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Abstract Attention-deficit/hyperactivity disorder (ADHD) is
one of the most common neurodevelopment disorders in
childhood. Clinically, the core symptoms of this disorder
include inattention, hyperactivity, and impulsivity. Previous
studies have documented that these behavior deficits in
ADHD children are associated with not only regional brain
abnormalities but also changes in functional and structural
connectivity among regions. In the past several years, our
understanding of how ADHD affects the brain’s connectivity
has been greatly advanced by mapping topological alterations
of large-scale brain networks (i.e., connectomes) using non-
invasive neurophysiological and neuroimaging techniques
(e.g., electroencephalograph, functional MRI, and diffusion
MRI) in combination with graph theoretical approaches. In
this review, we summarize the recent progresses of functional
and structural brain connectomics in ADHD, focusing on
graphic analysis of large-scale brain systems. Convergent
evidence suggests that children with ADHD had abnormal
small-world properties in both functional and structural brain
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networks characterized by higher local clustering and lower
global integrity, suggesting a disorder-related shift of network
topology toward regular configurations. Moreover, ADHD
children showed the redistribution of regional nodes and
connectivity involving the default-mode, attention, and sen-
sorimotor systems. Importantly, these ADHD-associated al-
terations significantly correlated with behavior disturbances
(e.g., inattention and hyperactivity/impulsivity symptoms)
and exhibited differential patterns between clinical subtypes.
Together, these connectome-based studies highlight brain net-
work dysfunction in ADHD, thus opening up a new window
into our understanding of the pathophysiological mechanisms
of this disorder. These works might also have important
implications on the development of imaging-based bio-
markers for clinical diagnosis and treatment evaluation in
ADHD.

Keywords ADHD - Connectome - Graph theory -
Small-world - Functional connectivity - Structural connectivity

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the
most commonly diagnosed neurodevelopment disorders in
childhood, which could continue through adulthood for some
people. It is clinically characterized by developmentally inap-
propriate symptoms of inattention, hyperactivity, and impulsiv-
ity, resulting in substantial educational and social burdens [1, 2].
Via the diagnostic and statistical manual of mental disorders
(DSM-5) diagnostic criteria, the disorder is estimated to affect
5 % in children or adolescents and 2.5 % in adults [1].
Previous studies have documented that besides these be-
havior disturbances, patients with ADHD exhibit functional
and structural abnormalities in distributed neural systems that
are mainly linked with cognitive control, attention, and
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motivation/reward functions [3-9]. For instance, ADHD-
related regional dysfunction and morphological changes have
been reported in the dorsal frontoparietal cortex, orbitofrontal
cortex, and ventral striatum structures [10—14]. Disrupted
functional and structural associations between these regions
have been also reported in ADHD [15-17]. It was commonly
contended in these studies that ADHD is not only involved in
regional brain abnormalities but also associated with disrup-
tions of neuronal circuits.

Recently, the development of noninvasive neurophysiolog-
ical and neuroimaging techniques as well as graphic network
analysis tools allows to model the brain as a complex network
and to further explore topological organization of the resultant
networks (i.e., connectomes) [18, 19]. Using these ap-
proaches, researchers have consistently found that the human
brain functional and structural networks exhibit many non-
trivial topological properties such as small-worldness, modu-
larity, and highly connected hub regions [20-24]. Several
recent studies have utilized these connectome-based ap-
proaches to demonstrate topological organization disruption
in both functional and structural brain networks in children
with ADHD [25-35], providing novel insights into the core
pathophysiological mechanism of network dysfunction.

In this review, we aim to summarize these connectome-
based studies in ADHD, focusing specifically on the topolog-
ical alterations in the large-scale brain networks. First, we
briefly introduce some basic concepts regarding connectomics
and graph theory. Next, we review recent findings of func-
tional and structural brain networks in ADHD based on mul-
timodal neurophysiological and neuroimaging data (electro-
encephalograph (EEG), resting-state functional MRI (R-
fMRI), and diffusion MRI (dMRI)). Finally, we discuss the
limitations and future research directions of connectome-
based network analysis in ADHD.

