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Abstract

The functional connectome is highly distinctive in adults and adolescents, underlying individual differences in cognition
and behavior. However, it remains unknown whether the individual uniqueness of the functional connectome is present in
neonates, who are far from mature. Here, we utilized the multiband resting-state functional magnetic resonance imaging
data of 40 healthy neonates from the Developing Human Connectome Project and a split-half analysis approach to
characterize the uniqueness of the functional connectome in the neonatal brain. Through functional connectome-based
individual identification analysis, we found that all the neonates were correctly identified, with the most discriminative
regions predominantly confined to the higher-order cortices (e.g., prefrontal and parietal regions). The connectivities with
the highest contributions to individual uniqueness were primarily located between different functional systems, and the
short- (0–30 mm) and middle-range (30–60 mm) connectivities were more distinctive than the long-range (>60 mm)
connectivities. Interestingly, we found that functional data with a scanning length longer than 3.5 min were able to capture
the individual uniqueness in the functional connectome. Our results highlight that individual uniqueness is present in the
functional connectome of neonates and provide insights into the brain mechanisms underlying individual differences in
cognition and behavior later in life.
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Introduction
Individual differences in the functional architecture of the
human brain underlie intersubject variability in cognition,
emotion, and behavior (Kelly et al. 2012; Finn and Todd 2016;
Rosenberg et al. 2016). Resting-state functional magnetic
resonance imaging (R-fMRI) provides a promising technique to
non-invasively measure the spontaneous functional activities
of the human brain in vivo and to map the individual functional
connectivity between regions (Biswal et al. 1995; Fox and Raichle
2007). Numerous R-fMRI studies have reported remarkable

individual differences in the functional connectivity profile
(Mueller et al. 2013; Gao et al. 2014; Gratton et al. 2018; Xu
et al. 2019; Stoecklein et al. 2020) and functional network
topology (Laumann et al. 2015; Gordon et al. 2017; Liao et al.
2017) for both neonates and adults, with larger variability
mainly in the association regions and lower variability in the
primary regions. Specifically, several studies have suggested
that in adults, the individual functional connectome is unique
to serve as a fingerprint to identify individuals among a
large cohort with high accuracy (Finn et al. 2015; Vanderwal
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et al. 2017; Liu et al. 2018; Horien et al. 2019) and is related
to individual cognitive abilities (e.g., fluid intelligence) (Finn
et al. 2015). This individual distinctiveness of the functional
connectome increases with age from childhood and adolescence
into adulthood (Kaufmann et al. 2017), indicating a gradual
maturational process of individual uniqueness. However, the
extent to which an individual functional connectome is unique
in the early developmental stage is unclear.

The functional network of the human brain is largely imma-
ture at birth (Cao et al. 2017b; Gilmore et al. 2018; Zhao et al.
2019). In neonates, the higher-order brain systems (e.g., default-
mode and frontoparietal systems) exhibit spatially localized
patterns with limited long-range connections, although the pri-
mary brain systems are well developed and exhibit a network
architecture similar to that in adults (Gao et al. 2015a, 2015b;
Cao et al. 2017a; Zhang et al. 2018). The default-mode network
reaches an adult-like topology at the age of one year, while
the frontoparietal network remains premature at the age of
two years (Gao et al. 2015a, 2015b). The functional hubs are
mainly located in the primary sensory and motor regions at birth
(Fransson et al. 2011; Cao et al. 2017a), and shift towards the
default-mode regions involved in higher-order cognitive pro-
cessing during the first two years (Gao et al. 2011). In parallel to
these age-related increases in functional integration, the inter-
subject variability in functional networks shows an adult-like
spatial pattern at birth (Xu et al. 2019; Stoecklein et al. 2020), and
the magnitude of the variability substantially changes during
the first two years (Gao et al. 2014). Given that the state of the
functional connectivity is highly immature at birth and that the
individual differences continually change with development,
whether and how functional connectivity patterns in neonates
are unique remains to be elucidated. Studying the individual
uniqueness of the neonatal functional connectome is important
for understanding the brain mechanisms underlying cognitive
and behavioral differences later in life.

To address this issue, we employed a multiband R-fMRI
dataset of 40 neonates obtained from the Developing Human
Connectome Project (dHCP) (https://data.developingconnecto
me.org/) (Hughes et al. 2017) and performed a split-half network
analysis to explore the individual uniqueness of the brain func-
tional networks in neonates. Using an anatomy-constrained
functional parcellation scheme of the neonatal brain (Shi et al.
2018), we constructed individual functional networks at the
regional level for each neonate and identified individuals based
on the functional connectivity profiles. We aimed to investigate:
(1) whether functional connectivity patterns are unique in
the neonatal brain, which has a highly immature functional
architecture; (2) if so, which brain regions or functional systems
make dominant contributions to individual uniqueness; and (3)
how long the scanning length is required to capture individual
uniqueness in the functional organization of the neonatal brain.

Materials and Methods
Participants and Data Acquisition

We used a publicly available dataset comprising multiband R-
fMRI scans of 40 healthy neonates, obtained from the first data
release (i.e., release 1) of the dHCP (https://data.developingconne
ctome.org/) (Hughes et al. 2017). Forty healthy neonates were
born at term age (range: 36.0–41.6 weeks, mean = 39.0 weeks)
and were imaged shortly after birth (interval between birth
and scanning range: 0.1–3.9 weeks, mean = 0.9 weeks). The data

from all neonates did not show major structural or destructive
lesions and thus were included in this study. Table 1 illustrates
the detailed demographic information of the participants. The
neonates’ parents/guardians provided informed consent, and
the scanning and released protocol was approved by the UK
Health Research Authority.

