
lable at ScienceDirect

Neurobiology of Aging 75 (2019) 71e82
Contents lists avai
Neurobiology of Aging

journal homepage: www.elsevier .com/locate/neuaging
Disrupted structural and functional brain networks in Alzheimer’s
disease

Zhengjia Dai a,b,1, Qixiang Lin a,c,1, Tao Li d,e, f, Xiao Wang d,e,f, Huishu Yuan g, Xin Yu d,e,f

, Yong He a,c,**, Huali Wang d,e,f,*

aNational Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing,
China
bDepartment of Psychology, Sun Yat-sen University, Guangzhou, China
cBeijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
dDementia Care & Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
eBeijing Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
fNational Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
gDepartment of Radiology, Peking University Third Hospital, Beijing, China
a r t i c l e i n f o

Article history:
Received 29 January 2018
Received in revised form 8 November 2018
Accepted 9 November 2018
Available online 16 November 2018

Keywords:
Structural connectivity
Functional connectivity
Small-world
Connectome
Graph theory
* Corresponding author at: Dementia Care & Resea
Institute of Mental Health (Sixth Hospital), Beijing, Ch
fax: þ86-10-62011769.
** Corresponding author at: National Key Laborator
and Learning, IDG/McGovern Institute for Brain Resea
Brain Imaging and Connectomics, Beijing Normal Un
þ86-10-58802036; fax: þ86-10-58802036.

E-mail addresses: yong.he@bnu.edu.cn (Y. He
(H. Wang).

1 These authors contributed equally to this work.

0197-4580/$ e see front matter � 2018 Elsevier Inc. A
https://doi.org/10.1016/j.neurobiolaging.2018.11.005
a b s t r a c t

Studies have demonstrated that the clinical manifestations of Alzheimer’s disease (AD) are associated
with abnormal connections in either functional connectivity networks (FCNs) or structural connectivity
networks (SCNs). However, the FCN and SCN of AD have usually been examined separately, and the
results were inconsistent. In this multimodal study, we collected resting-state functional magnetic
resonance imaging and diffusion magnetic resonance imaging data from 46 patients with AD and 39
matched healthy controls (HCs). Graph-theory analysis was used to investigate the topological organi-
zation of the FCN and SCN simultaneously. Compared with HCs, both the FCN and SCN of patients with
AD showed disrupted network integration (i.e., increased characteristic path length) and segregation (i.e.,
decreased intramodular connections in the default mode network). Moreover, the FCN, but not the SCN,
exhibited a reduced clustering coefficient and reduced rich club connections in AD. The coupling (i.e.,
correlation) of the FCN and SCN in AD was increased in connections of the default mode network and the
rich club. These findings demonstrated overlapping and distinct network disruptions in the FCN and SCN
and a strengthened correlation between FCNs and SCNs in AD, which provides a novel perspective for
understanding the pathophysiological mechanisms underlying AD.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

Understanding the neural mechanisms of Alzheimer’s disease
(AD) is crucial, as AD is a progressive neurodegenerative disease
characterized by a decline in memory processing and cognitive
function. Neuroimaging research has demonstrated that the clinical
manifestations of patients with AD are associated not only with
structural and functional damage in specific brain regions but also
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with decreased connections between different brain regions
(defined as the disconnection mechanisms of AD) (Delbeuck et al.,
2003, 2007). With the advent of noninvasive structural and func-
tional neuroimaging techniques, researchers have been able to
capture AD-related disconnection patterns using graph theoretical
analysis (i.e., the connectome) (Dai and He, 2014; He et al., 2009a;
Sporns et al., 2005). A better understanding of the connectome-
based disruptions in AD may help bridge the gap between patho-
logical processes and emerging clinical manifestations. It also al-
lows uncovering why the disease propagates along specific paths.

In the past decade, connectome-based methods revealed many
nontrivial topological organizations of healthy human brain net-
works: a high clustering coefficient and modular structure, which
reflects network segregation in the human brain, and low charac-
teristic path length, significant rich club structure (dense in-
terconnections among a small set of highly connected brain
regions), and high nodal degree centrality, which reflects network
integration in the human brain (Bullmore and Sporns, 2009; He and
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Evans, 2010; Liao et al., 2017; van den Heuvel and Sporns, 2011).
Related to AD, numerous previous studies have reported changes in
topological properties of either functional connectivity networks
(FCNs) or structural connectivity networks (SCNs). Using resting-
state functional magnetic resonance imaging (R-fMRI), several
FCN studies revealed decreased network segregation (e.g.,
decreased clustering coefficient andmodular structure) (Chen et al.,
2013; Supekar et al., 2008) and increased network integration (e.g.,
decreased characteristic path length) (Sanz-Arigita et al., 2010) in
patients with AD comparedwith healthy controls (HCs). In contrast,
using diffusion MRI (dMRI), several SCN studies discovered
increased network segregation (e.g., increased clustering coeffi-
cient) (Daianu et al., 2013) and decreased network integration (e.g.,
increased characteristic path length) (Lo et al., 2010) in AD.
Regarding the rich club structures and hubs in the network in AD,
studies also showed considerable variability across studies (for re-
view, see Tijms et al., 2013). Despite the fact that these studies
revealed abnormal network segregation and integration of the FCN
and SCN in AD, these findings were inconsistent between studies of
FCNs and SCNs. One possibility could be that previous studies
recruited different AD populations or examined different MRI mo-
dalities. For example, the SCN represents anatomical wiring dia-
grams, whereas the FCN reflects the synchronization of neuronal
activities in different brain regions. Hence, it is crucial to investigate
the topological properties of FCNs and SCNs in the same cohort of
AD. However, very few studies have been performed in this manner.

In addition to investigating the independent role of the FCN and
SCN in AD, studies also need to consider the relationship between
the FCN and SCN. Recently, researchers have argued that the FCN of
the brain could be constrained by the underlying SCN (Hagmann
et al., 2010; Honey et al., 2009, 2010; Park and Friston, 2013; Wang
et al., 2015c). A growing body of research has focused on the rela-
tionship between SCNs and FCNs from the perspectives of connec-
tivity (Hermundstad et al., 2013; Honeyet al., 2009; Skudlarski et al.,
2008), subnetworks (Greicius et al., 2009; van den Heuvel et al.,
2009), and network topology (Alexander-Bloch et al., 2013; Park
et al., 2008). Intriguingly, the coupling (i.e., correlation coefficient)
of FCNs and SCNs has been found to be significantly correlated with
brain development (Hagmann et al., 2010) and change in brain dis-
eases, including stronger FCN-SCN coupling in schizophrenia (van
den Heuvel et al., 2013) and decreased FCN-SCN coupling in idio-
pathic generalized epilepsy (Zhang et al., 2011). Studying the
changes in the FCN-SCN couplingmayprovide a potential biomarker
that detects subtle brain connectivity disruption more sensitively
than does a singlemodality (van denHeuvel et al., 2013; Zhang et al.,
2011; for review, seeWang et al., 2015b) and facilitate amechanistic
understanding of the dynamic change in clinical manifestations.
However, it remains largely unknown whether the FCN-SCN
coupling is changed in patients with AD.