Human Connectomics and Graph Theory
Connectomics and Brain Connectivity

Human connectomics is an emerging scientific concept that
refers to a comprehensive description of the structural and
functional connectivity patterns of the human brain [18, 19].
With the progression of advanced neurophysiological and
neuroimaging techniques, researchers can map the brain as a
complex network at the macro-scale level, consisting of a set
of nodes (representing voxels, regions, or sensors) and a set of
connections between the nodes (representing white matter
pathways, structural, or functional pair-wise relationships).
Specifically, structural connections can be calculated by esti-
mating the brain’s morphological (e.g., gray matter volume or
cortical thickness) correlations in structural MRI data [36-38]
or tracing the white matter projections linking cortical and
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subcortical regions in dMRI data [39—42]. Functional connec-
tions estimate the synchronizations of neural activity by com-
puting the statistical dependence (e.g., cross-correlation, mu-
tual information, or spectral coherence) of the time series
among different sites, which can be obtained from fMRI,
EEG/magnetoencephalography, and functional near-infrared
spectroscopy [25, 43, 44]. After computing internode connec-
tivity matrices, a network threshold (e.g., correlation coeffi-
cient, fiber numbers, or network density) is usually applied to
eliminate weak connectivities possibly arising from signal
noise. To this end, brain networks (usually sparse) are obtain-
ed and can be further characterized by using graph theoretical
approaches. Figure 1 shows a brief flowchart about construc-
tion and analysis of the brain networks in ADHD studies.

Graph Theory Approaches

In the graph theory context, a brain network can be represented
as a graph G(N, K), with N denoting the number of nodes and
K denoting the number of edges in graph G. Accordingly, an
NXxN adjacency matrix can be generated to indicate the exis-
tence or strength of edges between each pair of nodes in the
graph G. A network can be classified as directed or undirected
depending on whether its edges have a sense of direction and
unweighted (binary) or weighted depending on whether the
edges are assigned with different strengths. To date, no studies
have explored the directed brain networks in ADHD. Thus, we
focused on the undirected ones. Several key network metrics
are illustrated below. For more details of graph theory methods,
please refer to previous studies [24, 45, 46].

Small-World and Network Efficiency The small-world [47] is
an attractive model to capture the organization principles that
govern a variety of social, economic, and biological networks.
Small-world structure reflects an optimal balance between in-
formation segregation and integration, which is essential for
high synchronizabilty and fast information transmission in a
complex network. Here, we first introduced two key metrics
relevant to this model: the characteristic shortest path length and
clustering coefficient (Fig. 2). Path is any unique sequence of
edges that connects two nodes with one another, and its length
is given by the number of steps (in a binary graph) or the sum of
the edge lengths (in a weighted graph), with the shortest one
referred to as the distance. The characteristic path length of a
network is the global average of the distances between all pairs
of nodes. This measure quantifies the capability for parallel or
distributed information propagation of a network. The cluster-
ing coefficient of a network is the average of the clustering
coefficients over all nodes in the network, where the clustering
coefficient of a node is defined as the number of existing
connections among the node’s neighbors divided by all their
possible connections. This measure quantifies the extent of
local interconnectivity or cliquishness of information transfer
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Fig. 1 A flowchart of construction and analysis functional and structural
brain networks used in the ADHD studies. Briefly, the time courses from
the EEG/fMRI data or the fiber pathways from diffusion MRI data are
first extracted. The brain regions were then parcellated by structurally or
functionally defined templates. The individual connectivity matrices are

of a network. The two metrics of a real network can be com-
pared with those in benchmark networks such as random and
regular networks. A small-world network possesses higher
local interconnectivity than a random network (low clustering
coefficient and short characteristic path length) and higher
global integrity than a regular network (high clustering coeffi-
cient and long path lengths).

Network efficiency is a more biologically relevant metric
to describe brain networks from the perspective of information
flow. The global efficiency of a network is defined as the mean
of the inverse of shortest path length in the network. The local
efficiency of a network is measured as the averaged global
efficiency of the subgraph composed of the neighbors of all
nodes. Global efficiency and local efficiency measure how
efficiently information is exchanged at the global and local
levels, respectively [48, 49]. Using these efficiency measure-
ments, networks with high global and local efficiencies are
also considered to be small-world [48-50].

Nodal Centrality Several graphic metrics can be used to mea-

sure nodal centrality such as degree, efficiency, and eigenvec-
tor. These measures can quantify the roles of a node within a

a Path length and distance

Y
High clustering

Fig. 2 Illustrations of basic network metrics. As an example, we showed
a binary network with 16 nodes and 29 edges. a The length of the shortest
path between two nodes corresponds to the distance between them. Here,
the two nodes, a and b, connect to each other by three steps indicated by
the red lines. b The clustering coefficient of a node represents the extent
of local interconnectivity among its neighbors. The node labeled with
“high clustering” (red) has in total of four neighbors (yellow) that are

b Clustering coefficient

Low clustering <

generated by considering the pair-wise functional or structural associa-
tions between brain regions. To the end, the brain network is obtained and
further visualized as a graph and its topological properties can be calcu-
lated with graph theoretical approaches

network from different perspectives (Fig. 2). The degree of a
node is the number (in a binary graph) or the total connectivity
strength (in a weighted graph) of all edges that link to the
node, reflecting the most directly quantifiable measure of
centrality. The nodal efficiency is calculated as the averaged
reciprocal shortest path length between the node and the other
nodes, representing the ability of information transfer from
itself to other nodes in the entire network [50]. The eigenvec-
tor centrality is defined as the first eigenvector of the adjacent
matrix corresponding to the largest eigenvalue [51], and with
its recursive property, it is able to capture the global promi-
nence of a node [52]. In the brain networks, regions with high
nodal centrality are usually referred as hubs.

