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Abstract

Chinese calligraphic handwriting (CCH) is a traditional art form that requires high levels of

concentration and motor control. Previous research has linked short-term training in CCH to

improvements in attention and memory. Little is known about the potential impacts of long-

term CCH practice on a broader array of executive functions and their potential neural sub-

strates. In this cross-sectional study, we recruited 36 practitioners with at least 5 years of

CCH experience and 50 control subjects with no more than one month of CCH practice and

investigated their differences in the three components of executive functions (i.e., shifting,

updating, and inhibition). Valid resting-state fMRI data were collected from 31 CCH and 40

control participants. Compared with the controls, CCH individuals showed better updating

(as measured by the Corsi Block Test) and inhibition (as measured by the Stroop Word-

Color Test), but the two groups did not differ in shifting (as measured by a cue-target task).

The CCH group showed stronger resting-state functional connectivity (RSFC) than the con-

trol group in brain areas involved in updating and inhibition. These results suggested that

long-term CCH training may be associated with improvements in specific aspects of execu-

tive functions and strengthened neural networks in related brain regions.

1. Introduction

Chinese calligraphy has a long history, originated from oracle-bone writing (chia ku wen) and

evolved into subsequent five main forms, including seal script (chuan shu), clerical script (li
shu), running script (hsing shu), grass writing (tsao shu), and model script (kai shu) [1]. To
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master any style of Chinese calligraphy is a difficult task and requires years of practice, which

includes learning the precise creation of each stroke, the composition of the whole piece, and

the rhythm of writing and associated breathing [2].

The particular demands of Chinese calligraphic handwriting (CCH) on mental resources

have intrigued psychologists since the 1970s [3]. Researchers have found that the act of brush-

writing is associated with calligraphers’ physiological changes [4, 5] and brain activity [6, 7].

Physiological changes include decelerated respiration, slower heart rate, decreased blood pres-

sure, and reduced muscular tension [4, 5]. These changes are similar to those resulting from

relaxation training [8] or mindful meditation [9, 10], suggesting that CCH promotes relaxation

and attention/concentration, which are further related to executive functions (EFs) [11, 12]. In

terms of neural correlates of CCH, an EEG study [13] found that CCH training increased theta

wave, which has been associated with working memory (a key component of EF) in previous

studies [14–16]. Finally, indirect evidence linking CCH to EFs also came from the beneficial

effect of short-term CCH training in children with attention deficiency (attention-deficit/

hyperactivity disorder) [17]. These children are known to have deficits in EFs [18–21], but

they were helped by CCH training, perhaps via improved EFs.

In sum, previous research has provided some evidence linking CCH to EFs. No study to

our knowledge, however, has systematically examined the effects of long-term CCH on various

components of EFs and related brain connectivity.

Based on Miyake’s conceptualization [22], EFs have three components: updating (or WM),

shifting (or cognitive flexibility), and inhibition (or control). Previous studies have identified

the brain networks related to these three components of EFs. Specifically, previous fMRI stud-

ies have showed that both dorsolateral frontal cortex (dlPFC) [23–25] and superior frontal cor-

tex [26, 27] play a key role in WM. One training study found that the activity of the prefrontal

and parietal cortices was increased after 5 weeks of WM training [28]. Another study found

that task-related effective connectivity in the fronto-parietal networks was enhanced by an

intensive training using the N-back task [29]. Most relevant to this study, Hampson et al.

(2006) further found that WM performance was related to RSFC between the PCC and MFG/

ACC [30]. Inhibition is shown to involve a common neural network that includes the prefron-

tal cortex and the anterior cingulate cortex [31–33]. The right inferior prefrontal gyrus (IFG) is

particularly critical for behavioral inhibition [34, 35]. In terms of cognitive flexibility, the

fronto-striatal brain network has been found to be involved in task switching or shifting [36,

37], and the left inferior frontal junction (IFJ) also plays a hub role in task-switching [38].

The present study included 36 individuals with long-term CCH experience (at least five

years) and 50 controls (less than five months of CCH experience). Both behavioral data (with

three sub-tests to measure the three components of EFs) and resting-state brain data were col-

lected. We hypothesized that the group with long-term CCH experience would show better EF

and stronger RSFC in EF-related brain areas.

