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During human brain development through infancy and childhood,
microstructural and macrostructural changes take place to reshape
the brain’s structural networks and better adapt them to sophisti-
cated functional and cognitive requirements. However, structural to-
pological configuration of the human brain during this specific
development period is not well understood. In this study, diffusion
magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and
25 preadolescents were acquired to characterize network dynamics
at these 3 landmark cross-sectional ages during early childhood.
dMRI tractography was used to construct human brain structural
networks, and the underlying topological properties were quantified
by graph-theory approaches. Modular organization and small-world
attributes are evident at birth with several important topological
metrics increasing monotonically during development. Most signifi-
cant increases of regional nodes occur in the posterior cingulate
cortex, which plays a pivotal role in the functional default mode
network. Positive correlations exist between nodal efficiencies and
fractional anisotropy of the white matter traced from these nodes,
while correlation slopes vary among the brain regions. These results
reveal substantial topological reorganization of human brain structur-
al networks through infancy and childhood, which is likely to be the
outcome of both heterogeneous strengthening of the major white
matter tracts and pruning of other axonal fibers.

Keywords: brain development, connectome, fractional anisotropy, module,
pruning

Introduction

Postnatal human brain development, especially from birth to
the onset of adolescence, is characterized with both macro-
scopic and microscopic dynamic structural changes. Brain de-
velopment during this period is associated with behavioral,
cognitive, and emotional maturation. Structural alterations in
the brain have important implications in the developmental
process of brain functions. These structural changes include en-
hanced integrity of certain white matter (WM) axons and
pruning of other axons (e.g., Innocenti 1981; Cowan et al. 1984;
LaMantia and Rakic 1990, 1994; Woo et al. 1997; Innocenti and
Price 2005), which may jointly contribute to significant reconfi-
guration of structural networks of developing brains. Specifi-
cally, axon pruning indicates the process of selective
elimination of certain axons with or without the death of the
parent cell during the period from birth to preadolescence.

The water molecules all over the human brain WM tend to
diffuse more freely along the WM fiber bundle, instead of per-
pendicular to it. This diffusion property can be measured nonin-
vasively with diffusion magnetic resonance image (dMRI) to
infer the WM fiber orientations. This process is called dMRI-
based tractography (e.g., Mori et al. 1999; Behrens et al. 2007),
which allows us to noninvasively access the structural connec-
tivity consisting of heterogeneous WM fiber bundles connecting
different brain regions. Structural connectivity underlies the for-
mation and evolution of human brain networks during develop-
ment. Fractional anisotropy (FA; Pierpaoli and Basser 1996;
Beaulieu 2002) derived from diffusion tensor imaging (DTI)
(Basser et al. 1994), a type of dMRI, is capable of delineating the
microstructure of WM fibers in the living human brain noninva-
sively. The microstructural and morphological changes of WM
axons connecting different cortical areas of the developing
brain have been extensively studied (e.g., Snook et al. 2005;
Huang et al. 2006; Eluvathingal et al. 2007; Lebel et al. 2008;
Tamnes et al. 2010; Lebel and Beaulieu 2011; Peters et al. 2012).
Since the application of graph theory to studying human brain
networks (Bullmore and Sporns 2009; He and Evans 2010; van
den Heuvel and Sporns 2011), it has greatly advanced our un-
derstanding of the structural and functional circuits, the impor-
tance of which has been underscored by the establishment of
the NIH Human Connectome Project (Sporns et al. 2005; NIH
2009). The development of functional brain networks (e.g.,
default mode network) or functional connectivity has been
more extensively investigated with functional MRI (fMRI),
especially resting-state fMRI (e.g., Fair et al. 2007; Supekar et al.
2009; Dosenbach et al. 2010; Power et al 2010; Hwang et al.
2012). Only recently have there been relatively limited studies
on the development of human brain structural networks or
structural connectivity constructed with dMRI tractography
(Hagmann et al. 2010; Yap et al. 2011). However, so far there
has been no comprehensive study investigating the structural
networks covering 3 landmark cross-sectional ages during early
childhood (birth, toddler, and onset of adolescence) or the
relationship between structural networks and WM integrity.
From birth to 2 years, the human brain undergoes several dra-
matic changes including rapid brain volume increases reaching
80–90% of adult volume by age 2 (Pfefferbaum et al. 1994),
rapid elaboration of new synapses (Huttenlocher and Dabholk-
ar 1997), overall very rapid gray matter volume increases
(Huppi et al. 1998; Matsuzawa et al. 2001; Gilmore et al. 2007),
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rapid myelination of WM (Sampaio and Truwit 2001), and con-
current rapid development of a wide range of cognitive and
motor functions (Kagan and Herschkowitz 2005). Preadoles-
cence marks the beginning of a time period with dramatic
changes in body and behavior. Hence, these 3 cross-sectional
ages are critical for understanding brain development through
infancy and childhood. With the coverage of these 3 landmark
cross-sectional ages, it makes possible to determine whether the
network configuration undergoes monotonic changes or
whether the quantification of the network properties manifest
peak values in the middle cross-sectional age.

