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Abstract

Functional brain networks require dynamic reconfiguration to support flexible cognitive function. However, the
developmental principles shaping brain network dynamics remain poorly understood. Here, we report the longitudinal
development of large-scale brain network dynamics during childhood and adolescence, and its connection with gene
expression profiles. Using a multilayer network model, we show the temporally varying modular architecture of child brain
networks, with higher network switching primarily in the association cortex and lower switching in the primary regions.
This topographical profile exhibits progressive maturation, which manifests as reduced modular dynamics, particularly in
the transmodal (e.g., default-mode and frontoparietal) and sensorimotor regions. These developmental refinements
mediate age-related enhancements of global network segregation and are linked with the expression profiles of genes
associated with the enrichment of ion transport and nucleobase-containing compound transport. These results highlight a
progressive stabilization of brain dynamics, which expand our understanding of the neural mechanisms that underlie
cognitive development.
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Introduction
The human brain is an efficient and dynamic information
processing system with a complex spatiotemporal orga-
nization. Network science approaches have revealed that
the human brain functional network contains a nontrivial
modular structure, in which functional specialization and
integration are well balanced at low wiring cost (He et al. 2009;
Meunier et al. 2010; Sporns and Betzel 2016; Liao et al. 2017).
This modular structure facilitates a fast response to domain-
specific stimuli (Meunier et al. 2010; Bertolero et al. 2015;
Sporns and Betzel 2016) and also enables efficient global brain
communication (Bullmore and Sporns 2012). Recent studies
suggest that the modular organization of the brain is not static
but rather shows temporally varying patterns over short time
scales (e.g., seconds), with higher network switching primarily in
the association (e.g., frontoparietal) regions and lower variability
in the primary regions (Chen et al. 2016; Liao et al. 2017; Pedersen
et al. 2018; Liu et al. 2020). These network dynamics contribute
significantly to flexible cognitive function (Chen et al. 2016; Liao
et al. 2017; Yin et al. 2020) and are distinctive to each individual
(Liao et al. 2017). During short-term training, network segrega-
tion in the brain is increased through dynamic reconfigurations,
and these increases correspond to improved task automation
(Bassett et al. 2015; Finc et al. 2020). These findings suggest a
link between adaptive network dynamics and skill acquisition
which we believe may be significant not only during short-
term learning but also in long-term development. However, how
network dynamics changes during childhood and adolescence, a
crucial stage for cognitive and behavioral development, remains
largely unknown. The goal of the current study was to gain
insight into the principles shaping the maturation of network
dynamics in human brain, and its connection with cognitive
development and gene expression profiles.

Childhood and adolescence are critical developmental
phases for the consolidation and refinement of individual
motor, cognitive, social, and emotional capabilities (Berk 2017).
These physical, cognitive, and psychological developments
occur in parallel with the substantial development of brain
architecture (Vértes and Bullmore 2015; Cao et al. 2016).
During this period, brain microstructure is fine-tuned through
processes including regressive synaptic pruning and progressive
myelination (Tau and Peterson 2010; Vértes and Bullmore 2015).
At the macroscopic level, the modular structure of the functional
brain networks undergoes remarkable reconfiguration with age
(Vértes and Bullmore 2015; Cao et al. 2016; Grayson and Fair
2017), shifting from anatomical proximity during childhood to a
spatially distributed layout at adulthood (Fair et al. 2009). Within
modules, a decrease in the number of short-range connections
with age is observed in some modules as a result of synaptic
pruning (Fair et al. 2007; Supekar et al. 2009), while in others,
the number of long-range connections increases over time,
for example the increase in anterior–posterior connections
observed in the default-mode network (Fair et al. 2008; Sato
et al. 2014; Fan et al. 2021). Between modules, integration
between the default-mode network and other brain systems
exhibits an age-related increase, while integration between the
higher order cognitive network and the subcortical network
with other brain systems show an age-related decrease (Gu
et al. 2015). These system-specific changes in intramodule
and intermodule connections are indicative of the growing
functional differentiation of brain modules with development.
Notably however, previous studies on brain network modularity
were mainly undertaken on the development of static (i.e.,

time-invariant) modular architecture, and largely ignored the
temporal dynamics of brain modularity. Yet, as recent work
has pointed out, cognitive growth is largely dependent on
age-related adjustments in the brain’s temporal dynamics
(Hutchison and Morton 2016). To date, how modular dynamics in
the brain network develops toward maturation over childhood
to adolescence has yet to be established.

Structural and functional development of the brain is shaped
by genetic factors (Johnson et al. 2009; Douet et al. 2014; Zhong et
al. 2018). For instance, animal model studies have revealed that
myelination in the central neural system is closely governed by
a gene named the myelin gene regulatory factor, which is specif-
ically expressed in oligodendrocytes (Emery et al. 2009), and
synaptic pruning is mediated by astrocytes through the Megf10
(i.e., multiple epidermal growth factor-like domains protein 10)
and Mertk (i.e., Mer tyrosine kinase) phagocytic pathways (Chung
et al. 2013). Recent advances in connectome-transcriptome asso-
ciation analysis now enable us to explore the transcriptional sig-
natures underlying the spatial organization of the human brain
network in vivo (Fornito et al. 2019). In adults, the spatial layout
of functional modules is shaped by genes associated with the
enrichment of ion channels (Richiardi et al. 2015). Intermodule
hubs have also been shown to be metabolically expensive, with
an overrepresentation of genes for oxidative metabolism and
mitochondria (Vértes et al. 2016). A very recent study reported
that the spatial layout of brain module dynamics in adults
is associated with genes involved in potassium ion transport,
establishing a link between large-scale connectivity dynamics
and transcriptional profiles (Liu et al. 2020). Nevertheless, little
is known on how gene expression is linked to developmental
brain dynamics in children.

To address these issues, we investigated the developmental
changes in brain network dynamics between childhood and
adolescence, and the transcriptional profiles of genes related to
this process. Brain network analyses were undertaken using a
large longitudinal resting-state functional magnetic resonance
imaging (rsfMRI) dataset comprising scans from 305 healthy
children (age 6–14 years, 491 scans in total) (Fan et al. 2021),
and genetic analysis was conducted using postmortem gene
expression data from the Allen Human Brain Atlas (Hawrylycz
et al. 2012). Specifically, for all rsfMRI scans of each participant,
we applied a multilayer network model (Mucha et al. 2010) to
identify the time-resolved modular architecture in the child
brain and further quantified the temporal switching of regional
module affiliations. We aimed to investigate i) developmental
patterns in brain network dynamics during childhood and ado-
lescence at the whole-brain, system and nodal levels, and their
potential association with cognitive development; ii) whether
these developmental patterns contribute to age-related changes
in the information transmission capability of brain networks;
and iii) the association between developmental changes in brain
network dynamics and gene transcriptional profiles.

