 i i M i Shaker
zh A
Potassium ion transport 10 104 10* .}\#ﬂ @.\:IP wo'-ﬁﬂ -ﬁpﬁé £
g o gt 0.05 0.01 0.001

Fig. 3. Association between gene expression profiles and dynamic network architectures. a) The first two partial least squares (PLS) regression components (PLS 1
and PLS 2) explain 28% of the variance in the dynamic measures. PLS 1 identified a gene-expression profile with overexpression mainly in the medial occipital, lateral
parietal, and lateral prefrontal cortices positively correlated with global dynamics but negatively correlated with modular dynamics (left column). PLS 2 identified
a gene expression profile with overexpression dominantly in the medial/lateral prefrontal and lateral temporal cortices positively correlated with both global and
modular dynamics (right column). The shadow indicates the 95% confidence intervals. b) PLS 1 is enriched for genes related to Gene Ontology of biological processes
and cellular components associated with the complex and activity of potassium ion channels, whereas PLS 2 is enriched for genes related to mitochondria (colors
index the g-values for significant enrichment). See Figs. S3 and 4 for more details about these Gene Ontology terms. ¢) The mean expression levels of the top 10% of
weighted genes in PLS 1 and PLS 2 are diversely distributed across the four types of dynamic network nodes (left). The error bar indicates the standard error. There
are significant between-group differences in the gene expression levels across the four types of nodes (right, colors index the p-values for significant between-group

differences).

in the switcher and stabilizer nodes (both p < 0.007) and in the biactive
nodes than in the switcher (p < 0.0001). For genes associated with mi-
tochondria, higher expression was observed in the biactive nodes than
in the shaker and stabilizer nodes (both p < 0.047) and in the switcher
and shaker nodes than in the stabilizer nodes (both p < 0.027). These
findings indicate the transcriptional profiles related to the different tem-
poral dynamics of brain nodes in the chronnectome.

3.3. Validation results

(i) Effect of head motion. By analyzing the data with spike regression-
based scrubbing in the nuisance regression procedure, we found that

the spatial patterns of time-varying measurements were highly similar
to our main results (tGV and tMV, both r > 0.99, p < 0.0001; node clas-
sification, NMI = 0.93, Fig. S5a). Specifically, the spatial pattern still
aligned to the cortical functional hierarchy (Fig. S5b, left), coupled well
with the cortical microarchitecture (Fig. S5b, right) and was associated
with gene expression profiles that were similar to the main results (Table
S4 and Fig. S5c¢). (ii) Effect of the dynamic network construction approach.
The spatial dynamic patterns obtained by DCC were moderately similar
to our main results (tGV and t MV: both r = 0.83, p < 0.0001; node clas-
sification, NMI = 0.42, Fig. S6a). The distribution of the four dynamic
nodes mainly followed a cortical hierarchy (Fig. S6b, left) and was rela-
tively consistent with the main results of the microarchitecture (Fig. S6b,
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right) and gene expression profiles (Table S5 and Fig. S6c¢). (iii) Effect of
the individual differences in dynamic measures. Consistent with our main
findings, the spatial pattern of dynamic nodes (Fig. S7a) coupled well
with the cortical functional hierarchy and the cortical microarchitecture
(Fig. S7b), and associated with the similar gene expression profiles (Ta-
ble S6 and Fig. S7c). (iv) Effect of the negative connectivity and network
threshold in tMV calculation. The spatial pattern of tMV without thresh-
olding was significantly similar to our main results (r = 0.59, p < 0.0001;
node classification, NMI = 0.55, Fig. S8a). The dynamic node distribu-
tion matched a cortical hierarchy (Fig. S8b, left) but did not show the
differences in microarchitecture among the four types (Fig. S8c, right).
The transcriptional profiles of the first PLSR component kept consistent
to the main findings while the second component was not significant
in this case (Table S7 and Fig. S8c). These results suggested that the
inclusion of weak and negative connections in tMV calculation may af-
fect the spatial distribution of chronnectome and reduce the diversity
among different node types. (v) Reproducibility of the half-split analysis.
The main results were reproducible in the internal replication analysis
(Table S3).

