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Increasing attention has recently been directed to the applications of pattern recognition and brain imaging
techniques in the effective and accurate diagnosis of Alzheimer's disease (AD). However, most of the existing
research focuses on the use of single-modal (e.g., structural or functional MRI) or single-level (e.g., brain local or
connectivitymetrics) biomarkers for the diagnosis of AD. In this study, we propose amethodological framework,
called multi-modal imaging and multi-level characteristics with multi-classifier (M3), to discriminate patients
with AD from healthy controls. This approach involved data analysis from two imaging modalities: structural
MRI, which was used to measure regional gray matter volume, and resting-state functional MRI, which was
used to measure three different levels of functional characteristics, including the amplitude of low-frequency
fluctuations (ALFF), regional homogeneity (ReHo) and regional functional connectivity strength (RFCS). For
each metric, we computed the values of ninety regions of interest derived from a prior atlas, which were then
further trained using a multi-classifier based on four maximum uncertainty linear discriminant analysis base
classifiers. The performance of this method was evaluated using leave-one-out cross-validation. Applying the
M3 approach to the dataset containing 16 AD patients and 22 healthy controls led to a classification
accuracy of 89.47% with a sensitivity of 87.50% and a specificity of 90.91%. Further analysis revealed that the
most discriminative features for classification are predominantly involved in several default-mode (medial frontal
gyrus, posterior cingulate gyrus, hippocampus and parahippocampal gyrus), occipital (fusiform gyrus, inferior
and middle occipital gyrus) and subcortical (amygdale and pallidum of lenticular nucleus) regions. Thus,
theM3method shows promising classification performance by incorporating information from different imaging
modalities and different functional properties, and it has the potential to improve the clinical diagnosis and
treatment evaluation of AD.

© 2011 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease (AD), which is the most common form of
dementia, is a progressive neurodegenerative disease that is clinically
characterized by the decline in memory and other cognitive functions.
It gradually destroys patients' memories and abilities to reason, make
judgments, communicate and deal with daily activities (Jeong, 2004).
Since the mid-1980s, the prevalence rate of dementia in persons aged
65 years or greater has been reported to be 3.6–10.3% inWestern coun-
tries and 1.8–10.8% in Asian countries (Lee et al., 2002). Approximately
50–60% of patientswith dementia are estimated to have AD. To improve
the level of both basic AD research and clinical intervention for patients
with AD, it is crucial to find a valid and objective biomarker to distin-
guish patients with early-stage AD from healthy controls (Chapman
et al., 2007).
rights reserved.

riminative analysis of early A
e (2011), doi:10.1016/j.neur
Machine learning and pattern classification techniques have
played an important role in exploring the brain differences between
patientswithAD andhealthy controls.Many studies have demonstrated
that these techniques, in combination with structural and functional
neuroimaging data, are useful for finding potential biomarkers for AD.
For example, several brain imaging methods including electroencepha-
lography (EEG) and positron emission tomography (PET) have been
used to study the diagnosis of AD (Bennys et al., 2001; Besthorn et al.,
1997; Kippenhan et al., 1994; Lehmann et al., 2007; Minoshima et al.,
1995). More recently, some studies have employed structural MRI data
to investigate automatic classification methods of AD according to
extracted features such as vertex-based cortical thickness (Desikan
et al., 2009; Lerch et al., 2008) and voxel-wise volume characteristics
(Davatzikos et al., 2008a, 2008b; Fan et al., 2007; Kloppel et al., 2008;
Lao et al., 2004; Magnin et al., 2008). Using resting-state functional
MRI (R-fMRI) data, several research groups have proposed regional or
connectivity metrics such as the cross-correlations of spontaneous low
frequency (Li et al., 2002), goodness-of-fit analysis of the default mode
network (Greicius et al., 2004), intrinsically anti-correlated networks
lzheimer's disease using multi-modal imaging and multi-level char-
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Table 1
Characteristics of AD patients and normal controls.

Characteristics AD Controls P value

N (M/F) 16 (8/8) 22 (7/15) 0.26a

Age, years 69.56±7.65 66.55±7.67 0.09b

Education, years 10.06±3.39 10.00±3.93 0.96b

MMSE 18.50±3.24 28.59±0.59 b0.0001b

MMSE, Mini-Mental State Examination; plus–minus values are means±S.D.
a The P value for gender distribution in the two groups was obtained by Chi-square

test.
b The P values were obtained by a two-sample two-tailed t-test.
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(Wang et al., 2006) and whole-brain connectivity matrices (Chen et al.,
2011) as classification features of AD.