Materials and Methods
Participants

We utilized a longitudinal rsfMRI dataset consisting of scans
obtained from 360 typically developing children (F/M = 163/197,
6 to 14 years, 643 scans in total) collected by the Children School
Functions and Brain Development Project (Beijing Cohort). Par-
ticipants included in this study were cognitively normal, and had
no history of neuropsychiatric illness, psychoactive drug use,
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significant head injuries, or significant physical illness. Some of
these children underwent multiple sessions of multimodal MRI
imaging (T1, T2, rsfMRI etc.) with an interval of approximately 1
year between each session. After strict quality control screening
(see Supplement for further details), 491 rsfMRI scans of 305
children (F/M = 143/162, 6 to 14 years) were retained for use in
our study (Fig. 1A). These were made up of three scans from 47
children (F/M = 31/16), two scans from 92 children (F/M = 47/45),
and a single scan from 166 children (F/M = 65/101). For the pur-
poses of comparison, we also used an rsfMRI dataset comprising
data from 61 healthy young adults (F/M = 37/24, 18 to 29 years),
which was acquired using an identical scanner and scanning
protocols. The study was approved by the Ethics Committee of
Beijing Normal University, and written informed consent was
obtained from all participants or their parents/guardians.

Imaging Data Acquisition

MRI data were acquired using a 3 T SIEMENS Prisma scanner
in the Center for Magnetic Resonance Imaging Research at
Peking University. Both children and adults were scanned using
the same scanner and identical scanning protocols. For each
participant (child and adult), structural and functional MRI
scans were acquired using the following protocols. T1-weighted
images were acquired using a sagittal 3D magnetization
prepared rapid acquisition gradient echo (MPRAGE) sequence:
repetition time (TR) = 2530 ms, echo time (TE) = 2.98 ms,
inversion time = 1100 ms, flip angle (FA) = 7◦, matrix = 256 × 224,
field of view (FOV) = 256 × 224 mm2, slice number = 192, slice
thickness = 1 mm, bandwidth = 240 Hz/Px. The rsfMRI data were
acquired using an echo-planar imaging sequence: TR = 2000 ms,
TE = 30 ms, FA = 90◦, matrix = 64 × 64, FOV = 224 × 224 mm2,
slice number = 33, slice thickness/gap = 3.5/0.7 mm, scan
duration = 8 min (i.e., 240 volumes in total). The participants
were asked to keep a fixation on a bright cross-hair in the
center of the scanner screen. A field map was acquired
prior to the rsfMRI scan using a 2D dual gradient-echo
sequence: TR = 400 ms, TE1 = 4.92 ms, TE2 = 7.38 ms, FA = 60◦,
matrix = 64 × 64, FOV = 224 × 224 mm2, slice number = 33, slice
thickness/gap = 3.5/0.7 mm.

Imaging Data Preprocessing

Resting state fMRI data from the child cohort were preprocessed
using SPM12 (https://www.fil.ion.ucl.ac.uk/spm) and DPABI 3.0
(Yan et al. 2016). First, for each scan, we removed the first 10
volumes and performed slice-timing correction. Next, a field
map correction was applied to remove geometric distortion.
We then performed head motion correction and estimated the
mean framewise displacement (FD) (Power et al. 2012) across
time for each scan. A total of 94 scans were excluded due to
excessive head motion (i.e., translation > 3 mm, rotation > 3◦,
or mean FD > 0.5 mm). The functional images were then coreg-
istered with individual T1 images and spatially normalized to a
custom template using a unified segmentation algorithm (Ash-
burner and Friston 2005) (see Supplement for further details).
During initial segmentation of the T1 images, Chinese Pedi-
atric Atlases (CHN-PD) (6–12 years) (Zhao et al. 2019) were used
as the reference for segmentation to improve accuracy in the
spatial deformation of pediatric brain images. The normalized
functional images were resampled to 3-mm isotropic voxels
and spatially smoothed with a Gaussian smoothing kernel (full-
width at half maximum = 4 mm). Next, we performed linear

detrending, nuisance signal regression, and temporal band-pass
filtering (0.01–0.1 Hz). During nuisance regression, the following
nuisance regressors were included to reduce the influence of
nonneural signals: Friston’s 24 head motion parameters (Friston
et al. 1996), “bad” time points with FD above 0.5 mm, and white
matter, cerebrospinal fluid and global brain signals.

Functional images from the adult cohort were preprocessed
using the same procedures, except that when undertaking
spatial normalization, functional images from the adult group
were spatially normalized to the Montreal Neurological Institute
(MNI) standard space.

Construction of Dynamic Functional Networks

The selection of an appropriate brain parcellation scheme is
essential for node definition in the construction of functional
networks (Bullmore and Bassett 2011). For functional networks
constructed from the child scans, we defined network nodes
based on a customized random parcellation scheme, referred
to as random-1024 parcellation, comprising 1024 gray matter
regions of uniform sizes (Zalesky et al. 2010). The time course for
each node was extracted by averaging the time courses across
voxels within the node. We then applied a commonly used
sliding window approach (window length = 60 s, step size = 1 TR
(i.e., 2 s), total windows for each scan = 201) to estimate dynamic
functional connectivity over time (Hutchison et al. 2013; Lurie
et al. 2020). Specifically, internode functional correlations were
estimated within each window using the Pearson’s correlation
coefficient between nodal time courses. The resulting networks
were then thresholded by applying a network density of 5% to
remove weak or spurious connections, producing a time-varying
binary functional network for each rsfMRI scan of each child.
Negative correlations were eliminated prior to network thresh-
olding due to their ambiguous physiological interpretation (Fox
et al. 2009; Murphy and Fox 2017).

Functional networks from the adult scans were constructed
using the same procedures. To enable regional-level compar-
isons between the child and adult networks, we obtained the
parcellation scheme for the adult networks by spatially trans-
forming the random-1024 parcellation from the children’s cus-
tom space to the MNI space.