To address the aforementioned issues, in the present study, we
collected R-fMRI and dMRI data from the same cohort of patients
with AD and matched HCs, followed by graph theoretical analyses
to systematically examine the topological properties of the FCN,
SCN, and the FCN-SCN coupling. We sought to determine (1)
whether the patients with AD from the same cohort show over-
lapping and distinct disruptions in the topological organization in
the FCN and SCN and (2) whether the FCN-SCN coupling of brain
networks changes in AD at different levels, including the whole
brain, subnetworks, and nodal degree levels. We hypothesized that
the FCN and SCN would show common topological measure alter-
ations in the AD. In addition, considering that different MRI mo-
dalities provide different types of information, we hypothesized
that the FCN and SCN would show distinct topological measure
alterations in patients with AD, and the FCN-SCN coupling would
also be disrupted in the AD. As described previously, previous
studies using different MRI modalities (e.g., R-fMRI and dMRI) and
different samples showed a lack of consistent direction regarding
the between-group differences in network properties. Thus, we
tested this hypothesis without specifying the expected direction for
group comparisons.

2. Materials and methods

2.1. Participants

Patients with AD and HCs were recruited to establish a registry
at the Dementia Care and Research Center, Peking University
Institute of Mental Health. After enrollment, each participant un-
derwent a comprehensive clinical interview, a neuropsychological
battery assessment, laboratory tests, and multimodal brain MRI
examinations. Participants in the registry were also invited to
receive follow-up tests every 6 months. For this study, we selected
patients (registered between June 2007 and May 2011) who had a
baseline diagnosis of AD and had completed an MRI examination
before initiation of nootropic medication (n ¼ 47). All participants
were right-handed Han Chinese. All participants were clinically
assessed with the Clinical Dementia Rating (CDR) (Morris, 1993),
which categorized them as HCs (CDR¼ 0) or as patients in the early
stage of AD (CDR � 0.5). The clinical diagnosis of AD was made
according to the International Classification of Disease, 10th Revi-
sion (ICD-10) (World Health Organization, 1999) and the criteria for
probable AD of the National Institute of Neurological and
Communicative Disorders and the Stroke/Alzheimer’s Disease and
Related Disorders Association (NINCDS-ADRDA) (McKhann et al.,
1984). Patients were excluded if they presented structural abnor-
malities that could result in dementia, such as cortical infarction,
tumor, or subdural hematoma, or if they had concurrent illnesses
other than dementia that interfered with cognitive functions at the
time of the MRI examination. The HCs had no history of neuro-
logical or psychiatric disorders, sensorimotor impairment, or
cognitive complaints; no abnormal anatomical findings by con-
ventional brain MRI; and no evidence of cognitive deficits from
neuropsychological tests. Written informed consent was obtained
from each participant, and this study was approved by the insti-
tutional review board of the Peking University Institute of Mental
Health. A subset of this data set was used to examine the APOE-ε4-
mediated modulation of large-scale brain networks, hippocampal
structure, and function, and cognitive performance (Wang et al.,
2015a,b). In the present study, 87 participants (47 AD patients
and 40 HCs) were selected. The data of 1 patient with AD and 1 HC
were discarded because of excessive motion artifacts during the R-
fMRI scan (see Image preprocessing). The clinical and demographic
data of the remaining 85 participants are summarized in Table 1.

2.2. Neuropsychological assessment

All participants performed a Chinese version of the
MinieMental State Examination (MMSE) and the cross-cultural
neuropsychological test battery (Dick et al., 2002), including the
Cognitive Abilities Screening Instrument (CASI) (Teng et al., 1994),
the Common Objects Memory Test (COMT) (Kempler et al., 2010),
the Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD) verbal category fluency, auditory comprehension, picture
completion, digit span (forward and backward), and Trail-Making
Test A. Among these neuropsychological measures, the MMSE and
CASI are comprehensive cognitive screeners that cover awide range
of cognitive functions. The MMSE is a standardized cognitive state
examination tool and screener of AD, and the CASI tests abilities
associated with memory, attention, orientation, language, visual
construction, abstraction, and judgment. To obtain more robust



Table 1
Demographic, clinical and cognitive characteristics of the participants

Variables AD (n ¼ 46) HCs (n ¼ 39) p-value

Age (years) 73.37 � 5.67 71.03 � 6.79 0.086
Sex (M/F) 16/30 16/23 0.554
Education (years) 13.74 � 3.23 13.41 � 3.80 0.667
CDR 0.5 (n ¼ 22), 1 (n ¼ 24) 0 -
MMSE 21.39 � 3.43 28.62 � 1.53 <0.001c

CASI 78.35 � 9.22 95.41 � 3.42 <0.001c

Episodic memorya -0.63 � 0.64 0.72 � 0.27 <0.001c

COMT Trial 1a 4.24 � 1.49 6.79 � 1.28 <0.001c

COMT Trial 2a 5.56 � 1.91 8.36 � 1.25 <0.001c

COMT Trial 3a 5.84 � 1.85 8.94 � 1.04 <0.001c

Free delayed recalld5-min 3.28 � 2.54 8.79 � 1.34 <0.001c

Recognitiond5-min 17.67 � 2.23 19.97 � 0.16 <0.001c

Free delayed recalld30-min 2.65 � 2.67 8.69 � 1.03 <0.001c

Recognitiond30-mina 17.89 � 2.54 19.97 � 0.16 <0.001c

Executive functionb -0.24 � 0.38 0.29 � 0.36 <0.001c

Verbal fluency 11.70 � 3.50 19.59 � 3.51 <0.001c

Auditory comprehensiona 23.36 � 1.96 24.62 � 0.67 <0.001c

Picture completionb 5.89 � 2.22 7.74 � 2.10 <0.001c

Digit spana 13.62 � 4.03 16.46 � 3.81 0.001c

Digit spand forwarda 8.31 � 2.33 10.08 � 2.31 <0.001c

Digit spandbackwarda 5.53 � 2.83 6.33 � 2.41 0.171
Trail-Making Test Adtime (seconds)a 118.33 � 67.60 53.26 � 15.23 <0.001c

Data were presented as the mean (SD); p-values were obtained using the two-tailed Chi-square test for sex and two-tailed two-sample t-tests for other variables.
Key: AD, Alzheimer’s disease; HCs, healthy controls; CDR, Clinical Dementia Rating; MMSE, MinieMental State Examination; CASI, Cognitive Ability Screening Instrument;
COMT, Common Object Memory Test.

a Data were missing for 1 patient.
b Data were missing for 1 patient and 1 HC.
c P < 0.05, Bonferroni corrected.
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measures and increase statistical power, we used a composite score
analysis of these neuropsychological measures. Briefly, for each
participant, the raw scores of each neuropsychological measure
were first transformed to Z scores by subtracting the mean test
scores and being divided by the standard deviation of the test
scores across all participants (85 participants). Then, the composite
scores were calculated by averaging the Z scores for episodic
memory (7 tests, including COMT Trial 1, COMT Trial 2, COMT Trial
3, 5-min free delayed recall, 5-min recognition, 30-min free delayed
recall, and 30-min recognition) and executive function (5 tests,
including verbal fluency, auditory comprehension, picture
completion, digit span, and the Trail-Making Test A).
2.3. MRI data acquisition