In this study, we explored the development of human brain
structural networks with high-quality dMRI data of 25 neo-
nates, 13 toddlers, and 25 children around onset of adoles-
cence, by applying graph theory for quantification of
topological organization. High-quality dMRI data of 18 adults
were also acquired to evaluate the maturity level of structural
networks of preadolescents. The brain was parcellated into 80
regions or nodes with automated anatomical labeling (AAL;
Tzourio-Mazoyer et al. 2002), and structural connectivity
between these nodes was quantified with probabilistic track-
ing (Behrens et al. 2007). Topological changes during develop-
ment were characterized with a comprehensive topological
analysis with graph theory including computation of network
metrics, such as network strength, global and local efficiency,
modularity, and topological robustness. Furthermore, we in-
vestigated the relationship between network properties and
microstructural integrity of WM (i.e., FA) for the developing
brains. We aimed to test the hypotheses that the structural
brain networks get monotonically stronger, more efficient, and
more robust through infancy to childhood, and this network
enhancement is associated with the increased microstructural
integrity of the connected WM pathways. In addition, we also
explored the structural basis for the development of the func-
tional networks. Specifically, by surveying the nodal efficiency
changes during this period, we could determine whether the
important nodes involved in the functional default mode
network, such as the posterior cingulate gyrus (PCG), are
among those that undergo the largest increase.

Materials and Methods

dMRI and Structural MRI Acquisition for Neonates, Toddlers,
and Preadolescents
Each individual volume of diffusion-weighted image (DWI) of all
subjects was inspected through visual inspection by one of the authors
(H.H.). After exclusion of corrupted data due to subject motion of 3 neo-
nates and 1 toddler, high-quality dMRI and structural MRI data from 25
neonates (age range of 37–43 gestational weeks with mean and standard
deviation of 39.5 ± 2.3 gestational weeks at scan; 13 M/12 F; 19 White
and 6 African American), 13 toddlers (age range of 1.79–3.12 years old
with mean and standard deviation of 2.3 ± 0.5 years at scan; 8 M/5 F; 13
Asian), and 25 preadolescents (age range of 10.7–13.5 years old with
mean and standard deviation of 11.8 ± 1.8 years at scan; 13 M/12 F; 10
White, 3 African American, and 12 Asian) around puberty were used. To
evaluate the maturity level of the structural brain networks in the prea-
dolescent period, 18 healthy adult volunteers (age range of 25–44 years
old with mean and standard deviation of 28.5 ± 5.1 years at scan; 13 M/5
F; 18 Asian) were also recruited. Due to the difficulty of reaching a good
sample size for data from toddlers and preadolescents, collection of
normal pediatric MR data from toddlers around 2 years- old and preado-
lescents around puberty was made possible by the collaboration of 2
institutions, Children’s Medical Center at Dallas and Children’s Hospital
in Beijing. Philips 3-T Achieva MR scanners in the 2 institutions were