Identification of Dynamic Modular Architecture

We employed a multilayer network model (Mucha et al. 2010),
which can incorporate connectivity information within adjacent
time windows, to identify the dynamic modular structure in the
child and adult brain networks. Specifically, the dynamic func-
tional networks in each scan were considered as a multilayer
network consisting of 201 time-ordered layers (i.e., windows)
with ordinal interlayer coupling, in which identical nodes in
adjacent layers were coupled with nonzero strength (Fig. 1B).
Then, we identified the time-resolved modular architecture by
optimizing the modularity, Qmod, of the multilayer network, with
an implicit assumption that module change between layers was
continuous. The modularity, Qmod, of the time-varying modular
structure is defined as (Mucha et al. 2010):

Qmod (γ, ω) = 1
2μ

∑
ijlr

[(
Aijl − γl

kilkjl

2ml

)
δ
(
l, r

) + δ
(
i, j

)
ωjlr

]

× δ
(
Mil, Mjr

)
, (1)
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Progressive Stabilization of Brain Network Dynamics Lei et al. 1027

Figure 1. Age distribution of child participants and multilayer module dynamics at different ages. (A) Age information of child participant scans. (B) Schematic diagram

of the multilayer network model and regional modular variability. Each layer represents a functional network within a sliding window. In addition to connections
within the same layer, each node also connects to itself in adjacent layers. (C) Spatial patterns and frequency polygons of modular variability across the 1024 nodes
for each child subgroup and for the adult group. (D) Top: spatial location of eight functional systems (i.e., seven cortical systems (Yeo et al. 2011) and one subcortical

system (Tzourio-Mazoyer et al. 2002). Bottom: distribution of the mean modular variability value of each functional system for each child subgroup and for the adult
group. Cortical data were mapped using the BrainNet Viewer software (Xia et al. 2013). VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; DM,
default-mode; LIM, limbic; FP, frontoparietal; SUB, subcortical.

where variables i and j are node labels, and variables l and r
are layer labels. Specifically, μ represents the total connectivity
strength of the entire network, ml denotes the total connectivity
strength within layer l, Aijl denotes the connectivity strength
between node i and node j in layer l, kilkjl/2ml denotes the
connection probability expected by chance between node i and
node j in layer l, kil denotes the degree of node i in layer l, and
Mil denotes the module label of node i in layer l. The function
δ (x, y) is equal to 1 if variable x is identical to variable y,
and is equal to 0 in all other cases. Parameters γ and ω are,

respectively, the topological resolution parameter and temporal
coupling parameter. Parameter γ determines the module size.
The larger the value of γ , the smaller the size of the identified
modules, and the greater the number of modules in the network.
Here, we used the commonly used default value of γ = 1 (Bassett
et al. 2011; Braun et al. 2015). Parameter ω determines the extent
of interlayer interaction. The smaller the value of ω, the more
independent the adjacent layers. We chose ω = 1 to balance
the influence of interlayer and intralayer edges (when ω < 1,
intralayer edge strength dominates modularity optimization)
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(Bassett et al. 2011; Braun et al. 2015). Notably, the dynamic
modular architecture varies slightly with each instance of iden-
tification since the heuristic Louvain algorithm (Blondel et al.
2008) is applied in the modularity optimization. Here, all mea-
surements relating to dynamic modular architecture were taken
as the average across 100 instances of identification. The module
detection algorithm for multilayer networks was obtained from
an open MATLAB code package at http://netwiki.amath.unc.e
du/GenLouvain/GenLouvain (Mucha et al. 2010).

Modular Variability Analysis

To characterize the temporal reconfiguration of functional mod-
ular architecture, we tracked the change in functional modules
across windows. Specifically, we assessed the change in module
affiliation (i.e., network switching) over time for all nodes using
a measure of modular variability (Liao et al. 2017). First, given
a node i, we evaluated the variability of its module affiliation
between any two windows t and t’ (Steen et al. 2011) as

ModVari
(
t, t′

) = 1 −
∣∣Mi(t) ∩ Mi

(
t′
)∣∣2

| Mi(t) | · | Mi (t′) | , t �= t′, (2)

where Mi(t) denotes the module to which node i belonged in
window t, |Mi(t)| represents the number of nodes included in
module Mi(t), and |Mi(t) ∩ Mi(t’)| represents the number of nodes
in the intersection between modules Mi(t) and Mi(t’). A small
intersection between two modules indicates large variability.
Secondly, we calculated the total modular variability of a node
over all time windows (Liao et al. 2017) as

ModVari =
N∑

t=1

w(t) · ModVari(t), (3)

where ModVari(t) = 1
N−1

∑
t′�=tModVari(t, t′) denotes the modu-

lar variability of node i between window t and all other win-
dows, and N denotes the total number of windows. A normal-
ized weighted coefficient w(t) is employed in Eq. (3) to reduce
the impact of potential outlier windows. The coefficient w(t)
is a measure of interwindow similarity in the modular struc-
ture, which is calculated using adjusted mutual information
(Vinh et al. 2010), and denotes the overall similarity of the
modular structure in window t with that in all other windows.
For each rsfMRI scan, we calculated the modular variability of
each of the 1024 nodes. The larger the nodal modular variability,
the more often the node tends to switch between modules
over time. The mean modular variability of the whole brain
was calculated as the average modular variability across all
nodes.

To illustrate the change in modular variability patterns with
development, we divided all child rsfMRI scans into eight sub-
groups, with a 1-year interval between each subgroup. A group-
level modular variability map was generated for each subgroup
by averaging individual maps within each subgroup. To enable
comparison, a group-level modular variability map for the young
adults was also generated. We then conducted Pearson’s cor-
relation analyses to measure the spatial similarity between
modular variability maps of all child subgroups and the adult
group. To correct for spatial autocorrelation, we generated 10 000
surrogate maps constrained by the spatial autocorrelation char-
acteristics of the modular variability map of the adult group

(Burt et al. 2020), and obtained a null distribution of correla-
tion coefficients for each child subgroup. Empirically observed
spatial similarity values were compared against the null dis-
tribution to determine significance levels. To further assess
the system dependence of nodal modular variability, we cat-
egorized the 1024 nodes into eight functional systems. Seven
of these systems were obtained from a prior functional sys-
tem parcellation scheme (Yeo et al. 2011): the visual, somato-
motor, dorsal attention, ventral attention, limbic, frontopari-
etal, and default-mode systems. The remaining subcortical sys-
tem was extracted from the Automated Anatomical Labeling
atlas (Tzourio-Mazoyer et al. 2002). When analyzing system-
dependence in children, the functional system atlases defined
from adults were spatially transformed to the children’s cus-
tom space prior to the allocation of nodes to their respec-
tive functional systems. Finally, we quantified the age-related
changes in regional modular variability using a mixed effect
model.

Relationship Between Developmental Changes in Brain
Network Dynamics and Cognitive Function

We explored the cognitive significance of regions showing sig-
nificant developmental changes in modular variability using
the NeuroSynth meta-analytic database (www.neurosynth.org)
(Yarkoni et al. 2011). Specifically, we examined the cognitive
terms associated with the regions exhibiting significant age-
related decreases in modular variability, which made up the
majority of brain areas showing developmental changes. These
regions were predominantly located in six functional systems
(hereafter referred as source systems), including somatomotor,
default-mode, frontoparietal, dorsal attention, ventral attention,
and visual systems (Fig. 2B). We first generated six thresholded
t-maps denoting age effects on regions of interest within each
source system separately. Next, we quantified the Pearson’s cor-
relation between each t-map and all cognitive term maps avail-
able from the NeuroSynth database. The results were illustrated
using word-cloud plots.