All participants were scanned on a 3-Tesla MR system (Siemens
Magnetom Trio, A Tim system, Germany) using a standard 8-channel
head coil. Foam pads and headphones were used to minimize par-
ticipants’ head motion and scanner noise. A three-dimensional, T1-
weighted magnetization-prepared rapidly acquired gradient-echo
(MPRAGE) sequence was used to acquire high-resolution anatom-
ical imagesusing the followingparameters: repetition time (TR)/echo
time (TE) ¼ 2530 ms/3.44 ms; time inversion (TI) ¼ 1100 ms; slice
number¼192; slice thickness¼1.0mm;gap¼0mm;matrix¼256�
256; and field of view (FOV)¼ 256� 256mm2. The scan time of this
sequence was approximately 360 seconds. The R-fMRI data were
collected using an echo-planar imaging (EPI) sequence: interleaved
axial slices, TR/TE¼ 2000ms/30ms;flip angle¼ 90�; slice number¼
30; slice thickness ¼ 4.0 mm; gap¼ 0.8 mm; matrix ¼ 64 � 64; and
FOV ¼ 220 � 220 mm2. Before the scan, the participants were
instructed to keep their eyes closed but not to fall asleep, relax their
mind, and move as little as possible during data acquisition. The R-
fMRI scan lasted for 420 seconds in total. A simple questionnaire
confirmed that no participant had fallen asleep during the R-fMRI
scan. The dMRI sequencewas acquired using a spin-echo single-shot
EPI sequence: TR/TE ¼ 5300 ms/92 ms; 64 nonlinear diffusion
directions with b ¼ 1000 s/mm2 and an additional volume with b ¼
0 s/mm2; repetition ¼ 2; voxel size ¼ 1.8 � 1.8 � 3.3 mm; slice
thickness ¼ 3.0 mm; gap between slices ¼ 0.3 mm; matrix ¼ 128 �
128; and FOV ¼ 230 � 230 mm2. The scan lasted 706 seconds.
2.4. Image preprocessing

2.4.1. R-fMRI data
Unless stated otherwise, all R-fMRI data were preprocessed us-

ing Statistical Parametric Mapping (SPM8, http://www.fil.ion.ucl.ac.
uk/spm) and Data Processing Assistant for Resting-State fMRI
(DPARSF) (Yan and Zang, 2010). Briefly, the first 5 functional vol-
umes were discarded to allow for stabilization of the initial signal
and adaptation of the participants to the circumstances. The
remaining fMRI images were then corrected for acquisition time
delay between slices and further realigned to the first volume to
correct for head motion. The data of 2 participants (1 AD with
CDR ¼ 0.5 and 1 HC) were excluded based on a head motion cri-
terion of 3 mm translation and 3� rotation. Next, the individual T1-
weighted image was coregistered to the mean functional image
after motion correction using a linear transformation (Collignon
et al., 1995) and was then segmented into gray matter (GM),
white matter, and cerebrospinal fluid tissue probabilistic maps
using a unified segmentation algorithm with SPM’s priori tissue
maps as reference (Ashburner and Friston, 2005). The motion-
corrected functional volumes were spatially normalized to the
Montreal Neurological Institute (MNI) space using the normaliza-
tion parameters estimated during unified segmentation. The
spatially normalized functional images were resampled to 3-mm
isotropic voxels and underwent linear detrending. Then, the
nuisance signals (Friston’s 24 head motion parameters and 5
CompCor signals; Behzadi et al., 2007) were regressed out from the
time course of each voxel. The Friston’s 24 head motion parameters
(i.e., 6 head motion parameters, 6 head motion parameters 1 time
point before, and 12 corresponding squared items) (Friston et al.,
1996) were used here as recent studies suggest that higher-order

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


Z. Dai et al. / Neurobiology of Aging 75 (2019) 71e8274
models minimize the effects of head motion (Satterthwaite et al.,
2013; Yan et al., 2013). Finally, the residual signals were tempo-
rally bandpass filtered (0.01 Hze0.1 Hz) to reduce the effect of low-
frequency drifts and high-frequency physiological noise (Biswal
et al., 1995; Lowe et al., 1998).

2.4.2. Diffusion MRI data
Unless stated otherwise, all dMRI data were preprocessed using

FMRIB’s Diffusion Toolbox (FSL, version 5.0, www.fmrib.ox.ac.uk/
fsl). First, an affine transformation was used to align the diffusion-
weighted images to the b0 image to correct the eddy current dis-
tortions and the motion artifacts in the dMRI data set. Next, the
diffusion tensor of each voxel was estimated by solving the Stejskal
and Tanner equation, and the reconstructed tensor matrix was
diagonalized to obtain 3 eigenvalues (l1, l2, l3) and the corre-
sponding eigenvectors. The fractional anisotropy (FA) of each voxel
was then calculated using the 3 eigenvalues.

2.5. Network construction

In this study, functional and structural brain networks were
constructed at the macroscale with nodes representing brain re-
gions, whichwere obtained by parcellating the brain GM (excluding
the cerebellum) into 625 similar-sized regions that preserved
automated anatomical labeling (AAL) landmarks (Crossley et al.,
2013; Tzourio-Mazoyer et al., 2002; Zalesky et al., 2010). Fourteen
regions were excluded because the number of voxels with nonzero
standard deviations of blood oxygen level-dependent (BOLD) time
series in that regionwas less than half of the total number of voxels
in that region in some participants. Finally, 611 regions of interest
(ROIs, AAL-611) were used to define the network nodes. Data pro-
cessing steps are shown in Fig. 1.

2.5.1. Construction of FCNs
To acquire the functional connectivity for each participant,

Pearson’s correlation coefficients and the significance levels be-
tween the time series of each pair of ROIs were calculated. Consid-
ering the ambiguous biological explanation of negative correlation
(Fox et al., 2009; Murphy et al., 2009), we restricted our analysis to
positive correlation connections and set the negative correlation
coefficients as zero. Therefore, for each participant, we obtained a
611 � 611 symmetric positive functional connectivity (FC) matrix
with the Fisher-transformed version of Pearson’s correlation co-
efficients as weight. To further assess the topological properties of
Fig. 1. A brief flowchart of constructing FCNs and SCNs and exploring the relationship betwe
matter into 611 distinct brain regions. Then, for preprocessed resting-state fMRI data, Pea
calculated to obtain the 611 � 611 FCN. For preprocessed diffusion MRI data, the determinis
organization of FCNs and SCNs and the coupling of the FCN and SCN were examined between
FCN, functional connectivity network; SCN, structural connectivity network; AAL, automate
FCNs, we generated a binary and undirected 611 � 611 network for
each participant through a thresholding procedure. The correlation
coefficients with p-values less than a statistical threshold (p < 0.05,
Bonferroni corrected) were set as 1 or 0 otherwise.