Despite these advances, previous discriminative studies of AD
mainly focus on a single modality of biomarkers, which might capture
partial information about brain abnormalities and therefore influence
the resulting classification performance. Several recent studies have
demonstrated that multi-modal imaging using integrative information
was able to significantly improve the discrimination accuracy of the
AD diagnosis (Apostolova et al., 2010; Fan et al., 2007; Walhovd et al.,
2010; Zhang et al., 2011). These studies mainly combine MRI, PET,
cerebral blood flow (CBF) and cerebrospinal fluid (CSF) techniques. To
date, very few studies have used a combination of structural MRI and
R-fMRI data to discriminate patients with AD from healthy controls.
Structural MRI data contains rich morphological information about
brain tissues and has been widely used to study gray matter atrophy
in AD (Baron et al., 2001; Chetelat and Baron, 2003; Hirata et al.,
2005; Karas et al., 2003). R-fMRI is a promising non-invasive imaging
technique used to measure spontaneous brain activity in vivo and is
crucial for the understanding of intrinsic brain functional architecture
under both normal and pathological conditions (Biswal et al., 1995,
2010; Fox and Greicius, 2010; Fox and Raichle, 2007; Wang et al.,
2010; Zhang and Raichle, 2010). Several studies have used R-fMRI
to demonstrate that AD is associated with changes in functional charac-
teristics at different levels, including the amplitude of low-frequency
fluctuations (ALFF) (Wang et al., 2011), intra-regional synchronization
(He et al., 2007) and inter-regional functional connectivity (Allen
et al., 2007; Greicius et al., 2004; Li et al., 2002; Supekar et al., 2008;
Wang et al., 2007).

In this study, we propose amethodological framework, multi-modal
imaging (structural and functional MRI) and multi-level characteristics
[ALFF, regional homogeneity (ReHo) and regional functional connectiv-
ity strength (RFCS) for R-fMRI] with multi-classifier (M3), to discrimi-
nate AD patients from healthy controls. By effectively integrating
enriched and comprehensive information, this approach could improve
the classification power compared to previously used techniques. The
rest of this paper is organized as follows: we first introduce our experi-
mental data acquisition, feature extraction, discriminative analysis and
identification of the most discriminative features in the Materials and
methods section and then present the main experimental results in
the Results section and relevant discussion in the Discussion section.

Materials and methods

Subjects

Twenty-four healthy controls and nineteen early AD patients
participated in this study. All subjects were right-handed native
Chinese speakers. Written informed consent was obtained from
all subjects before they participated in the study. All of the AD patients
were recruited from a memory outpatient clinic at Xuanwu Hospital,
Beijing, China. The healthy controls were recruited by advertisement
from the local community. This study was approved by the Medical
Research Ethics Committee of Xuanwu Hospital. The diagnosis criteria
for AD fulfilled the Diagnostic and Statistic Manual Disorders, Fourth
Edition (American Psychiatric Association, 1994) criteria for dementia,
and the National Institute of Neurological and Communicative
Disorders and Stroke/Alzheimer Disease and Related Disorders Associ-
ation (NINCDS–ADRDA) (McKhann et al., 1984) criteria for AD. The
subjects were assessed clinically with the Clinical Dementia Rating
(CDR) score (Morris, 1993) as healthy controls (CDR=0) or as patients
with early stages of AD (7 patients with CDR=1 and 12 patients with
CDR=0.5). All AD patients underwent complete physical and neuro-
logical examination, an extensive battery of neuropsychological assess-
ments and standard laboratory tests. All healthy controls had no history
of neurological or psychiatric disorders, sensorimotor impairment or
cognitive complaints, and no abnormal findings were identified by
Please cite this article as: Dai, Z., et al., Discriminative analysis of early A
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conventional brain MRI. We discarded the data of two healthy
controls and three AD patients due to excessive motion (see Data
preprocessing). Clinical and demographic data for the remaining 38
participants are shown in Table 1. The data have previously been used
to detect brain regional abnormalities in AD (Wang et al., 2011).
Data acquisition

All subjects were scanned on a Siemens 3 Tesla Magnetom Sonata
scanner (Siemens, Erlangen, Germany). Foam padding and headphones
were used to limit head movement and reduce scanner noise. During
data acquisition, the subjects were instructed to keep their eyes closed
but not fall asleep, to relax their minds, and tomove as little as possible.
Functional images were collected axially using an echo-planar imaging
(EPI) sequence. The imaging parameters are as follows: repetition time
(TR)/echo time (TE)=2000 ms/40 ms; flip angle (FA)=90°; field of
view (FOV)=24 cm; matrix=64×64; slices=28; thickness=4 mm;
voxel size=3.75×3.75×4 mm3; gap=1 mm; and bandwidth=
2232 Hz/pixel. The scan lasted for 478 s. Three dimensional T1-
weighted magnetization-prepared rapid gradient echo (MPRAGE)
sagittal images were collected using the following parameters: TR/
TE=1900 ms/2.2 ms; FA=9°; inversion time (TI)=900 ms; matrix=
256×256; slices=176; thickness=1.0 mm; and voxel size=1×
1×1 mm3.
Feature extraction