Module Co-occurrence Analysis at the System Level

To explore whether the developmental changes in nodal
modular variability were associated with the dynamic interplay
between functional systems, we examined the age-related
changes in module co-occurrence of different systems. Since
most nodes exhibiting significant age effects showed linear
decreases with age (Fig. 2B), we focused our analysis on nodes
showing a significant negative age effect (Ns nodes in total).
Briefly, we calculated the module co-occurrence probability of
each node showing significant age effects with each of the other
nodes in the brain network as the percentage of time windows
in which the two nodes belonged to the same module (Braun et
al. 2015). For all scans of each child, an Ns × 1024 co-occurrence
matrix was obtained (Fig. 2D). Next, the module co-occurrence
matrix was summarized at the system level by calculating
the average co-occurrence probability of nodes in each source
system with nodes in each of the target systems. (Source
systems are those containing nodes showing significant
age-related decreases, i.e., the somatomotor, default-mode,
frontoparietal, dorsal attention, ventral attention, and visual
systems. Target systems refer to all eight functional sys-
tems.) Therefore, for all scans of each child, we obtained a
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Figure 2. Longitudinal development of brain network dynamics in children. (A) Age effects on the network modularity and the mean and standard deviation of the
whole brain modular variability. Boxplots represent the distribution median, and the 25th and 75th percentiles of the adult group. (B) Left: Spatial distribution of regions

showing significant developmental changes in modular variability between childhood and adolescence. Age effects are displayed in terms of T values (FDR-corrected
P < 0.05). Right: proportion of regions with significant age-related decreases found in each functional system. (C) Cognitive terms associated with regions showing
significant age-related decreases in modular variability, which was obtained based on the NeuroSynth meta-analytic database (Yarkoni et al. 2011). Font sizes of the
cognitive terms represent the correlation coefficients between the regions of interest and the cognitive term maps. Font colors correspond to different functional

systems. (D) Schematic diagram of module co-occurrence at the system level. Left: regional module affiliations at each time window. Middle: matrix showing the
modular co-occurrence probability between the six source systems and each of the eight functional systems (target systems). Each element in the matrix represents
the percentage of time windows in which two nodes from different systems belonged to the same module. Right: estimated age effects on the mean co-occurrence

of every system pair. (E) Significant developmental effects on modular co-occurrence probability at the system level. Left: age effects on co-occurrence probability
(∗, P < 0.05, FDR corrected). Middle: age effect on the mean co-occurrence probability for nodes within the default-mode system. Right: age effect on the mean co-
occurrence probability of nodes in the default-mode system with those in the somatomotor system. We used a mixed effect model to estimate age effects. In (A) and
(E), the blue lines connecting scattered points represent longitudinal scans of the same child. The adjusted value denotes the measure of interest corrected for sex,

head motion, and random age effects. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; DM, default-mode; LIM, limbic; FP, frontoparietal; SUB,
subcortical.
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6 × 8 module co-occurrence matrix at the system level, each
row of which denoted the co-occurrence probability of a source
system with each of the target systems. Finally, we assessed the
age-related changes in the co-occurrence probability for each
pair of systems using a mixed effect model. The significance
level was corrected for multiple (i.e., 48) comparisons at the
system level using the false discovery rate (FDR) method
(corrected P < 0.05).

Relationship Between Age, Brain Dynamics and
Network Efficiency

To explore whether dynamic modular reconfiguration was
related to information communication capabilities in the brain
network, we considered two global network metrics, global
efficiency and local efficiency, to capture different aspects of
information transmission efficiency.

Global efficiency (Eglob). Global efficiency measures informa-
tion transmission efficiency across all pairs of nodes in the
network (Latora and Marchiori 2001; Rubinov and Sporns 2010).
In a given network, Eglob is defined as

Eglob = 1
N (N − 1)

N∑
i,j=1

1
dij

, i �= j, (4)

where N represents the total number of nodes in the network,
and dij is the shortest path length between node i and node j.
Eglob of the dynamic brain network was calculated as the average
Eglob across all time windows.

Local efficiency (Eloc). Local efficiency measures information
communication efficiency among local subgraphs (Latora and
Marchiori 2001; Rubinov and Sporns 2010). In a given network,
Eloc is defined as

Eloc = 1
N

N∑
i

Eglob(i), (5)

where N represents the total number of nodes in the network,
and Eglob(i) represents the Eglob of the neighborhood nodes of
node i. Eloc of the dynamic network was calculated as the average
Eloc across all time windows.

We estimated both the Eglob and Eloc of the dynamic functional
networks for every scan, and applied a mixed effect model to
explore age effects on these two measures. To assess whether
network efficiency was related to modular variability, we con-
ducted a Pearson’s correlation analysis between the mean mod-
ular variability of the brain and network efficiency across all
scans, correcting for age, sex, and head motion effects. To fur-
ther explore whether brain module dynamics mediated the
age effects on network efficiency, we performed a single-level
mediation analysis, with age, mean modular variability of the
brain, and network efficiency (i.e., Eglob and Eloc), set, respectively,
as the independent variable (X), mediator (M), and dependent
variable (Y). Finally, to differentiate the contribution of different
functional systems to the mediation effect, we employed a
parallel multiple mediation analysis, with the mean modular
variability of each of the six source systems (i.e., the somato-
motor, default-mode, frontoparietal, dorsal attention, ventral
attention, and visual systems) designated as mediators. In each
mediation model, the explained fraction of the total effect for a
given indirect path was defined as the product of the standard
regression coefficients along this path divided by the sum of the

products for all paths. The mediation analysis was performed
using the PROCESS plugin in SPSS (Preacher and Hayes 2008). We
then performed bootstrapping (n = 5000) to assess the statistical
significance of the mediation analysis, for which a 95% confi-
dence interval without 0 was equivalent to a significance level
of 0.05 (Preacher and Hayes 2004).

Relationship Between Developmental Changes in Brain
Network Dynamics and Gene Expression Profiles

To investigate the association between developmental changes
in brain network dynamics and gene expression profiles, we
used brain-wide gene expression data publicly available from
the Allen Human Brain Atlas (http://human.brain-map.org/)
(Hawrylycz et al. 2012). This atlas contains 3702 tissue samples
from six donors, and provides their accurate MNI coordinates.
Samples from two donors cover the whole brain, and the
samples from the remaining four donors cover only the left
hemisphere. Using the minimally processed data provided in
the Allen Human Brain Atlas (http://help.brainmap.org/displa
y/humanbrain/Documentation), we carried out the following
procedures. First, we removed samples located in the brain
stem and cerebellum, and re-annotated the gene names of
probes for the remaining 2748 samples. Secondly, we used
the intensity-based filtering method (Arnatkevičiūtė et al.
2019) to filter the data. For each gene, its expression level
in a given sample was obtained by averaging the expression
values across all detecting probes. Next, we normalized the
expression data using the scaled robust sigmoid (SRS) algorithm
(Fulcher et al. 2013) (see Supplement for further details). We
then matched the MNI coordinates of each sample to the
random-1024 parcellation scheme of the adult group using
the nearest-point search algorithm. Each sample was then
assigned to one of the brain nodes. For each node, expression
data for each gene were obtained by first averaging the data
across samples from the same donor, and then averaging the
nodal expression data across donors. Using this process, for
each node covered with samples, we obtained gene expression
data for 15 745 genes. The preprocessing of gene expression
data described above was performed by referencing the code
at https://github.com/BMHLab/AHBAprocessing (Arnatkevičiūtė
et al. 2019). As gene expression data for the right hemisphere
were available from only two donors, to improve the reliability,
we used left hemisphere gene expression data from all six
donors for the subsequent brain network-gene association
analysis.