Human Connectomics Based on Graph Theory

Using the abovementioned graph theory metrics, recent stud-
ies have consistently demonstrated that both human brain
functional and structural networks exhibit many nontrivial
topological properties such as small-worldness structure, high
efficiency of information transfer, and highly connected hub
regions located predominantly in the medial prefrontal and

C Nodal degree

High degree

_Low degree

linked by four existing edges of six possible edges. Thus, the clustering
coefficient of the labeled node is 4/6 (i.e., 0.67). Another node labeled
with “low clustering” (red) has a clustering coefficient value of 0 because
there are no existing edges among its three neighbors (yellow). ¢ The
nodal degree is calculated as the number of edges linking with it. The
node labeled with “high degree” (red) has a degree of seven and the node
labeled with “low degree” (pink) has a degree of 1
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parietal cortices and lateral temporal and parietal corti-
ces [36, 38, 40, 50, 53-55]. Moreover, these important
network characteristics are highly heritable [56-58] and
exhibit remarkable changes in the course of normal
development [59-62] and aging [50, 63, 64]. Recently,
aberrant network topological configurations have been
found to be associated with various neuropsychiatric
disorders such as Alzheimer’s disease [65—67], schizo-
phrenia [68—70], and ADHD [25-35].

Brain Connectomics in ADHD

In this review, we provide an overview of graph-based brain
network studies in ADHD. The databases of PubMed/
MEDLINE were searched, with the latest search conducted
in January 2014. To the end, there are 11 published brain
network studies in ADHD employing the noninvasive neuro-
physiological and neuroimaging data (e.g., EEG, R-fMRI, and
dMRI) and graph-based network analysis methods (Table 1).
Notably, all of the studies were conducted on child popula-
tions except for one, which studied adults with ADHD. In this
section, we summarize the findings of both functional
and structural brain networks in ADHD and further
discuss how they enrich our understanding of the path-
ophysiology of ADHD.

Functional Connectomics in ADHD

Using EEG and R-fMRI, several studies have demonstrated
abnormal topological properties in the functional brain net-
works in ADHD.

EEG Networks EEG measures the electric field changes
caused by the neuronal activities with a high temporal resolu-
tion (milliseconds). Functional connectomic analysis based on
EEG data in healthy people has revealed a small-world struc-
ture [71, 72]. In ADHD, Ahmadlou and colleagues [25] firstly
used EEG to built brain networks in 12 children with ADHD
and 12 typically developing controls. Whole-brain, left, and
right hemispheric network analyses were separately per-
formed at both frequency full-band (0—60 HZ) and multiple
subbands (delta (04 Hz), theta (4-8 Hz), alpha (8-12 Hz),
beta (13-30 Hz), and gamma (30-60 Hz)). They found that
compared with the healthy children, ADHD children had
significantly higher clustering coefficient and lower charac-
teristic path length in their left brain networks only at delta
band, suggesting higher local and global information process-
ing in the left hemisphere. They did not detect any
significant group differences in topological properties of
either whole-brain or right hemispheric networks. In their
later study [26], however, they observed that the whole-
brain network properties were significantly different
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between the ADHD patients showing positive (n=15)
and negative (n=15) responses toward neurofeedback
training. Specifically, the characteristic path length of
the whole-brain networks at beta band was significantly
greater in ADHD children with positive response as
compared to those resistant to training. Interestingly, the
characteristic path length of the brain networks in ADHD
children with positive response significantly decreased
after cognitive therapy, while those with negative re-
sponse showed no significant changes. These findings
indicate that the neurofeedback therapies could elevate
the global information integration capacity of whole-
brain functional networks in specific ADHD children.

Functional MRI Networks In contrast to EEG, which mea-
sures electrophysiology signal, fMRI detects neuronal activi-
ties utilizing changes in cerebral blood flow and oxygen
consumption with relatively poorer temporal resolution
(~2 s) but higher spatial resolution (~2 mm). R-fMRI reflects
the spontaneous or intrinsic brain activity as low-frequency
fluctuations in blood oxygen level-dependent (BOLD) signals
[73]. Recently, R-fMRI has been widely used to study
the human brain functional networks in healthy popula-
tions [53, 74].