used in this study. DTI and structural MRI data of all 25 neonates and 13
of 25 preadolescents around puberty were acquired from Children’s
Medical Center at Dallas. MR data of all 13 toddlers, 12 of 25 preadoles-
cents, and 18 adults were acquired from Beijing Children’s Hospital. The
imaging protocols were identical except that different field of view
(FOV) sizes were used for data acquisition of all participated subjects.
All included neonates were part of the cohort for studying normal peri-
natal and prenatal development and were selected after rigorous screen-
ing procedures conducted by the neonatologist (L.C.). Exclusion criteria
include mother’s excessive drug or alcohol abuse during pregnancy;
grade III–IV intraventricular hemorrhage; periventricular leukomalacia;
hypoxic–ischemic encephalopathy; lung disease or brochopulmonary
dysplasia; necrotizing enterocolitis that requires intestinal resection or
complex feeding/nutritional disorders; defects or anomalies of the fore-
brain, brainstem, or cerebellum; brain tissue dys- or hypoplasias; abnor-
mal meninges; alterations in the pial or ventricular surface; or WM
lesions. Neonates were well fed before scanning. All included toddlers
and preadolescents were healthy subjects with normal neurological and
psychological records. For toddlers, scans were scheduled in the tod-
dler’s normal nap time. Besides earplugs and earphones, extra foam
padding was applied to reduce the sound of the scanner while the
toddler was asleep. dMRI data were acquired using a single-shot echo
planar imaging with a SENSE parallel imaging scheme (SENSitivity En-
coding, reduction factor = 2.5). Eight-channel SENSE head coil and con-
soles installed with the R2.6.3 software were used for both sites. The
dMRI imaging parameters for all the 3 groups were: time echo (TE) = 78
ms, time repetition (TR) = 6850 ms, in-plane FOV = 168 × 168 to
224 × 224 mm2, in-plane imaging resolution = 2 × 2 mm2, slice thickness
= 2 mm, slice number = 60–65 depending on the height of the subject
brains, 30 independent diffusion-weighted directions (Jones et al. 1999)
uniformly distributed in space, b-value = 1000 s/mm2, repetition = 2.
The axial dMRI image dimension was 256 × 256 after reconstruction. For
dMRI, the total acquisition time was 11 min. With 30 DWI volumes and
2 repetitions, we accepted those scanned dMRI datasets with <5 DWI
volumes affected by motion more commonly seen in scanning of neo-
nates and toddlers. The affected volumes were replaced by the good
volumes of another DTI repetition during postprocessing. T1-weighted
magnetization-prepared rapid gradient-echo (MPRAGE) image was also
acquired. The imaging parameters for MPRAGE were: TR = 8.3 ms, TE =
3.8 ms, flip angle = 12°, voxel size = 1 × 1 × 1 mm3, FOV = 256 × 256 ×
160 mm3, scan time = 4 min. The MPRAGE images provide superior
gray and WM contrast and were used for segmentation and parcellation
of the cerebral cortex of the toddler and preadolescent group. T1-
-weighted and dMRI images were acquired in the same session. All sub-
jects gave informed written consent approved by the Institutional
Review Board of the participated 2 institutions.

Network Construction for the Developing Brains
The workflow of structural network construction including cortical
parcellation (Fig. 1a), dMRI tractography (Fig. 1b), and generation of
connectivity matrix (Fig. 1c) of a typical neonate, toddler, and preado-
lescent brain from acquired dMRI and MPRAGE/b0 data can be found
in Figure 1. After node and edge definitions described in details below,
an 80 × 80 symmetric-weighted cortical network or graph representing
the structural connectivity of the whole-brain was constructed for each
subject, as shown in Figure 1c. Owing to the probabilistic nature of
tractography in our study, the vast majority of regional pairs were
assigned a nonzero probability. Unlike deterministic tracking, it is
possible to include spurious connections with probabilistic tracking
methods. To address this, we removed those obviously spurious
connections that have extremely small probabilities by applying
a threshold (Gong et al. 2009). The subsequent network analyses were
repeatedly performed over the threshold range of 0.005 <wij < 0.05
with an interval of 0.0025 (19 thresholds). The comprehensive
network analysis with a series of applied thresholds could help mini-
mize the bias of the results obtained with a single threshold.