2. Materials and Methods

2.1 Participants

Participants were 36 students from the calligraphy major and 50 controls from other social sci-

ences and humanities majors at the Beijing Normal University, Beijing, China. The CCH par-

ticipants had had at least five years of formal training in CCH and the controls had no special

CCH training and no more than a few months of basic school experience with CCH. All par-

ticipants were right-handed native Chinese speakers. A written consent form was obtained

from each participant after a full explanation of the study procedure. This study was approved
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by the Institutional Review Board of the State Key Laboratory of Cognitive Neuroscience and

Learning at Beijing Normal University, China. Subjects were compensated for their time.

2.2 Neuropsychological measures

In the present study, we collected demographic information and administered an IQ test and

three neuropsychological measures of the three components of EF. We measured updating

with the Corsi block test, shifting with a cue-target paradigm task, and inhibition with the

Stroop color-word test.

2.2.1 Raven’s Advanced Progressive Matrices test. All participants were asked to com-

plete both Set I and Set II of the Raven’s Advanced Progressive Matrices (APM) test [39]. The

standard instructions were read aloud by the experimenter, and the time limits were 5 minutes

and 40 minutes for Set I and Set II, respectively. The scores from Set II were used to index IQ.

2.2.2 Cue-target paradigm task. Shifting was measured by a cue-target task—the covert

attentional orienting task [40]. We used a computerized version that included 10 practice trials

and 120 formal trials. In this task, a cross was placed at the center of the computer screen, and

two boxes were placed on the left and right of the cross. A cue randomly appeared in the left or

right box. A stimulus onset asynchrony (SOA) of 50 ms, 250 ms, or 950 ms separated the cue

and the target. Participants responded to the peripheral target while remaining visually fixated

at the center of the screen. The targets were preceded by a visual cue, which might occur in the

same location as the subsequent target (valid trials) or in a location contralateral to the target

(invalid trials). In the current study, we were not interested in the ‘‘inhibition of return” atten-

tional mechanism that was prevalent at longer SOA periods (>300ms) [41, 42], and therefore,

only the responses to SOAs of the 50 ms (SOA_50) and 250 ms (SOA_250) trials were ana-

lyzed. Shifting (or attentional flexibility) was indexed by the validity effect [43, 44], which was

calculated by subtracting the valid cue reaction times from the invalid-cue reaction times.

2.2.3 Corsi block test. The Corsi block test [45] was used to measure spatial WM. Partici-

pants were asked to remember varying sequences of spatial locations and to recall them in for-

ward and backward order. The forward recall test measures visuo-spatial short-term memory,

and the backward recall measures visuo-spatial WM [46–48], so only backward recall scores

(the sequence length times the total number of correct trials out of the total 14 trials) were

used in this study.

2.2.4 Stroop color-word test. The Stroop color-word test is one of the most often used

experimental paradigms to measure inhibitory control. Based on the standard Stroop color-

word test [49], we created a computerized version that included three experimental blocks

(reading the color word, naming the color, and naming the color of a word printed in an

incongruent color) with 12 practice trials and 84 formal trials each. We recorded the mean

reaction time (RT) and accuracy rate (ACC) of the three experimental blocks and calculated

the inverse efficiency score (IE = -RT/accuracy). Finally, the interference score for time (IS

time) (calculated by subtracting the average time needed to complete the word-naming and

color-naming trials’ RT from the incongruent trials’ RT [50]) and IE difference score (calcu-

lated by subtracting the color-naming trials’ IE from the incongruent trials’ IE) were used as

the Stroop interference scores.

2.3 Brain imaging data collection and preprocessing

2.3.1 fMRI data acquisition. MRI data were collected using a SIEMENS TRIO 3-Tesla

scanner in the Brain Imaging Center of Beijing Normal University. Participants lay supine

with their heads snugly fixed by a belt and foam pads to minimize head motion. Each partici-

pant underwent an eight-minute resting-state fMRI (RS-fMRI) scanning session and a 3D
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anatomic session. During the RS-fMRI session, the participants were instructed to keep their

eyes closed, be as still as possible, and not to think about anything in particular. Images were

obtained with the following parameters: 33 axial slices, thickness/gap = 3.5/0.7 mm, matrix

size = 64×64, repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle = 90˚, field of

view (FOV) = 200×200 mm2. The 3D T1-weighted magnetization- prepared rapid gradient

echo (MPRAGE) image was acquired with the following parameters: 144 sagital slices, slice

thickness/gap = 1.3/0.65 mm, TR = 2530 ms, TE = 3.39 ms, inversion time (Ti) = 1100 ms, flip

angle = 7˚, FOV = 256×256 mm2, matrix size = 256×192.

