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Abstract
Recently, functional connectome studies based on resting-state functional magnetic resonance

imaging (R-fMRI) and graph theory have greatly advanced our understanding of the topological

principles of healthy and diseased brains. However, how different strategies for R-fMRI data

preprocessing and for connectome analyses jointly affect topological characterization and con-

trastive research of brain networks remains to be elucidated. Here, we used two R-fMRI data

sets, a healthy young adult data set and an Alzheimer's disease (AD) patient data set, and up to

42 analysis strategies to comprehensively investigate the joint influence of three key factors

(global signal regression, regional parcellation schemes, and null network models) on the topo-

logical analysis and contrastive research of whole-brain functional networks. At the global level,

we first found that these three factors affected not only the quantitative values but also the

individual variability profile in small-world related metrics and modularity, wherein global signal

regression exhibited the predominant influence. Moreover, strategies without global signal

regression and with topological randomization null model enhanced the sensitivity of the

detection of differences between AD and control groups in small-worldness and modularity. At

the nodal level, strategies of global signal regression dominantly influenced the spatial distribu-

tion of both hubs and between-group differences in terms of nodal degree centrality. Together,

we highlight the remarkable joint influence of global signal regression, regional parcellation

schemes and null network models on functional connectome analyses in both health and dis-

eases, which may provide guidance for the choice of analysis strategies in future functional

network studies.
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1 | INTRODUCTION

Resting-state functional magnetic resonance imaging (R-fMRI) is a

promising and powerful neuroimaging technique that can noninva-

sively measure intrinsic or spontaneous activity in the human brain

(Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995; Fox & Raichle, 2007).

In the past 20 years, R-fMRI has been widely used to study inter-

regional functional connectivity patterns, that is, the functional con-

nectome in healthy and diseased populations (Biswal et al., 2010;

Kelly, Biswal, Craddock, Castellanos, & Milham, 2012). Specifically,

with the aid of graph theory approaches, recent R-fMRI studies have

demonstrated that human brain functional networks exhibit many

important topological properties, such as efficient small-world proper-

ties for balanced functional segregation and integration, significant
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modular structure, and densely connected hubs (Bullmore & Sporns,

2009; He & Evans, 2010; Liao, Vasilakos, & He, 2017; van den Heu-

vel & Sporns, 2013). Moreover, these brain network properties exhibit

important correlations with physiological signatures (e.g., cerebral glu-

cose and blood flow consumption) (Liang, Zou, He, & Yang, 2013;

Tomasi, Wang, & Volkow, 2013) and individual differences in cogni-

tive behaviors (Alavash, Doebler, Holling, Thiel, & Giessing, 2015;

Cohen & D'Esposito, 2016; Liu et al., 2017), and these properties

change with development, aging, and diseases (for reviews, see Cao,

Huang, & He, 2017; Filippi et al., 2013; Fornito & Bullmore, 2015;

Zhao, Xu, & He, 2018). Thus, the investigation of R-fMRI functional

networks based on graph theory has important implications for under-

standing the topological mechanisms of large-scale brain networks in

both healthy and diseased conditions.

It is worth noting that growing evidence from functional network

studies suggests that the topological properties of R-fMRI brain net-

works can be influenced by different factors including specific image

preprocessing (e.g., regression of the global signal), network construc-

tion (e.g., node definitions), and analysis approaches (e.g., null models

for small-worldness estimation). Regarding this topic, first, several

R-fMRI studies have suggested that global signal regression (GSR) can

partially reduce the influence of nonneuronal signals, such as those

from respiration and head motion (Birn, Diamond, Smith, & Bandettini,

2006; Power et al., 2013; Power, Plitt, Laumann, & Martin, 2016;

Satterthwaite et al., 2013; Yan et al., 2013) but can simultaneously

alter the correlation structure of brain networks (Murphy, Birn, Hand-

werker, Jones, & Bandettini, 2009). Moreover, Scholvinck, Maier, Ye,

Duyn, and Leopold (2010) demonstrated that the global R-fMRI signal

in monkeys is directly linked to spontaneous fluctuations in the local

field potential, which suggests the underlying neural basis of global

R-fMRI fluctuations. To date, controversy persists regarding whether

the global R-fMRI signal should be removed during functional network

studies (Murphy & Fox, 2016). Second, in current functional brain net-

work analyses, there is no gold standard for the definition of brain

nodes (Bullmore & Bassett, 2011; Wig, Schlaggar, & Petersen, 2011).

Network nodes are usually defined as regions of interest (ROIs) using

various parcellation approaches, including structurally constrained

atlases (e.g., automated anatomical labeling [AAL]) (Tzourio-Mazoyer

et al., 2002), functionally activated or parcellated regions (Craddock,

James, Holtzheimer 3rd, Hu, & Mayberg, 2012; Dosenbach et al.,

2010; Power et al., 2011) and randomly parcellated regions (Zalesky

et al., 2010). Several studies, including ours, have demonstrated that

different regional parcellations significantly affect both global and

local topological parameters in brain functional networks (Fornito,

Zalesky, & Bullmore, 2010; Wang et al., 2009). Third, several studies

have suggested that the estimation of small-world metrics during

brain network analysis depends on the choice of the null network

model (e.g., topological randomization, correlation matrix randomiza-

tion or time series randomization) (Hosseini & Kesler, 2013; Zalesky,

Fornito, & Bullmore, 2012). Notably, specific combinations of these

influencing factors have been used in topological analyses of brain

networks in neuropsychiatric disorders, such as Alzheimer's disease

(AD), schizophrenia, and depression (for reviews, see Dai & He, 2014;

Fornito & Bullmore, 2015; Gong & He, 2015). However, the results

have often been inconsistent across studies even for a single disorder.

For example, in AD research, increased and reduced local network

clustering have been reported across different studies (Liu et al.,

2012; Supekar, Menon, Rubin, Musen, & Greicius, 2008), and this dis-

crepancy could be partially attributable to the selection of different

combinations of these influencing factors (Dai & He, 2014). Thus, an

important but unanswered question is how these key factors (i.e., GSR

strategies, regional parcellation schemes, and null network models)

jointly affect the topological properties of functional brain networks.

Moreover, how these factors jointly affect contrastive research on

brain network topology in neuropsychiatric diseases, such as AD,

remains to be further elucidated.

To address these issues, in this study, we employed two R-fMRI

data sets and graph-theory approaches to comprehensively investi-

gate the joint influence of three key factors (GSR or not, regional par-

cellation schemes and null network models) on the topological

analyses of whole-brain functional networks in healthy and diseased

conditions. In Data set 1, we used R-fMRI data from 143 healthy

young adults to evaluate the effects of up to 42 different analysis

strategies of interest (involving combinations of two GSR strategies,

seven parcellation schemes and three null network models) on the

topological properties of whole-brain functional networks based on

an individual difference analysis approach. In Data set 2, we used

R-fMRI data from 32 AD patients as a representative disease model

with network dysfunction (Dai & He, 2014; Delbeuck, Van der

Linden, & Collette, 2003; Stam, 2014) and data from 38 healthy con-

trols (HCs) to further ascertain the influences of these factors on the

identification of between-group differences in topological properties

based on a contrastive research strategy. Specifically, we primarily

focused on the evaluation of the topological properties of brain net-

works in terms of small-world, modular, and nodal properties because

these properties capture different organizational principles ranging

from global to regional aspects and have been widely used to study

topological mechanisms in healthy and diseased populations (for

reviews, see Bullmore & Sporns, 2009; Dai & He, 2014; Fornito &

Bullmore, 2015; Liao et al., 2017).

2 | MATERIALS AND METHODS

2.1 | Subjects

Two data sets were used in this study. The first data set (Data set 1)

consisted of 146 healthy young adults from the Connectivity-based

Brain Imaging Research Database (C-BIRD) at Beijing Normal Univer-

sity (Lin et al., 2015; Liu et al., 2017). All the participants were right-

handed and had no history of neurological or psychiatric disorder.

Written informed consent was obtained from each participant, and

this study was approved by the Institutional Review Board of the

State Key Laboratory of Cognitive Neuroscience and Learning at Bei-

jing Normal University. Three subjects were excluded due to exces-

sive head motion (see “Data preprocessing”). The data from the

remaining 143 participants (age: 22.8 � 2.3 years; 74 females) were

used for further analyses (Table 1).

The second data set (Data set 2) consisted of data from 75 right-

handed subjects, including 34 AD patients and 41 HCs. The AD
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patients were recruited from the memory outpatient clinic at Xuanwu

Hospital. The HCs were recruited from the local community through

advertisement. All the subjects were assessed using the Clinical

Dementia Rating (CDR) and were defined as HCs (CDR = 0) or as

patients in the early stages of AD (18 patients had a CDR = 1, and

16 patients had a CDR = 0.5). The diagnosis of AD fulfilled the Diag-

nostic and Statistical Manual of Mental Disorders, 4th edition (DSM-

IV) criteria for dementia and the National Institute of Neurological and

Communicative Disorders and Stroke/Alzheimer's Disease and

Related Disorders Association (NINCDS-ADRDA) criteria for possible

or probable AD (McKhann et al., 1984). All the HCs had no neurologi-

cal or psychiatric disorders, no cognitive complaints, and no neurologi-

cal deficiencies, and they had Mini-Mental State Examination (MMSE)

scores of 28 or higher. This data set has previously been used to study

the seed-based functional connectivity of subregions of the medial

and lateral parietal cortex (Wang, Xia et al., 2015; Xia et al., 2014) and

functional hubs in AD (Dai et al., 2015). In addition, a subset of the

data set (16 AD patients and 22 HCs) was used in two other studies

(Dai et al., 2012; Wang et al., 2011). Notably, data from five subjects

(2 AD patients with CDRs = 0.5 and 3 HCs) were excluded due to the

failure of imaging normalization (see “Data preprocessing”). The clini-

cal and demographic information of the remaining 70 subjects (i.e., 32

AD patients and 38 HCs) is provided in Table 1.