4. Discussion

In this study, we demonstrate the spatial heterogeneity of brain net-
work dynamics in terms of temporal variations in global and modular
organization. This architecture reflects hierarchical function process-
ing and is coupled with the underlying microarchitecture. Importantly,
the network dynamics are closely linked with the transcriptional pro-
files, with brain nodes having diverse expression of genes regulating
the potassium ion channel activity and mitochondria. Collectively, these
findings provide empirical evidence for the hierarchically organized ar-
chitecture of the chronnectome and its potentially relevant neurobio-
logical functions, which have implications for the understanding and
interpretation of the organizational principle and working mechanism
of brain network dynamics.

4.1. The intrinsic chronnectome architectures follows cortical hierarchical
organization

We characterized the chronnectome architectures in terms of four
categories of dynamic brain nodes (i.e., biactive, switcher, shaker, and
stabilizer nodes). The spatial distributions of these nodes with distinct
time-varying features are highly comparable with the cortical functional
hierarchy for information processing from sensation to cognition pro-
posed by Mesulam (1998), the principle gradient of functional connec-
tivity reported by Margulies et al. (2016), and the underlying myeloar-
chitectural/microstructural features of the human brain (Glasser and
Van Essen, 2011). Specifically, shaker nodes with high global fluctua-
tions are mainly located in the primary sensory cortices, which provide
obligatory portals for accessing sensory stimuli, and the primary mo-
tor cortices, which provide gateways that rely on complex responses to
interact with the external world. That is, the function of primary ar-
eas addresses the most primary but continuous processing for particu-
larly specialized sensory information (Grill-Spector and Malach, 2004).
Such processing might require dramatically dynamic connectivity fluc-
tuations for the constant monitoring and capture of information from
the ever-changing external environment. The stabilizers are predomi-
nantly located in the unimodal association areas that encode the basic
features of sensation captured from particular sensory modalities, such
as color, motion, and sound from the primary cortex, into complex sen-
sory experience, such as depicting objects, faces, and spatial locations
(Mesulam, 1998). Given the nature of highly specialized modalities,
these unimodal association areas with limited global fluctuations and
intermodular switching fit this unique role in information processing.
Interestingly, these two types of dynamic nodes showed high T1w/T2w
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values, which may be associated with the features of heavily myeli-
nated, dense and well-organized neurons with small dendritic arbors
and earlier myelinated neurons during the development of these areas
(Fuster, 1997). Thus, the relatively simple myeloarchitectural and mi-
croarchitectural features of the shaker nodes and the stabilizer nodes
are in line with their functional roles in processing unimodal content
reflected by less modular switching.

Importantly, the biactive nodes with both high global and mod-
ular dynamics are mainly distributed in heteromodal association re-
gions (i.e., the lateral and medial frontal and parietal cortices). These
regions play central roles in forming distributed but integrated mul-
timodal representations and are associated with high areal expansion
during development and evolution (Hill et al., 2010). The participa-
tion of the heteromodal association areas in receiving convergent in-
puts from multiple unimodal areas and binding with other transmodal
areas usually requires global communications across distributed regions
and integration among functional systems (Cole et al., 2013; Liu et al.,
2017). Thus, the prodigious global connectivity fluctuations and fre-
quent modular switching might provide a neurobiological foundation
that enables the biactive nodes to meet the high requirement of com-
plex processes in high-order cognition in the human brain. The switcher
nodes with only high modular reorganization are predominantly lo-
cated in the limbic and paralimbic areas. These regions are related to
the internal milieu and are responsible for the regulation of emotion
and motivation. The literature suggests that the limbic and paralim-
bic areas make up a complex organization that responds to intercon-
nections between primitive subcortical and evolved cortical structures
(Mesulam, 2000). Both biactive and switcher nodes belong to the trans-
modal cortices, which are the lightly myelinated areas with low neuron
density but complex dendritic arbors (Elston et al., 2001) and areas with
great involvement in various advanced cognitive functions (Braun et al.,
2015; Gonzalez-Castillo et al., 2015; Liao et al., 2017; Liu et al., 2018;
Vidaurre et al., 2017). Consistent with the findings of correlation be-
tween cognitive flexibility and temporal modular variability in our pre-
vious study (Liao et al., 2017), we also found that nodes with relatively
high temporal modular switching were mainly overlapped with cogni-
tive term maps involving more abstract functions in this study (Fig. 2f).
Therefore, the high temporal variations in modular structure in the
biactive and switcher nodes might provide a network foundation for
the dynamic combination and integration of multimodal information
across the brain to extend the flexibility for translating sensation into
cognition, thereby facilitating advanced human mental and behavioral
functions.