All MRI scans were obtained with a 3 T Philips scanner
equipped with a neonatal 32 channel phased array head coil
at Evelina Neonatal Imaging Center in London. Each neonate
underwent multimodal MRI scanning during natural sleep over
63 min, including structural MRI, R-fMRI, and diffusion tensor
imaging scanning. For each neonate, the R-fMRI scans were
acquired using an accelerated echo-planar imaging sequence
with the following parameters: multiband factor = 9, repetition
time (TR) = 392 ms, echo time (TE) = 38 ms, 2.15 mm isotropic vox-
els, and 2300 volumes (i.e., 15 min). The T2-weighted structural
images were acquired in sagittal and axial stacks using a turbo
spin-echo sequence with the following parameters: TR = 12 s,
TE = 156 ms, in-plane resolution = 0.8 × 0.8 mm2, 1.6-mm slice
thickness with 0.8 mm overlap, and SENSE factors of 2.11 (axial)
and 2.58 (sagittal).

Data Preprocessing

We used minimally preprocessed R-fMRI images (Fitzgibbon
et al. 2016), which involved susceptibility distortion correction
with field maps, head motion correction with the alignment
of all volumes to the volume with the lowest motion, 2-stage
coregistration to the T2-weighted image, and ICA denoising with
FSL FIX (Salimi-Khorshidi et al. 2014).

These images were further preprocessed using SPM12
(https://www.fil.ion.ucl.ac.uk/spm/) and GRETNA (Wang et al.
2015) (https://www.nitrc.org/projects/gretna/) as follows. First,
the coregistered functional images of each neonate were
spatially normalized to a neonate-specific template (Shi et al.
2011), by applying the transformation parameters estimated
during the spatial normalization of the individual T2-weighted
image to the template, and then, the images were resampled to
2-mm isotropic voxels. The quality of the spatial normalization
was ensured by visual inspection and quantitative evaluation.
Second, the functional images were split into two sections
(i.e., Section 1 and Section 2) with the same scanning lengths,
which were included in the subsequent individual identification
analyses. Specifically, we first discarded the volumes of the
first 10 s (i.e., 26 volumes) to account for image instability
and then removed the volumes corresponding to 60 s (i.e.,
154 volumes) in the middle of the remaining data, resulting
in two separate sections (i.e., Section 1 and Section 2) with
equal scanning lengths (1060 volumes). The removal of the 60-
s volumes was used to reduce the influence of the temporal
autocorrelation of signals between two sections. Finally, we
performed linear detrending, multivariate linear regression of
nuisance covariates, and temporal bandpass filtering (0.01–
0.08 Hz) for Section 1 and Section 2 separately. Of note,
during the nuisance regression, we regressed out 24 head
motion parameters (Friston et al. 1996) and the white matter,
cerebrospinal fluid, and global brain signals (Birn et al. 2006;
Ciric et al. 2017) to further reduce the influence of non-neural
signals. The white matter signal is supposed to capture head
motion and scanner-related artifacts, while the global brain
regressor is associated with motion and respiratory signals as
well as hardware artifacts (e.g., head coil malfunction) (Birn et al.
2006; Power et al. 2017). To extract the tissue signals of interest,
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Table 1 Demographic information of the neonates

Number of neonates Sex (male/female) Gestational age at birth (weeks) Postmenstrual age at scan (weeks)

40 25/15 39.0 ± 1.7 (range: 36.0–41.6) 39.9 ± 2.1 (range: 36.9–44.1)

we employed prior neonatal-specific tissue probability maps
(Shi et al. 2011), which are in a common space with the template
used for spatial normalization. Here, a high threshold (i.e., 0.9)
was applied to the white matter probability map to identify deep
white matter voxels whose signals show weak correlations with
the global brain signal (Power et al. 2017). The resulting time
courses of the two sections (i.e., Section1 and Section 2) were
used for the subsequent analyses.

Functional Network Construction
and Reliability Analysis

We constructed individual whole-brain functional networks
with GRETNA (Wang et al. 2015). For each neonate, we
constructed a functional network for each section (i.e., Section
1 and Section 2) separately, wherein the nodes represented
the regions of interest (ROIs) and the edges represented the
internode functional connectivities. Specifically, the cortical
and subcortical gray matter was parcellated into 223 nodal ROIs
according to a neonate-specific functional parcellation scheme
(Shi et al. 2018). The use of the functional parcellation scheme
can increase the accuracy in estimating functional connectivity
due to the higher functional homogeneity of voxels within each
ROI than those in the structural parcellation.

We extracted the nodal time courses by averaging the vox-
els’ time courses within each node and then estimated the
internode functional connectivity by calculating the Pearson’s
correlation coefficient between their time courses. As a result,
we obtained a 223 × 223 functional connectivity matrix for each
section of each neonate. A group-level functional connectivity
matrix was also obtained for each section, by averaging the
Fisher’s r-to-z transformed individual matrices across neonates
followed by an inverted Fisher’s transformation.

Next, we assessed whether the functional connectivity pat-
tern was stable between Section 1 and Section 2. At the group
level, we calculated the spatial similarity of the group-level
matrices between two sections by calculating Pearson’s correla-
tion coefficient across all the lower triangular elements. At the
individual level, for each neonate we estimated the intrasubject
spatial similarity of the connectivity matrices between two sec-
tions. For each neonate, we also estimated the intersubject sim-
ilarity between two sections as the averaged spatial similarity of
this neonate in one section with all the other neonates in the
other section, including the intersubject similarity from Section
1 to Section 2 and that from Section 2 to Section 1.