Cortical Parcellation for Network Node Definition
The procedure of defining the nodes has been previously described
(Gong et al. 2009). The AAL labeling (Tzourio-Mazoyer et al. 2002) was
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obtained by transforming the AAL template to native space using a
transformation matrix that was obtained by registering T1-weighted
images of toddler and preadolescent groups and b0 images (with con-
trasts close to that of T2-weighted image) of the neonate group to
ICBM152 template using SPM8 (http://www.fil.ion.ucl.ac.uk/spm).
Two types of ICBM152 template (http://www.bic.mni.mcgill.ca/
ServicesAtlases/ICBM152Lin), T1- and T2-weighted images of the
ICBM152 template, were used for the preadolescent or toddler group
and the neonate group, respectively. For the toddler and preadolescent
groups, intrasubject affine registration was then conducted to align the
AAL labeling with DTI images, resulting in 80 parcellated regions or
nodes (40 for each hemisphere) for each brain. An example of trans-
ferred AAL labeling for a random subject in each group is shown in
Figure 1a. Of note, discrete labeling values were preserved by the use
of a nearest-neighbor interpolation method.

dMRI Tractography for Network Edge Definition
As shown in Figure 1b, with each of 80 nodes as seed, probabilistic
tracking (Behrens et al. 2007) was performed by using FDT (FMRIB’s
Diffusion Toolbox) of FSL package (FSL, version 4.1; http://www.
fmrib.ox.ac.uk/fsl). The connectivity probability from the seed voxel i
to another voxel jwas defined by the number of fibers passing through
voxel j divided by the total number of fibers sampled from voxel i
(Behrens et al. 2007). This idea could be extended from the voxel level
to the regional level. For a seed region, 5000 × n fibers were sampled
(5000 fibers for each voxel), where n is the number of voxels in this
region. The number of fibers passing through a given region divided
by 5000 × n is calculated as the connectivity probability from the seed
region to this given region. In this study, each brain region was se-
lected as the seed region and its connectivity probability to each of the
other 79 regions was calculated. Notably, the probability from i to j is
not necessarily equivalent to the one from j to i because of the tracto-
graphy dependence on the seeding location. Thus, we defined the un-
directional connectivity probability Pij between region i and j by
averaging these 2 probabilities. Details on calculating Pij of each node

can be found in the literature (Gong et al. 2009). Network topology
could be affected by the factors such as brain size (e.g., Yan et al. 2011)
and connection efficacy (Hagmann et al. 2010). Due to very different
brain sizes and WM integrity of network pathways of the studied devel-
oping brains, the effects of brain size and connection efficacy were
scaled by using wij¼ Pij × BrainSize/ADC as the weight between node
i and j. ADC is the apparent diffusion coefficient of the traced WM and
1/ADC served as connection efficacy (Hagmann et al. 2010). The de-
tailed discussion about the definition of edge weight can be found in
Discussion section below.

Network Properties
A brain structural network (graph) G is composed by N nodes and K
edges. To characterize topological organization of structural networks,
the following graph measures under different thresholds were calcu-
lated: network strength, global and local efficiency, normalized short-
est path length, normalized clustering coefficient, and small-worldness
(Rubinov and Sporns 2010). We also investigated the modularity and
robustness of the structural networks (Rubinov and Sporns 2010). For
regional nodal characteristics, we considered the nodal efficiency of
each node. Furthermore, we calculated the integrated area under the
curve (AUC) for each network measure, which provides a summarized
scalar for topological characterization of brain networks independent
of single threshold selection. All network analysis was performed
using the in-house GRETNA software.

Network Strength, Efficiency, and Small-Worldness
For a weighted brain network or graph, we first computed the network
strength [eq. (1) in the Appendix] as the average of the strengths across
all the nodes, in which the strength of a node is the sum of the edge
weights (wij) linking to it. Then, we computed the weighted clustering
coefficient [eq. (2) in the Appendix], which quantifies the extent of
local interconnectivity or cliquishness in a network, and the weighted
shortest path length [eq. (3) in the Appendix], which quantifies the

Figure 1. Flow chart of generating the connectivity matrices for neonate, toddler, and preadolescent groups from DTI and structural MRI. Data from a typical neonate, toddler, and
preadolescent brain were used to demonstrate the image analysis process. (a) shows the high-resolution DTI color-encoded map for the subject at each cross-sectional age and
corresponding cortical parcellation. With each cortical node as region of interest to initialize DTI tractography, and (b) shows the probabilistic tractography of these subjects. With the
information from both cortical parcellation in (a) and probabilistic tracking in (b) for node and weighted edge definition, respectively, the connectivity matrices were built up for these
subjects as shown in (c). Preado is the abbreviation of preadolescent.
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ability for information propagation in a network in parallel. A network
is said to be small-world if it has similar shortest path lengths but
higher clustering coefficients than degree-matched random networks
(Wattz and Strogatz 1998). In other words, a small-world network
has the normalized clustering coefficient, g ¼ C real