2.3.2 Image preprocessing. Data Processing Assistant for Resting-State fMRI (DPARSF,

http://rfmri.org/DPARSF) [51] was used to preprocess the RS-fMRI data. Steps included: (1)

discarding the first 10 volumes; (2) correcting for within-scan acquisition time differences

between slices and head motions; (3) coregistering the T1 image to the mean functional image

using a linear transformation; (4) segmenting the coregistered T1 images into gray matter,

white matter, and cerebrospinal fluid; (5) normalizing the head motion corrected functional

images to the standard template using the transformation matrix estimated from T1 segmenta-

tion and reslicing them to 3 mm isotropic resolution; (6) smoothing the images with

FWHM = 4 mm; (7) linear detrending to reduce the effects of low-frequency drift; and (8)

regressing nuisance signals including the Friston 24 head motion parameters, cerebrospinal

fluid signal, and white matter signal from the data. Finally, temporal band-pass filtering

(0.01~0.1 Hz) was used to reduce high-frequency physiological noise.

2.4 Data analysis

We performed two-sample t tests for the three behavioral tasks. For the brain data, one partici-

pant of the CCH group and four participants of the control group were excluded because of

excessive head motion (>2 mm), yielding a final sample of 31 CCH and 40 control participants

with valid brain imaging data. We used the REST V1.8 (http://restfmri.net/forum/REST_V1.8)

[52] for the FC analysis. Mean time series for regions of interest (ROIs) were extracted, and

voxel-wise correlation analysis was then used to generate the FC map. Correlations coefficients

were converted into z map by Fisher’s r-to-z transformation to improve the normality.

Specifically, nine brain regions (r = 6.00mm) were selected as seed regions of interest (seed

ROIs) in this study (Table 1). Four of these ROIs have been linked to WM, including bilateral

dorsolateral frontal cortex (dlPFC, Brodmann area BA9) [25, 27] and superior frontal gyrus

(SFG, BA 10) [26]. Two ROIs, left/right inferior frontal gyrus (IFG, BA 44)[53], have been

linked to inhibition control. One ROI in the left inferior frontal junction (IFJ, BA 6)[38] has

been linked to shifting. Finally, two ROIs in the anterior cingulate cortex (ACC, BA 32) have

been linked to all three components of EF [54, 55].

FCs between the nine ROIs and the whole brain were calculated and Z value maps were

generated for group analysis in SPM8, with age, gender, and IQ as covariates and a topological

FDR (p<0.01) correction. Brain areas showing strong RSFC with the seed regions were identi-

fied as target ROIs. The averaged RSFC between the target ROIs and the seed regions were

then correlated with performance on the EF tasks to confirm these connections’ roles in EF.

4. Results

4.1 Behavioral results

The CCH and control groups did not differ in terms of gender (χ2 = 0.251, p = 0.671), age

(t = -0.132, p = 0.895), years of education (t = -0.147, p = 0.884), and IQ (t = -0.658, p = 0.513).

The CCH practitioners had 5–20 years of experience (M = 10.69 years, SD = 3.55), started

practicing at 5–20 years of age (M = 9.14 years, SD = 4.05), and practiced CCH on average for
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0.50–7.00 hours per day (M = 2.44 hours, SD = 1.38) (Table 2). In terms of the type of scripts,

most participants had experience with at least two or three types of scripts, with the regular

and the running scripts being the most common.