To examine whether the spatial inhomogeneity in develop-
mental changes in nodal modular variability was associated
with gene expression levels, we performed an across-node spa-
tial similarity analysis in the left hemisphere. Of note, 415 nodes
(81.2% in the left hemisphere) exhibited linear decreases with
age (i.e., βage < 0), wherein the gene expression data of 67 nodes
were not available. Thus, we performed this association analysis
across the remaining 348 brain nodes. For each of the 15 745
genes, we undertook a Pearson’s correlation analyses to measure
the spatial similarity between the gene expression profile and
the magnitude of developmental changes (i.e., | βage |) in modu-
lar variability. The significance level of the spatial similarity was
determined by comparing the empirically observed value to a
null distribution obtained by 10 000 permutations, during which
surrogate maps of developmental changes were generated while
preserving the spatial autocorrelation characteristics of the orig-
inal map (Burt et al. 2020). Significantly correlated genes were
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identified with an FDR-corrected P < 0.05 and further divided
into two categories, i.e., genes showing a significant positive
correlation with developmental changes in modular variability
and those showing a significant negative correlation. Functional
enrichment analyses were separately performed on these two
categories of genes using the ToppGene Suite (https://toppgene.
cchmc.org/) (Chen et al. 2009).

Statistical Modeling

Given the nature of the longitudinal rsfMRI data used in this
study, we applied a mixed effect model to study the developmen-
tal trajectories of brain network measures (Laird and Ware 1982;
Diggle and Kenward 1994). Such models are well suited for cases
with missing data, irregular intervals between data measure-
ments, or potential correlation between variables. To account
for potential linear and quadratic age effects, we undertook
separate analyses using two different models that, respectively,
had a linear term and quadratic term as their highest order term.
For each analysis, we used the maximum likelihood method
to undertake parameter estimation, and applied the Akaike
information criterion (AIC) (Akaike 1974) to select the optimal
model with a lower AIC value. Specifically, the linear model was
defined as

yij = β0 + bi + (
βage + bage,i

)
ageij + βsexsexi + βmFDmFDij + εij. (6)

The quadratic model was defined as

yij = β0 + bi + (
βage1 + bage,i1

)
ageij + (

βage2 + bage,i2
)

ageij
2

+ βsexsexi + βmFDmFDij + εij. (7)

In these models, yij represents the observed brain network
measures of subject i at the jth scan, βage represents the fixed
age effect, bage,i represents the random effect of subject i, and εij

represents the residual of subject i at the jth scan. Sex and mean
FD (mFD) were also included as covariates in the two models.
Here, we used the statistical models to estimate age effects on
the following measures: the modularity (Qmod) of the dynamic
networks, the mean and standard deviation of regional modular
variability across the brain, nodal modular variability values,
and network efficiency (Eglob and Eloc). All scatter plots illustrate
fixed age effects after correction for random effects.

Validation Analyses

We further investigated whether our results were affected by
head motion and network analysis strategies, specifically the
choice of sliding window parameters (i.e., window length and
step size), multilayer network model parameters (i.e., temporal
coupling parameter ω and topological resolution parameter γ ),
and network thresholding strategies. First, previous studies sug-
gest that head motion can introduce spatially inhomogeneous
bias in the estimation of functional connectivity (Power et al.
2012; Power et al. 2015), which may affect the evaluation of
developmental effects (Satterthwaite et al. 2013). To reduce the
influence of head motion, we included Friston’s 24 head motion
parameters (Friston et al. 1996), the global brain signal, and “bad”
time points (FD > 0.5 mm) as covariates during nuisance regres-
sion. The residual influence of head motion was assessed by
calculating the Pearson’s correlation coefficient between head

motion (i.e., mean FD) and global network dynamics across
scans. Then, we validated the main findings by including both
“bad” time points (FD > 0.5 mm) and their adjacent volumes
(one back and two forward) as motion-induced spike regressors
during the nuisance regression (Power et al. 2013; Yan et al. 2013).
Second, the selection of sliding window parameters affects the
estimation of dynamic connectivity and thus the temporal char-
acteristics of the functional networks (Hutchison et al. 2013;
Shakil et al. 2016; Lurie et al. 2020). In our main analysis, we set
the window length as 60 s, a timeframe which is able to reli-
ably capture the temporal variations in the functional networks
(Lurie et al. 2020). To assess the potential influence of the sliding
window length on our findings, we reconstructed the dynamic
networks using a window length of 100 s. In this validation
analysis, we also investigated the potential influence of the step
size. We set the step size as 3 TR (i.e., 6 s, namely one-tenth of the
window size), which reduced the overlap between adjacent win-
dows and ensured the adequate window number for subsequent
statistical analysis. Third, in the multilayer network model, the
temporal coupling parameter, ω, between adjacent windows has
a strong impact on the reconfiguration of modular architec-
ture between windows (Mucha et al. 2010). In addition to using
ω = 1 in our main analysis, we repeated the multilayer network
analysis using ω = 0.5 and 0.75, respectively. Additionally, we
examined the influence of the topological resolution parameter
γ , which affects the estimated module size, by setting γ as
0.9. Finally, we evaluated whether our findings were influenced
by the network thresholding strategies applied in functional
network construction, which can affect the estimation of the
graph metrics (Bullmore and Bassett 2011). In our main analysis,
the maturation of network topology was our principal focus, and
we therefore generated binary networks with a fixed network
density (i.e., 5%) to correct for intersubject differences in the
number and strength of functional connectivities. To explore the
influence of network density, we constructed binary networks
with a density of 10%. In addition, we also constructed weighted
functional networks with a density of 5% to assess the impact of
connectivity strength.