Individual Identification Analysis

To explore the uniqueness of the functional connectivity pat-
tern of the neonates, we performed an individual identifica-
tion approach proposed in a previous study (Finn et al. 2015).
The higher the identification accuracy was, the more unique
the functional connectivity pattern. The individual identifica-
tion analysis involved two directions, one from Section 1 to
Section 2 and the other from Section 2 to Section 1. In the first
direction (i.e., from Section 1 to Section 2), we compared the

functional connectivity matrix of each neonate in Section 1 with
those of all the neonates in Section 2. The spatial similarity
between neonates was evaluated according to the Pearson’s
correlation coefficient across the connectivities in the lower
triangular matrix. If the neonate who showed the highest sim-
ilarity in Section 2 was the same neonate given in Section 1,
the identification was correct; otherwise, it was not. Finally, we
calculated the accuracy rate for the neonatal population as the
fraction of neonates who were identified correctly. In the second
direction (i.e., from Section 2 to Section 1), Section 1 and Section
2 were reversed, and the individual identification process was
repeated as described above.

Connectivity-Wise Contribution
to Individual Identification

As suggested in previous studies, individual differences in func-
tional connectivity were spatially inhomogeneous (Mueller et al.
2013; Finn et al. 2015). To ascertain which connectivities con-
tributed the most to the individual identification process, we
used two measures: group consistency (GC) and differential
power (DP) (Finn et al. 2015). Connectivities showing high GC
values are highly consistent across time, while those with high
DP values are thought to make a large contribution to individual
identification.

The estimations of GC and DP depend on the estimation of
the intersection spatial similarity between two functional con-
nectivity matrices. Specifically, the spatial similarity rij between
the z-scored functional connectivity matrix of neonate i in Sec-
tion 1 and that of neonate j in Section 2 can be estimated as
follows:

rij = 1
N − 1

∑
e
r(e)ij, e = 1, . . . , N, (1)

r(e)ij = FC(e)i × FC(e)j, (2)

where FC(e)i and FC(e)j denote the strength of connectivity e in
the connectivity matrices of interest after z-score transforma-
tion for neonates i and j, respectively. Since rij is estimated as
the summation of r(e)ij across all N connectivities, the term r(e)ij
can be used to denote the similarity in connectivity e between
neonate i in Section 1 and neonate j in Section 2.

Given connectivity e, the GC value is calculated as

GC(e) = 1
Nsub

∑
i
r(e)ii, (3)

where r(e)ii denotes the similarity in connectivity e of neonate
i between Section 1 and Section 2, and Nsub denotes the total
number of neonates (i.e., 40 here). A high GC value means that
the strength of this connectivity tends to be consistent across
sections. We calculated GC for each functional connectivity and
obtained a 223 × 223 GC matrix for the neonatal population.

Given connectivity e in subject i, if the connectivity positively
contributes to the identification of the individual, it should
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satisfy r(e)ii > r(e)ij for the identification process from Section 1
to Section 2 and r(e)ii > r(e)ji for the identification process from
Section 2 to Section 1. The DP for connectivity e at the individual
level is calculated as

DPi(e) = −ln

(∣∣∣r(e)ii < r(e)ij
∣∣∣ +

∣∣∣r(e)ii < r(e)ji
∣∣∣
)

2
(
Nsub − 1

) , (4)

where |r(e)ii < r(e)ij| and |r(e)ii < r(e)ji| denote the total number of
times that r(e)ii < r(e)ij and r(e)ii < r(e)ji across all other neonates j,
respectively. The DP for connectivity e for the neonatal popula-
tion is calculated as

DP(e) =
∑

i
DPi(e). (5)

The larger the DP value is, the greater the contribution of this
connectivity to individual identification. We calculated the DP
value for each connectivity and thus derived a 223 × 223 DP
matrix.

Spatial Distributions of the Connectivity-Wise
GC and DP Values

To assess the potential spatial inhomogeneity in the con-
tribution to individual identification, we assessed how the
connectivity-wise GC and DP values varied across regions
and across systems, and whether they were associated with
inter-regional distances.

Regional level. We estimated the GC and DP values for each
node by averaging the GC and DP values, respectively, across all
the connectivities of this node. The ROIs with high GC values
represented ROIs that were highly consistent across two sec-
tions, while the ROIs with high DP values represented ROIs that
made large contributions to individual uniqueness.

System level. We identified the functional systems of the
neonates by using a modular detection approach. Specifically,
for both sections (i.e., Section 1 and Section 2), we generated
a group-level weighted functional network by thresholding
the group-level functional connectivity matrix with a network
density of 10%, wherein connectivities with negative connec-
tivities were excluded due to their ambiguous interpretations
(Weissenbacher et al. 2009; Murphy and Fox 2017). Next, we
detected the modular architecture in the group-level functional
network for each section using the Infomap algorithm (Rosvall
and Bergstrom 2008), which captures the structured pattern of
information flow on the network and has been used to identify
brain modules in agreement with the task-driven functional
systems (Power et al. 2011). Given the modular partition of the
network, an index of modularity was estimated to quantify the
strength of the modular division (Newman and Girvan 2004). The
spatial similarity of the modular architectures between Section
1 and Section 2 was assessed using adjusted mutual information
(AMI) (Vinh et al. 2010). As the modular architectures were highly
similar between the two sections, the modular architecture
derived from Section 1 was used as the reference for the
functional systems of the neonates.