For the cue-target task, we found neither excessively slow responses (>1500 ms) due to

inattentiveness or fatigue nor excessively fast (<100 ms) responses due to anticipatory errors

[56]. Non-valid trials (i.e., negative validity effect trials and outliers beyond three standard

deviations) were deleted. The CCH and control groups did not differ significantly in atten-

tional flexibility (shifting) in the 50 ms trials (t = -0.250, p = 0.803) or the 250 ms trials

(t = 0.649, p = 0.518) (Table 3 and S1 Table). In terms of working memory or updating, CCH

subjects performed significantly better than the controls (t = 2.276, p = 0.026) (Table 3 and S1

Table). Finally, the CCH showed better inhibition than the controls, as shown by the former’s

shorter RT on the incongruent trials of the Stroop color-word test (see Table 3 and S1 Table),

lower IS time, t = -8.912, p< 0.001, and higher IE difference score t = 7.410, p< 0.001.

4.2 RS-fMRI results

As hypothesized, we found that participants with long-term CCH experience showed stronger

RSFC related to the brain areas involved in WM, inhibition control, and shifting (Table 4).

Specifically, stronger RSFC for the CCH group than the control group were found (a) between

the left dlPFC seed and the following areas: the fusiform gyrus (FFG), postcentral gyrus

Table 1. MNI coordinates of seed ROIs.

ROI Dimension of Efs Side Seed location BA MNI

1 WM L dlPFC 9/46 -38 34 43

2 R dlPFC 9/46 42 34 42

3 L SFG 10 -7 58 -11

4 R SFG 10 8 58 -12

5 Inhibition L IFG 44 -48 10 24

6 R IFG 44 51 11 23

7 Shifting L IFJ 6 -41 3 31

8 Related to all three components of EF L ACC 32 -6 33 23

9 R ACC 32 9 44 23

Note: L: left hemisphere; R: right hemisphere; dlPFC: dorsolateral frontal cortex; SFG: superior frontal gyrus; IFG: inferior frontal gyrus; IFJ: inferior frontal

junction; ACC: anterior cingulate cortex.

doi:10.1371/journal.pone.0170660.t001

Table 2. Demographic and other information about the CCH group and control group.

Variables CCH Controls t or χ2 p

N (Male/Female) 36 (16/20) 50(17/33) 0.251 0.617

Age (mean±SD in year) 21.31±2.16 (18.08~26.42) 21.28±2.40 (17.17~28.42) -0.132 0.895

Handedness (% right handed) 100 100

Education (mean ±SD in year) 14.44±2.08 (9~19) 14.03±1.84 (12~18) 0.147 0.884

APM 26.59±3.73 (18~33) 25.54±8.23 (20~35) -0.658 0.513

Years of practicing CCH (mean±SD in year) 10.69±3.55 (5~20)

The age of starting practicing CCH (mean±SD in year) 9.14±4.05 (5~20)

Mean hours of practicing CCH per day (mean±SD in hours) 2.44±1.38 (0.50~7.00)

Note: APM: Raven’s Advanced Progressive Matrices (APM) test. Range of scores are presented in parentheses.

doi:10.1371/journal.pone.0170660.t002
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(PstCG), precentral gyrus (PCG) in the right hemisphere, and superior temporal gyrus (STG),

middle temporal gyrus (MTG), PstCG, PCG and Heschl’s gyrus (HG) in the left hemisphere

(Fig 1A); (b) between the right dlPFC seed and the following areas: MTG and inferior temporal

gyrus (ITG) in the left hemisphere and bilateral precuneus (Fig 1B); (c) between the left SFG

seed and anterior cingulate cortex (ACC) and angular gyrus (AG) in the left hemisphere and

medial orbitofrontal cortex (MOFC), precuneus, and the primary visual cortex such as calcar-

ine cortex(CC) in the right hemisphere (Fig 1C); (d) between the left IFG seed and right

PstCG, superior parietal gyrus (SPG) and precuneus (Fig 2A); (e) between the right IFG seed

and right STG (Fig 2B); (f) between the left IFJ seed and the parahippocampal gyrus (PHG),

hippocampus, and ACC in the left hemisphere, and precuneus, MOG, MTG, PstCG, and SPG

in the right hemisphere (Fig 3); and (g) between the bilateral ACC seeds (bilateral precuneus)

and right IFG, MTG, PCG, superior occipital gyrus (SOG), thalamus, caudate, cuneus, and

rolandic operculum (RO) (Fig 4). No group differences were found for RSFC with the right

SFG seed.