Results
Spatial Patterns of Brain Network Dynamics in Children

We employed longitudinal rsfMRI data from a cohort of 305
typically developing children (age: 6–14 years). For comparison
purposes, we also included cross-sectional rsfMRI data from a
group of 61 healthy adults (age: 18–29 years). We found that
individual brain networks in children exhibited a modular
structure, with modularity (Qmod) values ranging from 0.53 to
0.62 (mean ± std dev = 0.58 ± 0.02) and the number of modules
(Nmod) ranging from 5.35 to 6.58 (mean ± std dev = 5.93 ± 0.21).
To qualitatively illustrate the progressive developmental
changes in the spatial pattern of brain dynamics between
childhood and adolescence, we divided the 491 rsfMRI scans
into eight age subgroups, with a 1-year interval between
each subgroup. An average modular variability map was then
generated for each age subgroup (Fig. 1C). We found that,
at a group level, the spatial pattern of modular variability
in the child brain network showed regional heterogeneity,
with higher variability primarily observed in the frontal and
parietal cortices, anterior/middle cingulate gyrus, and middle
temporal gyrus, and the lowest modular variability observed
in the visual cortex. This spatial pattern observed in the child
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cohort was highly similar to that of the adult group (Pearson’s
correlations: range, 0.83–0.89; mean ± std dev = 0.88 ± 0.02, all
Pcorr < 0.0001). When mapping these regions against the eight
functional systems (visual, somatomotor, dorsal attention,
ventral attention, limbic, frontoparietal, default-mode, and
subcortical), we also observed a corresponding similarity in the
system-dependent distributions of modular variability between
child and adult brains (Fig. 1D). Notably, the topography of mod-
ular variability at both the global and system levels develops in a
progressive fashion from childhood through adolescence toward
that found in the adult brain. Below, we report our quantitative
analysis of the longitudinal development of brain network
dynamics.

Developmental Changes in Brain Network Dynamics
in Children

At the global level, the modularity, Qmod, of the dynamic brain
networks increased with age (linear model, t = 4.77, P < 0.0001,
Fig. 2A, left), suggesting enhanced functional segregation of net-
work modules with age. The global mean values of modular
variability in the child brain decreased with age (linear model,
t = −3.28, P = 0.0011, Fig. 2A, middle), while the standard deviation
across regions increased with age (linear model, t = 2.43, P = 0.015,
Fig. 2A, right). These results suggest that the temporal dynamics
of brain networks tend to become more stabilized and more
regionally differentiated as the brain develops from childhood
to adolescence.

At the nodal level, we observed that brain regions that
showed significant changes in modular variability with age
(a total of 77 nodes) predominantly exhibited significant
linear decreases in variability (P < 0.05, FDR corrected). These
nodes (75 in total) following linear models were primarily
distributed in the medial and lateral frontal and parietal cortices,
supplementary motor area, and somatomotor cortex, and were
primarily associated with the somatomotor (40%), default-
mode (33.33%), and frontoparietal (17.33%) systems (Fig. 2B).
The remaining nodes with significant linear decreases were
spread across the dorsal attention, ventral attention, and visual
systems. For ease of reference, these systems were referred to as
the six “source systems”. For each source system, we explored
the cognitive functions associated with these regions based on
the NeuroSynth meta-analytic database (Yarkoni et al. 2011).
These regions were mainly associated with internal cognitive
functions, social inference, and primary motor functions
(Fig. 2C). Additionally, we identified one node in the left
temporal-occipital junction showing a significant age-related
linear increase, and another node in the left olfactory cortex
showing a U-shaped quadratic age-related change (P < 0.05,
FDR corrected). The AIC differences between the linear and the
quadratic models were displayed at the regional level (Fig. S1).

Next, we examined how the age-related decreases in nodal
modular variability were associated with the dynamic interplay
between the different functional systems. Specifically, we
assessed age effects on the modular co-occurrence between
the six source systems (i.e., the somatomotor, default-mode,
frontoparietal, dorsal attention, ventral attention, and visual
systems) and all eight functional systems (referred to as
the target systems) (Fig. 2D and 2E). We observed that, as
age increased, nodes in the default-mode, frontoparietal
and somatomotor systems showed significantly increased
intrasystem co-occurrence, indicating enhanced functional

specificity within these systems. In relation to intersystem co-
occurrence, we found that significant increases in co-occurrence
were primarily observed between transmodal areas (consisting
of the default-mode/frontoparietal systems) and the subcortical
system, as well as between the dorsal attention systems and the
primary sensory systems (i.e., somatomotor and visual systems).
Meanwhile, significant decreases in co-occurrence were mainly
observed between the default-mode/frontoparietal systems and
the primary sensory systems, as well as between the default-
mode/frontoparietal system and the attention systems. These
findings suggest that the six source systems tend to be divided
into two clusters, one comprising the transmodal areas and
the subcortical system, and the other comprising the primary
sensory and attention systems. During development, functional
integration between these two clusters of systems decreases
with age.

Brain Network Dynamics Mediates Age Effects on
Communication Efficiency

We further explored whether the development of network
dynamics might contribute to age-related changes in the
information communication capability of brain networks,
including global efficiency (Eglob) and local efficiency (Eloc).
We found that Eglob of the functional networks decreased
significantly with age (linear model, t = −3.34, P < 0.001),
while Eloc increased significantly with age (linear model,
t = 4.98, P < 0.0001) (Fig. 3A), indicating decreased information
integration and increased information segregation between
childhood and adolescence. Next, we examined the relationship
between brain module dynamics and network efficiency
(i.e., Eglob or Eloc) across individuals, controlling for age. We
found that global mean values of modular variability showed
a positive correlation with Eglob (r = 0.67, P < 0.0001) and a
negative correlation with Eloc (r = −0.63, P < 0.0001) (Fig. 3B).
These findings indicate that the dynamic module switching
of brain regions is associated with integrated and segregated
processing in brain networks.

Given the age-related changes in both network efficiency
and brain module dynamics, we assessed whether the rela-
tionship between age and network efficiency was mediated
by brain module dynamics. We performed a mediation anal-
ysis and found that the global mean value of modular vari-
ability had a significant mediation effect on the relationship
between age and Eglob and Eloc (P < 0.05 for both, bootstrapped
n = 5000) (Fig. 3C). To further determine the specific brain sys-
tems contributing to the mediation effects, we performed a
parallel multiple mediation analysis and found that modular
variability of the default-mode, frontoparietal, somatomotor,
and visual systems exhibited significant mediation effects on
the relationship between age and Eglob and Eloc (all Ps < 0.05,
bootstrapped n = 5000), while modular variability of the attention
(i.e., dorsal and ventral attention) system did not (Tables S1 and
S2). The explained fraction of the total effect in the mediation
models varied across functional systems, being highest in the
somatomotor system, followed by the default-mode, visual, and
frontoparietal systems for both Eglob and Eloc. These findings
suggest that the reduction in module dynamics (i.e., network
switching) between childhood and adolescence, in particular
the reduced dynamics in the somatomotor and default-mode
systems, significantly mediates the development of brain net-
work communication efficiency to its mature state in the adult
brain.
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Figure 3. Relationship between age, brain dynamics, and network efficiency in children. (A) Age effects on global efficiency and local efficiency in the dynamic
functional networks. Boxplots represent the distribution median, and the 25th and 75th percentiles of the adult group. (B) Relationship between modular variability
and network efficiency in children. (C) Mediating effects of modular variability on developmental changes in global efficiency (left) and local efficiency (right) (all

Ps < 0.05, bootstrapped n = 5000). ∗∗∗ , P < 0.001. In (A) and (B), the blue lines connecting scattered points represent longitudinal scans of the same child. The adjusted
value in (A) denotes the measure of interest corrected for sex, head motion, and random age effects. The residual value in (B) denotes the measure of interest corrected
for sex, head motion, and fixed and random age effects. We used a mixed effect model to estimate age effects.