A recent study revealed a repeatable resting-state network partition
based on the same Glasser-360 cortical parcellation used in the cur-
rent study (Ji et al., 2019). It was observed that resting-state networks
related to primary functions (e.g., visual, somatomotor, and auditory)
are dominantly enriched in a single type of shaker node or stabilizer
node, whereas networks with high-order cognitive functions (e.g., de-
fault mode, frontoparietal, and cingulo-opercular networks) heteroge-
neously comprise different types of dynamic nodes, including biactive
and switcher nodes. Together, the observed dynamic architecture re-
flects the cognitive spectrum and cortical hierarchy of large-scale func-
tional networks in the human brain.

4.2. The expression of ion channel and mitochondria-related genes is
associated with the intrinsic chronnectome

We found that the gene expression profiles that can explain the
spatial heterogeneity in the dynamic characteristics of the chronnec-
tome are mainly related to ion channels and mitochondria. Ion chan-
nels are crucial structures for the generation and conduction of elec-
trical signaling in neurons, as they allow the movement of ions across
the membrane, leading to changes in membrane potential and propa-
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gation of neuronal electrical signals. The summed electric current flow-
ing from multiple nearby neurons can generate local field potentials
in the extracellular space around neurons, and the dynamic fluctua-
tions of local field potentials are associated with the hemodynamics
that can be captured by fMRI (Scholvinck et al., 2010). Thus, the dy-
namics of macroscale brain networks are reasonably associated with
the neuronal electrical activity induced by ion channels. Here, the
first component represented an association between brain network dy-
namics and a transcriptional profile characterized by high expression
mainly in the posterior parietal-occipital areas, especially the senso-
rimotor cortex, where shaker nodes with frequently global variability
were located. Previous studies have found that the voltage-gated potas-
sium channels contributed to high temporal precision of auditory neu-
rons (Oak and Yi, 2014) and enabled repetitive firing at high frequen-
cies (Rudy and McBain, 2001). This nature of voltage-gated potassium
channels might facilitate the frequent global connectivity fluctuation
of the shaker nodes. Our results provide implications for the poten-
tial cellular and molecular functions of the macroscale chronnectome
in the resting human brain. Previous studies reported that the static
functional connectivity was associated with the transcriptional profiles
enriched in ion channel (Krienen et al., 2016; Richiardi et al., 2015).
However, our explorational mediation analysis showed that the associ-
ations between expression of ion channel-related genes and functional
dynamics were not mediated by the static functional connectivity (Fig.
S9, top). Besides the static resting-state functional networks, several
transcriptome-neuroimaging association studies have demonstrated that
the expression of ion channel-related genes is closely related to dynamic
streams in functional networks during tasks (Diez and Sepulcre, 2018)
and structural networks (Romero-Garcia et al., 2018; Seidlitz et al.,
2018; Whitaker et al., 2016). Therefore, we speculate that the gene ex-
pression related to ion channels might be a trans-modality (structural
and functional), trans-state (rest and task), and trans-timescale (static
and dynamic) molecular signature for human brain networks. More
researches are needed to further clarify their complex relationship in
the future.