2.5.2. Construction of SCNs
The procedure for brain structural network construction was

similar to our previous studies (Gong et al., 2009; Shu et al., 2011).
In brief, individual T1-weighted images were coregistered to the b0
image in native diffusion space using a linear transformation. The
transformed T1-weighted images were then spatially normalized to
the ICBM152 T1 template in the MNI space, and the transformation
matrix was inverted to warp AAL-611 atlases from the MNI space to
the native diffusion space with a nearest-neighbor interpolation
method to keep the label values as integral numbers. Reconstruc-
tion of the whole-brain white matter tracts was performed using
DtiStudio software (version 3.0.3) based on the Fiber Assignment by
the Continuous Tracking (FACT) algorithm (Mori et al., 1999). All
tracts in the data set were computed by seeding each voxel with an
FA greater than 0.2. The fiber-tracking was terminated if it turned
an angle greater than 45� or reached a voxel with an FA less than
0.2. As a result, all the fiber pathways within the brain were
reconstructed using a deterministic tractography method. For each
edge, we calculated the connection density (Honey et al., 2009) as
follows:

wij ¼
2

Si þ Sj

X

f˛Ef

1=lðf Þ;

where Si and Sj were the cortical surfaces of node i and node j, l(f)
was the length of fiber f along its trajectory, and Ef was the set of all
fiber streamlines connecting node i and node j. Therefore, for each
participant, we obtained a 611 � 611 symmetric structural con-
nectivity (SC) matrix with the connection density as weighted. To
further assess the topological properties of SCNs, we generated a
binary and undirected 611 � 611 network for each participant with
the structural connectivity between 2 regions set as 1 if the cor-
responding weight was positive.

2.6. Network analysis

We systematically analyzed both the global and regional
properties of the FCN (binary and undirected 611 � 611 network)
and the SCN (binary and undirected 611 � 611 network), including
en FCNs and SCNs. First, based on the AAL-611 template, we parcellated the brain gray
rson’s correlation coefficients between the time series of each pair of regions were
tic tractography method was used to obtain the 611 � 611 SCN. Finally, the topological
patients with AD and HCs. For more details, see Materials and Methods. Abbreviations:
d anatomical labeling; AD, Alzheimer’s disease; HCs, healthy controls.
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whole-brain network attributes (i.e., clustering coefficient Cp,
characteristic path length Lp, normalized clustering coefficient g,
normalized characteristic path length l, and small-worldness s),
subnetwork attributes (i.e., modularity and rich club organiza-
tion), and the nodal property (i.e., degree). High clustering coef-
ficient Cp, normalized clustering coefficient g, and modularity
reflect the network segregation in the brain, which is the ability
for specialized neuronal processing carried out among densely
interconnected regions. The low characteristic path length Lp, the
normalized characteristic path length l, the significant rich club
organization, and high nodal degree centrality show the network
integration in the brain, which is the ability for global information
communication or distributed network integration. The small-
worldness s characterizes an optimized balance between
network segregation and integration. To identify brain functional
modules, the FCN was subjected to a modularity analysis. Spe-
cifically, given that the module number and membership vary
between participants, we performed the modularity analysis on
the group level. The group functional network was generated by
selecting all connections that were present in at least 70% of the
HCs. Then, a spectral optimization algorithm was used to detect
the modular structure based on the group functional network of
the HCs (Newman, 2006). Furthermore, to explore the reliability
of the modular structure (Cohen and D’Esposito, 2016; Geib et al.,
2017), the algorithm was repeated 1000 times. Then, we
measured the similarity between the first partition and the other
partitions with the normalized mutual information (Lancichinetti
et al., 2008). We found the range of normalized mutual infor-
mation from 0.975 to 1, indicating very similar module assign-
ments across different partitions. Given the highly comparable
module partitions, we used the first partition result as the final
module assignment. Based on the modular structure, the intra-
modular connectivity was calculated as the sum of the connec-
tions within a module, whereas the intermodule connectivity was
calculated as the sum of the connections between any pair of 2
modules. The modules used in the SCN were based on the mod-
ules of the group functional network of HCs. In addition, we also
extracted the modular structure based on the group functional
network of AD and found that the between-group differences of
the modular measures (i.e., intramodular and intermodule func-
tional connections) were consistent with those based on the
partition of group functional network of HCs. The rich-club phe-
nomenon is that a small number of highly connected nodes
constitute a densely interconnected “rich club.” The rich club
plays a central role in information communication (Colizza et al.,
2006) and has been found in human brain structural networks
(van den Heuvel and Sporns, 2011). For a binary structural
network of each participant, the rich club nodes were defined as
the nodes with a degree (i.e., the number of edges connected to
the node) larger than k. Based on the rich club nodes of the SCN,
the rich club connections of the FCN and SCN were calculated as
the number of the edges among the rich club nodes. Here, we
chose a range of k values from 11 to 17 (i.e., corresponding to
approximately 20%e5% of the network nodes). To determine the
nodal characteristics of the FCN and SCN, we computed the nodal
degree (i.e., the number of edges connected to the node: a node
with a larger degree allows more efficient communications across
brain regions). This measure showed high test-retest reliability in
the brain functional networks (Liao et al., 2013; Wang et al., 2011).
It was tightly correlated with the brain’s physiological measures
such as regional cerebral blood flow, oxidative glucose meta-
bolism, and aerobic glycolysis (Liang et al., 2013; Tomasi et al.,
2013; Vaishnavi et al., 2010). For more detailed descriptions and
interpretations of these network measures, see Rubinov and
Sporns (2010) and Supplemental Information.
2.7. Coupling between functional and structural connectivities

We explored the relationship between FC and SC matrices and
networks at the following 5 levels. (1) Whole-brain connectivity
leveldFor each participant, the coupling between FC and SC
matrices was examined by computing the correlation between the
functional connectivity (i.e., Fisher-transformed version of Pear-
son’s correlation coefficients) and structural connectivity (density),
which was constrained by the edges with nonzero structural con-
nections. Specifically, the nonzero structural connections were first
extracted to produce a structural connectivity vector. Then, we
resampled these values into a gaussian distribution with a mean of
0.5 and a standard deviation of 0.1 (Honey et al., 2009). The cor-
responding functional connectivities were also extracted as a vec-
tor. Finally, Pearson’s correlation between the 2 vectors was
calculated to quantify the coupling between the FC and SC. (2)
Small-worldness leveldFor each network measure (i.e., Cp, Lp, g, l,
and s) and each group, a cross-participant Pearson’s correlation
analysis between the network measure of the FCN and that of the
SCN was performed to examine the coupling of small-worldness
between functional and structural networks. (3) Modularity lev-
eldFor each participant, once the functional module structure was
defined, a correlation analysis was performed on the connections
within modular/intermodule between the FC and SC matrices.
Specifically, for each module, the nonzero structural connectivities
within the module were first extracted to produce a structural
connectivity vector. Then, we resampled these values, extracted the
corresponding functional connectivities (i.e., Fisher-transformed
version of Pearson’s correlation coefficients) as a vector and
calculated the Pearson’s correlation, using the samemethod as used
for the whole-brain connectivity level to obtain the coupling values
at the modularity level. (4) Rich club leveldFor each participant,
based on rich club nodes, we calculated the correlations within the
rich club between FC (i.e., Fisher-transformed version of Pearson’s
correlation coefficients) and SC matrices, using the same method as
used for the whole-brain connectivity level. (5) Nodal leveldFor
each participant and each node, the coupling degree was calculated
as the number of common edges of functional and structural con-
nectivities with the given node. Specifically, we can obtain the
functional connectivity vector and structural connectivity vector of
the given node, respectively. The number of common edges of the 2
vectors was defined as the coupling degree.