Finally, partial correlation analyses showed that WM had positive correlations with aver-

aged RSFC between WM-related seeds and two target ROIs, FFG (r = 0.522, p = 0.007) and

AG (r = 0.391, p = 0.054); and between seed ROIs related to all three components of EFs and

two target regions, the thalamus/caudate (r = 0.398, p = 0.049) and the cuneus/SOG (r = 0.483,

p = 0.015). The IS time had a negative correlation with averaged RSFCs between inhibition-

related seeds and the target region of STG (r = -0.512, p = 0.009). The VE_250 had positive

correlations with averaged RSFCs between shifting-related seed ROIs and the rectus/ACC

(r = 0.434, p = 0.030); and between seed ROIs of all three components and two target regions,

the thalamus/caudate (r = 0.406, p = 0.044) and the cuneus/SOG (r = 0.522, p = 0.007) (Table 5

and S2 Table).

5. Discussion

The current study explored the association between long-term experience with CCH and exec-

utive functions (EFs), including attentional flexibility, working memory, and inhibitory con-

trol. Results indicated that individuals with at least five years of CCH experience performed

better than did the controls on two of the tests: one tapping working memory and the other

inhibition. These results extended earlier work about short-term CCH training’s effects on

cognitive abilities [17, 57, 58]. Moreover, we found that CCH participants showed stronger

Table 3. Group differences in the cue-target paradigm task, Corsi block test, and Stroop color-word test.

Tasks CCH Group (N = 36) Control Group(N = 50) t p

Cue-target paradigm task

VE_50(ms) 28.66±16.38 30.15±32.00 -0.250 0.803

VE_250(ms) 28.44±24.09 21.42±61.00 0.649 0.518

Corsi block test

Forward score 54.41±21.46 42.64±15.32 1.452 0.151

Backward score 48.09±17.51 35.39±13.19 2.276 0.026

Stroop Color-Word test

IS time 100.52±62.02 251.30±79.17 -8.912 0.000

IE difference score -72.12±68.12 -205.46±78.61 7.410 0.000

Note: VE_50 = validity effect of SOA_50, VE_250 = validity effect of SOA_250; IS time = the interference score for time; IE = inverse efficiency score. IE

difference score was calculated by subtracting the color-naming trials’ IE from the incongruent trials’ IE. The p values were not corrected for multiple tests.

doi:10.1371/journal.pone.0170660.t003
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Table 4. Brain areas showing stronger RSFC among CCH participants than controls based on ROI seeded FC analyses with topological FDR

(p < 0.01) correction.

ROI seeds Cluster size Peak (MNI) Side Cluster location Brodmann areas (BA) Peak T