In ADHD research, Wang et al. [33] were the first to use R-
fMRI to investigate functional connectivity patterns of whole-
brain functional network in 19 boys with ADHD and 19
healthy controls. The networks consisted of 90 nodes as
regions of interest (ROIs), deriving from the automated ana-
tomical labeling (AAL) template. The authors reported that
the functional brain networks of both groups exhibited an
economical small-world topology. However, children with
ADHD showed abnormal small-world architecture character-
ized by higher local efficiencies (associated with local or
segregated processing) combined with a tendency of lower
global efficiencies (associated with distributed or integrated
processing), suggesting a shift toward the configuration of
regular networks (Fig. 3). Previous studies have suggested
that the maturation of the healthy human brain follows a “local
to distributed” principle [59, 60, 75]. Thus, Wang et al.’s
results point to a developmental delay of whole-brain func-
tional networks in ADHD children. Also observed in this
study was significantly decreased nodal efficiency in the
orbitofrontal cortex, which is classically implicated in the
executive function, and in several temporal and occipital
regions. Increased nodal efficiency was found in the inferior
frontal gyrus, a region critical for response inhibition. These
nodal efficiency alterations suggest that the roles of these
nodes in the brain functional networks are profoundly affected
by the disorder. Delayed maturation in ADHD has further
been reported in a specific functional subnetwork-default-
mode network (DMN) [31]. The DMN is primarily composed
of the medial prefrontal and parietal cortices as well as the
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Table 1 Neurophysiological and neuroimaging studies on brain connectomics in patients with ADHD
Studies Subjects Modality Node definition Edge definition Network
type
ADHD Controls
Ahmadlou et al. [25] N=12 (M/F 9/3) N=12 (M/F 9/3) EEG 19-channel Synchronization
8—13 years 8-13 years (N=19) likelihood
Ahmadlou et al. [25] ADHD positive — EEG 19-channel Synchronization
N=15 (M/F 11/4) (N=19) likelihood
8—13 years
ADHD negative
N=15 (M/F 12/3)
8-13 years
Wang et al. [33] N=19 boys N=20 boys fMRI AAL atlas Pearson’ s correlation B
13.59+1.52 years 13.324+0.97 years (N=90)
Fair et al. [31] N=23 (M/F 12/11) N=23 (M/F 16/7) fMRI DMN regions Pearson’s correlation w
10.04+2.58 years 10.57+2.86 years (N=12)
Fair et al. [30]* ADHD I N=455 (M/F 229/ fMRI Dosenbach-160 Pearson’s correlation w
N=80 (M/F 58/22) 226) (N=160)
11.45 years 14.39 years
ADHD C
N=112 (M/F 91/21)
10.31 years
Tomasi and Volkow N=255 (M/F 204/51)  N=316 (M/F 168/ fMRI Voxel-wise Pearson’s correlation 4
[321* 10.68 years 148)
10.76 years
Di Martino et al. [29]  ADHD N=45 (M/F 37/ N=50 (M/F 37/13)  fMRI Voxel-wise Pearson’s correlation B
8) 10.741.8 years
9.9+1.8 years
ASD N=56 (M/F 49/7)
10.1£1.8 years
Colby et al. [35]* N=285 (M/F 215/58)  N=491(M/F 181/ fMRI (1) Voxel-wise; Pearson’s correlation w
160) (2) Harvard-Oxford
atlas
(N=110),
(3) CC400 atlas
(N=400);
(4) Stanford FIND atlas
(N=90)
Cocchi et al. [28] N=16 (M/F 9/7) N=15 (M/F 7/8) fMRI AAL atlas Pearson’s correlation B
Male 23.0+1.8 years ~ Male 22.4+0.9 years (N=90)
Female 23.8+1.0 years Female 23.3+
1.0 years
Cao et al. [27] N=30 boys N=30 boys DTI (1) AAL atlas Probabilistic w
10.3£1.9 years 10.341.6 years (N=90), tractography
(2) H-1024 template
(N=1,024)
Hong et al. [34] ADHD I N=26 (M/F 13/13) DTI AAL atlas Deterministic w
N=26 (M/F 20/6) 10.04+2.47 years (N=116) tractography

9.78+2.81 years
ADHD C

N=39 (M/F 33/6)
9.30+2.47 years

ADHD [ inattentive ADHD subtype; ADHD C combined ADHD subtype, ASD autism spectrum disorders, ADHD positive ADHD children with positive
response to neurofeedback therapy, ADHD negative ADHD children resistant to neurofeedback therapy