2.2 | Data acquisition

2.2.1 | Data set 1

MRI acquisition was performed using a SIEMENS Trio 3-Tesla scanner at

Beijing Normal University. During the scan, foam padding and head-

phones were used to minimize head motion and scanner noises. The R-

fMRI data were obtained using an echo-planar imaging (EPI) sequence

with the following parameters: repetition time (TR)/echo time

(TE) = 2,000 ms/30 ms; flip angle (FA) = 90�; field of view

(FOV) = 200 × 200 mm2; matrix = 64 × 64; slice number = 33; voxel

size = 3.13 × 3.13 × 3.5 mm3; gap = 0.7 mm; and 200 volumes. Prior to

scanning, all the participants were instructed to keep their eyes closed,

relax their mind, and not move during the scanning procedure. The

T1-weighted data were acquired using sagittal three-dimensional

(3D) magnetization prepared rapid gradient echo (MPRAGE) sequences

with the following parameters: TR/TE = 2,530 ms/3.39 ms; FA = 7�;

FOV = 256 × 256 mm2; matrix = 256 × 256; slice number = 144; and

voxel size = 1 × 1 × 1.33 mm3.

2.2.2 | Data set 2

MRI acquisition was performed on a SIEMENS Trio 3-Tesla scanner at

Xuanwu Hospital. During the scan, foam padding and headphones were

used to minimize head motion and scanner noises. The R-fMRI data

were obtained using an EPI sequence with the following parameters:

TR/TE = 2,000 ms/40 ms; FA = 90�; FOV = 240 × 240 mm2; matrix =

64 × 64; slice number = 28; voxel size = 3.75 × 3.75 × 4 mm3; gap =

1 mm; and 239 volumes. Prior to scanning, all the participants were

instructed to keep their eyes closed, relax their mind, and not move dur-

ing the scanning procedure. According to a simple questionnaire after

the scan, all the subjects refrained from falling asleep during the scan.

Structural images were collected using a sagittal 3D MPRAGE sequence

with the following parameters: TR/TE = 1,900 ms; inversion time =

900 ms; FA = 9�; FOV = 256 × 256 mm2; matrix = 256 × 256; slice

number = 176; and voxel size = 1 × 1 × 1 mm3.

2.3 | Data preprocessing

All R-fMRI data were preprocessed using Statistical Parametric Map-

ping software (SPM8, The MathWorks Inc., Natick, MA; http://www.

fil.ion.ucl.ac.uk/spm/) and the Data Processing Assistant for Resting-

State fMRI (DPARSF, Yan & Zang, 2010). Data set 1 and Data set

2 were separately preprocessed using similar procedures as follows.

2.3.1 | Data set 1

The first 10 volumes were discarded for scanner stabilization and to

allow the subjects to adapt to the scanner. The remaining data were

corrected for the acquisition time delay between slices within a vol-

ume and were then realigned to the first volume to correct for head

motion. Three subjects were excluded due to excessive head motion

(greater than 2 mm or 2� in any direction). Mean framewise displace-

ment (FD, Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) was

estimated for each subject to characterize the transient head motion.

The resulting images were further spatially normalized to the Mon-

treal Neurological Institute (MNI) space using the parameters esti-

mated from T1 unified segmentation (Ashburner & Friston, 2005) and

were resampled into 3-mm isotropic voxels. Then, the spatially nor-

malized images underwent linear trend removal and nuisance signal

TABLE 1 Demographics of healthy young adults, AD patients, and healthy elderly adults

Data set 1 Data set 2

Healthy young
adults (n = 143) AD (n = 32) HC (n = 38) p

Age (years) 19–31 (22.8 � 2.3) 52–86 (71.25 � 8.63) 50–86 (68.39 � 7.78) .15a

Gender (male/female) 69/74 14/18 13/25 .41b

Education (years) 11–22 (16.2 � 1.8) 5–16 (9.75 � 3.14) 5–16 (9.95 � 3.44) .80a

CDR N/A 0.5 (n = 14), 1 (n = 18) 0 –

MMSE N/A 10–25 (18.56 � 3.99) 28–30 (28.63 � 0.67) <.001a

Data are presented as the range of minimum–maximum values (mean � SD). AD = Alzheimer's disease; HC = healthy control; CDR = Clinical Dementia
Rating; MMSE = Mini-Mental State Examination.
a p value was obtained by a two-sample two-tailed t test.
b p value was obtained by a two-tailed Pearson chi-square test.

CHEN ET AL. 4547

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


regression, wherein 24 head motion parameters (Friston, Williams,

Howard, Frackowiak, & Turner, 1996), white matter, cerebrospinal

fluid, and global brain signals, were regressed out from the time

course of each voxel. The residual signals were further temporally

band-pass filtered (0.01–0.1 Hz) to decrease the effects of low-

frequency drifts and high-frequency physiological noises.

2.3.2 | Data set 2

Data set 2 was preprocessed in the same manner as Data set 1 with

the exceptions of the use of head motion exclusion criterion and a

spatial normalization strategy that are relevant to the elderly. Using a

head motion criterion of 3 mm and 3�, no subjects were excluded.

This relatively loose head motion criterion was used for the AD

patients and HCs because it is more difficult for the elderly to remain

still than it is for healthy young adults. During spatial normalization,

the realigned images were spatially normalized to a custom space that

allowed the reduction of inaccuracies in the spatial normalization of

the functional volumes caused by gray matter atrophy in AD subjects.

Specifically, the individual T1-weighted structural images were first

coregistered to the mean realigned functional images using a linear

transformation and were then segmented into gray matter, white mat-

ter, and cerebrospinal fluid tissues using unified segmentation algo-

rithms (Ashburner & Friston, 2005) with the priori SPM tissue maps as

reference images. The resulting individual tissue images were nonli-

nearly registered into the MNI space according to the parameters esti-

mated during the unified segmentation and were then averaged

across all the subjects to generate custom gray matter, white matter,

and cerebrospinal fluid templates. Then, the individual T1-weighted

images were segmented again using the custom tissue templates gen-

erated above as reference images through the unified segmentation

algorithms. Then, the motion-corrected functional images were nor-

malized to the custom space by applying the transformation parame-

ters that were estimated during the second unified segmentation and

were resampled to 3-mm isotropic voxels. Notably, five subjects

(2 AD patients and 3 HCs) were excluded from the subsequent

analyses due to the failure of image normalization, which may have

been caused by image artifacts or severe gray matter atrophy.

Notably, during the preprocessing procedures described above,

we performed GSR during the nuisance regression. To assess the

influence of the global brain signal on the topological architecture of

the brain functional networks, we also preprocessed both data sets

without GSR during nuisance regression.

2.4 | Whole-brain network construction

Before the whole-brain network construction, a custom gray matter

mask with a gray matter probability above 0.2 was first generated sep-

arately for each data set. This mask consisted of cortical and subcorti-

cal regions that were fully covered during the R-fMRI scanning for all

the subjects. The cerebellum was not considered here because it was

not fully covered during the R-fMRI scanning. Within this gray matter

mask, functional brain networks were constructed at a macroscopic

scale for each subject with nodes denoting the ROIs obtained from

the following parcellation schemes.

Here, we used seven different regional parcellation schemes to

define brain network nodes: three structurally constrained schemes,

which included the Brodmann atlas with 82 ROIs (Brodmann-82)

(Brodmann, 1909), the automated anatomical labeling atlas with

90 ROIs (AAL-90) (Tzourio-Mazoyer et al., 2002) and the Harvard and

Oxford atlas with 112 ROIs (HOA-112) (Kennedy et al., 1998; Makris

et al., 1999); three functionally defined schemes, which included the

Dosenbach template of 160 ROIs (Dosenbach-160) (Dosenbach et al.,

2010), the Craddock template of 200 ROIs (Craddock-200) (Craddock

et al., 2012), and the Power template of 264 ROIs (Power-264)

(Power et al., 2011); and one randomly defined scheme, which

included 1,024 ROIs of uniform size (Random-1024) that were

obtained through a random parcellation algorithm (Zalesky et al.,

2010; Figure 1). For Data set 2, all the regional parcellation images in

the MNI space were transformed to the custom space using the trans-

formation parameters estimated for the spatial normalization of the

priori SPM gray matter tissue map to the custom space. This

FIGURE 1 Schematic diagram of 42 analysis strategies used in this study. These analysis strategies were generated by combining three factors

for data preprocessing, network construction, and network analysis, including two global signal regression strategies, seven regional parcellation
schemes, and three null network models. In the naming scheme of the analysis strategies, “Brod,” “AAL,” “HOA,” and “Rand” represent the
Brodmann-82, AAL-90, HOA-112, and Random-1024 parcellation schemes, respectively; “topo” and “time” indicate topological randomization
and time series randomization, respectively; and “GSR” and “nGSR” indicate with and without global signal regression, respectively
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procedure allowed the precise localization of the ROI positions in the

custom space and reduced the inaccuracy of the subsequent network

analysis caused by gray matter atrophy in the elderly population. Dur-

ing the construction of the brain networks, for each parcellation, we

excluded ROIs that located outside the cerebrum (Supporting Infor-

mation Table S1).