Linking Developmental Network Dynamics in Children
with Gene Transcriptional Profiles

We used univariate analysis to explore the spatial association
between gene transcriptional profiles and the magnitude of
regional developmental changes (i.e., |βage |) (Fig. 4A and 4B). A
total of 4551 genes were identified as showing a significant
correlation with developmental changes in modular variability
(P < 0.05, FDR corrected). Of these, 2190 genes showed a positive
correlation and 2361 genes showed a negative correlation. The
10 genes showing the highest positive correlations are listed in
Figure 4C (see Table S3 for all genes showing significant positive
correlations). Gene ontology annotation analysis revealed that
the positively correlated genes were associated with significant
enrichment of biological processes, primarily those involving
ion transport and nucleobase-containing compound transport
(P < 0.05, FDR corrected) (Fig. 4D). For the enrichment of biologi-
cal processes related to the negatively correlated genes, please

see Table S4. We also considered a multivariate method of
partial least squares (PLS) regression, which can incorporate the
contribution from multiple genes (Whitaker et al. 2016; Li et al.
2021). The most significant GO term of ion transport obtained by
the univariate approach was consistently observed by the PLS
analysis (Fig. S2) (see Supplement for details).

Validations

To demonstrate the robustness of our main findings, we
accessed the influence of several analysis strategies, including:
i) testing for the residual head motion effects (post nuisance
regression) and a more stringent spike regression strategy; ii)
a longer sliding window length (100 s) and a wider step size (3
TR); iii) weaker temporal coupling parameters (ω = 0.5 and 0.75)
and a weaker topological resolution parameter (γ = 0.9); and iv)
an increased network density (density = 10%) and a different
network type (i.e., weighted as opposed to binary network).
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We found that the head motion parameter of mean FD did
not show a significant correlation with modular variability
(Fig. S3), suggesting a weak influence of head motion on the
observed developmental changes in brain network dynamics.
We also found that, overall, the application of different
analysis strategies did not affect or alter our main conclusions
(Figs S4–S7).

Discussion
Using longitudinal rsfMRI data from a large cohort of healthy
children, we demonstrate for the first time the development of
brain network dynamics between childhood and adolescence
and its connection with gene expression profiles. Specifically,
modular dynamics in the brain network become progressively
more stable as the brain matures, and is correlated with the
transcriptional profiles of genes enriched for ion transport and
nucleobase-containing compound transport. Changes in modu-
lar variability occur primarily in the default-mode, frontopari-
etal, and somatomotor systems. The development of more sta-
ble network dynamics mediates age-related changes of seg-
regated and integrated processing in the brain, indicating an
enhancement in the functional specialization of brain networks
during this period. Together, these findings highlight the pro-
gressive stabilization of network switching between childhood
and adolescence and describe the related gene expression pro-
files, providing insights into the understanding of typical and
atypical development. Further, where the majority of previous
developmental connectomics studies have mainly focused on
dynamic functional connectivity patterns (Hutchison and Mor-
ton 2015; Qin et al. 2015; Ryali et al. 2016; Marusak et al. 2017;
Faghiri et al. 2018; Medaglia et al. 2018), our study includes a
specific investigation of the maturation of dynamic network
topology during childhood and adolescence and the associated
cognitive implications, greatly increasing the current knowledge
on human brain development.

In the course of our investigation, we also observed that the
topography of dynamic modular configurations during child-
hood and adolescence followed an adult-like spatial pattern.
Evidence from adults indicates that during rest, brain regions
spontaneously switch between functional modules in a spatially
heterogeneous way, such that the association cortex shows
higher temporal variability than the primary cortex (Chen et al.
2016; Liao et al. 2017; Pedersen et al. 2018; Liu et al. 2020). Highly
variable regions usually act as flexible hubs to maintain efficient
intermodule communication and promote cognitive flexibility
(Schaefer et al. 2014; Yin et al. 2020). The spatial pattern observed
from our child rsfMRI dataset showed a spatial distribution of
modular variability similar to that of the adult brain described
in previous studies. A similar spatial pattern was also observed
in a previous study on functional module switching in infants
(Yin et al. 2020). Combining our observations with prior findings
regarding the adult brain (Chen et al. 2016; Liao et al. 2017;
Pedersen et al. 2018; Liu et al. 2020) and the infant brain (Yin
et al. 2020), we speculate that the spatially heterogeneous pat-
tern is a common and underlying property that reflects the
regional diversity in brain module dynamics.

The age-related decrease in functional modular variability
may be related with the development of white matter struc-
tural connections. Temporal variability in functional connec-
tivity strength has been demonstrated to be structurally con-
strained by white matter tracts (Deco et al. 2011; Liao et al.
2015; Zhang et al. 2016; Fukushima et al. 2018). More specifically,

two brain regions linked by direct structural connections (i.e.,
white matter tracts) tend to show smaller temporal variability
in functional connectivity strength than regions without direct
structural connections, and the greater the strength of a direct
structural connection, the smaller the temporal variability of the
functional connectivity strength between the regions (Liao et al.
2015). Between childhood and adolescence, white matter tracts
undergo profound refinements, including regressive processes
(e.g., elimination of circuits, axonal projections, or synapses)
and progressive myelination at the microscopic scale (Tau and
Peterson 2010; Vértes and Bullmore 2015), and heterogeneous
increases in structural connectivity strength at the macroscopic
scale (Huang et al. 2015; Zhao et al. 2015). Given that structure–
function coupling increases with age (van den Heuvel et al.
2015; Baum et al. 2020), the development of the white matter
structural network may reduce regional switching frequency
between functional modules and thereby promote the develop-
ment of modular dynamics in the brain toward an adult level of
stability.

Enhanced functional segregation during development has
been identified in previous neurodevelopmental studies which
applied a static functional connectivity approach (Stevens et
al. 2009; Dosenbach et al. 2010; Gu et al. 2015; Cao et al. 2016).
This is further confirmed by our findings that functional mod-
ularity in dynamic networks also increases with age. Consis-
tent with the developmental changes in functional modularity,
we also observed that, between childhood and adolescence,
global network efficiency decreased and local network effi-
ciency increased with age. Interestingly, we found that regional
modular variability, especially that of the default-mode and
somatomotor systems, significantly mediated the relationship
between age and network efficiency. Prior studies in adults have
demonstrated that dynamic adjustments in connectivity, espe-
cially connectivity adjustments in the default-mode network,
induce fluctuations in network efficiency over time (Zalesky
et al. 2014; de Pasquale et al. 2016). Thus, it is reasonable to
postulate that, between childhood and adolescence, reduced
modular variability in the default-mode system contributes to
changes in intermodule information communication, affecting
the development of communication efficiency in the dynamic
functional networks.