X Y Z

WM

L_dlPFC 149 42 -15 -27 R FFG 20 4.7

42 -24 -24 R FFG 20 3.51

27 -42 -15 R FFG 37 3.49

251 18 -27 78 R PstCG/PCG 4 3.97

-21 -24 60 L PCG 6 3.68

-21 -36 75 L PstCG 4 3.59

116 -57 -39 12 L MTG/STG 22/42 3.89

-45 -21 12 L HG 48 3.19

-51 -24 3 L STG 48 3.17

R_dlPFC 129 -60 -39 -3 L MTG 21 4.62

-66 -42 -15 L ITG 20 3.13

139 6 -63 63 R Precuneus 7 3.58

3 -48 66 R Precuneus 5 3.58

-9 -69 63 L Precuneus 7 3.37

L_SFG 308 15 51 -3 R MOFC 10 5.01

6 36 -9 R MOFC 11 4.51

-3 39 6 L ACC 32 3.99

184 -42 -72 48 L AG 7 4.41

-45 -57 30 L AG 39 3.03

169 24 -54 9 R CC 19 3.71

24 -63 18 R Precuneus 18 3.64

15 -57 12 CC 17 3.55

Inhibition

L_IFG 163 18 -48 69 R SPG 5 4.63

15 -39 72 R PstCG 3 3.81

9 -51 66 R Precuneus 5 3.32

R_IFG 167 72 -33 6 R STG 22 4.42

48 -24 18 R STG 48 4.27

66 -27 6 R STG 21 3.94

Shifting

L_IFJ 123 -18 -12 -21 L PHG/Hippocampus 35 5.3

-27 -21 -24 L PHG 30 4.02

-18 -6 -27 L PHG 28 3.92

148 21 -45 72 R SPG 1 4.49

3 -51 60 R Precuneus 5 3.4

27 -39 69 R PstCG 2 3.3

170 45 -78 33 R MOG 39 4.33

60 -63 21 R MTG 2.9

280 12 30 -15 R Rectus 11 3.81

-12 33 -3 L ACC 11 3.73

Al three components of EFs

L_ACC 477 0 -51 45 L Precuneus 4.18

6 -78 48 R Precuneus 7 3.85

(Continued )
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RSFC than did the control group across a number of brain regions, especially those related to

EFs and the default mode network (DMN), visual processing network (VPN), primary soma-

tomotor network (PSN), and basal ganglia.

There are several possible explanations/mechanisms of the association between CCH training

and better EFs (especially inhibition and WM). First, CCH training has been shown to result in

physiological relaxation and concentration, which benefit WM [59, 60] and inhibition [61]. Sec-

ond, to master one or more styles of Chinese calligraphy is difficult and requires years of learn-

ing the precise creation of each stroke, the composition of the whole piece, and the rhythm of

writing and associated breathing [2]. This type of training is similar to EF-training programs

[12] in their reliance on (and thus providing challenges to) core EFs such as inhibition and WM.

CCH training’s benefit for working memory is probably also due to the fact that Chinese calli-

graphic writing requires a continuous act of writing, rather than the stroke-by-stroke writing in

daily life. Calligraphers have to keep in mind not only the characters but also their specific spatial

layout and constantly monitor the remaining space so the end product is beautifully arranged

[62, 63]. This writing process puts a high demand on WM resources [64], which is especially the

case during early years of training. In sum, practicing CCH may serve as WM training.

Table 4. (Continued)

ROI seeds Cluster size Peak (MNI) Side Cluster location Brodmann areas (BA) Peak T

X Y Z

R_ACC 283 48 21 27 R IFG 48 4.77

42 0 33 R PCG 6 3.25

155 15 -21 12 R Thalamus 3.97

9 9 6 R Caudate 3.79

128 48 -48 18 R MTG 21/41 4.03

57 -57 12 R MTG 37 3.23

51 -27 21 R RO 48 3.01

130 9 -72 27 R Cuneus 3.65

21 -63 36 R SOG 7 3.37

Note: L: left hemisphere; R: right hemisphere; FFG: fusiform gyrus; PstCG: postcentral gyrus; PCG: precentral gyrus; MTG: middle temporal gyrus; STG:

superior temporal gyrus; HG: Heschl’s gyrus; ITG: inferior temporal gyrus; MOFC: medial orbitofrontal cortex; ACC: anterior cingulate cortex; AG: angular

gyrus; CC: corpus callosum; SPG: superior parietal gyrus; PHG: parahippocampal gyrus; MOG: middle occipital gyrus; MTG: middle temporal gyrus; IFG:

inferior frontal gyrus; RO: rolandic operculum; SOG: superior occipital gyrus.

doi:10.1371/journal.pone.0170660.t004

Fig 1. Brain areas showing stronger RSFC with seed ROIs related to WM. A and B show brain areas with

stronger RSFC with left dlPFC and right dlPFC, and the coordinates of the cross in A and B are the same, [–48,

–36, 0]. C shows brain areas with stronger RSFC with left dlPFC, and the coordinates of the cross in C are [0,

27, 9].

doi:10.1371/journal.pone.0170660.g001
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Our finding of CCH’s benefit to inhibition control is novel, but consistent with the indirect

evidence that CCH training reduced ADHD symptoms [17]. Indeed, CCH as well as Chinese

painting is commonly believed to increase patience. Contrary to our hypothesis, CCH was not

associated with the shifting ability. Perhaps shifting is less crucial to CCH. Nevertheless, brain

regions related to shifting (left IFJ in particular) did show stronger RSFCs in the CCH group

than the control group. One possible explanation for the apparent inconsistent result between

behavioral and imaging data is that brain activities are more sensitive than the behavioral mea-

sures as indices of training effects [28, 65].