p =Crand
p . 1, and the

normalized shortest path length, l ¼ Lrealp =Lrandp � 1. These 2 measure-
ments can also be summarized into a simple quantitative measure-
ment, small-worldness, s ¼ g=l [eq. (4) in the Appendix] (Humphries
et al. 2005). We also computed the global efficiency as the inverse of
shortest path length, the local efficiency as a measure of the efficiency
of local information transfer between neighboring nodes, and the cost
efficiency as the relative network efficiency normalized by its cost [eqs
(5–7) in the Appendix, respectively]. For each node, we examined its
nodal efficiency, which measures the average shortest path length
between the given node and all the other nodes in the network [eq. (8)
in the Appendix]. Besides, the normalized nodal efficiency was the
nodal efficiency divided by global efficiency of the network. See
Appendix for the detailed definitions and mathematical expressions of
the network measures used in this work.

Network Modularity
The modularity Q(p) for a given partition p of the brain network
(Newman and Girvan 2004) is defined as:

Qð pÞ ¼
XNm

s¼1

ls
L
� ds

2L

� �2
" #

where Nm is the number of modules; L, the number of connections in
the network; ls, the number of connections between nodes in module
s; and ds, the sum of the degrees of the nodes in module s. The modu-
larity index quantifies the difference between the number of intramo-
dule links of actual network and that of random network in which
connections are linked at random. The aim of this module identifi-
cation process is to find a specific partition (p), which yields the largest
network modularity, Q(p). Several optimization algorithms are cur-
rently available with different advantages, here, we adopted a simu-
lated annealing approach (Guimera et al. 2004), which is the most
accurate to date (Danon et al. 2005). To further study the role of each
node, we calculated the participant coefficient, which measures the
level of “intramodule” connectivity versus “intermodule” connectivity
of a node (Guimera et al. 2004; Sporns et al. 2007; Rubinov and Sporns
2010). The participation coefficient is formally given by the following:

pci ¼ 1�
XNm

m¼1

kim
ki

� �2

with Nm, the number of modules; ki, the degree of node i; and kim,
the number of connections from node i to module m. The connector
nodes—interconnecting modules—were defined as nodes with a
pci > 0.5, marking the top 15% of the node-specific pci values across
the 80 nodes of the network (Sporns et al. 2007).

Network Robustness
Network robustness, characterized by the degree of tolerance against
random failures and targeted attacks, is usually associated with the
stability of a complex network. In the present study, we investigated
the robustness (tolerance) of the WM structural networks by the re-
movals of nodes (Albert et al. 2000; Achard et al. 2006). To address the
nodal failure tolerance, we first randomly removed one node from the
networks and then measured the changes in the size of the largest
connected component (LCC). After this, we continued selecting and
removing additional nodes from the networks at random and recom-
puted this measure. To evaluate the target attack tolerance, we
repeated the above processes but removed the nodes in the descending
order of their efficiency. Robustness is then usually visualized by a plot
of the measure, LCC, versus the number of nodes removed, n (Achard
et al. 2006). The robustness parameter (R) is defined as the area under
this LCC (AUC of LCC) versus n curve. More robust networks retain a
larger connected component even when several nodes have been

knocked out, as represented by a larger AUC. The simulation pro-
cedures were performed for the individual network at each threshold
T, and a comparison of the robustness parameters among 3 groups was
further investigated.

Global and Regional Relationship Between NetworkMetrics
andWM FA

Nodal FA and Whole-Brain WM FA
The individual nodal WM in this study was defined as the WM traced
from a certain node. Using the traced WM as a binary mask which is
mapped to the FA map (Pierpaoli and Basser 1996) derived from diffu-
sion tensor, the averaged FA of the traced WM from a given node,
namely the nodal FA, was calculated to characterize the microstructure
of nodal WM. Voxels from spurious tractography which had an inten-
sity of <0.05% of the highest value in the output connectivity distri-
bution file of FSL were excluded from the binary mask. To ensure only
WM FA was counted, an FA threshold was also applied. The FA
threshold of 0.15 was adopted to include enough WM of neonates
(Huang et al. 2006). For consistency of FA measurements among all the
3 groups, this lower FA threshold was applied to all the 3 age groups.
FA threshold of 0.15 was relatively lower than the usually adopted 0.2
for the preadolescent group. However, our observation indicated that
most of the non-WM voxels due to lower FA threshold in the preadoles-
cent group were removed with the binary tractography mask described
above. With the 2 filtering procedures described above, relatively clean
and consistent nodal WM mask could be obtained for all age groups.
The whole-brain WM FAwas defined as the average of all nodal FA.