The within-system contribution to individual identification
was quantified by averaging the connectivity-wise GC (or DP)
values within each module, and the between-system contribu-
tion was quantified by averaging the GC (or DP) values across
the between-module connectivities. We quantified the overall

contribution of each module by averaging the GC (or DP) values
across all the connectivities involved with each module.

Spatial distance influence. To explore the spatial distance
dependence of connectivity-wise GC and DP values, we
calculated the Euclidean distance between each pair of nodes
and divided all connectivities into three groups with different
ranges of Euclidean distances, including the short-range of 0–
30 mm, the middle range of 30–60 mm and the long range
of 60–120 mm. The Euclidean distances among regions were
estimated in the standard space (i.e., the neonate-specific
template), in order to correct for intersubject variability in brain
sizes and make the cross-individual comparison feasible. We
then compared the GC and DP values of the connectivities
across different distance ranges. To correct for the multiple
comparisons, the Bonferroni method was used with a corrected
P < 0.05.

Effects of Scanning Lengths on Individual Identification

To determine the appropriate scanning length for identify-
ing individuals from the functional connectivity pattern in
neonates, we performed the following analysis. In brief, for each
section in each neonate, we obtained various R-fMRI segments
with increasing scanning lengths from 30 to 390 s in steps of
30 s. To ensure that the scanning interval between two sections
was the same (i.e., 60 s), the segments in Section 1 were obtained
by truncating volumes from the end to the beginning, and the
segments in Section 2 were obtained by truncating volumes
from the beginning to the end. For a given scanning length, we
constructed individual functional connectivity matrices for each
section and performed the individual identification process as
described before. The dependence of individual identification
accuracy on the scanning length was investigated.

Validation Analysis

We evaluated whether our main results were influenced by
different data preprocessing and analysis strategies, includ-
ing head movement correction, global signal regression, and
removal of weak connectivities, as well as age and sex effects.

Head movement correction. Head movement during data
acquisition could bias the estimation of functional connectivity
(Power et al. 2012; Satterthwaite et al. 2012; Van Dijk et al. 2012).
To mitigate the influence of head motion, we included the 24
head motion parameters (Friston et al. 1996) and the global brain
signal (Yan et al. 2013; Ciric et al. 2017) in the nuisance regression
during the data preprocessing. To explore the potential residual
influence of head motion, we further performed a data
scrubbing on the preprocessed functional images (Power et al.
2012, 2013; Power et al. 2015). For each section of each neonate,
we calculated the framewise displacement (FD) (Power et al.
2012) for each time point and discarded the “bad” volumes with
FD above 0.2 mm and their adjacent volumes (i.e., 1 backward
and 2 forward). Neonates who had “bad” volumes in more
than 50% of the original data in either of the two sections
were excluded. Finally, we estimated the individual functional
connectivity matrices based on the remaining data and repeated
the individual identification analysis.

Global signal regression. Global signal regression is a contro-
versial issue in R-fMRI data analysis, which affects the distribu-
tion of functional correlations as well as the network topology
(Murphy and Fox 2017). In the main analysis, we preprocessed
the R-fMRI data with the global signal included in the nuisance
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regression, to better reduce the influence of physiological noise
and head motion (Birn et al. 2006; Yan et al. 2013; Power et al.
2017). To assess the potential influence of the global signal, we
reperformed all the analyses based on functional data without
global signal regression during data preprocessing.

Removal of weak connectivities. In the main analysis, all func-
tional connectivities were included in the individual identifica-
tion. However, in the functional networks, some weak connectiv-
ities might be spuriously induced by noise. To assess the poten-
tial influence of spurious connectivities, we identified strong
connectivities for each section using the following procedures.
Given a section (i.e., Section 1 or Section 2), we performed a
one-sample t-test across all the neonates for every connectivity
and identified the strong connections as those surviving from
the correction for multiple comparisons (q < 0.05, FDR corrected).
Then, we repeated the individual identification analysis based
on the strong connectivities in common for both sections.

Age and sex effects. Age and sex are two important factors
affecting brain connectivity patterns (Gong et al. 2011; Gao et al.
2017; Gilmore et al. 2018). Due to individual differences in age
and sex among the neonates (see Table 1), our results may be
affected by these two factors. Here, we explored the potential
influence of age and sex on the connectivity-wise contribution
to individual identification (i.e., DP). For each connectivity, we
employed a general linear model, which included age, sex, and
their interaction as predictors:

Yi = β0 + β1 × agei + β2 × sexi + β3 ×
(
agei × sexi

) + β4 × mFDi + εi, i = 1, 2, . . . , Nsub, (6)

where Yi represents the DP value of the connectivity of interest
for neonate i. The head motion parameter mFDi, which denotes
the averaged FD across two sections, was also included as a
covariate. The significant effect of each predictor was corrected
for multiple comparisons across connectivities (q < 0.05, FDR
corrected). For the connectivities showing significant interaction
effects, the age effects were evaluated in girls and boys sepa-
rately. Of note, in the general linear model, postmenstrual age at
scan and chronological age at scan were separately considered
to take into account different types of developmental influence.