Given a parcellation scheme with N nodes, we constructed individ-

ual functional brain networks for each subject. Briefly, we generated

the time course of each ROI by averaging the preprocessed time

courses of all voxels within the ROI. Then, we generated a symmetric

N × N correlation matrix by calculating the Pearson's correlation coeffi-

cients between the time courses of each pair of ROIs. Consequently,

for each subject, we obtained 14 node-by-node correlation matrices

based on the seven parcellation schemes (i.e., 7 with GSR and 7 without

GSR). Because the physiological interpretation of negative correlations

is ambiguous (Murphy & Fox, 2016), functional connections with nega-

tive correlation values were not considered here. This approach is

widely used in current functional brain network studies of healthy and

diseased populations (Bassett, Meyer-Lindenberg, Achard, Duke, &

Bullmore, 2006; Buckner et al., 2009; Doucet, Bassett, Yao, Glahn,

& Frangou, 2017; Liang et al., 2013; Power, Schlaggar, Lessov-Schlag-

gar, & Petersen, 2013; van den Heuvel et al., 2017). Then, we gener-

ated binary functional brain networks by thresholding these correlation

matrices with two commonly used thresholding approaches, including a

fixed-density thresholding and a fixed-correlation thresholding. These

two approaches characterize the topological organization of functional

networks from different perspectives (Bullmore & Bassett, 2011; He

et al., 2009; van den Heuvel et al., 2017). The former generated individ-

ual functional networks with the same number of edges and allowed an

examination of the relative network topology of each subject. The latter

constructed individual functional networks with edges exceeding a

given correlation threshold and allowed an examination of the absolute

network topology. In the main results, we first analyzed both the global

and local topological organizations of the functional brain networks

with a density of 15% to ensure the high connectedness of the brain

networks and exclude spurious correlations where possible. Then we

replicated the main analysis by generating functional networks with a

fixed-correlation threshold of r = .2. To explore the potential influence

of thresholding strategies, we verified our results in functional networks

that were constructed at other density levels (i.e., 10, 20, and 30%) (see

“Validation analysis”).

2.5 | Network topology analysis

For each subject, we calculated the topological properties of the

whole-brain functional networks using a graph theoretical network

analysis toolbox (GRETNA) developed by our research group (http://

www.nitrc.org/projects/gretna; Wang, Wang et al., 2015). We com-

puted five small-world related metrics (i.e., clustering coefficient [Cp],

characteristic path length [Lp], normalized clustering coefficient [γ],

normalized path length [λ], and small-worldness [σ]) and the modular-

ity Q for the individual functional networks (Bullmore & Sporns, 2009;

He & Evans, 2010; Liao et al., 2017). The clustering coefficient (Cp) of

a network equals the average of the clustering coefficients of all

nodes in the network, where the nodal clustering coefficient measures

the ratio of existing connections among neighbors of a node to the

maximum number of possible connections. The characteristic path

length (Lp) of the network equals the average minimum number of

connections needed to link any two nodes in the network. The nor-

malized clustering coefficient (γ) and normalized path length (λ) are

generated by normalizing the Cp and Lp values, respectively, of the

observed networks to the mean value of the same metrics in 100 null

networks. Small-worldness (σ) is the ratio of γ to λ and quantitatively

measures the extent of small-worldness of the network (Humphries,

Gurney, & Prescott, 2006; Watts & Strogatz, 1998). Typically, a small-

world network exhibits high local clustering (γ >> 1) and short path

length (λ ~ 1), which leads to a σ > 1 (Humphries et al., 2006). Modu-

larity (Q) reflects the extent to which a network is organized into a

modular or community structure (Newman & Girvan, 2004). Specifi-

cally, we detected modular structures for each subject using a spectral

optimization algorithm (Newman, 2006; Newman & Girvan, 2004) and

computed the modular index (i.e., modularity) based on the subject-

specific modular structures as follows (Newman, 2004):

Q pð Þ=
XNC

s=1

ls
m
−

ds
2m

� �2
" #

,

where NC is number of modules, m denotes total number of edges in

the network, ls indicates total number of edges within module s, and

ds is total degree value of the nodes in module s (see Supporting Infor-

mation Figure S1 for representative modular structures). Moreover,

for each node i in a brain network, we also estimated its nodal degree

centrality Deg (i) as the number of nodes that directly linked with

that node.

Notably, choosing different null network models can affect the esti-

mations of the small-world network parameters (i.e., γ, λ, and σ). We

evaluated the effects of three different null network models

(i.e., topological randomization, correlation matrix randomization, and

time series randomization; Zalesky et al., 2012) on the estimation of

small-world metrics. Briefly, topological randomization, the most widely

used strategy for generating null networks in current brain network stud-

ies, randomly rewires the connections between nodes while preserving

the numbers of nodes and edges, and the nodal degree distribution of

the original network (Maslov & Sneppen, 2002). During correlation

matrix randomization, null correlation matrices that preserved the mean

value and the standard deviation (SD) of the original correlation distribu-

tion were randomly generated using the brute-force approach (Zalesky

et al., 2012). Specifically, given a parcellation of N ROIs, N independent

random vectors (Xi, i = 1, 2, …, N) were first generated, each following a

standard normal distribution (i.e., mean = 0 and SD = 1). To ensure the

nonzero correlation between these vectors, all these vectors Xi had been

added a common random vector Y via Xi + cY, wherein Y followed a

standard normal distribution and c was a positive weighted coefficient.

Then, a null correlation matrix was generated by calculating the correla-

tion between all possible pairs of random vectors. By separately adjust-

ing the coefficient c and the number of time points contained in the

random vectors, we were able to make the null correlation matrix exhibit

the same mean and SD as the empirical matrix. Then, we obtained the

null networks by thresholding these null correlation matrices with the

same approach as the original brain networks. During time series
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randomization, randomized time courses were independently generated

for each ROI by applying the Fourier transform to the observed regional

time series, randomizing the phases and then applying the inverse Fou-

rier transform (Theiler, Eubank, Longtin, Galdrikian, & Farmer, 1992).

Then, we generated Pearson correlation matrices by computed the cor-

relation coefficients between any pair of randomized ROI time courses.

These matrices were further thresholded into null networks with the

same approach as the original brain networks.

Overall, for each subject, four null network-independent metrics,

that is, Cp, Lp, Q, and Deg(i), were estimated under 14 analysis strate-

gies (i.e., GSR or not × 7 parcellation schemes), whereas three null

network-dependent metrics of γ, λ, and σ were estimated under

42 analysis strategies (i.e., GSR or not × 7 parcellation schemes × 3 null

network models). Here, for simplicity of description, “one analysis

strategy” refers to one combination of these three factors. For

example, the GSR-AAL-topo analysis strategy denotes the use of GSR

procedure for image preprocessing, AAL-90 parcellation for network

node definition and topological randomization for null network

generation (Figure 1).

2.6 | Assessment of the influences of three key
factors (Data set 1 and Data set 2)

To evaluate the effects of these three factors (GSR strategies,

regional parcellation schemes, and null network models) on brain

functional network analysis, we performed the following two ana-

lyses: (a) we statistically compared the quantitative values of every

brain network metric among the different analysis strategies, and

(b) we examined which factor exhibited the largest effect on topolog-

ical analyses of brain networks by assessing the relationships among

different analysis strategies using an individual difference analysis

approach (see below).

2.6.1 | Influence of three factors on functional network
metrics (Data set 1 and Data set 2)

Data set 1

To evaluate the influence of three factors (GSR strategy, parcellation

scheme, and null network model) on brain network properties in

healthy young adults, we separately performed repeated-measures

analyses of variance (rmANOVA) on each network metric (i.e., Cp, Lp,

γ, λ, σ, and Q). Specifically, two-way rmANOVA with the main factors

of GSR and parcellation scheme was performed on Cp, Lp, and Q, the

estimations of which were independent of the choice of the null net-

work models. Three-way rmANOVA was performed on γ, λ, and σ, the

estimations of which depended on all three factors mentioned above.

All the statistics were Bonferroni corrected for multiple comparisons

across the six global network metrics considered. Significance was set

at p < 0.05. Notably, we did not quantify the influence of these three

factors on nodal degree centrality because the nodes across different

parcellation schemes were difficult to match due to their different

spatial locations and network sizes.

Data set 2

Consistent with Data set 1, we separately performed the same statis-

tical analyses for the HCs and AD patients.

2.6.2 | Relationships among the different analysis
strategies based on individual difference analysis approaches
(Data set 1 and Data set 2)

Data set 1

To further examine the potential influences of the three factors on

topological analyses of functional networks, we compared the rela-

tionships among different analysis strategies using an “individual dif-

ference analysis” approach (Zhong, He, & Gong, 2015). Briefly, for

each global network metric (i.e., Cp, Lp, γ, λ, σ, and Q), we first charac-

terized its individual differences by estimating the inter-subject varia-

tion profile under every analysis strategy. Then, we evaluated the

similarities in the individual differences among the different analysis

strategies by calculating the across-subject Pearson's correlation of

this metric between each pair of strategies and thus generated a sym-

metric strategy-to-strategy similarity matrix. A high correlation value

between two strategies indicated highly similar inter-subject variation

profiles under these two strategies. Consequently, we obtained

14 × 14 strategy-to-strategy similarity matrices (i.e., 2 GSR strategies

× 7 parcellation schemes) for Cp, Lp, and Q, and 42 × 42 strategy-to-

strategy similarity matrices (2 GSR strategies × 7 parcellation schemes

× 3 null network models) for γ, λ, and σ.