2.8. Statistical analysis

To examine between-group differences in network properties, a
general linear model analysis was performed with age, gender, and
education level as covariates. Notably, for each nodal measure
analysis, a false discovery rate (FDR) procedure was further per-
formed at a p value of 0.05 to correct for multiple comparisons (i.e.,
611 regions). Finally, the relationship between network properties
with significant between-group differences and cognitive measures
(i.e., MMSE, CASI, episodic memory, and executive function) was
calculated in the AD and HC groups, respectively, after controlling
for age, gender, and education level. The FDR procedure was also
performed at a p value of 0.05 to correct for multiple comparisons
(i.e., multiple network properties and the 4 cognitive measures).

2.9. Validation analysis

We evaluated whether our main results were influenced by 2
other alternative headmotion correction strategies and connectivity
density thresholds. (1) Different head motion correction strategies:
Recent studies have suggested that head motion has a confounding
effect on functional connectivity analysis (Power et al., 2012;
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Satterthwaite et al., 2013; Van Dijk et al., 2012; Yan et al., 2013). In
this study, to minimize the effects of head motion, we have used
CompCor methods and Friston’s 24 head motion parameters
regression methods to correct the motion artifacts (Muschlli et al.,
2014; Satterthwaite et al., 2013; Yan et al., 2013). In addition, we
foundnonsignificant differences inheadmotionbetweenADandHC
groups (two-tailed two-sample t-test, p ¼ 0.131, for the mean
framewise displacement [FD] of Jenkinson; Jenkinson et al., 2002).
Nonetheless, to validate our main results, 2 alternative headmotion
correction strategies were performed: (1)We reanalyzed functional
data by including mean FD as an additional covariate (Chen et al.,
2018; Yan et al., 2013) in group analysis. (2) We performed a scrub-
bing procedure on the preprocessed images (Power et al., 2012; Yan
et al., 2013). For each participant, we deleted the volumes with FD>

0.5 mm together with 1 previous volume and the 2 following vol-
umes, and the network metrics were then reanalyzed using these
censored R-fMRI data. (2) Connectivity density thresholds: In this
study, we used a statistically significant correlation method to
threshold the connections. This method enables the examination of
the absolute topological organization of functional networks. In
addition,wealso analyzed thenetworkmetrics usingafixed-density
threshold (10%, 15%, and 20%, the minimum network density across
the participants based on the statistically significant correlation
method is 9.1%) as a complementary analysis, ensuring the same
number of connections across all participants.

3. Results

3.1. Demographic data and cognitive performance

There were no significant differences in age, gender, and edu-
cation level between AD and HC groups (all p > 0.05, Table 1). As
expected, the patients with AD had significantly lower performance
than HCs in all the cognitive domains (i.e., MMSE, CASI, episodic
memory, and executive function). Demographic data and cognitive
performance of the 85 participants are shown in Table 1.

3.2. Disrupted functional connectivity network

Compared with HCs, patients with AD had significantly lower
functional connection strength (p ¼ 0.034) and fewer number of
edges (p ¼ 0.029) in the FCN. For topology organization, compared
with HCs, patients with AD exhibited a significantly decreased clus-
tering coefficient (p¼ 0.023) and increased characteristic path length
Fig. 2. Alterations of modular structure and nodal degree of FCNs in patients with AD relat
including DMN, SMN, VN, SN, and ECN. (B) AD-related intramodular and intermodule functio
the sum of the connection within a module, whereas the intermodule connectivity was ca
represents the t-value of between-group comparison (all AD < HCs). (C) Between-group diff
the brain surface using BrainNet Viewer (Xia et al., 2013). Abbreviations: FCN, functional con
VN, visual network; SN, salience network; ECN, executive-control network; AD, Alzheimer’
(p ¼ 0.010), normalized clustering coefficient (p ¼ 0.022), and
normalized characteristic path length (p ¼ 0.005), and small-
worldness (p ¼ 0.027). Based on the group functional network of
HCs, we visually identified 5 modules (modularity value ¼ 0.470)
based on previous atlas/studies (He et al., 2009b; Liang et al., 2015;
Power et al., 2011; Yeo et al., 2011): default mode network (DMN),
executive-control network (ECN), salience network (SN),
somatosensory-motor network (SMN), and visual network (VN)
(Fig. 2A). The intramodular functional connection numbers of the
DMN, SN, and ECNwere significantly decreased (all p< 0.05, Fig. 2B)
in patients with AD compared with HCs. Decreased intermodule
connectivity was located among the SN, SMN, and VN (all p < 0.05,
Fig. 2B) in theADgroupcomparedwithHCs. For the richclubanalysis,
the functional connection numbers were significantly reduced in AD
for rich club connections when k varies from 11 to 13 (all p < 0.05,
Table 2). At the nodal level, compared with HCs, the AD showed a
decreasednodal degree in the left hippocampus and inferior fusiform
gyrus, right amygdala, superior temporal pole,middle temporal pole,
and inferior temporal gyrus (p < 0.05, FDR corrected, Fig. 2C).

3.3. Disrupted structural connectivity network

Compared with the HCs, patients with AD had a lower structural
connection density (p ¼ 0.035) and a fewer number of edges (p ¼
0.033) of the SCN. For topology organization, the AD group showed
only increased characteristic path length (p ¼ 0.019) with no
change in other small-worldness measures (all p > 0.05). Based on
the modular organization of the group functional network of HCs,
we found that the DMN exhibited decreased intramodular struc-
tural connectivity. The number of structural connectivities between
ECN and other 4 modules (i.e., DMN, SMN, VN, and SN) was
significantly decreased in patients with AD compared with HCs (all
p< 0.05, Fig. 3A). For the rich club analysis, no significant difference
in rich club connections was found (all p > 0.05). At the nodal level,
compared with HCs, the AD group showed a decreased nodal de-
gree in the right middle frontal gyrus, insula, and middle temporal
gyrus (p < 0.05, FDR corrected, Fig. 3B).