Functional MRI data

Data preprocessing. Unless otherwise stated, all functional imaging
data preprocessing was carried out using Statistical Parametric
Mapping (SPM5, http://www.fil.ion.ucl.ac.uk/spm) and Data Proces-
sing Assistant for Resting-State fMRI (DPARSF) (Yan and Zang, 2010).
Because of the instability of the initial signal and participants' adapta-
tion to the scanning, the first 10 functional images were discarded.
The remaining fMRI images were first corrected for within-scan acqui-
sition time differences between slices and further realigned to the first
volume to correct for interscan head motions. Five subjects (2 AD
patients with CDR=1, 1 AD patient with CDR=0.5 and 2 healthy
controls) were excluded from further analysis because of their exces-
sive movement (>2 mm or 2°). The motion-corrected functional
volumes were then spatially normalized onto stereotaxic space
(Talairach and Tournoux, 1988) using an optimum 12-parameter
affine transformation and nonlinear deformation (Ashburner and
Friston, 2005) and then resampled to 3 mm isotropic voxels. Next,
temporal band-pass filtering (0.01 Hz–0.1 Hz) was performed on
the time series of each voxel using the Resting-State fMRI Data
Analysis Toolkit (REST, http://rest.restfmri.net) (Song et al., 2011)
to reduce the effect of low-frequency drifts and high-frequency
physiological noise (Biswal et al., 1995; Lowe et al., 1998). We
then calculated ALFF, ReHo and RCS as described below.
lzheimer's disease using multi-modal imaging and multi-level char-
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ALFF analyses. We used REST software to calculate the ALFF. ALFF is
physiologically meaningful for measuring regional intrinsic or sponta-
neous neuronal activity of the brain (Zang et al., 2007). Briefly, for a
given voxel, the time serieswasfirst converted to the frequency domain
using a Fast Fourier Transform. The square root of the power spectrum
was computed and then averaged across 0.01–0.1 Hz. This averaged
square root was taken as the ALFF (Zang et al., 2007). To reduce the
global effects of variability across participants, as used in many PET
studies, the ALFF of each voxel was divided by the global mean
ALFF value for each subject. The individual ALFF maps were then parti-
tioned into 90 regions of interest (ROIs) in terms of the Automated
Anatomical Labeling (AAL) atlas (45 for each hemisphere, see Table 2)
(Tzourio-Mazoyer, 2002), and the mean ALFF value of each region
was acquired by averaging the ALFF values within that region.

ReHo analyses. We used REST software to calculate the ReHo. The
ReHo method (Zang et al., 2004) was originally proposed to measure
the degree of regional synchronization of fMRI time courses.
ReHo was defined as the Kendall's coefficient of concordance (KCC)
(Kendall and Gibbons, 1990) of the time series of a given voxel with
those of its nearest neighbors. A larger ReHo value for a given voxel
indicates a higher regional coherence. The number of neighboring
voxels was set as 26. To reduce the global effects of variability across
participants, as used in ALFF analyses, the ReHo of each voxel was
divided by the global mean ReHo value for each subject. The individual
ReHomaps were then partitioned into 90 ROIs using the AAL atlas, and
the mean ReHo value of each region was acquired by averaging the
ReHo values within that region.

Regional Functional Correlation Strength (RFCS) analyses. To compute
resting-state function connectivity, we regressed out several spurious
effects of nuisance covariates (Fox et al., 2005): (1) six parameters
obtained by head motion correction, three for translation and three
for rotation and (2) whole brain signal averaged over entire brain.
The individual volume was first partitioned into 90 ROIs using the
AAL atlas, and the mean time series of each region was then extracted
by averaging the time series within that region. To measure the func-
tional connectivity among regions, we calculated the Pearson correla-
tion coefficients between all possible pairs of regions. We obtained a
90×90 correlation matrix for each subject. We then measured RFCS
Table 2
Regions of interest (ROIs) included in AAL-atlas.