? Data from the ADHD-200 database

lateral temporal and parietal cortices. It is generally thought to
support internally oriented processing [76] and exhibits func-
tional abnormalities in ADHD [5]. Using R-fMRI, Fair et al.
[31] specifically examined functional connectivity networks

of the 12 predefined DMN ROIs in 23 children with ADHD
and 23 controls. They conducted interregional functional con-
nectivity analysis within DMN and observed decreased
anterior-posterior connectivity in children with ADHD
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Regular

Small-world (ADHD)

Small-world (Healthy) Random

p=0

Increasing randomness

Fig. 3 Small-world models for ADHD and healthy brain networks. The
regular network has a high local clustering (high local efficiency) and a
long characteristic shortest path length (low global efficiency) [47]. The
random network has a low local clustering (low local efficiency) and a
small characteristic shortest path length (high global efficiency) [47]. The
clustering coefficients and characteristic path length of small-world net-
works are located at the middle between the regular and random networks
[47]. As reviewed here, Wang et al. [33] and Cao et al. [27] found that,

relative to healthy controls. This pattern greatly overlaps with
that showing developmental dynamics in healthy populations.
Combining the findings of these two studies [31, 33], we
speculate that ADHD children are associated with a develop-
mental delay in functional connectivity patterns of both
whole-brain and subnetworks. Very recently, Fair and col-
leagues [30] analyzed the R-fMRI data from the ADHD-200
database [77] and reported different changing connectivity
patterns in the whole-brain network between ADHD sub-
types. According to DSM-5, ADHD children are clinically
heterogeneous and can be divided into three subtypes:
hyperactive/impulsive (relatively infrequent), inattentive, and
combined. Fair et al. [30] constructed the functional brain
networks with 160 nodes from predefined functional ROIs
[78] in 80 children with inattentive ADHD subtype, 112
children with combined ADHD subtype, and 455 healthy
controls, and investigated regional nodal connectivity using
the degree metric. While the two groups of ADHD patients
showed similar abnormalities in the sensorimotor system,
some unique patterns were also observed: the inattention
ADHD group exhibited atypical patterns in the dorsal lateral
prefrontal cortex and cerebellum and the combined ADHD
group in the midline components of DMN. After controlling
for the influences of micro-movements using multiple motion-
correction strategies [79—82], these findings were largely
preserved.

Besides these region-wise network analyses, there were
two R-fMRI studies performing voxel-wise network analysis
to examine regional alterations in ADHD children from a
centrality perspective. In the first study, Tomasi and Volkow
[32] calculated the Pearson’s correlations between any pairs of
the brain voxels in 255 ADHD children and 316 healthy
children from the ADHD-200 database [77]. After consider-
ing the physical distance information, they divided all corre-
lations into long-range and short-range ones and then calcu-
lated the corresponding functional connectivity density (i.e.,
weighted degree). They found that the children with ADHD
had lower connectivity (both short- and long-range) in regions
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although both patients with ADHD and healthy children exhibited small-
world structure in their functional and structural networks, the patients
were associated with higher local efficiency and lower global efficiency
as compared to healthy controls. This suggests a shift of topology toward
regular configurations in ADHD networks. Notably, Ahmadlou et al. [25]
did not observe the pattern in EEG-based ADHD brain networks, which
could be due to the heterogeneity of their samples in response to cognitive
training [26]

of the dorsal attention (superior parietal cortex), default-mode
(precuneus) networks and cerebellum, and higher short-range
connectivity in reward-motivation regions (ventral striatum
and orbitofrontal cortex) (Fig. 4). Furthermore, the magnitude
of such changes significantly correlated with scores of inat-
tention and hyperactivity/impulsivity in patients with ADHD.
Further seed-based analysis revealed that the orbitofrontal
cortex had stronger connectivity with striatum and anterior
cingulate and lower connectivity with superior parietal cortex
in ADHD children. Also using a voxel-wise centrality analysis
approach, Di Martino et al. [29] reported common and distinct
modes of functional brain network in 56 patients with autism
spectrum disorders and 45 patients with ADHD. They ob-
served abnormal degree centrality in the precuneus in both
patient groups. Changes in some other regions were disorder
specific, including higher-degree centrality in the right
striatum/pallidum in ADHD and higher-degree centrality in
the bilateral temporolimbic areas in autism. Further analysis
revealed that like ADHD patients, autism children with
ADHD-like comorbidity showed degree connectivity abnor-
malities in the basal ganglia. By contrast, autism children
without ADHD-like comorbidity had higher degree centrality
in the temporolimbic areas than ADHD children. Notably,
they also used the eigenvector centrality metric but did not
find any significant group differences. These voxel-wise anal-
yses further extended the findings of region-wise brain net-
work studies. Very interestingly, Colby and colleagues [35]
proposed a machine learning approach, which combined
regional- and voxel-based structural and functional features
as well as demographic information, to predict diagnostic
status of individuals with ADHD from typically developing
children in the ADHD-200 database [77]. Structural fea-
tures included nine quantitative metrics (e.g., surface area,
gray matter volume, cortical thickness, and cortical curva-
ture) from 113 cortical and noncortical ROIs. Functional
features included Pearson’s correlation functional connec-
tivity matrices, nodal and global graph theoretical mea-
sures, nodal power spectra, voxel-wise global degree
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Fig. 4 Distribution of short-
range (fop panel) and long-range
(bottom panel) functional
connectivity density for ADHD
children and typically developing
children (7DC) and the statistical
differences between the groups. A
threshold of functional
connectivity density (>0.6) was
used to compute short- and long-
range functional connectivity
density (FCD) maps. One-way
analysis of variance with three
covariates (age, gender, and mean
motion) was used to contrast
short- and long-range FCD maps
between groups. The figure was
adapted from [32]