3.4. Disrupted functional connectivity and structural connectivity
network coupling

At the whole-brain connectivity level, both the AD and HC
groups showed significant correlations between the whole SC and
FC (all p < 10�37), but there was no significant difference in these
ive to HCs. (A) Five modules were identified for the group-level mean network of HCs,
nal connectivities decrease (p < 0.05). The intramodular connectivity was calculated as
lculated as the sum of the connection between any pair of 2 modules. The line width
erence of nodal degree of FCNs (p < 0.05, FDR corrected). The results were mapped on
nectivity network; DMN, default mode network; SMN, somatosensory-motor network;
s disease; HCs, healthy controls.



Table 2
Summary of network topology difference between the patients with AD and HCs

Index FCN SCN FC-SC
coupling

Cp �2.323 (0.023) NS NS
Lp 2.631 (0.010) 2.405 (0.019) NS
g 2.333 (0.022) NS NS
l 2.872 (0.005) NS NS
s 2.257 (0.027) NS NS
Connections within DMN �3.546 (0.0007)a �2.039 (0.045) 2.026

(0.046)
Connections within SMN NS NS NS
Connections within VN NS NS NS
Connections within SN �3.717 (0.0004)a NS NS
Connections within ECN �2.353 (0.021) NS NS
DMN-SMN connections NS NS NS
DMN-VN connections NS NS NS
DMN-SN connections NS NS NS
DMN-ECN connections NS �2.808 (0.006) NS
SMN-VN connections �2.679 (0.009) NS NS
SMN-SN connections �2.509 (0.014) NS NS
SMN-ECN connections NS �2.026 (0.046) NS
VN-SN connections �2.515 (0.014) NS NS
VN-ECN connections NS �2.104 (0.039) NS
SN-ECN connections NS �2.459 (0.016) NS
Rich club (k ¼ 11) �2.483 (0.015) NS NS
Rich club (k ¼ 12) �2.289 (0.025) NS NS
Rich club (k ¼ 13) �2.163 (0.034) NS NS
Rich club (k ¼ 17) NS NS 2.134

(0.036)

Data are presented as t-score (p-value).
Key: NS, nonsignificant; AD, Alzheimer’s disease; HCs, healthy controls; DMN,
default mode network; SMN, somatosensory-motor network; VN, visual network;
SN, salience network; ECN, executive-control network; FC, functional connectivity;
SC, structural connectivity.

a p < 0.05, FDR corrected.
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correlation coefficients between the 2 groups (p ¼ 0.363). At the
small-worldness level, there were no significant correlations of the
topological measures across participants in each group (all p> 0.05)
and no significant difference of the 2 Fisher’s r-to-z transformed
correlation coefficients between groups (all p > 0.05). At the
modularity level, significantly stronger FC-SC correlations were
found in the DMN module (p ¼ 0.046, Fig. 4A) in the AD group
compared with HCs. At the rich club level, significantly increased
FC-SC correlations were found in the rich club connections of the
Fig. 3. Alterations of modular structure and nodal degree of SCNs in patients with AD
relative to HCs. (A) AD-related intramodular and intermodule structural connectivity
decrease (p < 0.05). The intramodular connectivity was calculated as the sum of the
connection within a module, whereas the intermodule connectivity was calculated as
the sum of the connection between any pair of 2 modules. The line width represents
the t-value of between-group comparison (all AD < HCs). (B) Between-group differ-
ence of nodal degree of SCNs (p < 0.05, FDR corrected). Abbreviations: SCN, structural
connectivity network; DMN, default mode network; SMN, somatosensory-motor
network; VN, visual network; SN, salience network; ECN, executive-control network;
AD, Alzheimer’s disease; HCs, healthy controls.
AD group compared with HC group when k equaled 17 (p ¼ 0.036,
Fig. 4B). At the nodal level, we found that a significantly decreased
coupling degree located in the right rectus and insula, and the
bilateral medial prefrontal gyrus, inferior frontal gyrus, middle
temporal gyrus, and hippocampus. (p < 0.05, FDR corrected;
Fig. 4C).
3.5. Relationships between network metrics and cognitive
performance

After the FDR correction, no significant correlations between
network metrics and cognitive performance were found in the AD
or HC group.
3.6. Validation results

We assessed the effects of head motion correction and connec-
tivity density thresholds on ourmain findings. (1) The effect of head
motion: Using both the statistical analysis accounting for mean FD
as a covariate in the between-group comparisons and the scrubbing
procedure, we found that the main results were not affected
(Table S1 in Supplemental Information). Moreover, decreased
intermodule functional connectivity was also found in AD among
the SN, ECN, and DMN after controlling for FD in the statistical
model. Using the scrubbing procedure, we found decreased inter-
module functional connectivity in AD between the SN and ECN,
DMN. Note that in the scrubbing analysis, to guarantee stable re-
sults, the participants with time points of R-fMRI data less than
5 minutes after censoring were excluded from the analysis (8 AD
patients and 1 HC were excluded). (2) The effect of connectivity
density thresholds: We found a consistently decreased clustering
coefficient, decreased functional connectivity within the SN, and
increased functional connectivity between the SMN and ECN in AD
regardless of different threshold values (Table S2 in Supplemental
Information). Statistical testing of between-group differences no
longer revealed significant effects in characteristic path length,
normalized clustering coefficient, normalized characteristic path
length, and small-worldness.
4. Discussion

Using R-fMRI, dMRI, and graph-based network analysis, we
found disrupted functional and structural connectivity patterns in
AD. Our main findings are as follows: (1) for the FCN, the global
topological organization in AD was significantly and widely dis-
rupted as indicated by abnormal small-world measures (i.e.,
decreased clustering coefficient, increased characteristic path
length, normalized clustering coefficient, normalized characteristic
path length, and small-worldness), intramodular and intermodule
integration, connections of rich club, and degree values mainly in
the temporal gyrus; (2) for the SCN, AD selectively disrupted the
characteristic path length, intramodular connections in the DMN,
intermodule connections between the ECN and other 4 modules,
and degree values in the right middle frontal gyrus, insula, and
middle temporal gyrus; and (3) the coupling of functional and
structural connectivities was disrupted in the DMNmodule, as well
as the rich club edges in AD. The coupling degree of functional and
structural networks in the hippocampus, insula, frontal gyrus, and
middle temporal gyrus was disrupted in AD. These findings advance
our understanding of similar and distinct underlying neural
mechanisms of AD by different MRI modalities from a network
perspective.