The mitochondrion is the “powerhouse” organelle of the neuron and
synthesizes adenosine triphosphate via the citric acid cycle and ox-
idative phosphorylation to provide energy for neuronal signaling and
maintenance of the resting membrane potential (Harris et al., 2012).
Our study revealed a significant coupling between the expression pat-
tern of mitochondria-related genes and the intrinsic chronnectome pat-
tern, with high expression dominantly found in biactive nodes (me-
dial/lateral prefrontal and parietal cortices), which exhibit a high level
of dynamic features. Consistently, the occupancy rate in the dynamic
connectivity state linking most of these regions is related to a single
nucleotide polymorphism component with the genes associated with
metabolism (Rashid et al., 2019). These regions exhibit high levels of en-
ergy metabolism, such as glucose utilization, oxygen consumption and
regional cerebral blood flow (Liang et al., 2013; Tomasi et al., 2013). A
recent study focusing on brain structure demonstrated that the variation
in regional scaling to the normative brain size and shape in frontopari-
etal regions is associated with the expression of mitochondria-related
genes (Reardon et al., 2018). Moreover, these regions are essential for
mediating various complex cognitive functions (Goldman-Rakic, 1988)
and are phylogenetically late developing, with a disproportionate en-
largement during evolution (Van Essen and Dierker, 2007). Together
with the results in this study, we speculate that the large expansion
and complexity in structures and functional dynamics might be sup-
ported by substitutional energy production at the cellular level. Notably,
the observed transcriptional profiles were not exclusively related to dy-
namic network organization or any other large-scale brain networks.
Our explorational mediation analysis showed that the association be-
tween expression of mitochondria-related genes and functional dynam-
ics was partially mediated by the static functional connectivity (Fig. S9,
bottom), although the causal relationship between static and dynamic
connectivity remains unclear. Additional studies exploring the relation-
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ship of gene expression pattern among different modalities, states, and
timescales are needed in the future.

4.3. Further considerations

First, the gene expression data from the AIBS were sampled from
six donors with six left hemispheres and two right hemispheres. The
limited sampling might have created a bias in capturing the variance
in gene expression across individuals. Future studies with larger sam-
ple whole-brain genome-wide gene expression data could better address
this issue. Second, a recent study showed that the hierarchy extending
from the primary sensorimotor cortex to association areas in the cere-
bral cortex was tightly linked to a large-scale gradient in gene expres-
sion, coupled with multimodal features including the cytoarchitecture,
interneuron cell densities and long-range axonal connectivity in mice
(Fulcher et al., 2019). Intriguingly, they also found a significant mouse-
human consistency in the hierarchal gradient. However, whether and
how these underlying anatomical properties together shape the spatial
layout of the human chronnectome is an important issue to be clari-
fied. Third, in the current study, we explored the relationship between
dynamic network architecture and cortical functional hierarchy focus-
ing on the cortex. Recently, subcortical areas were also highlighted to
play an indispensable role in dynamic transitions (Shine et al., 2019).
The dynamic roles of subcortical areas in brain functional hierarchy
is an important topic worth clarifying in the future. Fourth, we con-
structed the human chronnectome from multiband fMRI data. Although
BOLD imaging captures hemodynamic signals that can indirectly reflect
neural electrical activity (Chang et al., 2013; Logothetis et al., 2001),
future studies that simultaneous collect fMRI and electrophysiological
data would provide better insight into these gene-brain interactions.
Fifth, several previous studies defined connector, provincial, satellite
and peripheral nodes based on the stationary functional brain network
(He et al., 2009; Power et al., 2013). Intuitively, there are some simi-
larities between the spatial distribution of these stationary node types
and the four types of dynamic nodes defined in this study. For example,
provincial and peripheral nodes are mainly found in the primary cortex,
similar to shaker nodes, and the connectors are primarily distributed
in the dorsolateral prefrontal and parietal cortices, similar to biactive
nodes. However, there are several differences in the spatial layout be-
tween dynamic and stationary nodes, such as switcher nodes, which
are predominately located in limbic and paralimbic areas and did not
match any particular stationary node. Comprehensively comparing dy-
namic nodes and stationary nodes in the future may improve our un-
derstanding of the regional organization in the human brain network.
Sixth, here we employed a commonly used sliding window approach to
construct the dynamic networks and a DCC method (Lindquist et al.,
2014) as a validation analysis. Recently, novel approaches such as Hid-
den Markov Model have been proposed to discover a set of hidden brain
states in brain functional data. Different approaches capture the dynam-
ics of functional networks from different perspectives and there is still no
gold standard for selecting the best among these dynamic approaches.
Further studies are needed to investigate the abilities of different ap-
proaches in characterizing different dynamic features of functional brain
network and to develop better approaches to minimize noise and evalu-
ate the optimal parameters in dynamic network estimations and analy-
ses. Finally, the findings reported here were correlational, not causative.
Determining whether and how the genes and the brain interact remains
an interesting area for further investigation.
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