Results
Individual Identification in Neonates Based
on Whole-Brain Functional Connectivity Patterns

We used a neonate-specific functional parcellation scheme
to construct the individual functional connectivity matrices
(Fig. 1A). Group-level connectivity matrices for Section 1 and
Section 2 are displayed in Fig. 1B. The group-level connectivity
matrices showed high spatial similarity between Section 1 and
Section 2 (r = 0.94, P< 0.0001) (Fig. 1B), indicating reliable func-
tional connectivity patterns at the group level. At the individual
level, we also observed high spatial similarities within the same
neonates (rs, mean ± std = 0.54 ± 0.09), which were significantly
higher than those estimated between different neonates either
from Section 1 to Section 2 (rs, mean ± std = 0.19 ± 0.05) or the
reverse direction (rs, mean ± std = 0.19 ± 0.05) (both ps < 0.0001,
paired t-tests) (Fig. 1C). Based on the whole-brain functional
connectivity patterns, the neonates were successfully identified
between the two sections with an accuracy of 100% in both

directions (Fig. 1D), suggesting that the individual uniqueness
was present in the functional connectivity profiles of the
neonates.

Spatial Distribution of the Connectivities with High
GC and DP Values

We estimated the GC and DP values for each connectivity and
summarized them at the regional and system levels. First, we
found that regions with high GC values were primarily located
bilaterally in the superior frontal gyrus, parietal cortex and
sensorimotor areas (Fig. 2A, left). Regions with high DP values
were mainly located in the medial and lateral frontal cortices,
superior parietal gyrus, anterior and middle cingulate gyri, and
left inferior temporal gyrus (Fig. 2A, right). Next, we assessed
whether the distributions of the GC and DP values were depen-
dent on the functional system. For the group-level functional
network of Section 1, the network modularity was 0.58, and eight
modules were detected (Fig. 2B), including sensorimotor/audi-
tory, prefrontal, orbitofrontal, subcortical, visual, parietal/tem-
poral, left temporal, and right temporal modules. This modular
architecture was highly similar to that obtained from Section
2 (Fig. S1) (AMI = 0.80) and was hereafter used as the reference
for the functional systems. We found that the connectivities
with the highest GC values (i.e., top 0.5%) were primarily located
within several systems, including the prefrontal, sensorimo-
tor/auditory, parietal/temporal, and visual systems (Fig. 2C, left),
and those with the highest DP values (i.e., top 0.5%) were primar-
ily located between systems (Fig. 2D, left). Similar results were
observed for different thresholds of the highest values (i.e., top
3%, 5%, and 10%) (Fig. S2). At the system level, the prefrontal,
sensorimotor/auditory, parietal/temporal, and visual modules
showed the largest GC values (Fig. 2C, right), and the prefrontal
and parietal/temporal modules showed the largest DP values
(Fig. 2D, right).

We also examined the distance dependence of the
connectivity-wise GC and DP values. All connectivities were
classified into three groups with inter-region Euclidean dis-
tances located within different bins, including 0–30, 30–60,
and 60–120 mm. We found that the short-range connectivities
(0–30 mm) showed significantly higher GC values than the
connectivities at the other distance ranges (30–60 and 60–
120 mm) (all ps < 0.0001, two-sample t-tests), and the middle-
range connectivities (30–60 mm) showed significantly higher
GC values than the long-range connectivities (60–120 mm)
(P< 0.0001, two-sample t-test). Meanwhile, the short- and
middle-range connectivities (0–30 and 30–60 mm) showed sig-
nificantly higher DP values than the long-range connectivities
(60–120 mm) (both ps < 0.0001, two-sample t-tests) (Fig. 3). These
results suggest that short- and middle-range connectivities may
dominantly contribute to the identification of neonates.

Effects of Scanning Lengths on Individual Identification

We divided each scanning section (i.e., Section 1 and Section 2)
into thirteen bins with increasing scanning lengths ranging from
0.5 to 6.5 min in steps of 0.5 min (Fig. 4A). With a scanning
length of 0.5 min, the accuracy of individual identification was
relatively low in both directions (55% for Section 1 to Section 2
and 62.5% for Section 2 to Section 1) (Fig. 4B). As the scanning
length increased, the identification accuracies in both direc-
tions increased gradually and finally reached a saturation point.
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Figure 1. Individual identification in neonates using whole-brain FC patterns. (A) Neonate-specific functional parcellation with 223 nodes. (B) Group-level functional
connectivity matrices for Section 1 (left) and Section 2 (middle), and significant spatial correlation in the whole-brain connectivity patterns between two sections
(right). Each dot in the scatter plot represents a connectivity in the group-level matrices. (C) Spatial similarity of individual FC patterns between two sections. For each
neonate, we calculated the spatial similarity within the same subjects (intra-sub, red), the mean spatial similarity of this subject in Section 1 with all the other subjects

in Section 2 (inter-sub, Section 1 to Section 2, blue), and the mean spatial similarity of this subject in Section 2 with all the other subjects in Section 1 (inter-sub, Section
2 to Section 1, yellow). (D) Intersubject similarity matrices of FC patterns from Section 1 to Section 2 (left) and from Section 2 to Section 1 (right). Each row represents
the spatial similarities (i.e., Pearson’s correlation coefficients) between one neonate in Section 1 (Section 2) and all neonates in Section 2 (Section 1). ∗∗∗∗ , Bonferroni

corrected P < 0.0001. FC: functional connectivity. ROI: region of interest.

Notably, the identification accuracy was as high as 100% with
a scanning length of 3.5 min, regardless of the identification
direction. This finding suggests that a scanning length of at least
3.5 min leads to successful neonate identification.