Fig. 4. Alterations of functional and structural connectivity coupling in patients with AD relative to HCs. Increased functional and structural connectivity coupling in the DMN (A)
and in the rich club (B) in patients with AD compared with HCs. The coupling between FC and SC matrices was examined by computing the correlation between the functional
connectivity and structural connectivity. (C) Between-group difference of coupling degree (p < 0.05, FDR corrected). The coupling degree was calculated as the number of common
edges of functional and structural connectivities with the given node. Error bar, standard error of the mean. *p < 0.05. Abbreviations: AD, Alzheimer’s disease; HCs, healthy controls;
DMN, default mode network; FC, functional connectivity; SC, structural connectivity.
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4.1. Disrupted topology of functional connectivity network

Network studies have revealed a host of attributes that charac-
terize segregation (e.g., clustering coefficient andmodule structure)
and integration (e.g., characteristic path length and rich club) of
neural information. Using these measures, we found that the pa-
tients with AD had disrupted network segregation (decreased
clustering coefficient and increased normalized clustering coeffi-
cient) and integration (increased characteristic path length and
normalized characteristic path length), which was consistent with
previous functional network studies of AD (Zhao et al., 2012). These
findings indicated disrupted functional segregation and integration
of brain networks in AD. We noted that the results of the clustering
coefficient comparison between groups (i.e., decreased clustering
coefficient) differ from the results of the normalized clustering
coefficient (i.e., increased normalized clustering coefficient). This
discrepancy may be due to the statistically significant correlation
method that was used here to construct the functional binary
network, leading to different numbers of edges in matched random
networks for different participants. Another study also found
increased characteristic path length accompanied by decreased
normalized characteristic path length in AD using magneto-
encephalograms (Stam et al., 2009).

In addition to the global level, we also identified the functional
connectivity at the subnetwork (i.e., modular structure and rich
club organization) and nodal levels. We first found that the func-
tional network of HCs exhibited modular organization with high
modularity, which was consistent with previous findings (He et al.,
2009b; Power et al., 2011). This modular organization contained 5
main modules: the DMN, ECN, SN, SMN, and VN. The abnormal
connections in AD involved both intramodular connectivities
within the DMN, ECN, and SN and the intermodule connectivity
among the SN, SMN, and VN. These findings are comparable with
previous studies of disrupted connectivity within the DMN
(Adriaanse et al., 2014; Brier et al., 2012; Buckner, 2004; Dai et al.,
2015; Greicius et al., 2004), ECN (Brier et al., 2012; Dai et al.,
2015; Li et al., 2012), and SN (Brier et al., 2012; Chen et al., 2013;
Dai et al., 2015) in AD. The DMN is involved in a variety of func-
tional processes, including episodic memory and self-related/
internally oriented processes (Buckner et al., 2008; Raichle, 2015),
and the ECN is related to goal-directed/externally oriented tasks
(Dosenbach et al., 2007). The SN mediates the “switching” between
activation of the DMN and of the ECN to guide appropriate re-
sponses to salient stimuli (Uddin, 2015). These widely disrupted
intramodular connections indicated the decline in multiple cogni-
tive functions. Accordingly, the decreased connectivities among SN,
SMN, and VN could reflect a reduced ability to detect, orient
attention toward, and react to salient sensory, motor, and visual
stimuli in AD. Another intriguing finding was the reduced
connection number among the hub regions (i.e., rich club connec-
tions), suggesting disrupted global brain functional communica-
tion. These results are consistent with previous studies that the GM
lesion (Crossley et al., 2014) and functional disconnection (Dai et al.,
2015) of AD were mainly concentrated in highly connected brain
hubs.

4.2. Disrupted topology of structural connectivity network

Our results revealed that the structural network of the AD group
showed significantly increased characteristic path length compared
with HCs. These results are consistent with previous structural brain
network studies in AD (He et al., 2008; Lo et al., 2010). Characteristic
path length reflects interregional effective information integrity in
the brain network, which underlies cognitive processing (Sporns
and Zwi, 2004). Thus, the AD-related increases in the character-
istic path length between regions may be related to the degenera-
tion of fiber bundles used for information transmission.

We also found that the within-module structural connection
number decreased in the DMN of AD, which was consistent with
the previous study (Hahn et al., 2013). In addition, the structural
connection number between ECN and DMN and that between ECN
and SN were found to decrease as well. The triple network model of
the DMN, SN, and ECN has been used to investigate cognitive and
affective dysfunction in neurological diseases (Menon, 2011). The
decreased connections between the ECN and DMN could lead to
weak competitive processes between externally goal-directed
attention and internally oriented processes in AD, which was sup-
ported by the loss of anticorrelation of functional connectivity be-
tween the DMN and ECN in AD (Agosta et al., 2012; Brier et al.,
2012). The decreased connections between the ECN and SN could
reflect aberrant control signals to the ECN that facilitate access to
externally goal-directed attention. The decreased connections be-
tween the ECN and VN and that between ECN and SMN could reflect
reduced executive ability to external stimulus, including sensori-
motor stimuli and visual stimuli. Notably, AD had relatively pre-
served connectivity within the rich club in SCNs, which was
consistent with a previous study (Daianu et al., 2015). However,
these results do not mean that the hub nodes are not affected at the
regional level. The decreased nodal degree was found in the right
insula in the present study, which is a hub region of structural
networks (Collin et al., 2014).

Examination of the FCN and SCN consistently showed increased
characteristic path length and decreased intramodular connections
in the DMN of AD (Table 2), suggesting a disrupted integration and
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segregation topological organization in AD. In contrast, more
widely disrupted topological measures of FCNs in AD compared
with SCNs were found (Table 2), implying that the FCNs may be
more sensitive to detect the abnormalities in AD than the SCNs,
which was accordant with the hypothetical model of biomarkers of
AD (Sperling et al., 2011). This model suggests a typical AD deteri-
oration process with abnormal b-amyloid (the core neuropathology
of AD) accumulation occurring first, followed sequentially by
disturbance of the function of neurons and synapses, disruption of
the brain structure, and, finally, the appearance of clinical
symptoms.

4.3. Decoupling between structural and functional connectivity

Although the network measures of both functional and struc-
tural networks were significantly decreased in AD, increased cou-
plings between functional and structural networks (i.e., DMN
module and the rich club structure) were found in patients with AD.
These increased couplings may suggest that AD leads to a
strengthened relationship between functional connectivity and the
underlying anatomical connectivity, which may imply more-
stringent and less-dynamic brain function in AD. On the other
hand, these results indicated that structural connectivity can better
predict functional connectivity in patients with AD than HCs. A
stronger correlation between structural and functional networks
was also observed in patients with schizophrenia (van den Heuvel
et al., 2013). Intriguingly, these enhanced couplings between
functional and structural connectivities were found in the DMN
module and rich club connections. These 2 essential components of
the brain play a core role in optimizing global brain communication
and are associated with higher cognitive functions. The strength-
ened FC-SC couplings in the 2 elements of AD may lead to consis-
tent changes in FC and SC in the DMN or rich club. Indeed, we found
the commonly disrupted structural and functional connectivity in
the DMN in AD. However, we did not find similar results in the rich
club, as decreased functional connectivity along with relatively
preserved structural connectivity within the rich club was found.
This could be because abnormal functional connectivity emerges
before disruptions in structural connectivity become apparent
(Sperling et al., 2011). This hypothesis was supported by our find-
ings of the broad abnormal network measures of the functional
network compared with the structural network in AD.