Regions Abbreviations

Superior frontal gyrus, dorsolateral SFGdor
Middle frontal gyrus MFG
Inferior frontal gyrus, opercular part IFGoperc
Inferior frontal gyrus, triangular part IFGtriang
Rolandic operculum ROL
Supplementary motor area SMA
Superior frontal gyrus, medial SFGmed
Cuneus CUN
Lingual gyrus LING
Superior occipital gyrus SOG
Middle occipital gyrus MOG
Inferior occipital gyrus IOG
Fusiform gyrus FFG
Superior parietal gyrus SPG
Inferior parietal, but supramarginal and angular gyri IPL
Supramarginal gyrus SMG
Angular gyrus ANG
Precuneus PCUN
Paracentral lobule PCL
Superior temporal gyrus STG
Middle temporal gyrus MTG
Inferior temporal gyrus ITG
Superior frontal gyrus, orbital part ORBsup

Please cite this article as: Dai, Z., et al., Discriminative analysis of early A
acterization with multi-classif..., NeuroImage (2011), doi:10.1016/j.neur
using a method that has been described in previous studies (He
et al., 2009; Jiang et al., 2004). The correlation strength of region i
was defined as:

Sregion ið Þ ¼ 1
N−1

∑
j≠i

Rij

��� ��� ð1Þ

where Rij is the correlation coefficient between region i and region j,
and N is the number of regions. RFCS measures the average correla-
tion extent of a given region with all of the other regions.

Structural MRI data
Individual structural images (T1-weighted MPRAGE images) were

coregistered to the mean functional image after motion correction
using a linear transformation (Collignon et al., 1995). The transformed
structural images were then segmented into gray matter density
(GMD), white matter density (WMD) and cerebrospinal fluid density
and spatially normalized into standard space using a unified segmenta-
tion algorithm (Ashburner and Friston, 2005). Individual GMD images
underwent spatial smoothing using 10-mm full width at halfmaximum
(FWHM)Gaussian kernel and then resampled to 3 mm isotropic voxels.
Like functional maps, individual GMD maps were first partitioned into
90 ROIs using the AAL atlas, and the mean GMD value of each region
was then extracted by averaging the GMD values of all voxels within
that region.

We obtained three functional maps at different levels, i.e., the ALFF
map, ReHo map, RFCS map, and one structural map, the GMD map, for
each subject. For each map, 90 features were extracted from the 90
ROIs. For a given ROI, ALFF, ReHo and RFCS reflect the degree of regional
activity, the degree of regional synchronization and the degree of global
synchronization of spontaneous neuronal activity, respectively. The
GMD captures the morphometric characteristics of the given ROIs.
Therefore, we extracted 90 features separately from the ALFF, ReHo,
RFCS and GMD maps for each subject. It is worth noting that the
features derived from other modalities and levels can also be used as
additional features for classification.

Discriminative analysis

In this section, we first detail the main procedures of classifying
AD patients and healthy controls. The procedures included three
Regions Abbreviations

Middle frontal gyrus, orbital part ORBmid
Inferior frontal gyrus, orbital part ORBinf
Superior frontal gyrus, medial orbital ORBsupmed
Gyrus rectus REC
Insula INS
Anterior cingulate and paracingulate gyri ACG
Median cingulate and paracingulate gyri DCG
Posterior cingulate gyrus PCG
Parahippocampal gyrus PHG
Temporal pole: superior temporal gyrus TPOsup
Temporal pole: middle temporal gyrus TPOmid
Olfactory cortex OLF
Hippocampus HIP
Amygdala AMYG
Caudate nucleus CAU
Lenticular nucleus, putamen PUT
Lenticular nucleus, pallidum PAL
Thalamus THA
Precentral gyrus PreCG
Calcarine fissure and surrounding cortex CAL
Postcentral gyrus PoCG
Heschl gyrus HES

lzheimer's disease using multi-modal imaging and multi-level char-
oimage.2011.10.003

http://dx.doi.org/10.1016/j.neuroimage.2011.10.003


Fig. 1. A flowchart of the M3 method used for classification.

Table 3
Classification performance of the single metrics and multi-modal multi-level
combinations.

Metrics Accuracy Sensitivity Specificity

The proposed M3 method
(ALFF+ReHo+RFCS+GMD)

89.47% 87.5% 90.91%

ALFF 78.95% 81.25% 77.27%
ReHo 73.68% 75% 72.73%
RFCS 73.68% 81.25% 68.18%
GMD 86.84% 87.5% 86.36%
ALFF+ReHo 76.32% 68.75% 81.82%
ALFF+RFCS 73.68% 75% 72.73%
ReHo+RFCS 68.42% 75% 63.64%
GMD+ALFF 86.84% 87.5% 86.36%
GMD+ReHo 86.84% 87.5% 86.36%
GMD+RFCS 86.84% 87.5% 86.36%
ALFF+ReHo+RFCS 76.32% 75% 77.27%
GMD+ALFF+ReHo 81.58% 81.25% 81.82%
GMD+ALFF+RFCS 86.84% 81.25% 90.91%
GMD+ReHo+RFCS 86.84% 87.5% 86.36%
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steps: feature selection, maximum uncertainty linear discriminant
analysis (MLDA)-based classification and multi-classifier, as shown
in Fig. 1. Leave-one-out cross-validation (LOOCV) was then used to
estimate the performance of our classifier. Finally, we identified the
most discriminative features.