Global Relationship Between WM FA and Network Metrics
Network strength, global, and local efficiency of all subjects, represent-
ing the network properties of the entire brain, were correlated with the
whole-brain WM FA of these subjects with Pearson’s correlation.

Regional Relationship Between WM FA and Network Metrics
The node with the most significant nodal efficiency change and
another node with the least significant nodal efficiency change were
selected to characterize the regional relationship between nodal FA
and nodal network metrics. Their absolute nodal efficiencies of all sub-
jects were correlated with the corresponding nodal FA values with
Pearson’s correlations. Integrated AUC values of absolute nodal effi-
ciency were used.

Quantitative Evaluation of Effects of Scanner Differences
To evaluate the effects of scanner differences, we have separated the
preadolescent groups into 2 subgroups: one subgroup (Nsub1 = 13, sub-
group 1) with data acquired from the Dallas site and another subgroup
(Nsub1 = 12, subgroup 2) with data acquired from the Beijing site. The
following 3 comparisons were made: (1) the between-group differ-
ences of integrated (AUC value) strength, global, local and cost effi-
ciency, normalized Lp, normalized Cp, and small-worldness among the
neonate group, toddler group, and subgroup 1 of preadolescents; (2)
the between-group comparisons of above-mentioned parameters
among the neonate group, toddler group, and subgroup 2 of preado-
lescents; (3) the between-group comparisons of above-mentioned par-
ameters between subgroups 1 and 2 of preadolescents.

Statistical Analyses

ANOVA Analysis
For group effects in global network measures and regional efficiency,
comparisons were performed among 3 groups (neonates, toddlers,
and preadolescents) using 1-way analysis of variance (ANOVA) with
post hoc 2-sample t-tests when needed (P < 0.05 after correcting for
multiple comparisons). Parametric ANOVA was used. For global
network measures under different thresholds, P < 0.05 with Bonferroni
correction (P < 0.05/19) was considered significant. Such Bonferroni
correction was used for generating Figure 3a, Figure 4a, and left
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panels of Figure 6 below. Note that no correction was needed for stat-
istical comparisons of integrated measures when generating Figure 3b
and Supplementary Figure 1 below. Comparisons of nodal efficiency
of the 3 groups were conducted with both normalized and absolute
nodal efficiency. At the regional level, P < 0.05 with false discovery rate
(FDR) correction for multiple comparisons across regions was con-
sidered significant when generating Figure 5 and Figure 8a,b below.

Testing Differences of Regional Correlations Between Absolute
Nodal Efficiency and WM FA
The correlations between absolute nodal efficiency and nodal WM FA
were analyzed using linear regression models in the form of:

yij ¼ ai þ bi � xij þ 1ij

where j from 1 to 63 indicates individual subject of all the 3 groups,
i = 1, 2, 3 indicates the nodewith the most significant absolute nodal ef-
ficiency change, another node with the least significant absolute nodal
efficiency change and whole brain, respectively, yij and xij indicate the
absolute nodal efficiency and FA for the ith region and jth subject,
respectively, ɛij is the random error, and αi and βi are unknown inter-
cepts and slopes. To test the regional heterogeneity of the relationship
between nodal efficiency and nodal FA, the null hypothesis for the
model is that the slopes are equal for these nodes and whole brain.
The P-values for testing this hypothesis were obtained by using the R
software (R2.13.1).

Results

Dynamics of Connectivity Matrix, Network Strength,
Efficiency, and Small-World Properties During Brain
Development
The averaged connectivity matrices of neonate, toddler, and
preadolescent groups are shown in Figure 2a. While the con-
nectivity pattern looks quite similar, the general stronger con-
nectivity from the neonate to preadolescent group can be
clearly observed from Figure 2a. The 3-dimensional view of
the averaged network configuration of each age group is
shown in Figure 2b. Stronger connectivity with increasing age,

reflected by thicker blue connectivity path lines between the
nodes, is visualized. As an overview of the edge weight distri-
bution, the histogram of the edge weight for each age group is
shown in Figure 2c. It is clear that larger edge weights, for
example, those greater than 0.25, are more heavily distributed
with age increase.