In developmental cognitive neuroscience, the theory of inter-
active specialization (Johnson 2011) posits that during postna-
tal development, the function of brain regions becomes more
specialized, as a result of the age-related reconfiguration of
interregional interactions driven by intrinsic activities or envi-
ronmental stimuli. Considering that brain module dynamics
plays a crucial role in individual cognition (e.g., working mem-
ory) and behavior (e.g., motor skill learning) in adults (Bassett
et al. 2011; Braun et al. 2015; Shine and Poldrack 2018), the
reduction in regional module variability and the changes in
network efficiency observed in our study may be related to
individual refinements in these capabilities during childhood
and adolescence. Consistent with this, we found that the regions
showing most significant decreases in modular variability were
those primarily involved in self-referential thinking, social cog-
nition, and motor functions. In addition, a previous study has
suggested that network flexibility in the human brain decreases
when turning a motor skill task into an automatic process
after a period of training (Bassett et al. 2015). We found that
segregation between the somatomotor system and high-order
systems increased between childhood and adolescence, sug-
gesting that the decrease in modular variability in this system
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Figure 4. Association between developmental changes in brain network dynamics and gene expression profiles. (A) Spatial pattern of the magnitude of developmental
changes (i.e., | βage |) in modular variability for regions showing negative linear age effects in the left hemisphere. (B) Matrix of gene expression profiles. Each column

represents the expression profile of each gene across the 348 nodes of interest. (C) Genes showing the highest positive correlations with the developmental change in
regional modular variability. Only the top 10 genes are listed. Pearson’s correlation coefficients were calculated within the set of nodes showing negative linear age
effects. (D) Gene ontology (GO) terms of biological processes associated with genes showing significant positive correlations with the developmental change. The dots
marked with text represent significant GO terms obtained with correction for multiple comparisons (FDR-corrected P < 0.05), and the remainder represents GO terms

obtained without correction (uncorrected P < 0.05). The dot size represents the number of genes that overlap with the corresponding GO term.

could be related to the refinement of somatomotor capabilities
during this period. However, in contrast to our observations,
one recent study found that regional module switching (i.e.,
f lexibility), especially that of the primary system, showed sig-
nificant increases with age during the first 2 years of life (Yin et
al. 2020). This discrepancy may be attributable to the different
developmental phases considered (infants versus school-age
children) or to the application of different network construction
strategies (i.e., absolute correlation thresholding versus fixed-
density thresholding) in the two studies.

By performing a connectome-transcriptome association
analysis, a recent study that we also undertook demonstrated
that the spatial heterogeneity of module dynamics in the
adult brain is shaped by the expression profile of the genes
primarily associated with potassium ion transport (Liu et
al. 2020). Nevertheless, the genetic basis underpinning the
development of functional network dynamics remains poorly
understood. Our work addresses this gap in knowledge by
revealing that the maturation of brain module dynamics toward
an adult-like state is associated with the expression profiles
of genes associated with the enrichment of ion transport and

nucleobase-containing compound transport. Ion transport is
one of the most important functions of a neuron, facilitating
the balance of ion concentrations in and out of the cell
membrane and promoting the stability of brain neural circuits
(Gibson et al. 2007). A recent computational modeling study
further suggests that ion concentration dynamics causes
spontaneous neuronal fluctuations (Krishnan et al. 2018),
which may contribute to fluctuations in blood oxygenation
level-dependent (BOLD)-fMRI signals (Schölvinck et al. 2010).
In addition, nucleoside transport has been found to be
dependent on ion concentrations (especially that of Na+), and
Na+/nucleoside cotransports are also an electrogenic process
(Griffith and Jarvis 1996). Given the above, it makes sense that
the development of adult-like modular dynamics is related to
the transport of ions and nucleobase-containing compounds,
which can affect interregional interactions by modulating neural
activities.

Of the genes that were found in our study to be highly
correlated with developmental changes in modular variability,
several have also been identified in prior studies as being related
to brain development. Specifically, ACAN (aggrecan) has been
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found to control the maturation of glial cells during brain devel-
opment (Dornowicz et al. 2008); the basic helix–loop–helix gene
HES6 promotes neuronal differentiation (Bae et al. 2000); FGF9
(fibroblast growth factor 9) is crucial for the postnatal migration
of cerebellar granule neurons (Lin et al. 2009); and Sema7A
(semaphorins) regulates climbing fiber synapse elimination in
the developing mouse brain (Uesaka et al. 2014). The identifi-
cation of correlated genes provides novel clues for bridging the
gap between our understanding of the developmental changes
in brain network dynamics and our limited knowledge of the
underlying biological mechanisms.

Several issues and future research topics deserve further
consideration. First, we used postmortem gene expression data
from adult donors obtained from the Allen Human Brain Atlas
to explore the relationship between gene expression and the
developmental changes of network dynamics in children. While
the absolute expression levels of genes may change with age
due to developmental effects, their spatial patterns do not seem
to change greatly after birth (Kang et al. 2011). As our interest
lies in the spatial pattern (i.e., relative values across regions) of
gene expression profiles rather than exact expression values,
the choice of gene expression data should not have a great influ-
ence on our findings. Nevertheless, the availability of cerebral
cortex gene expression data for children and adolescents could
be beneficial for future exploration of the molecular mecha-
nisms underlying developmental network dynamics. Secondly,
previous studies in adults have suggested that brain network
dynamics show a relationship with cognitive flexibility (Chen
et al. 2016; Liao et al. 2017; Yin et al. 2020) and individual task
performance (Pedersen et al. 2018). How then is the progres-
sive maturation of brain network dynamics during childhood
and adolescence associated with the development of individual
cognition and behavior? In this study, we measured the n-back
working memory performance in children. Working memory is
a central component of the executive function, which exhibits
pronounced improvements during childhood and adolescence
(Gur et al. 2012). Here, our preliminary results showed that the
progressive stabilization of the module dynamics was signifi-
cantly associated with an age-related enhancement in 2-back
working memory performance (i.e., d-prime), especially that in
the default-mode and sensorimotor systems (Fig. S8). In the
future, more efforts should be devoted to exploring the cognitive
implications of network dynamics during development. Finally,
as abnormalities in the dynamic characteristics of functional
brain networks have been observed in several neurodevelop-
mental disorders (e.g., attention-deficit/hyperactivity disorder
(Ding et al. 2020) and autism spectrum disorder (Harlalka et
al. 2019), delineating the typical developmental trajectory of
brain network dynamics may provide novel clues for the early
detection or diagnosis of atypical neurodevelopment.
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