connectivity, and voxel-wise regional homogeneity. With
this methodology, they were able to predict individuals
with ADHD from healthy children with 55 % accuracy
(versus a 39 % chance level in this sample), 33 % sensi-
tivity, and 80 % specificity.

So far, only one R-fMRI study explored the ADHD-related
alterations in whole-brain functional network in adults.
Cocchi et al. [28] investigated topological organization of
the whole-brain functional networks with 90 ROIs from the
AAL template in 16 adults with ADHD and 15 comparable
controls. Different from the findings with ADHD children,
they did not observe any significant alterations in global
network properties. However, disturbed nodal properties were
detected in ADHD adults: the nodal characteristic path length
was significantly lower in the right medial frontal and right
superior occipital cortices; nodal clustering coefficient was
significantly higher in the left orbitofrontal and right superior
temporal cortices and lower in the left superior occipital

Short-range FCD

cortex. Using the network-based-statistic (NBS) approach
[83], they found abnormal interregional connectivity involv-
ing a frontal amygdale-occipital subnetwork and a frontal
temporal-occipital subnetwork, which significantly correlated
with symptoms of inattention and hyperactivity/impulsivity in
patients with ADHD.

Taken together, both EEG and R-fMRI network analyses
suggested disrupted functional topology in ADHD. From a
global perspective, children with ADHD showed a shift of
topology toward regular configurations in the functional brain
networks [33] (Fig. 3), while the adults patients showed little
differences compared with healthy controls [28].
Redistribution of regional nodes and connectivity was com-
monly detected in both children and adults, involving the
sensorimotor, attention, default-mode, striatum, and cerebel-
lum systems [25, 26, 28-33]. These network disruptions sig-
nificantly correlated with behavior disturbances (e.g., inatten-
tion and hyperactivity/impulsivity symptoms) in ADHD
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patients [28, 32] and exhibit differential patterns between
clinical subtypes [30]. These less-optimized topological con-
figurations of functional brain networks might imply the neu-
ronal basis of cognitive deficits in ADHD.

Structural connectomics in ADHD

Recent advances in dMRI and tractography methods have
greatly facilitated the noninvasive mapping of structural
networks in the human brain. Specifically, white matter
pathways can be mapped through inferring the spatial orien-
tations and trajectories of bundles of myelinated axons tra-
versing the brain, on the basis of measurements of diffusion
anisotropy of water or other small molecules within biolog-
ical tissue [84, 85]. To date, there are only two studies
employing dMRI data to explore the white matter network
abnormalities in ADHD [27, 34]. In the first study, Cao and
colleagues [27] reported abnormal structural connectivity in
the white matter networks in 30 drug-naive boys with
ADHD as compared to 30 age- and gender-matched healthy
controls. By employing the probabilistic tractography meth-
od [85], they constructed the weighted structural networks
with 90 nodes from the AAL template. Although efficient
small-world organization was observed in both groups, boys
with ADHD exhibited lower global efficiency and higher
local efficiency than healthy boys. It should be noted that