A significantly decreased couplingdegreewas found in the frontal
lobe (e.g., the medial prefrontal gyrus, inferior frontal gyrus, and
rectus), temporal lobe (e.g., the middle temporal gyrus and hippo-
campus), and insula. These regions are involved in high-level cogni-
tive functions such as episodic memory, attention, motivation, self-
awareness, and audio-visual integration, which are the main de-
ficiencies in patients with AD. Previous studies have demonstrated
AD-related abnormalities in the frontal lobe (Dai et al., 2015; Lo et al.,
2010), temporal lobe (Dore et al., 2013; Supekar et al., 2008; Zhou
et al., 2008), and insula (Blanc et al., 2014; Dai et al., 2015).

4.4. Limitations and further considerations

Several issues need to be considered further. First, diffusion
tensor imaging and deterministic tractography methods were used
here to construct the structural network. However, the tracking
procedure of this method always terminates when it arrives at a
voxel with fiber crossing or spreading, which leads to the loss of
tracking the existing fibers. Further studies could use more
advanced diffusion acquisitions and diffusion models, such as high
angular resolution imaging (Tuch et al., 2002) and probabilistic
tractography (Behrens et al., 2007), to reconstruct more accurate
anatomical connectivity.
Second, functional connectivity was used here to construct the
functional network, which is a result of the correlation between the
time series of each pair of ROIs. The advent of informational con-
nectivity analyses could explore the interactions between ROIs
using the information encoded in themultivoxel pattern (Anzellotti
and Coutanche, 2018; Coutanche and Thompson-Schill, 2013),
which is ignored by the correlation method. Further studies could
use informational connectivity to reconstruct the functional net-
works to capture communication of information throughout the
whole brain.

Third, a number of neuroimaging studies have demonstrated
that head motion can introduce systematic artifacts and has a
confounding effect on functional connectivity (Power et al., 2012;
Satterthwaite et al., 2013; Van Dijk et al., 2012; Yan et al., 2013).
In the main analyses, we used CompCor and 24 head motion pa-
rameters regression in data preprocessing to correct this motion
artifact. To validate our results, the mean FD regression and
scrubbing methods were used as alternative head motion correc-
tion strategies. We found that our main results were not affected
while using the 2 different strategies, suggesting the reliability of
our findings. Interestingly, we also noticed that there were more
between-group differences in the results of FCNs when using the
scrubbing and regressing out the FD strategies. These results
suggest that different motion correction strategies may produce
consistent and specific findings. Future studies need to validate
which head motion correction strategy could be appropriate for
AD research. Notably, the effects of residual motion might still
exist as the full impact of head motion on functional connectivity
is not yet clear and the methods to offset influences of the head
motion are still being developed and validated (for review, see
Power et al., 2015). Moreover, we used a related lenient FD
threshold (i.e., 0.5 mm) for the scrubbing method because the
elderly participants had poor control ability. Even so, to ensure the
reliability of the results, 9 participants were excluded in the sub-
sequent analysis because they had less than 5 minutes of R-fMRI
data after censoring. Therefore, our results should be further
validated when better head motion correction methods have been
developed.

Fourth, for brain network studies, the selection of thresholding
procedures is still a controversial topic (van den Heuvel et al., 2017).
There are currently 2 main types of thresholding procedures: the
fixed-density threshold and the fixed-correlation threshold (the
method used in this article). The fixed-density threshold may
introduce nonsignificant correlations (for matrices with low
average connectivity), which may increase random noisy connec-
tions and make the network more like randomly connected net-
works (van den Heuvel et al., 2017). The fixed-correlation threshold
may lead to different numbers of edges in the resulting networks,
which could confound between-group topological comparisons
(Van Wijk et al., 2010). Different thresholding methods may lead to
different topological organizations and further lead to different
results when making between-group comparisons. Here, we
consistently found decreased clustering coefficient and decreased
functional connectivity within the SN in AD regardless of different
threshold values (Table S3 in Supplemental Information), which
were consistent with our results with the fixed-correlation
threshold method. However, other significant results of our main
findings were no longer revealed as significant between-group
differences with the fixed-density thresholding method. The dis-
crepancies between the results obtained by the 2 different
thresholding methods indicated that our main findings are
dependent on the choice of the thresholding methods and are
influenced by different numbers of connections. Therefore, the
different conceptual features of 2 thresholding strategies should be
kept in mind in future network analysis of contrastive research.
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Fifth, the current findings showed that the functional connec-
tion numbers were significantly reduced in AD for rich club con-
nectionswhen k varied from 11 to 13. This finding indicated that the
effect of the abnormal rich club connections of the functional
network in AD was robustly related to the choice of k values.
Meanwhile, significantly increased FC-SC correlations were found
in the rich club connections of the AD group compared with the HC
group when k equaled 17. The result suggested that the effect of the
abnormal FC-SC correlation in rich club connections in AD was
sensitive to the choice of k values and that this disrupted coupling
in AD was only found in the connections among a small fraction of
high-degree nodes (w5%). Therefore, our results of rich club
depended on the choice of the k values.

Sixth, the correlation results between network metrics and
cognitive performance were not significant after FDR correction.
There are 2 possible reasons: one was that the small sample size
leads to the underpowered; and the other one was that our study,
which was exploratory in nature, resulting in many statistical
comparisons. In the future, confirmatory studies in a larger inde-
pendent data set with a priori hypotheses restricting the number of
statistical tests are needed.

Seventh, the increased FCN-SCN coupling was found in this
study. AD-related longitudinal studies are vital in the future to
explore whether such coupling increases with the disease pro-
gression. If so, parameters that describe the FCN-SCN coupling
should be added to the computational model that simulates the
spread of AD for enhancement of the accuracy of these models.

Eighth, the core neuropathologies of AD are the accumulation of
b-amyloid and hyperphosphorylated tau, which can be detected by
positron emission tomography. The relationships between these
pathological changes and network measure abnormalities through
MRI data require investigation of the pathological factors contrib-
uting to the abnormal network measures of FCN and SCN, including
identifying the overlapping regions from the various techniques
and causal relationships. These findings can deepen our under-
standing of the pathophysiological mechanisms of FCN and SCN
disruptions. In addition, researchers in this area should be
constantly vigilant that abnormalities in these network measures
assessed by R-fMRI could be caused by the altered vascular physi-
ology that is unrelated to the neural activity changes (D’Esposito
et al., 2003) because the R-fMRI indirectly measures neuronal ac-
tivity through the blood-oxygen-level-dependent signal, which
depends on neurovascular coupling.
5. Conclusions

Using the graph-theory network analysis, the present study
demonstrated that relative to the HC group, patients with AD
exhibited reduced network integrity (i.e., increased characteristic
path length) and network segregation (i.e., reduced intramodular
connections on the DMN) in both the FCN and SCN. Moreover, the
FCN of AD additionally showed reduced clustering coefficient and
rich club connections. Finally, we found the increased coupling
between the FCN and SCN in the connections of DMN and the rich
club. Taken together, these findings highlight disrupted topological
organization of the FCN and SCN in the same cohort of AD and
provide empirical evidence that the combination of graph-theory
network analysis and multimodal MRI technology is a promising
research framework to investigate the pathophysiological mecha-
nisms of AD.
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