To quantify the convergence and divergence of the individual dif-

ference profiles between different analysis strategies, we further per-

formed a hierarchical cluster analysis on the strategy-to-strategy

similarity matrix. Briefly, the similarity matrix between strategies was

converted into a distance matrix (i.e., 1 − similarity matrix). Then, we

applied the average linkage agglomerative algorithm (Sokal, 1958) to

the distance matrix. This bottom-up agglomerative approach treated

each analysis strategy as a separate cluster at the initial step and then

progressively merged the pair of clusters with the minimum distance

into a new cluster until only one cluster was reached. During each

step, the distance between any two clusters were updated and

defined as the average distance between strategies in the first cluster

and strategies in the second cluster. The hierarchical clustering results

were displayed in a dendrogram that showed the merging process of

clusters at the iterative steps. Strategies in the same cluster were

more similar in individual differences profiles than those in different

clusters. This procedure allowed us to distinguish the influence of

these three factors by identifying the factors that dominated the hier-

archical clustering.

Data set 2

We performed the same individual difference analysis and hierarchical

cluster analysis for the healthy elders and AD patients, separately, as

described for Data set 1.

2.7 | Identifying between-group differences in brain
network metrics under different analysis strategies
(Data set 2)

Using Data set 2, we further assessed the influences of different anal-

ysis strategies on the detection of between-group differences (AD vs.

HC) in topological properties of functional networks, including Cp, Lp,

γ, λ, σ, Q, and Deg(i). Notably, a very recent study found that between-
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group differences in the global properties of functional networks

(e.g., clustering coefficient) can be biased by the differences in overall

functional connectivity of the functional correlation matrices (van den

Heuvel et al., 2017). To address this issue, we calculated the overall

functional connectivity for each subject as the mean value of all the

positive correlations in the functional correlation matrix under each of

the 14 analysis strategies (i.e., 2 GSR strategies × 7 parcellation

schemes) and then tested their differences between two groups with

age, gender, and mean FD included as covariates.

2.7.1 | Global topology

For each analysis strategy, we assessed the between-group difference

in every global metric of interest (i.e., Cp, Lp, γ, λ, σ, and Q) using gen-

eral linear regression with gender, age, and mean FD included as cov-

ariates. Because we aimed to compare the results among different

strategies, the between-group differences were corrected under each

analysis strategy using Bonferroni correction for six global network

metrics of interest. Effect sizes of the significant differences were

assessed in terms of Cohen's d value (Cohen, 1988) with the classify-

ing criteria (Sawilowsky, 2009): 0.2–0.5 indicates small; 0.5–0.8 indi-

cates medium; 0.8–1.2 indicates large.

2.7.2 | Local topology

For each analysis strategy, we identified the functional hubs for each

group separately and further assessed between-group differences in

regional properties using nodal degree centrality. First, for each group

(i.e., AD patients and HCs), we identified the hub regions of the func-

tional networks under each of the 14 strategies (2 GSR strategies ×

7 parcellation schemes) at the group level. Briefly, a group-level degree

centrality map was generated for each group by averaging individual

degree centrality maps across subjects. Then, the hub regions were

defined as nodes showing a relatively large degree centrality with a cri-

terion of one SD above the mean value across the brain. Because previ-

ous studies have suggested that the global signal can remarkably affect

the spatial pattern of hubs (Liao et al., 2013; Sepulcre et al., 2010), we

assessed the consistency of hub distributions across different parcella-

tion schemes under two conditions (i.e., with and without GSR) sepa-

rately. Specifically, for each condition (i.e., with or without GSR), we

calculated an occurrence probability map as hubs across seven parcella-

tion schemes. The occurrence probability value of a voxel was defined

as the number of parcellation schemes under which that voxel was

detected as a hub divided by the total number of parcellation schemes

containing this voxel. In addition, to quantify the influence of the GSR

strategy, for each parcellation, we also calculated the spatial similarity

of the group-level nodal degree maps between two conditions

(i.e., with and without GSR) using Pearson's correlations across nodes.

Second, we detected brain regions with significant between-group dif-

ferences in degree values under seven parcellation strategies with GSR

and without GSR separately. For each parcellation, between-group dif-

ferences in nodal degree were corrected with a false-positive correction

across N ROIs (p < 1/N). This correction indicated that less than one

false-positive regional result was expected per parcellation at this

threshold (Lynall et al., 2010). To assess the consistency of regions with

significant between-group differences across different parcellation

schemes, we obtained an occurrence probability map of significant

between-group differences across seven parcellation schemes for each

GSR condition (i.e., with and without GSR). The occurrence probability

value of a voxel was defined as the number of parcellation schemes

showing significant between-group differences at this voxel divided by

the total number of parcellation schemes containing this voxel.

2.8 | Validation analysis

We evaluated whether the main findings were influenced by head

motion or different functional network construction strategies (including

varying network densities and network types). In addition, we performed

a split-half analysis on Data set 1 to validate whether the significant

between-group differences (AD vs. HC) in global network metrics were

artifacts due to specific combinations of the three methodological fac-

tors. The relevant procedures are described as follows. (a) Head motion:

previous studies have suggested that the influence of head motion can-

not be completely removed by nuisance regression strategies (Power

et al., 2012; Van Dijk, Sabuncu, & Buckner, 2012) and therefore affects

the GSR and functional network topological properties (Power, Schlag-

gar, & Petersen, 2015; Yan, Craddock, He, & Milham, 2013). In other

words, the extent of head motion may contribute to individual differ-

ences in functional network metrics. To assess the reliability of the indi-

vidual difference analysis approach, in Data set 1, we re-estimated the

strategy-to-strategy similarity matrices of the individual differences in

the global network metrics using partial correlations controlling for the

head motion parameter of mean FD. (b) Network density: in the main

analysis, individual binary functional networks were generated using a

fixed-density thresholding approach with a density of 15%. To investi-

gate the potential effects of network density values, we validated the

main results at other density levels of 10, 20, and 30%. (c) Network type:

binary networks were used in the main analysis in which edge weights

were ignored. To explore the potential influence of edge weights, we

also constructed weighted networks with a fixed-density threshold

(i.e., 15%) and then re-performed all the analyses. (d) Reliability of the

detection of between-group differences: here, we compared the between-

group differences (AD vs. HC, Data set 2) in six global network metrics

across different analysis strategies to investigate their sensitivities in the

between-group comparison. However, we are not sure whether the

observed between-group differences (AD vs. HC) were reliable or arti-

facts introduced by the numerous combinations of these three methodo-

logical factors. To address this issue, we performed a split-half analysis

by dividing the 143 subjects in Data set 1 into two subgroups matched

for age, gender, and mean FD, between which no significant differences

were expected. Then, we investigated the between-group differences

using a general linear model with age, gender and mean FD included as

covariates. Effect sizes of the significant differences were also assessed

in terms of Cohen's d value (Cohen, 1988).

3 | RESULTS

Using two R-fMRI data sets (Data set 1 and Data set 2), we generated

individual functional networks and then analyzed the small-world

properties of the functional networks using different analysis
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strategies. Here, we mainly report the results of the binary functional

networks with a network density of 15%.

3.1 | Three factors affecting individual functional
network metrics

Individual functional brain networks constructed using 42 different

strategies consistently exhibited small-world topology (σ > 1) accom-

panied by high local clustering (γ > 1) and short path length (λ ≈ 1) for

the healthy young adults, HCs, and AD patients. For the healthy

young adults in Data set 1, the functional networks exhibited signifi-

cant differences in all six global properties across the different analysis

strategies (i.e., GSR strategies, parcellation schemes, and null network

models) via rmANOVA analysis (Table 2). Specifically, regarding the

null network-independent properties (i.e., Cp, Lp, and Q), two-way

rmANOVA revealed significant effects of two main factors, that is,

GSR and parcellation scheme, as well as their interaction (all ps < .001,

Bonferroni corrected). For the null network-dependent properties

(i.e., γ, λ, and σ), three-way rmANOVA revealed significant effects of

three main factors, that is, GSR strategy, parcellation scheme, and null

network model, as well as the interactions between any two of the

factors and between all three factors (all ps < .001, Bonferroni cor-

rected). Similar rmANOVA results were obtained for the HC group

and AD patients in Data set 2, with the exception of nonsignificant

main effects of GSR on γ in the HC group and on Q in the AD patients

(Supporting Information Tables S2 and S3).

3.2 | Convergent and divergent individual
differences in functional network organization
underlying different analysis strategies

We further assessed whether different analysis strategies affected

individual differences in small-world properties and modularity. For

the healthy young adults in Data set 1, Figure 2 displays the strategy-

to-strategy similarity matrices for all small-world related metrics and

modularity and the corresponding dendrograms obtained from the

hierarchical cluster analysis. In each dendrogram, strategies in the

same cluster were more similar in individual difference profiles than

those in different clusters. For Cp and Lp, seven strategies with GSR

were grouped into a large cluster. For the metric of Q, the 14 analysis

strategies were largely divided into two clusters with and without

GSR at the highest hierarchical level with an exception of one strategy

with GSR that was grouped into the family without GSR. These results

indicated that GSR, rather than the parcellation schemes, exerted the

predominant influence on the inter-subject differences in these three

parameters. However, for the metric γ, 42 strategies were mainly

grouped into multiple clusters that exhibited the same combination of

GSR strategy with the null network models, which indicated a joint

influence of the GSR strategy and null network model. For the metric

λ, 42 strategies were largely divided into two clusters with and with-

out GSR at the highest hierarchical level, with the exception of four

strategies without GSR being grouped into the cluster with GSR,

which implies the dominant influence of GSR strategy. For the metric

σ, 42 analysis strategies were mainly divided into several clusters that

exhibited the same combination of GSR with null network model or

parcellation scheme. For the HC group and the AD patients in Data

set 2, the strategy-to-strategy similarity matrices and the correspond-

ing hierarchical dendrograms (Figures 3 and 4) were similar to those in

the healthy young adults.