Fig 2. Brain areas showing stronger RSFC with left (A) and right SFG (B) seeds related to inhibition.

The coordinates of the cross in A and B are [–6, –48, 63] and [39,–24, 12], respectively.

doi:10.1371/journal.pone.0170660.g002

Fig 3. Brain areas showing stronger RSFC with left IFG related to shifting. The coordinates of the cross

are [39,–75, 33].

doi:10.1371/journal.pone.0170660.g003
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Indeed, RSFC between all but one seed regions showed stronger RSFC for the CCH group

than the control group. First, the bilateral dlPFC seed showed stronger RSFC with the parietal

lobe (PstCG, PCG and precuneus), which were consisted with the fronto-parietal network

involved in WM [28, 66]. WM training has also been found to strengthen the RSFC between

the frontal gyrus and other brain areas included in the fronto-parietal network [67]. Second,

the CCH group showed stronger RSFC between left SFC seed and AG, ACC, and MOFC,

brain areas that have been found to play a critical role in EF [68]. Interestingly, the right SFC

seed did not show any significant results. Indeed, previous research has shown that compared

to the right SFC, the left SFC is more critical for WM [69] [70, 71]. Third, the frontal lobe also

showed stronger RSFC with the temporal lobe (STG, MTG, ITG and HG), which has been

found to play important roles in memory function [72, 73]. Fourth, consistent with the litera-

ture on the importance of the IFG in response inhibition [74–76], we found that CCH was

associated with stronger RSFCs between the IFG and parietal lobe (SPG, PstCG, precuneus).

Moreover, there was a positive correlation between STG-related RSFC and the behavior index

of inhibition (i.e. VE_250).

Finally, the ACC has been found to play an important role in all three aspects of EF [77–

80]. We found stronger RSFC for the CCH group between the ACC seed and brain areas

involved in VPN and SPN, which might explain previous findings of CCH’s role in improving

visual attention and perception [17]. RSFCs between ACC and several other areas (IFG,

Fig 4. Brain areas showing stronger RSFC with left ACC (A) and right ACC (B) seeds related to all

three components of EF. The coordinates of the cross in A and B are [3,–75, 42] and [3,–78, 27],

respectively.

doi:10.1371/journal.pone.0170660.g004

Table 5. Partial correlations between behavioral measures and averaged RSFC between seed ROIs for a given component of EF and target brain

areas of the CCH group after controlling for age, gender, and IQ.

Seed ROIs for components of EF Behavioral measures Side Target brain areas r p

WM (L_dlPFC and L_SFG) WM R FFG 0.522 0.007

WM L AG 0.391 0.054

Inhibition (R_IFG) IS R STG -0.512 0.009

Shifting (L_IFJ) VE_250 R/L Rectus/ACC 0.434 0.03

All three components of EFs (R_ACC) WM R/R Thalamus/caudate 0.398 0.049

WM R/R Cuneus/SOG 0.483 0.015

VE_250 R/R Thalamus/caudate 0.406 0.044

VE_250 R/R Cuneus/SOG 0.522 0.007

Note: L: left hemisphere; R: right hemisphere; FFG: fusiform gyrus; AG: angular gyrus; STG: superior temporal gyrus; ACC: anterior cingulate cortex; SOG:

superior occipital gyrus; VE_250 = validity effect of SOA_250; IS time = the interference score for time. The p values were not corrected for multiple tests.

doi:10.1371/journal.pone.0170660.t005
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cuneus and caudate) were also stronger for the CCH group, which was consistent with the

important roles of the PFC and basal ganglia in EF [75, 81–83].

Several limitations of the current study need to be mentioned. First, it was a correlational

study. Although resource-intensive, a prospective longitudinal study tracking the training of

CCH across many years would provide more direct support for its benefits to EFs. Second, the

sample size was very small and the effect sizes were modest. Third, the present study used only

three sub-tasks to assess EFs. More tasks can be used in future research.

6. Conclusion

The current study demonstrated that long-term CCH training was associated with better exec-

utive functions and stronger RSFC of the frontal and parietal cortex and basal ganglia.
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