Effects of Head Movement on Individual Identification

For the 40 neonates included in the main analysis, the mean
FD across time for each neonate ranged from 0.10 to 0.90 mm
(mean ± std = 0.27 ± 0.18 mm) for Section 1 and from 0.10 to
1.17 mm (mean ± std = 0.31 ± 0.24) for Section 2. To reduce the
effects of transient head motion, we discarded the volumes
with large head movement. Thirteen neonates remained after
data scrubbing with a stringent criterion (proportion of vol-
umes remaining, mean ± std = 71.7% ± 10.7% for Section 1 and
71.1% ± 15.0% for Section 2). For the remaining neonates, the
accuracy of individual identification was 100% in both direc-
tions. The spatial distributions of the GC and DP values at the
regional and system levels remained nearly unchanged (Fig. 5).
These results suggest that head movement had little influence
on our main findings.

Effects of Other Factors

We validated our results by using different data preprocess-
ing and analysis strategies, including global signal regression,
removal of weak connectivities, and consideration of age and
sex effects. (1) Global signal influence. After preprocessing the
R-fMRI data without global signal regression, we found that the

individual identification accuracy was 100% in both directions,
and the spatial distributions of the GC and DP values were highly
similar to our main results (Fig. S3). These results indicate a
weak influence of the global signal on our findings. (2) Removal
of weak connectivities. A total of 5018 strong connectivities were
detected in common for both sections. Based on these strong
connectivities, we repeated the individual identification anal-
ysis, and the main results showed few changes (Fig. S4). Of
note, the accuracy was 100% for individual identification from
Section 1 to Section 2 and 97.5% for identification from Section
2 to Section 1. These results suggest that our main findings
were not driven by weak connectivities. (3) Effects of age and
sex on the DP value. Two types of ages (i.e., postmenstrual and
chronological ages at scan) were separately included in the
general linear model. For postmenstrual age, we did not observe
any significant effects of age, sex, or their interaction for any
connectivity (q > 0.05, FDR corrected). For chronological age, we
did not observe significant sex effects but found significant
effects of age and age by sex interaction for some connectivities
(q < 0.05, FDR corrected) (Fig. S5). Specifically, the DP values of
a few connectivities significantly increased with chronological
age, which were mainly intersystem connections involved with
sensorimotor/auditory, prefrontal, and temporal systems (Fig.
S5A). The connectivities showing significant interaction effects
were primarily intersystem connections involved with sensori-
motor/auditory, prefrontal, and orbitofrontal systems (Fig. S5B),
all of which showed significant age-related increases in girls
(all ps < 0.05). For the boys, only a few connectivities exhibited
significant age effects.
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Figure 2. Spatial distributions of connectivities with high GC and DP values. (A) Maps of regional GC and DP values. (B) Modular architecture at the group level for

Section 1. Eight modules were detected. (C) Spatial distribution of connectivity-wise GC values. Left, spatial distribution of connectivities with the top 0.5% GC values;
right, GC values at the system level for all connectivities. (D) Spatial distributions of connectivity-wise DP values. Left, spatial distribution of connectivities with the
top 0.5% DP values; right, DP values at the system level for all connectivities. In (C) and (D), each element in the matrices denotes the average GC or DP values within
each module or between each pair of modules. The value of each bar above the matrices represents the average GC or DP value of all connectivities involved with each

module. In the circle graphs, magenta and green lines represent inter- and intra-module connectivities, respectively. The BrainNet Viewer package (Xia et al. 2013) was
used to display the brain surface, and Circos (Krzywinski et al. 2009) was used to display the circular distribution of GC and DP connectivities. GC, group consistency;
DP, differential power; SM/Aud, sensorimotor/auditory; Front, prefrontal; OrbF, orbitofrontal; Sub, subcortical; Vis, visual; Par/Temp, parietal/temporal; Temp.r, right
temporal; Temp.l, left temporal.

Figure 3. GC and DP values of connectivities at different distances. Each bar represents the mean GC (left) or DP (right) value of all the connectivities within each
distance range, and each whisker represents the standard error of the mean. ∗∗∗∗, Bonferroni corrected P < 0.0001; GC, group consistency; DP, differential power.

Discussion

Based on the multiband R-fMRI data of 40 healthy neonates,
using a connectome-based individual identification approach,
we demonstrated that the functional connectivity patterns of
neonates are individually unique. The main findings are as
follows: (1) the individual functional connectomes were reliable
between the two sections, based on which all the neonates

were correctly identified from the population; (2) regions in the
higher-order cortices, especially in the prefrontal and parietal–
temporal systems, dominantly contributed to the individual
identification process; (3) the short- (0–30 mm) and middle-
range (30–60 mm) connectivities showed higher DP values than
the long-range (60–120 mm) connectivities; and (4) R-fMRI data
with scanning lengths longer than 3.5 min were able to capture
individual uniqueness in the neonatal functional connectome.
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Figure 4. Scanning length effects on individual identification. (A) Schematic diagram of data segmentation with different scanning lengths. The total length of the
bar represents the entire scanning time (15 min in total) for each neonate. We removed the R-fMRI volumes in the first 10 s and the middle 60 s (black-filled areas).

Green bins refer to different data segments used for individual identification with increasing scanning lengths in steps of 30 s. (B) Individual identification accuracies
at different scanning lengths. Magenta dots represent the identification accuracies from Section 1 to Section 2, and green dots represent the identification accuracies
from Section 2 to Section 1.