Fitted component strength

20 25 30 35
Inattention score

Fig. 5 The decreased or increased white matter connections in ADHD
boys compared with healthy controls and their relationships with clinical
characteristics in patients. a The significantly decreased network-based-
statistic (VBS) component (blue curve) in ADHD patients compared with
healthy controls. These connections formed a single connected network,
primarily involving prefrontal and insula regions, and the strength of the
component negatively correlated with the inattention scores in ADHD
patients. b The significantly increased (red curve) NBS component in
ADHD patients compared with healthy controls. These connections
formed a single connected network, primarily involving striatum struc-
tures and orbitofrontal regions, and the strength of the component posi-
tively correlated with the impulsivity scores in ADHD patients. PreCG
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this pattern of topological changes (Fig. 3) has been reported
in the brain functional network analysis [33], indicating the
existence of structural basis underlying the functional abnor-
malities in this disorder. Furthermore, using NBS analysis,
they detected significantly decreased structural connectivity
in the prefrontal-dominant circuitry and increased connectiv-
ity in the orbitofrontal-striatal circuitry, which significantly
correlated with inattention and hyperactivity/impulsivity
symptoms, respectively (Fig. 5). Additionally, they showed
ADHD-related decreases in nodal efficiency in several fron-
tal, parietal, and occipital regions. In the second study, Hong
and colleagues [34] examined the white matter structural
networks comprising 112 nodes from the AAL template
(including all cortex and cerebellum regions) in 26 children
with the inattentive ADHD subtype, 39 children with the
combined ADHD subtype, and 26 healthy controls. Using
NBS, they observed abnormal structural connectivity be-
tween frontal and striatal regions in ADHD, which was
compatible with the finding of Cao et al [27]. They further
observed abnormal connectivity component in the cerebellar
regions. The fractional anisotropy values in some of these
fiber bundles significantly correlated with attentional perfor-
mance in ADHD patients. Notably, the authors also reported
the connectivity differences between ADHD subtypes:
Compared with the inattentive ADHD group, the combined
ADHD group showed a lower connectivity of a right-
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lateralized network predominantly linking frontal, cingulate,
and supplementary motor areas.

In summary, the two dMRI studies highlighted disruptions
of the white matter structural connectivity networks in chil-
dren with ADHD. At the global level, Cao et al., [27] showed
a less-optimized and regular-toward small-world structure in
the structural networks in ADHD patients, being consistent
with the functional brain network analysis [33] (Fig. 3). At the
nodal level, aberrant regional changes were found mainly in
frontal, striatal, and cerebellar regions [27, 34]. Disrupted
structural connections mainly involved the orbitofrontal-
striatal, prefrontal-dominant, and cerebellum-relevant circuit-
ries [27, 34]. Moreover, these network abnormalities were
associated with cognitive declines in patients with ADHD
and were different between ADHD subtypes [27, 34].
Collectively, these results suggest a pathologically wiring in
white matter networks in ADHD, thus providing crucial struc-
tural substrates underlying the functional and behavior deficits
in ADHD.

Conclusions and Future Perspectives

In this review, we summarized recent findings of brain
connectomics in ADHD using EEG, R-fMRI, and dMRI data.
Convergent evidence from these multi-modal neuroimaging
studies demonstrated that both functional and structural brain
networks in ADHD were topologically disrupted at both
global and local levels. Moreover, these disruptions are likely
to explain behavior symptoms in ADHD patients. These find-
ings provided empirical evidence for network dysfunction of
ADHD and thus greatly added our understanding of the path-
ophysiological mechanisms of this disorder. However, it
should be realized that the studies of brain networks in
ADHD are at their infant stages. There are still many impor-
tant questions, which are outlined below and are needed to be
elucidated in the future.

First, how do the structural and functional brain
connectomes of ADHD change gradually as the disease pro-
gresses? Previous longitudinal work of Shaw et al. [10] found
that the development of gray matter thickness especially in the
prefrontal cortex was significantly slower in ADHD patients
compared with healthy children. However, no work has di-
rectly explored the differences of developmental trajectories in
network architecture between ADHD children and typical
development children. Further studies combing continuous
longitudinal data of ADHD are crucial to address these
questions.

Second, what are the differences and similarities in terms of
network topology across different subtypes of ADHD?
Patients with ADHD can be clinically divided into three
subtypes according to their symptoms. The works reviewed
here [30, 34] suggest distinct functional and structural

connectivity patterns for combined and inattentive subtypes.
Moreover, there could be mechanistic heterogeneity that po-
tentially underlies the existing classification scheme [86].
Using neurocognitive profiles, both ADHD children and typ-
ical developmental children can be successfully identified into
distinct categories. Thus, further works combining extensive
cognitive profiling and connectomic analysis are of great
interest to uncover the neuronal circuitries underlying specific
cognitive deficits in ADHD subtypes.