Feature selection
Given that some features are less effective, irrelevant or redundant

for classification, selecting a small set of features with the greatest
discriminative power will improve the final classification performance
(Dosenbach et al., 2010; Guyon, 2003). Several studies have suggested
that correctly reducing the number of features can not only speed up
computation but also improve the performance of the classifier (De
Martino et al., 2008; Pereira et al., 2009). Therefore, a univariate
feature-filtering step was adopted in this study. Two-sample two-
tailed t-tests were performed to determine the features that showed
differences between the AD and NC groups. We also used a nonpara-
metric rank-sum test for the feature selection and found similar results
(data not shown). This process was constrained on the training set of
each LOOCV fold. Features with significant differences (Pb0.05, uncor-
rected) between the two groups of training set were selected. The fea-
ture selection was always carried out on the training sample only,
which avoided the overfitting of the classifier.

MLDA-based classifier
We used MLDA as our base classifier. The primary purpose of Fisher

Discriminant Analysis (FDA) was to find the optimal projective direc-
tion by maximizing between-class separability and minimizing
within-class variability. When the high-dimensional space samples
are mapped onto one dimension, we can easily perform classification
using one-dimensional projected features. However, the traditional
FDA cannot be directly usedwhen thewithin-class scattermatrix is sin-
gular, as is the case of limited samples and high dimensional feature
space. In this work, the dimension of feature space was still higher
than the number of samples even after performing feature selection.
Thus, we used a maximum uncertainty LDA-based approach (MLDA)
Please cite this article as: Dai, Z., et al., Discriminative analysis of early A
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(Thomaz et al., 2004, 2007). This method employed a maximum entro-
py covariance selection method instead of the within-class scatter
matrix.

Multi-classifier
Many researchers have investigated the technique of combining the

predicted results of multiple classifiers to generate a single classifier
(Hong et al., 1999; Kittler et al., 1998; Ross and Jain, 2003). A multi-
classifier was used in this study. Fig. 1 illustrates the basic framework
for the multi-classifier. Briefly, one subject was first selected as a test
sample, and the remaining subjects were used to build a multi-
classifier. We applied four different types of features (ALFF, ReHo,
RFCS and GMD) to obtain the base classifier. The four classifiers
were combined through weighted voting. As an example, if we had n
subjects, one was selected for testing, and the remaining n−1 subjects
were used for training the base classifier's parameter values. From
lzheimer's disease using multi-modal imaging and multi-level char-
roimage.2011.10.003
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Table 4
The number of features retained in the M3 method per fold.

Fold ALFF ReHo RFCS GMD

1 11 17 7 88
2 9 12 6 88
3 11 18 10 89
4 10 17 9 89
5 12 17 8 88
6 9 15 7 89
7 11 14 7 88
8 10 14 8 88
9 11 17 8 88
10 10 18 9 89
11 11 20 10 89
12 11 16 6 88
13 11 15 7 86
14 10 15 6 86
15 11 15 6 87
16 10 16 6 89
17 10 16 10 88
18 10 16 6 88
19 10 20 8 89
20 11 13 6 89
21 12 16 6 88
22 10 17 10 88
23 11 14 6 88
24 11 18 6 88
25 11 15 6 88
26 10 16 8 89
27 11 18 9 88
28 10 16 6 88
29 11 14 6 88
30 12 15 7 89
31 10 16 6 88
32 10 15 5 89
33 12 18 7 88
34 12 16 6 88
35 12 20 10 88
36 11 17 6 88
37 11 16 6 88
38 13 15 7 88

Fig. 2. Classification performance of the M3 method. (A) Scatter plot of the discrimina-
tive scores of all subjects in the multi-classifier. Negative scores represent subjects clas-
sified in the AD group and positive scores represent subjects classified in the healthy
control group. (B) ROC curve of the classifier. The cut-off point corresponds to the high-
est accuracy of 89.47%. The area under the ROC curve was 0.923.
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these n−1 training samples, we can obtain each base classifier's weight
of voting by calculating its classification accuracy of n−1 leave-one-out
within the training set. Themulti-classifier was then determined by the
weighted sum of each base classifier's output label:

F xið Þ ¼ sign
X4
k¼1

ωk⋅Fk xki
� �� � !

ð2Þ

where xi={xik,k=1,2,3,4} a feature vector of the four feature map of i-
th test sample, xik is a feature vector of the k-th featuremap, Fk∈{−1,1}
as its corresponding classifier's output, and ωk is k-th classifier's weight
of voting obtained by the classification accuracy of n−1 leave-one-out
within the training set.

Cross validation
LOOCVwas used to estimate the performance of classifier. In LOOCV,

each sample was designated as the test sample, while the remaining
samples were used to train the multi-classifier. Accuracy, sensitivity
and specificity can be defined on the basis of prediction results of
LOOCV to quantify the performance of the classifier.