Figure 5. Head movement effects on individual identification. (A) Individual identification using whole-brain FC patterns estimated from scrubbed data. Individual

identification was performed among the thirteen subjects who remained after data scrubbing with a stringent criterion. (B) Spatial distribution of GC values. Left: map
of regional GC values; middle, spatial distribution of connectivities with the highest (top 0.5%) GC values; right, GC values at the system level for all connectivities. (C)
Spatial distribution of DP values. Left, map of regional DP values; middle, spatial distribution of connectivities with the highest (top 0.5%) DP values; right, DP values
at the system level for all connectivities. GC, group consistency; DP, differential power.
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Our results were reproducible under the strict control of head
motion and the removal of weak connectivities. These find-
ings indicate that the individual uniqueness of the functional
connectome is already present in neonates, which may shape
individual differences in cognition and behavior in later devel-
opmental stages.

Individual Functional Connectomes
are Unique in Neonates

Prior studies have demonstrated that the functional connec-
tomes of adults and adolescents are individually unique (Finn
et al. 2015; Vanderwal et al. 2017; Horien et al. 2019). As an expan-
sion of previous studies, we found that the individual unique-
ness of functional connectomes is already present in neonates,
as evidenced by accurate individual identification between two
sections. This finding is different from a recent study (Kaufmann
et al. 2017) that showed that functional connectome distinctive-
ness matures gradually with age from childhood to adolescence
into adulthood. The inconsistency may be attributed to the fact
that different types of fMRI data were used in these two studies.
In the study by Kaufmann et al. (2017), individual identification
was performed across resting and task states. Since functional
connectivity patterns are state-dependent, the cross-state com-
parison might reduce the accuracy, as shown in adults (Finn
et al. 2015). In our study, we focused on the intrinsic func-
tional connectome, which was acquired during natural sleep.
The functional organization is relatively stable across sleep
stages during the fMRI scans lasting minutes (Gao et al. 2017),
which could increase the intersection similarity and improve
the accuracy. The presence of uniqueness in the functional
connectome at birth, a stage that is far from mature, suggests
that genes and the maternal environment play a critical role
in individual functional connectome development. The early
established individual uniqueness in the functional connectome
may not only contribute to distinctive cognition and behaviors
in neonates but also lay a foundation for individual cognitive
development.

Higher-Order Cortices Dominate Individual Uniqueness

In neonates, the brain regions show a differentiated maturation
pattern in both functional connectivity organization (Gao et al.
2015a, 2015b) and cortical tissue characteristics (Stoecklein
et al. 2020). One might expect that the more mature primary
areas may better capture individual characteristics than the
association areas with prolonged maturation. Nevertheless, we
observed that in neonates, the regions that made dominant
contributions to functional connectome uniqueness were
mainly located in the higher-order brain systems, especially
the prefrontal lobe, cingulate gyrus, and parietal lobe. This
observation seems to be reasonable, because high intersubject
variability has been observed in the functional connectivity
profiles of these regions for neonates (Gao et al. 2014; Xu
et al. 2019; Stoecklein et al. 2020). The positive correlation
between the distinctiveness (i.e., DP value) and the intersubject
variability was confirmed at both the connectivity and regional
levels (Fig. S6). Although higher-order cognitive functions are
far from mature at birth, functional connectivities underlying
these cognitive processes may develop early and establish a
neuronal basis during the prenatal stage (Thomason et al. 2015).
Combined with previous findings in adults and adolescents
(Finn et al. 2015; Horien et al. 2019), we suggest that the

connectivity patterns of the higher-order cortices consistently
capture individual characteristics at different ages. Given the
remarkable reconfiguration of the connectivities of the higher-
order regions in postnatal development (Collin and van den
Heuvel 2013; Vértes and Bullmore 2015), their development may
follow individualized trajectories to preserve a high intersubject
variability from the neonatal to the adult stage (Mueller et al.
2013; Gao et al. 2014).

Of note, regional individual distinctiveness and temporal
consistency are not directly related. The regions showing high
differential power across individuals partially overlapped with
those showing high temporal consistency, mainly in the medial
prefrontal and bilateral parietal cortices. For these overlapping
regions, the functional connectivities are individually distinctive
and stable across repeated measurements. However, some other
regions showed high DP values (e.g., inferior frontal cortex) but
low GC values. This could be because the intersubject variability
in their connections is large enough to differentiate individuals
from each other despite the presence of intrasubject fluctua-
tions. In contrast, some regions showed high temporal consis-
tency but relatively low uniqueness, such as the sensorimotor
areas, and this finding can be explained by the low interindi-
vidual variability in connectivity (Gao et al. 2014; Xu et al. 2019;
Stoecklein et al. 2020). Similar findings were also observed at the
connectivity level. The connectivities with high DP values were
mainly located between different systems, while the connectivi-
ties with high GC values were predominantly located within the
same systems. Moreover, we found that compared with the GC
value, the DP value showed a higher spatial correspondence with
the intersubject variability in functional connectivity strength at
both the regional and connectivity levels (Fig. S6). On the basis of
these results, we speculate that for repeated sections with short
time intervals, the differential power of the brain regions may
be predominantly determined by the extent of the intersubject
variability rather than the temporal consistency.