3.3 | Analysis strategies affecting between-group
differences in global functional network organization

In Data set 2, there were no significant differences (p > .05) in age,

gender, or years of education between the AD patients and HCs

(Table 1). The AD patients had an average of 0.26 mm of mean FD

(range = 0.11–0.55 mm, SD = 0.11 mm), and the HC group had an

average of 0.23 mm of mean FD (range = 0.06–0.73 mm, SD = 0.16

mm). These two groups exhibited no significant difference in mean

FD values (p = .68). In addition, the two groups showed no significant

differences (p > .05) in overall functional connectivity under each of

the 14 analysis strategies (i.e., 2 GSR strategies × 7 parcellation

schemes; Supporting Information Table S4). We then assessed the

potential influence of different analysis strategies on between-group

differences in global network properties between the AD and HC

groups (Figure 5). We found no significant between-group differences

TABLE 2 Repeated measures ANOVA results for five small-world parameters and modularity in the healthy young adult group (Data set

1, network density = 15%)

Cp Lp Q γ λ σ

Effect df F p F p F p F p F p F p

Parcellation (6, 852) 342.8 *** 237.9 *** 1,278.9 *** 548.2 *** 1,154.3 *** 208.8 ***

GSR (1, 142) 33.3 *** 167.0 *** 44.3 *** 163.3 *** 55.6 *** 207.9 ***

Null network model (2, 284) N/A N/A N/A N/A N/A N/A 3,089.6 *** 107.1 *** 2,950.9 ***

Parcellation × GSR (6, 852) 51.4 *** 24.9 *** 25.9 *** 147.5 *** 38.3 *** 137.9 ***

Parcellation × null network model (12, 1704) N/A N/A N/A N/A N/A N/A 129.9 *** 70.6 *** 134.5 ***

GSR × null network model (2, 284) N/A N/A N/A N/A N/A N/A 177.8 *** 23.0 *** 147.0 ***

Parcellation × GSR × null network model (12, 1704) N/A N/A N/A N/A N/A N/A 34.4 *** 14.3 *** 30.5 ***

Individual functional networks were generated with a fixed-network density of 15%. Two-way rmANOVA was performed on the null
network-independent metrics Cp, Lp, and Q with the two main factors of parcellation and GSR. Three-way rmANOVA was performed on the null
network-dependent metrics γ, λ, and σ with three main factors of parcellation, GSR and null network model. GSR = global signal regression; N/A = not
applicable.
***p < .001, Bonferroni corrected.
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in the condition of GSR even without correction for multiple compari-

sons (all ps > .05, uncorrected). In contrast, in the condition of without

GSR, significantly lower values of γ and σ with medium to large effect

sizes were observed in the AD patients when compared with the HC

group under the conditions of Craddock-200 and Random-1024 with

topological randomization (all ps < .05, Bonferroni corrected). Addi-

tional differences with small to medium effect sizes were observed in

other conditions of without GSR when multiple comparison correc-

tions were not performed. Significantly lower values of γ and σ were

observed in the AD group under the conditions of Dosenbach-160

and Power-264 with topological randomization (ps < .05, uncor-

rected). Significantly lower values of Q were also observed in the AD

group for five parcellation schemes without GSR (ps < .05, uncor-

rected), including AAL-90, Dosenbach-160, Craddock-200, Power-

264, and Random-1024. In addition, for AAL-90, the metrics of Lp and

λ in AD patients showed significantly higher values than those of the

HC group with correlation randomization and time series randomiza-

tion (ps < .05, uncorrected).

3.4 | Whole-brain functional hubs and between-
group differences in nodal degree centrality

We detected hub regions within the HC group and within the AD

patients via the metric of nodal degree centrality under each of the

14 analysis strategies (GSR or not × 7 parcellation schemes). Figure 6a

showed the occurrence probability maps as hubs across seven parcella-

tions in the conditions of with and without GSR, separately. With GSR

(Figure 6a, left), consistent functional hubs (i.e., probability > 0.5) in the

HC group were mainly located at the posterior cingulate gyrus/precu-

neus, angular gyrus, supramarginal gyrus, inferior frontal gyrus, insula,

left midcingulate cortex, and right supplementary motor area. The spa-

tial distributions of consistent hub regions (i.e., probability > 0.5) in the

FIGURE 2 Strategy-to-strategy similarity matrices for individual differences in five small-world parameters (i.e., Cp, Lp, γ, λ, and σ) and modularity

(Q) and the corresponding dendrograms obtained from the hierarchical cluster analyses for the healthy young adult group at the network density
of 15% (Data set 1). (a) Strategy-to-strategy (14 × 14) similarity matrices (i.e., 2 GSR strategies × 7 parcellation schemes) and the corresponding
dendrograms for Cp, Lp, and Q. (b) strategy-to-strategy (42 × 42) similarity matrices (i.e., 2 GSR strategies × 7 parcellation schemes × 3 null
network models) and the corresponding dendrograms for γ, λ, and σ. Characters under each dendrogram denote the dominate factors affecting
the clustering analysis. GSR = global signal regression (i.e., with GSR); nGSR = no global signal regression (i.e., without GSR); topo = topological
randomization; corr = correlation matrix randomization; time = time series randomization; fun = functionally defined parcellation;
Struc = structurally defined parcellation; Rand = Random-1024 parcellation [Color figure can be viewed at wileyonlinelibrary.com]
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AD group were similar to those in the HC group via visual inspection

with the exception of additional consistent hubs at the middle frontal

gyrus and medical prefrontal cortex. Notably, spatial patterns of consis-

tent functional hubs obtained without GSR (Figure 6a, right) were dif-

ferent from those obtained with GSR (Figure 6a, left). Specifically, in

the HC group, several regions of precuneus, inferior frontal cortex, and

supramarginal gyrus became inconspicuous, and additional consistent

hubs were observed at the primary areas (e.g., pre/postcentral gyrus,

occipital cortex, and superior temporal gyrus). The locations of consis-

tent hub regions in the AD patients were similar to those in the HCs

with the primary exceptions at the superior frontal gyrus and medial

prefrontal cortex. To further quantify the influence of GSR strategies,

we obtained the spatial similarity of the group-level nodal degree maps

between two conditions of GSR or not under each parcellation

(Supporting Information Table S5). Significant correlations were

observed for all parcellations (all ps < .01) regardless of the HC or AD

groups considered, with the exception of AAL-90 (p > .05). The

correlation values ranged from 0.08 to 0.78 across seven parcellation

schemes, which indicated a remarkable influence of GSR strategy on

the spatial patterns of degree centrality in a parcellation-

dependent way.

Compared with the HC group, the AD patients exhibited signifi-

cantly decreased degree values (all ps < 1/N, N, ROI number of each

parcellation) but with low spatial overlap across seven parcellation

schemes (Figure 6b). With GSR, significant differences were mainly

located at the posterior cingulate gyrus, angular gyrus, supramarginal

gyrus, inferior frontal gyrus, insula, and midcingulate cortex, as well as

the precentral gyrus and the right middle temporal gyrus; most of

these regions were identified as consistent hub regions in the HC

group. Compatible with GSR, the regions that exhibited significant dif-

ferences in the condition of without GSR were predominantly located

at the consistent hub regions in the HC group (e.g., posterior cingulate

cortex, insula, midcingulate cortex, and pre/postcentral gyrus) with

the exception of the right middle frontal gyrus.

FIGURE 3 Strategy-to-strategy similarity matrices for individual differences in five small-world parameters (i.e., Cp, Lp, γ, λ, and σ) and modularity

(Q) and the corresponding dendrograms obtained from the hierarchical cluster analyses for the HC group at the network density of 15% (Data set
2). (a) Strategy-to-strategy (14 × 14) similarity matrices (i.e., 2 GSR strategies × 7 parcellation schemes) and the corresponding dendrograms for
Cp, Lp, and Q. (b) strategy-to-strategy (42 × 42) similarity matrices (i.e., 2 GSR strategies × 7 parcellation schemes × 3 null network models) and
the corresponding dendrograms for γ, λ, and σ. Characters under each dendrogram denote the dominate factors affecting the clustering analysis.
GSR = global signal regression (i.e., with GSR); nGSR = no global signal regression (i.e., without GSR); topo = topological randomization;
corr = correlation matrix randomization; time = time series randomization [Color figure can be viewed at wileyonlinelibrary.com]
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3.5 | Influence on individual differences and
between-group comparisons in functional networks
constructed with a fixed correlation threshold

In addition to the fixed-density thresholding approach, individual binary

functional networks were also generated for subjects in both Data set

1 and Data set 2 using a fixed-correlation threshold with r = .2. Most of

the results were compatible with the previous main findings (Table 3,

Figures 7 and 8), including the significant influence on the estimations

and individual differences of global network metrics, as well as the

between-group comparison in nodal degree centrality. Of note, in the

hierarchical cluster analysis for healthy young adults in Data set 1, the

influence of several strategies became more conspicuous, including the

effects of the GSR strategy on Cp, Lp, and Q and the effects of the null

network model on γ, λ, and σ. Similar effects were also observed for the

HC group and the AD patients in Data set 2 (Supporting Information

Figures S2 and S3), suggesting the dominant influence of GSR strategy

and null network model on the individual variability profiles in small-

world related metrics and modularity. When detecting the between-

group differences (AD vs. HC) in Data set 2, we found that the density

of individual functional networks varied across individuals and across

14 analysis strategies (GSR or not × 7 parcellation schemes) (range of

group-averaged density: AD, 0.110–0.161 with GSR, 0.336–0.629 with

nGSR; HC, 0.107–0.165 with GSR, 0.356–0.653 with nGSR). No signifi-

cant differences were observed in the network density between two

groups under each of the 14 analysis strategies (all ps > .5, uncorrected).