Accuracy ¼ TPþ TN
TPþ FNþ TNþ FP

ð3Þ

Sensitivity ¼ TP
TPþ FN

ð4Þ

Specificity ¼ TN
TNþ FP

ð5Þ
Please cite this article as: Dai, Z., et al., Discriminative analysis of early A
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where TP, FN, TN, and FP denoted the number of patients correctly
predicted, the number of patients classified as normal controls, the
number of normal controls correctly predicted and the number of
normal controls classified as patients, respectively.
Identification of the most discriminative features

For each base classifier, the classification rule is based on the de-
termination of the separating hyperplane, which is orthogonal to
the discrimination hyperplane or projective direction. It has been
shown that the coefficients of the discrimination hyperplane quantify
the amount of discriminative feature information (Mourão-Miranda
et al., 2005; Sato et al., 2009; Thomaz et al., 2004; Thomaz et al.,
2007). We then normalized the coefficients by dividing by the maxi-
mum coefficient value. Finally, we multiplied the absolute value of
normalized coefficients by the base classifier's weight of voting as
feature weights. The higher the feature weights were determined
to be, the more discriminative of corresponding features. On every
fold of LOOCV, the selected features differed slightly from fold to
fold of LOOCV. The most discriminative features were restricted to
those that appeared in every fold of LOOCV. Each base classifier's feature
weights were averages from all folds of LOOCV. The feature weights of
the multi-classifier were finally obtained by summing the base classi-
fier's feature weights. Thus, for 90 ROIs, we obtained the order of their
contribution to the classification.

The matlab codes relevant to the M3 method have been made
publicly available at: http://www.nitrc.org/projects/pare/.
lzheimer's disease using multi-modal imaging and multi-level char-
oimage.2011.10.003
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Results

We used a LOOCV to estimate the generalizability of the classifier.
Our M3 method achieved a classification accuracy of 89.47%, with a
sensitivity of 87.5% and a specificity of 90.91%. These resultswere better
than the values obtained with any single type of feature or other types
of multi-type features combinations. The classification performance of
the combined and simple types of features is summarized in Table 3.
We also listed the number of features retained in the M3 method per
fold in Table 4.

Fig. 2A presents the relationship between discriminative scores
and MMSE. The discriminative score for each test subject acquired
by the multi-classifier was determined by weighted voting by the
four base classifiers. Taking each subject's discriminative score as a
threshold, the performance in terms of the receiver operating charac-
teristics (ROC) curve is shown in Fig. 2B. The area under the ROC
curve (AUC) of the proposed method was 0.923, indicating an excel-
lent diagnostic power.

The most discriminative features for classification are shown in
Table 5 and Fig. 3. The top 15 features are listed in descending order
of their weights. The ROIs with the great relative classification
power included the bilateral fusiform gyrus (FFG), the right medial
orbital of superior frontal gyrus (ORBsupmed), bilateral hippocampus
(HIP), the right inferior occipital gyrus (IOG), the left middle occipital
gyrus (MOG), bilateral amygdale (AMYG), the left posterior cingulate
gyrus (PCG), the right orbital part of superior frontal gyrus (ORBsup),
the left pallidum of the lenticular nucleus (PAL), the right parahippo-
campal gyrus (PHG), the right insula (INS) and the left Heschl gyrus
(HES). We also listed whether these features demonstrated signifi-
cant differences in each type of feature. Compared with the healthy
controls, the AD patients showed significant ALFF increases in the bi-
lateral FFG, the right ORBsupmed and left the HIP, ReHo increases in
the bilateral FFG and RFCS increases in the left MOG, while AD
Table 5
Top 15 features showing the most discriminative features for classification.

Regions ALFF ReH

Right fusiform t=3.40
(P=0.0017)

t=3
(P=

Right superior frontal gyrus, medial orbital t=2.26
(P=0.0301)

t=−
(P=

Left fusiform t=4.59
(Pb0.0001)

t=2
(P=

Left hippocampus t=2.83
(P=0.0076)

NS

Right hippocampus NS NS

Right inferior occipital gyrus NS NS

Left middle occipital gyrus NS NS

Right amygdala NS NS

Left posterior cingulate gyrus t=−4.38
(Pb0.0001)

NS

Right superior frontal gyrus, orbital part NS t=−
(P=

Left lenticular nucleus, pallidum NS t=−
(P=

Right parahippocampal gyrus NS NS

Left amygdala NS NS

Right insula NS NS

Left heschl NS NS

NS: P>0.05, uncorrected.
Positive t value means increased values in the AD group.
Regions were ranked according to the feature weights.
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patients showed significant ALFF decreases in the left PCG, ReHo de-
creases in the right ORBsupmed, right ORBsup and left PAL and
RFCS decreases in the right ORBsupmed and right INS and GMD de-
creases in all these ROIs except left PAL.
Discussion