We further observed that the differential power of some con-
nectivities significantly increased with chronological age, espe-
cially for girls (Fig. S5). These connectivities were dominantly
intersystem connectivities involved with sensorimotor/auditory
and frontal regions, which might be related to the individual-
ized refinements of the sensorimotor and auditory functions
during postnatal development. The faster developmental rates
in girls are compatible with a previous finding demonstrating
the faster development of the functional network topology from
birth to adolescence in girls (Gozdas et al. 2019). Our results
suggest an increased distinctiveness in the connectivities during
postnatal development, which is sex dependent. However, the
mechanisms underlying the contributions of genetic and envi-
ronmental factors to these changes remain to be deciphered. Of
note, the present study employed neonates spanning a narrow
range of chronological ages (i.e., 0.1–3.9 weeks). A larger sample
of infants across a wider age range (e.g., including prenatal and
postnatal stages) is needed to better delineate the age and sex
effects in the future.

Short- and Middle-Range Connectivities
are Highly Distinctive

We found that the short- and middle-range connectivities were
more distinctive than the long-range connectivities, suggesting
that these connectivities make a dominant contribution to indi-
vidual uniqueness. In the prenatal and preterm developmen-
tal stages, the changes in functional connectivity are mainly
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limited to short- and middle-range connectivities in order to
enhance functional segregation (Ouyang et al. 2017), such as the
enhancement of short-range connectivities during the second
trimester (Jakab et al. 2014) and the strengthening of short-
and middle-range connectivities during the third trimester (Cao
et al. 2017a). The relatively early developments of the short-
and middle-range connectivities before birth may be largely
influenced by genetic and maternal factors and thus reflect indi-
vidual characteristics in functional architecture, resulting in rel-
atively high distinctiveness. In contrast, long-range functional
connectivities are much less developed before birth (Smyser
et al. 2010; Thomason et al. 2015; Cao et al. 2017a), likely due
to the limited myelination in white matter (Collin and van den
Heuvel 2013), and exhibit a prolonged maturation process from
the infant stage to adulthood (Fair et al. 2009; Gao et al. 2011).
A prior study pointed out that during the third trimester, the
functional networks of infants transit from a relatively random
architecture towards a more organized configuration (Cao et al.
2017a). Therefore, late-maturing long-range connectivities may
retain a relatively random configuration in neonates and may
thus be less distinguishable across individuals.

Effect of Scanning Length on Individual Identification

R-fMRI data with a sufficient scanning length are necessary to
reliably map functional connectomes and infer convincing con-
clusions. Here, we observed that the connectome-based identifi-
cation accuracy increased with scanning length, which is in line
with the results of prior studies on individual identification in
adults (Finn et al. 2015; Horien et al. 2018). These findings may
be because a longer scanning duration increases the reliability
of the functional network by increasing the degree of freedom
for connectivity estimation and reducing the sampling error
(Laumann et al. 2015). Of note, we found that the identification
accuracy reached a plateau (i.e., 100%) after 3.5 min, which is
much shorter than the scan duration (e.g., at least 5 min) needed
to estimate reliable functional correlations in adults (Van Dijk
et al. 2010; Whitlow et al. 2011). This result is possible and
reasonable since the algorithm used for individual identification
is dependent on the difference between the intrasubject simi-
larity and the maximal intersubject correlation rather than the
absolute magnitude of the intrasubject reliability (Noble et al.
2017). With a scanning length of 3.5 min, the overall connec-
tivity pattern in neonates may yield a higher intrasubject than
intersubject similarity, thus allowing individual characteristics
in the functional organization to be captured. In addition, in
comparison with the resting state usually adopted for adults,
the relatively stable functional architectures of neonates during
natural sleep (Gao et al. 2017) may also contribute by promot-
ing intrasubject similarity between two sections. This finding
indicates that individual-specific functional connectivity pat-
terns can be captured with a short scanning duration and may
provide some guidelines for future studies regarding individual
differences in neonates.

Technical Considerations and Future Directions

Several issues need to be considered. First, we used a split-half
approach to obtain repeated R-fMRI measurements required for
individual identification, with only a short time interval (i.e.,
1 min) between the two sections. The short interval may have
enhanced the intrasubject reliability, as suggested in a study by
Birn et al. (2013), and thus made individual identification easier

than it would have been with an intersession design. Future
studies should be conducted to explore individual identification
with longer interscan intervals (such as hours or days) if R-
fMRI data of neonates satisfying these conditions are available.
Considering the rapid development of functional connectivities
in infants (Cao et al. 2017b; Gilmore et al. 2018), the remarkable
developmental effect may become a confounding factor for indi-
vidual identification if the interscan interval extends to months
or years. Second, the impact of the parcellation scheme should
be investigated further. Here, to define the regions of interest,
we used a neonate-specific functional parcellation scheme (Shi
et al. 2018), which is anatomically constrained according to
a spatially deformed automated anatomical labeling atlas of
an adult (Tzourio-Mazoyer et al. 2002). Given the remarkable
changes in the brain from the neonatal stage to adulthood,
the anatomical boundaries in adults may not be suitable for
neonatal brains and thus may affect our functional connectivity
estimation. It is suggested that a neonate-specific functional
parcellation scheme be constructed through a functional data-
driven approach. Third, the neonatal R-fMRI data in the dHCP
were obtained during natural sleep rather than the typical rest-
ing state for adults. Given potential differences in the functional
architecture between the sleep and wake states (Graham et al.
2015; Mitra et al. 2017), the applicability of our findings to the
resting state of neonates deserves further exploration. Finally,
we found that individual uniqueness is present in the functional
connectome of neonates born at term. Whether uniqueness can
be observed at an earlier developmental stage (i.e., prenatal or
preterm period) is still unclear. Moreover, to elucidate the func-
tional significance of the subject-specific connectivity patterns,
their potential behavioral associations are worth examining.
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