Different from the fixed-density thresholding approach, no significant

difference was observed in any of the global metrics between the AD

and HC groups even without correction for multiple comparisons,

regardless of the analysis strategy considered (all ps > .5, uncorrected).

3.6 | Validation results

We assessed the effects of head motion and network construction

strategies on our main findings. In addition, we also explored the reli-

ability of the between-group differences (AD vs. HC) in global network

FIGURE 4 Strategy-to-strategy similarity matrices for individual differences in five small-world parameters (i.e., Cp, Lp, γ, λ, and σ) and modularity

(Q) and the corresponding dendrogram obtained from the hierarchical cluster analyses for the AD patients at the network density of 15% (Data
set 2). (a) Strategy-to-strategy (14 × 14) similarity matrices (i.e., 2 GSR strategies × 7 parcellation schemes) and the corresponding dendrograms
for Cp, Lp, and Q. (b) strategy-to-strategy (42 × 42) similarity matrices (i.e., 2 GSR strategies × 7 parcellation schemes × 3 null network models)
and the corresponding dendrograms for γ, λ, and σ. Characters under each dendrogram denote the dominate factors affecting the clustering
analysis. GSR = global signal regression (i.e., with GSR); nGSR = no global signal regression (i.e., without GSR); topo = topological randomization;
corr = correlation matrix randomization; time = time series randomization [Color figure can be viewed at wileyonlinelibrary.com]
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metrics. (a) Effects of head motion: using partial correlation, the resulting

strategy-to-strategy similarity matrices (Supporting Information

Figure S4) exhibited spatial patterns that were highly similar to those

obtained without controlling for mean FD (Pearson's correlations: Cp,

r = .992; Lp, r = .993; Q, r = .986; γ, r = .995; λ, r = .994; σ, r = .995; all

ps < .0001). In terms of hierarchical clustering, the findings (Supporting

Information Figure S4) were highly consistent with the main results

(Figure 2). (b) Effects of network density: the main findings were almost

unchanged for the binary functional networks constructed at other net-

work densities (i.e., 10, 20, and 30%; Supporting Information

Tables S6–S8 and Figures S5–S11). (c) Effects of network type: most of

the main findings were reproducible when considering weighted func-

tional networks (Supporting Information Table S9 and Figures S11–

S13). Of note, similar to the fixed-correlation thresholding approach,

the influences of the GSR strategy, and the null network model also

became more conspicuous in the weighted functional networks, includ-

ing the effects of GSR strategy on Cp, Lp, and Q and the effects of the

null network model on γ, λ, and σ (Supporting Information Figure S12).

(d) Reliability of the between-group difference detection: after applying a

split-half approach to 143 healthy young adults in Data set 1, two sub-

groups of subjects were obtained with 71 subjects in one group and

72 subjects in the other. These two groups exhibited no differences in

age, gender, or mean FD (all ps > .05). No significant between-group

differences were found in any of the six global metrics of interest (all

ps > .05, Bonferroni corrected), with the exception of significant differ-

ences under the condition of GSR and AAL-90 in the metric Lp and λ

(i.e., correlation and time series randomization; all ps < .05, Bonferroni

corrected) (Supporting Information Figure S14). These differences

between two subgroups of healthy young adults showed small effect

sizes, and the network metrics (i.e., Lp and λ) and analysis strategies

(i.e., GSR strategies) observed had nothing in common with those

between the AD and HC groups. When multiple comparisons were not

corrected, significant differences (p < .05 uncorrected) with small effect

sizes were only observed in the case of GSR (i.e., in Q, γ, λ, and σ),

except a difference in Q in the condition of without GSR and

Dosenbach-160 (Supporting Information Figure S14).

4 | DISCUSSION

This study comprehensively investigated the influence of three factors

(i.e., GSR strategy, parcellation scheme, and null network model) on

FIGURE 5 Significant between-group differences (AD vs. HC) under different analysis strategies at the network density of 15% (Data set 2).

Significant differences with different p values are marked by different colors, including uncorrected p < .05, corrected p < .05, and corrected
p < .01. Effect sizes of significant group differences are indicated by numbers. HC = healthy control; AD = Alzheimer's disease; GSR = global
signal regression (i.e., with GSR); nGSR = no global signal regression (i.e., without GSR); Brod = Brodmann-82 atlas; AAL = AAL-90 parcellation;
HOA = HOA-112 parcellation; Dos = Dosenbach-160 parcellation; Crad = Craddock-200 parcellation; Power = Power-264 parcellation;
Rand = Random-1024 parcellation; topo = topological randomization; corr = correlation matrix randomization; time = time series randomization
[Color figure can be viewed at wileyonlinelibrary.com]
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aspects of the topological properties of functional networks in healthy

adults and AD-related network changes in human brain functional

network analyses. First, we found that these three factors not only

significantly affected the quantitative values of small-world properties

and modularity but also influenced their inter-subject differences.

Regarding the latter, the GSR strategy exhibited a predominant influ-

ence on most of the properties (i.e., Cp, Lp, Q, and λ). Second, we found

that these three factors influenced the sensitivity of the detection of

group differences between the AD patients and the HC group. Nota-

bly, the analysis strategies without GSR and topology randomization

exhibited higher sensitivities in the detection of between-group dif-

ferences than the other strategies. Finally, we found that the GSR

strategy dominantly influenced the spatial distribution of the hubs and

between-group differences in nodal degree. These findings highlight

the joint influence of these three factors on functional network ana-

lyses in both healthy and diseased populations, which may be informa-

tive for the selection of strategies for data preprocessing and network

analysis in future R-fMRI functional network studies.

4.1 | Influence of global signal regression on
functional network analysis

Controversy persists regarding whether the global signal should be

removed during data preprocessing (Fox, Zhang, Snyder, & Raichle,

2009; Murphy et al., 2009; Murphy & Fox, 2016). One of the main

reason is that the GSR may affect the correlation structure (Murphy

et al., 2009) and thus influence the functional network topological

properties (Braun et al., 2012; Liang et al., 2012; Liao et al., 2013).

Consistent with previous studies, our analysis of two data sets

revealed significant effects of GSR on the topological properties of

functional networks, including small-world attributes, modularity, and

hubs, in healthy young adults, healthy elderly adults, and AD patients.

Moreover, we found that GSR strategies influenced the individual dif-

ferences in topological properties and the sensitivity of the detection

of differences between the AD and HC groups. Significant between-

group differences were only observed under the strategies without

GSR (Figure 5 and Supporting Information Figure S11). It should be

note that the network metrics (i.e., γ and σ) and analysis strategies

(i.e., without GSR strategies) observed between the AD and HC

groups had nothing in common with spurious differences observed

between two subsets of healthy young adults (Supporting Information

Figure S14). Moreover, these significant differences (AD vs. HC)

showed medium to large effect sizes, which were larger than those of

spurious differences. Considering the above reasons, we speculate

that the significant differences observed between the AD and HC

groups are more likely to be meaningful and reliable, rather than sim-

ply artifacts introduced by methodological artifacts. Strategies without

GSR may be more sensitive in the between-group comparisons

(i.e., AD vs. HC) in global network metrics. Similarly, a recent func-

tional network study found that more significant differences in global

clustering coefficient and nodal centrality measures were observed

between major depression patients and HCs in specific strategies

without GSR (Borchardt et al., 2016). All these findings suggest that

the global signal may contain subject-specific and diseased related

information in both young and elderly subjects. Regression of the

global signal during data preprocessing may blur subject-specific infor-

mation and decrease the sensitivity of between-group difference

detection. Interestingly, a recent study reported that GSR reduced the

detection sensitivity of abnormalities in the power and variance of

gray matter signals in patients with schizophrenia but not in patients

with bipolar disorder (Yang et al., 2014), which further indicated that

the global signal may be disease-dependent. In our study, the changes

in global signal in AD may be attributable to widely distributed gray

matter atrophy; however, the underlying mechanism should be further

elucidated. Together, these findings suggest that more attention

should be paid to GSR in investigations of functional network organi-

zation in different diseases.