In the present study, we introduced the M3 method, which can be
used to discriminate AD patients from healthy controls. A promising
classification performance has been validated with LOOCV: our meth-
od achieved a high accuracy (89.47%) for AD classification, and the
AUC value of the proposed method was 0.923. In addition, our M3
method can substantially improve the classification performance, es-
pecially the sensitivity rate, compared with the individual modality
base classifier and other multi-modal multi-level combination classi-
fication. Thus, this method is more effective in conveying comprehen-
sive and complementary information for the purpose of classification.
It is worth noting that the classification performance is not always
improved when more features are used (Fan et al., 2007).

The proposed approach seeks to identify features that discrimi-
nate the most between AD and healthy controls. These features in-
cluded the FFG, ORBsupmed, HIP, IOG, MOG, AMYG, PCG, ORBsup,
PAL, PHG, INS and HES, which are consistent with previous studies
that have used conventional univariate statistical analysis of structur-
al and functional images to classify AD. VBM studies showed that all
of these regions had significant atrophy in AD patients compared to
healthy controls (Baron et al., 2001; Chetelat and Baron, 2003). ALFF
studies found increased ALFF values in the FFG and HIP and decreased
ALFF values in the PCG in AD patients (Wang et al., 2011). ReHo stud-
ies reported significant ReHo increases in the FFG in AD patients (He
et al., 2007). Whole brain network functional connectivity analysis in-
dicated that AD patients had decreased positive correlations between
o RFCS GMD Weight

.05
0.0043)

NS t=−6.76
(Pb0.0001)

1.574

2.73
0.0098)

t=−3.29
(P=0.0023)

t=−5.16
(Pb0.0001)

1.360

.18
0.036)

NS t=−6.51
(Pb0.0001)

1.019

NS t=−7.39
(Pb0.0001)

0.974

NS t=−7.66
(Pb0.0001)

0.865

NS t=−7.07
(Pb0.0001)

0.857

t=3.53
(P=0.0012)

t=−5.44
(Pb0.0001)

0.855

NS t=−6.28
(Pb0.0001)

0.774

NS t=−5.45
(Pb0.0001)

0.761

3.56
0.0011)

NS t=−4.97
(Pb0.0001)

0.750

4.29
0.0001)

NS NS 0.739

NS t=−7.14
(Pb0.0001)

0.701

NS t=−6.55
(Pb0.0001)

0.664

t=−2.95
(P=0.0055)

t=−6.52
(Pb0.0001)

0.653

NS t=−6.51
(Pb0.0001)

0.624
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Fig. 3. The brain regions with the most discrimination power. To visually represent the relative contribution of brain regions for classification, the ROIs were projected onto a human
brain atlas. The color represents the feature weight for each ROI. The 3D maps were made by using the BrainNet Viewer (http://www.nitrc.org/projects/bnv/). Several subcortical
regions (bilateral AMYG and left PAL) are shown in 2D slice images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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the prefrontal and parietal lobes (Wang et al., 2007). Our experimen-
tal results are consistent with these previous studies.

In conventional classification methods, the features were usually
concatenated into a longer feature vector. However, these methods
may not be sufficiently effective for combining features from different
modalities (Zhang et al., 2011). Hence, we also tested direct feature
concatenation for classification. Specifically, for each subject, we
first concatenated 90 features from ALFF, 90 features from ReHo, 90
features from RFCS and 90 features from GMD into a 360 dimensional
vector. We then performed feature selection and MLDA-based classi-
fication as described above on all of the subjects with LOOCV. The
classification accuracy was 73.68%, which was lower than the accura-
cy achieved with our method. In this paper, we employed a multi-
classifier to integrate different biomarkers. Compared with the direct
feature concatenation method, the proposed method has the advan-
tage of offering more flexibility by using different weights on differ-
ent modalities. This method may provide us with a better way to
combine different types of features for classification.