Third, what is the physiological basis of disrupted network
topology in ADHD? The connectome-based studies reviewed
here suggest that the aberrant regional changes in ADHD were
primarily distributed in the sensorimotor, attention, default-
mode, striatum, and cerebellum regions. Previous positron
emission tomography studies have showed that the dopamine
synaptic markers including dopamine transporters and D(2)/
D(3) receptors in the striatum and the midbrain were signifi-
cantly reduced in patients with ADHD [87, 88]. Furthermore,
poor attentional performers exhibited reduced dopamine ac-
tivity in the left caudate in either ADHD patients or healthy
controls [89]. Evidence from MR spectroscopy studies re-
vealed ADHD-related glutamatergic alterations happened in
the prefrontal cortex, striatum, and frontal lobes (for a review,
see [90]). Rodent models in ADHD also showed low dopa-
mine D5 receptor density in the hippocampus [91] and bioen-
ergetic metabolites changes in the striatum [90, 92]. Recently,
the regional centrality measures of the brain networks (e.g.,
regional nodal degree and betweenness centrality) exhibited
significant correlations with the brain’s metabolism demands
such as aerobic glycolysis [23], regional cerebral blood flow
[93], and regional cerebral metabolic rate of glucose [94]. All
of these studies indicate a physiological basis underlying the
network dysfunctions shown in ADHD, but further studies are
needed to clarify the issues.

Fourth, what are the effects of clinical treatment (e.g.,
cognitive training, pharmacological interventions, and brain
stimulus techniques) on the brain networks for ADHD? The
EEG work of Ahmadlou and colleagues [26] revealed signif-
icant effects of neurofeedback therapy on the brain functional
networks. Previous R-fMRI study reported significant effects
of dopamine antagonism on brain functional networks in
healthy people [50]. Recently, An et al. [95] used R-fMRI to
demonstrate that an acute dose of methylphenidate hydrochlo-
ride, the first-line treatment of ADHD for more than 50 years,
can significantly normalize fronto-parieto-cerebellar dysfunc-
tions in the boys with ADHD. Several positron emission
tomography studies in ADHD subjects also detected signifi-
cant methylphenidate-elicited dopamine increases in regions
including the ventral striatum, midbrain, and prefrontal and
temporal cortices, which contribute to the improvement of
attention performances [89, 96]. However, studies about drug
therapy effects on ADHD brain networks are still in lack.
Nonetheless, these previous works suggest that the
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pathological neuronal circuitries in ADHD could be selective-
ly modulated by treatment. Further studies employing various
clinical treatment approaches in combination with multi-
modal neuroimaging and connectome-based analysis are im-
portant to evaluate biological mechanisms underlying ADHD
therapeutic effects from a network perspective.

Fifth, what is the relationship between brain network pat-
terns and environmental or genetic factors in ADHD? Both
environmental and genetic factors play important roles in
ADHD [5]. For example, environmental factors like the low
birth weight [97] and perinatal exposure to teratogens [98]
have been shown to correlate with ADHD. Genes for neuro-
trophic factors and nerve growth factors have also been shown
to be involved in ADHD development [99-101]. Moreover,
previous studies have reported genetic effects on the organi-
zation of human functional networks in both children [58] and
adults [56]. Further brain network studies considering envi-
ronmental and genetic information in ADHD are of great
interest and will advance our knowledge about the patholog-
ical mechanisms of this disorder.

Finally, some methodological issues involving the brain
conectome analysis should be addressed. It is well acknowl-
edged that it is currently challenging to map the human brain
networks appropriately and precisely [102]. Given the lack
of gold standard for regional parcellation in the brain, the
definition of network nodes is relatively arbitrary at present.
The nodes are usually defined using templates employing
random, anatomical, or functional parcellation criteria.
Recent works suggest that different node choices have re-
markable influences on the properties of resulting networks
[69, 103]. In parallel with the definition of nodes, the pro-
cedure to determine the edges in brain networks is another
important issue. Multiple choices are currently available for
estimating interregional functional connectivity such as par-
tial correlation, Pearson’s correlation, and mutual informa-
tion and structural connectivity such as determined or prob-
abilistic tractography. These connectivity metrics and rele-
vant imaging pre-processing procedures often affect resulting
network topological properties and exhibit different test-
retest reliability patterns across scanning time [104—-106].
Therefore, caution should be taken in choosing the analytical
schemes in brain network studies. Besides, multi-modal im-
aging analysis represents one potential avenue for future
research on ADHD connectomics. So far, most of brain
connectome studies in ADHD have utilized the data of
EEG, R-fMRI, and dMRI for network construction. Other
imaging techniques such as structural MRI [36] and func-
tional near-infrared spectroscopy [44] can also be used to
reconstruct the brain’s structural and functional networks
with complimentary connectivity information. Therefore,
the multi-modal brain network analysis would give a fuller
view of the structural and functional connectomes in ADHD,
which are still lacking at present.
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