FIGURE 6 Probability maps of functional hubs and probability maps

of significant between-group differences in degree centrality at the

network density of 15% (Data set 2). (a) Occurrence probability maps
as functional hubs for the HC group and AD patients in the cases of
GSR and without GSR. (b) Occurrence probability maps of significant
between-group differences in the cases of GSR and without GSR. For
each voxel, the occurrence probability as hubs or significant regions
under each condition (i.e., with or without GSR) were defined as the
number of parcellation schemes under which this voxel was detected
as a hub or a significant region divided by the total number of
parcellation schemes containing this voxel. In (a,b), brain regions that
had occurrence probability below 0.1 (i.e., lower limit of the color bar)
are not displayed (i.e., in gray color). The hemispheric surfaces were
visualized using BrainNet viewer (Xia, Wang, & He, 2013).
GSR = global signal regression (i.e., with GSR); nGSR = no global
signal regression (i.e., without GSR); HC = healthy control;
AD = Alzheimer's disease [Color figure can be viewed at
wileyonlinelibrary.com]
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TABLE 3 Repeated-measures ANOVA results for five small-world parameters and modularity in the healthy young adult group (Data set

1, correlation threshold = 0.2)

Cp Lp Q γ λ σ

Effect df F p F p F p F p F p F p

Parcellation (6, 852) 2,860.7 *** 2,763.0 *** 658.4 *** 420.9 *** 1,558.5 *** 506.0 ***

GSR (1, 142) 919.6 *** 2,638.2 *** 1980.5 *** 3,962.2 *** 3,806.8 *** 1,210.4 ***

Null network model (2, 284) N/A N/A N/A N/A N/A N/A 2,103.1 *** 16,258.8 *** 1,071.9 ***

Parcellation × GSR (6, 852) 479.4 *** 834.8 *** 505.6 *** 474.8 *** 543.2 *** 382.4 ***

Parcellation × null network model (12, 1704) N/A N/A N/A N/A N/A N/A 373.2 *** 702.5 *** 368.2 ***

GSR × null network model (2, 284) N/A N/A N/A N/A N/A N/A 3,917.5 *** 17,445.6 *** 1,990.7 ***

Parcellation × GSR × null network model (12, 1704) N/A N/A N/A N/A N/A N/A 440.7 *** 875.6 *** 439.0 ***

Individual functional networks were generated with a fixed-correlation threshold of 0.2. Two-way rmANOVA was performed on the null
network-independent metrics Cp, Lp, and Q with the two main factors of parcellation and GSR. Three-way rmANOVA was performed on the null
network-dependent metrics γ, λ, and σ with three main factors of parcellation, GSR, and null network model. GSR = global signal regression; N/A = not
applicable.
***p < .001, Bonferroni corrected.

FIGURE 7 Strategy-to-strategy similarity matrices for individual differences in five small-world parameters (i.e., Cp, Lp, γ, λ, and σ) and modularity

(Q) and the corresponding dendrograms obtained from the hierarchical cluster analyses for the healthy young adult group at the correlation
threshold of 0.2 (Data set 1). (a) Strategy-to-strategy (14 × 14) similarity matrices (i.e., 2 GSR strategies × 7 parcellation schemes) and the
corresponding dendrograms for Cp, Lp, and Q. (b) strategy-to-strategy (42 × 42) similarity matrices (i.e., 2 GSR strategies × 7 parcellation schemes
× 3 null network models) and the corresponding dendrograms for γ, λ, and σ. Characters under each dendrogram denote the dominate factors
affecting the clustering analysis. GSR = global signal regression (i.e., with GSR); nGSR = no global signal regression (i.e., without GSR);
topo = topological randomization; corr = correlation matrix randomization; time = time series randomization [Color figure can be viewed at
wileyonlinelibrary.com]
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4.2 | Influence of parcellation scheme on functional
network analysis

In graph-based network analysis, the node definition is an important

factor (Fornito et al., 2010; Wang et al., 2009; Wig et al., 2011). We

used three different types of parcellation schemes (i.e., anatomically

constrained, functionally defined and random parcellation schemes) to

comprehensively investigate the influence of node definition on func-

tional network analysis. Consistent with the previous study using two

anatomical parcellations (Wang et al., 2009), we found that the parcel-

lation schemes indeed influenced the topological properties of func-

tional networks in both healthy subjects and AD patients (Tables 2

and 3, Supporting Information Tables S2 and S3). Moreover, we found

that brain parcellation schemes affected the individual differences in

functional network organization (e.g., λ and σ). One possible reason is

that these parcellation schemes carry different perspectives of infor-

mation in the brain (Wig et al., 2011). While anatomical parcellation

schemes are identified according to histological cytoarchitecture

(e.g., Brodmann-82) or sulcal and gyral boundaries (e.g., AAL-90), func-

tional parcellation schemes aim to ensure the coherence of functional

activity (e.g., Dosenbach-160 and Power-264) or functional connectiv-

ity (e.g., Craddock-200) within the ROIs. In addition, different parcella-

tion schemes exhibit different spatial resolutions, and parcellation

schemes with more fine-grained regions tend to show higher homoge-

neity in functional signals within ROIs (Wig et al., 2011). Similarly, For-

nito et al. (2010) found that individual differences were largely

consistent for random parcellations with scales greater than

200 regions, which confirms the substantial influence of the spatial

resolution of brain nodes on individual difference characterization.

We also found that different parcellation schemes exhibited dif-

ferent sensitivities in detecting differences between the HC group

and AD patients (Figure 5 and Supporting Information Figure S11). At

the global level, compared with two other anatomical parcellation

schemes (Brodmann-82 and HOA-112), one anatomical (AAL-90),

three functional (Dosenbach-160, Craddock-200 and Power-264), and

one random (Random-1024) parcellation scheme generally detected

more significant between-group differences in the condition of with-

out GSR. The superior performance of these parcellation schemes

may be explained by the parcellation type and/or network scales.

Functionally defined parcellation may promote the functional homo-

geneity of voxels within a node and thus provide a more accurate

description of regional brain activity (Wig et al., 2011). The superior

performance of Random-1024 may be attributable to the higher spa-

tial resolution (i.e., 1,024 nodes), which may also have improved the

functional homogeneity of the voxels with a finer definition of nodal

regions (Fornito et al., 2010). These findings indicate that functionally

defined parcellations or high-spatial-resolution random parcellations

may be more appropriate for detecting between-group differences in

functional network topological properties. At the nodal level, we

found that regions that exhibited significant between-group differ-

ences in nodal degree exhibited low spatial overlap across seven par-

cellation schemes regardless of the GSR strategies considered and

were characterized by a low occurrence probability below 0.5 for

most of the regions detected (Figures 6 and 8). These discrepancies

across parcellation schemes might also be related to the parcellation

type and/or network scales as discussed above, and the underlying

mechanisms require further investigation.

4.3 | Influence of null network models on functional
network analysis

We found that three null network models influenced the topological

architectures of functional networks. For specific topological proper-

ties of γ and σ, we found that in addition to GSR strategy the hierar-

chical clustering was also affected by the null network model

(Figures 2 and 7). Similarly, in a recent structural correlation network

study, Hosseini and Kesler (2013) reported that these null network

models affected the estimation of small-world parameters and their

differences between healthy individuals and survivors of acute

FIGURE 8 Probability maps of functional hubs and probability maps

of significant between-group differences in degree centrality at the

correlation threshold of 0.2 (Data set 2). (a) Occurrence probability
maps as functional hubs for the HC group and AD patients in the
cases of GSR and without GSR. (b) Occurrence probability maps of
significant between-group differences in the cases of GSR and
without GSR. For each voxel, the occurrence probability as hubs or
significant regions under each condition (i.e., with or without GSR)
were defined as the number of parcellation schemes under which this
voxel was detected as a hub or a significant region divided by the
total number of parcellation schemes containing this voxel. In (a,b),
brain regions that had occurrence probability below 0.1 (i.e., lower
limit of the color bar) are not displayed (i.e., in gray color). The
hemispheric surfaces were visualized using BrainNet viewer (Xia et al.,
2013). GSR = global signal regression (i.e., with GSR); nGSR = no
global signal regression (i.e., without GSR); HC = healthy control;
AD = Alzheimer's disease [Color figure can be viewed at
wileyonlinelibrary.com]
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lymphoblastic leukemia. Because these three different null network

models were designed to correct the local clustering in real networks

in different manners (Zalesky et al., 2012), it is reasonable that they

exhibited a dominant influence on the two metrics of γ and σ, the esti-

mations of which involve local clustering. Interestingly, compared with

the main results using a fixed-density and binary thresholding

approach (Figure 2), the influence of null network models on the hier-

archical analyses of γ, λ, and σ became more conspicuous when using

either a fixed-correlation threshold (Figure 7) or a weighted network

approach (Supporting Information Figure S12). The findings in the lat-

ter two approaches may be attributable to the increased deviation of

the null networks from the real functional networks in terms of con-

nection number or strength in a null model-dependent manner. Take

time series randomization as an example. Because the randomized

time series generally exhibited weak connection strength with each

other, the null networks generated with a fixed-correlation approach

would show a largely reduced network density compared with that of

the original functional networks, and those generated with a weighted

network approach exhibited weaker connection strength than did the

original networks. In contrast, the null networks generated by topo-

logical randomization exhibited the same connection density and con-

nection strength distributions as the original functional networks

regardless of the thresholding strategies considered. Therefore, apply-

ing a fixed-correlation or a weighted network thresholding approach

will promote the deviation between the null networks and the real

functional networks in a model-dependent manner and thus might

strengthen the effects of null network models.

Furthermore, the null network models affected the sensitivity of

the detection of differences between the AD patients and the HC

group. In comparison with other two models, the topology randomiza-

tion model detected more between-group differences in specific

small-world properties (i.e., γ and σ) for most parcellation schemes in

the without-GSR condition (Figure 5 and Supporting Information

Figure S11). The weak sensitivities of the correlation and time series

randomization models may be attributed to the rules for null model

generation (Zalesky et al., 2012). The null correlation matrices were

generated to have the same correlation distributions as the original

matrices, which might have preserved lots of information from the

original matrices and thus obscured individual-specific information

and AD-related changes. During time series randomization, we ran-

domized the phase of the original time series for each node indepen-

dently and then generated null networks. This procedure largely

reduced the potential coherence between different nodes and may

have introduced large random noises that would have hindered the

detection of between-group differences. These hypotheses require

additional evidence from future work and should be validated in more

diseases.