In addition to the feature combination, the base classifier is an im-
portant aspect of classification. Although more complex nonlinear
classifiers exist, linear classifiers were used in the current study be-
cause they are less sensitive to overfitting. In addition, linear classi-
fiers allow us to intuitively identify the most discriminative features
by the projective direction. There are currently multiple linear classi-
fiers available, including the FDA, linear support vector machine
(SVM) and MLDA, all of which have been previously applied for neu-
roimaging data analysis (De Martino et al., 2008; Kloppel et al., 2008;
Robinson et al., 2010; Thomaz et al., 2007; Wang et al., 2006; Zhu et
al., 2008). Compared with FDA, MLDA can solve the problem that
Please cite this article as: Dai, Z., et al., Discriminative analysis of early A
acterization with multi-classif..., NeuroImage (2011), doi:10.1016/j.neur
within-class scatter matrix is singular in the case of limited samples
and high dimensional feature space. Further analysis revealed higher
generation rate of MLDA-based multi-classifier (89.47%) in compari-
son with linear SVM-based multi-classifier (81.58%) for our data set.
Several previous studies have also found similar results in which
SVM did not outperform LDA (Yang, 2001; Zhu et al., 2008). The the-
oretical comparison between MLDA and the linear SVM is not easy
because they have different objective classification functions. MLDA
seeks out the optimal projective direction by maximizing between-
class separability and minimizing within-class variability, whereas
linear SVM finds the solution to maximize (Zhu et al., 2008).

Several issues need to be addressed. First, we used a relatively low
sampling rate (TR=2 s) for imaging acquisitions. Under this sam-
pling rate, cardiac and respiratory fluctuation effects were aliased
into the low-frequency fluctuations, which could reduce the specific-
ity of the connectivity effect (Lowe et al., 1998; Teichert et al., 2010).
Recent research has demonstrated that global signal is associated
with respiration-induced fMRI signal (Birn et al., 2006; Chang and
Glover, 2009). In the preprocessing analysis of functional connectivi-
ty, we therefore regressed out this global signal to reduce the effects
of the respiration. Moreover, we used a temporal filtering (0.01–
0.1 Hz) procedure to further reduce the effects of low-frequency
drifts and high-frequency physiological noise. In the future, these
physiological effects can be estimated and removed by simultaneous-
ly recording the respiratory and cardiac cycle during the data acquisi-
tion. Second, although we used both structural MRI and resting fMRI
data, there are also other data modalities (e.g., PET, EEG and CSF)
that can be used to further improve the classification performance.
Third, we used the AAL atlas to parcellate the brain into 90 ROIs.
lzheimer's disease using multi-modal imaging and multi-level char-
oimage.2011.10.003

image of Fig.�3
http://dx.doi.org/10.1016/j.neuroimage.2011.10.003


8 Z. Dai et al. / NeuroImage xxx (2011) xxx–xxx
Currently, there are different structurally (Collins et al., 1995; Makris
et al., 1999) and functionally (Benjaminsson, 2010; Craddock et al.,
2011; De Luca et al., 2006; Dosenbach et al., 2010) defined brain
atlases: different parcellation schemes could generate different results.
Several recent studies have demonstrated that the connectivity patterns
of brain networks can be affected by different parcellation atlases
(Craddock et al., 2011; Wang et al., 2009; Zalesky et al., 2010). To eval-
uate the effects of the brain parcellation methods on classification
performance, further studies are needed to apply our method to
other brain atlases, even to a voxel level. These studies will be impor-
tant to determine which parcellation strategy is the most sensitive to
specific disease condition. Fourth, although the M3 method obtained
a good performance from LOOCV, we must acknowledge that the
contradiction between learning precision and generalization is almost
unavoidable for the limited size of subjects and high-dimensional
feature space. In pattern classification, a complex model could predict
the training data but fail drastically on unseen data because of lacking
of the generalization. Thus, the overfitting issue generally occurs for
these models. In this study, we indeed used a complex double-loop
feature selection to reduce dimensionality of features, which could
lead to the overfitting. However, it needs to note that the feature selec-
tion procedure was carried out on the training sample only. Moreover,
we employed a linear leaning algorithm to classify the patients, which
is insensitive to overfitting problems as compared to nonlinear learning
algorithms. Further, a leave-one out cross-validationwas used to evalu-
ate the generalization of our method for new individuals, which
reduced the artifact of over-training (Pereira et al., 2009). Fifth, consid-
ering that a small sample (38 subjects in total) was used in this study,
the obtained classifier was specific to the current dataset and could
not be general enough. In the future, we expect to apply theM3method
to a large AD dataset (e.g., ADNI2) to train a robust classifier and to
check its generalization ability. Finally, this study did not include the pa-
tients with other forms of dementia such as fronto-temporal dementia
and Lewy-body dementia. In the future, the proposed M3 method can
be further used to discriminate the AD patients from patients with
other dementia.

Conclusion

In this study, we introduced the M3 method to discriminate pa-
tients with AD from healthy controls by combining multi-modal im-
aging and multi-level measures including the degree of regional
activity, the degree of regional synchronization, the degree of global
synchronization of spontaneous neuronal activity and regional gray
matter density. The predictive power of this method was very high,
yielding 89.47% accuracy. Moreover, the M3 method offered more
flexibility by using different weights for different measures. This
promising classification power suggests that this method may pro-
vide a complementary approach for potentially improving the clinical
diagnosis of AD as well as other brain disorders.
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