4.4 | Influence of thresholding strategies on
functional network analysis

During the functional network construction, a thresholding approach

is usually applied to the functional correlation matrix to exclude weak

or spurious connections that are potentially introduced by noises.

Two commonly used thresholding strategies were employed here,

including a fixed-density thresholding and a fixed-correlation thresh-

olding. These two approaches characterize the relative and absolute

network topology of functional organization separately and thus may

produce divergent results in contrastive research. Here, we observed

significant between-group differences (AD vs. HC) in several global

metrics (i.e., γ, σ, and Q) over a wide range of density values (i.e., 10,

15, 20, and 30%) (Figure 5 and Supporting Information Figure S11)

but did not do so with a fixed-correlation threshold (r = .2) regardless

of the analysis strategies considered. Because the AD and HC groups

in this study exhibited no significant differences in overall functional

connectivity (Supporting Information Table S4), the vanished

between-group differences in the latter case may be related to the

different numbers of edges across individual functional networks that

result from the application of a fixed-correlation threshold. A previous

study demonstrated that network density remarkably affects the esti-

mation of graph metrics (van Wijk, Stam, & Daffertshofer, 2010).

Thus, the varying densities across individual networks might increase

the inter-individual differences (e.g., SDs) of topological properties

within each group and reduce the sensitivity of between-group com-

parisons of global metrics. Our finding suggests that applying a fixed-

density thresholding strategy during functional network construction

may confound the between-group comparison in contrastive research,

which is compatible with the idea presented by van den Heuvel

et al. (2017). Nevertheless, when using a fixed-density thresholding,

we should notice that the between-group comparisons of global topo-

logical properties (e.g., local clustering) may be biased by the potential

between-group differences in the overall functional connectivity (van

den Heuvel et al., 2017). In our main analyses, the AD patients and

the HC group exhibited no significant differences in the overall func-

tional connectivity, thus the potential influence of the overall func-

tional connectivity can be ignored. In general, the conceptual

differences of these two thresholding strategies should be kept in

mind in future functional network analysis, especially in contrastive

research.

4.5 | Functional network alterations in AD patients

The topological properties (i.e., γ, σ, and Q) were significantly lower in

AD patients when compared with those in HCs, indicating that the

functional networks of AD patients exhibited a trend toward a more

random configuration with the loss of local information integration

and small-world properties. Our findings are consistent with previous

fMRI studies (Sanz-Arigita et al., 2010; Supekar et al., 2008), which

also revealed a randomization trend in AD patients, and further con-

firms the disruption of global functional organization in AD patients.

Notably, in contrast to our findings, several studies (Liu et al., 2012,

2014; Zhao et al., 2012) have found that the functional networks of

AD patients exhibit a trend toward a regular configuration. These dis-

crepant conclusions may be attributed to the heterogeneity of the dif-

ferent AD populations studied (e.g., populations involved different

preclinical and clinical stages) and/or differences in network analysis

strategies, such as preprocessing procedures, parcellation schemes,

and network thresholding strategies (Dai & He, 2014).

Using the measure of degree centrality, we identified functional

hubs that were highly connected. With GSR, several regions in the
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default-mode network (e.g., posterior cingulate gyrus/precuneus and

angular gyrus), supramarginal gyrus, and insula were identified as con-

sistent hubs across parcellations regardless of the HC group or AD

group considered. The spatial distribution of hubs was in line with that

of previous studies in either health (Buckner et al., 2009; Cocchi et al.,

2015; Liang et al., 2013) or disease (Dai et al., 2015). Consistent with

previous findings (Du et al., 2015; Liao et al., 2013), we found that the

spatial patterns of consistent functional hubs slightly changed in the

case of without GSR wherein primary sensorimotor, visual, and audi-

tory areas became more conspicuous. These findings may be attribut-

able to the region-dependent influence of GSR on correlation

structure (Liao et al., 2013; Sepulcre et al., 2010). Notably, the spatial

pattern of functional hubs is also dependent on the nodal centrality

metric considered. A recent study (Power, Schlaggar, et al., 2013)

employed a metric of participation coefficient, instead of degree cen-

trality, to identify nodes that played crucial roles in between-

community communication and reported a dissimilar spatial pattern of

hubs (e.g., lateral frontal cortex). Moreover, we found that GSR

affected group differences in nodal degree between AD patients and

HCs, and these effects were consistent across different network

thresholding approaches, which further suggest that the global signal

may contain AD-related information as discussed above. Importantly,

in both the with and without GSR conditions, several consistent hub

regions (e.g., posterior cingulate cortex/precuneus, left angular gyrus,

and insula) in the HC group were found to exhibit significant

between-group differences under at least one parcellation scheme,

suggesting that hub regions might be preferentially attacked in

AD. This finding is consistent with several previous studies (Buckner

et al., 2009; Crossley et al., 2014; Dai et al., 2015) and may be

explained from two perspectives. On the one hand, Buckner

et al. (2009) found that the spatial pattern of hub regions in healthy

young subjects overlaps substantially with the Aβ deposition pattern

in AD, which may have resulted from the high metabolism of hub

regions (Liang et al., 2013; Tomasi et al., 2013). Aβ proteins have toxic

effects on neurons and synapses (Selkoe, 2008); therefore, the high

Aβ deposition in hub regions could affect the neural activity and thus

disrupt their functional connectivity. On the other hand, the hub

regions are crucial for information communication, and their disrup-

tion may introduce severe abnormalities in functional organization

and thus manifest as a brain disorders (Crossley et al., 2014). The

mechanism underlying hub alterations in AD patients requires further

elucidation. Notably, although the differences in nodal degree central-

ity were reliable across different network construction approaches,

they did not survive Bonferroni or false discovery rate correction.

These results should only be considered as a preliminary exploration.

A large sample of AD patients should be employed in the future to

increase the statistical power.

4.6 | Methodological issues

Several issues should be further considered in the future. First, in this

study, we performed the functional network analysis only at the

regional level based on different parcellation schemes. As there is no

widely accepted gold standard for how to select the parcellation

scheme (Arslan et al., 2017), voxel-wise functional network analysis is

an appropriate candidate for future studies due to recent improve-

ments in computing platforms (Du et al., 2018; Wang et al., 2013).

The voxel-based functional network analysis may reveal more detailed

connectivity information at a higher spatial resolution and reduce the

potential bias of regional parcellations. Second, we found that the

GSR strategy affected the functional network analyses in both health

and diseases. The reason for this effect remains unclear. Because the

main purpose of GSR during data preprocessing is to remove the

effects of nonneural noise, future studies may employ other strate-

gies, such as regression of the respiration and cardiac signals obtained

from a multiconductor, to reduce the influence of nonneural signals

while simultaneously avoiding the byproducts of GSR. Third, to reduce

the influence of head motion, we first included 24 head motion

parameters in the nuisance regression in data preprocessing (Friston

et al., 1996; Yan, Cheung, et al., 2013). Then, we validated the results

regarding individual differences in healthy young adults (Data set 1)

and detected between-group differences (AD vs. HC, Data set 2) by

including mean FD values as covariates. However, it is worth mention-

ing that the effects of head motion may still exist, and this issue

requires further investigation involving improving the head motion

correction strategies. Finally, in this study, we used AD as an example

to investigate the influence of three factors on the whole-brain func-

tional network analyses. However, whether and how the findings of

this work can be generalized to other diseases (e.g., Parkinson's dis-

ease and depression) requires further investigation.

5 | CONCLUSION AND
RECOMMENDATIONS

We demonstrated a remarkable joint influence of the GSR strategy,

regional parcellation scheme, and null network model on functional

network analyses in both health and diseases. Most of the findings

were reproducible across different network construction strategies.

We make the following recommendations for future human brain

functional network studies. First, regarding GSR strategy, we found

that GSR strategy greatly affected the sensitivity of the detection of

group differences in small-world related metrics and modularity

between the AD and HC groups. However, whether and how GSR

strategy affects functional network analyses in other diseases

(e.g., Parkinson's disease and depression) remains unclear. Because

different GSR strategies may provide complementary information

about the functional organization of the brain (Murphy & Fox, 2016),

we recommend employing both strategies (i.e., GSR or not) during

data preprocessing in contrastive research to obtain comprehensive

insights. Second, regarding node definition, during the between-group

comparison (AD vs. HC) in global metrics, we found that functionally

defined parcellations or high-spatial-resolution random parcellations

are likely to outperform the structurally defined ones. The reason

could be due to that these functional, high-resolution defined nodes

better capture functionally meaningful brain units. We believe that

these parcellations may be more suitable in future studies aiming to

compare functional network topological properties. Third, regarding

the null network model, it has been argued that the model of topologi-

cal randomization does not take into account of inherent transitive
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structure of correlation networks (Zalesky et al., 2012). Nevertheless,

in our study, the topological randomization model exhibited higher

sensitivity in the detection of between-group differences in the

absence of GSR compared with the other two null models. Based on

the current results, we speculate that the other two models might be

conservative (i.e., correlation randomization model) or introduce much

noise (i.e., time series randomization model), and that the topological

randomization model might be more valuable. Finally, we found that

the GSR strategy, parcellation scheme, and null network model jointly

affected human brain functional network analyses including the quan-

titative values of topological properties and their individual difference

profiles. Therefore, these three factors should be carefully considered

when exploring the brain network mechanisms underlying individual

cognitive behaviors and lifespan developments in the future. We hope

these recommendations and considerations will be informative in the

choices of analysis strategies in future functional network studies.
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