The network strength, efficiency, and small-world proper-
ties of the 3 age groups at different threshold and integrated
values of these metrics are shown in Figure 3a,b, respectively.
Quantitative values of integrated values of these global
network properties (corresponding to Fig. 3b) are shown in
Supplementary Table 1. From Figure 3a, the differences of all
these network metrics at all thresholds from 0.005 to 0.05 are
statistically significant with a P-value of <0.05 (Bonferroni-
corrected), except normalized Lp. With large standard devi-
ation of the normalized Lp, there is no statistical differences of
this network metric among the 3 age groups at all thresholds
(P > 0.1) (Fig. 3a). The network strength, global, local, and
cost efficiency increase uniformly with age at all thresholds.
Normalized Cp and small-worldness decrease uniformly with
age at all thresholds. All the 3 groups show a small-world
organization at all thresholds with a normalized Cp greater
than 1 and normalized Lp close to 1 (Fig. 3a).

Correspondingly, the integrated values of connectivity
strength, global, local, and cost efficiency in Figure 3b increase
significantly (P < 0.001) and monotonically during brain devel-
opment. The integrated values of normalized Cp and small-
worldness decrease significantly and monotonically (P < 0.001)
with age increase (Fig. 3b). The age-dependent and signifi-
cantly decreased normalized Cp and small-worldness indicate
that network segregation is reduced during development.

Network Modules of the Developing Human Brain
Figure 4a shows the number of modules, number of connec-
tors, and modularity of the 3 developmental groups at different
edge thresholds. The number of connectors and modularity

Figure 2. (a) The averaged structural connectivity matrix of neonate, toddler, and preadolescent group; (b) 3D representations (lateral view) of the mean WM structural networks of
each group. The nodes are located according to their centroid stereotaxic coordinates, and the edges are encoded with their connection weights, which were thresholded with 0.05.
The networks were visualized by the BrainNet Viewer (www.nitrc.org/projects/bnv/) (Xia et al. 2013). For details, see the Materials and Methods section. NEO, TOD, and PA in (c)
are the abbreviations of neonates, toddlers, and preadolescents, respectively.
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are statistically different (P < 0.05, Bonferroni-corrected)
among the 3 groups at most thresholds. The number of
modules of the preadolescent group and that of the toddler
group are similar (P > 0.1), both clearly higher than that of the
neonate group at lower thresholds from 0.005 to 0.015. The
number of connectors is higher with age increase at most
thresholds, indicating more communications among the
modules with brain development. The modularity of the
neonate group with the edge weight threshold from 0.015 to
around 0.05 is highest, while that of the preadolescent group
lowest and that of the toddler group in the middle. With the
edge weight thresholds from around 0.005 to 0.015, modular-
ity of the toddler group is the largest, followed by that of
neonate and preadolescent groups. It shows that the numbers
of intramodule links of 3 age groups vary with different edge
weight thresholds and intramodule links reduce at larger
thresholds with development.

Three-dimensional representations of the modular configur-
ations of the networks of neonate, toddler, and preadolescent
groups are shown in Figure 4b. It can be appreciated that
modular configurations of all the 3 groups are different despite
that the general modular patterns are similar. Specifically, the
medial fronto-parieto-occipital (purple) module is identified
as a separate module in the toddler brain. However, it is com-
bined into medial parieto-occipital (cyan) module and medial
fronto-parietal (blue) module in the neonate and preadolescent
groups, respectively. In addition, the left occipito-temporal
module (yellow) is a separate module in the toddler and

preadolescent groups, while it is integrated into the larger
green module spanning frontal, parietal, temporal, and occipi-
tal cortices in the neonate group. The right occipito-temporal
module (brown) is separate only in the preadolescent group.

Hub Distribution During Development
The hub distributions of the neonate, toddler, and preadoles-
cent groups are shown in Figure 5a–c, respectively. Bilateral
PCG, bilateral precuneus (PCUN), and right cuneus (CUN) are
the common hubs for all the 3 groups. Bilateral dorsal cingu-
late gyrus (DCG) are hubs for both the neonate and toddler
groups. Left anterior cingulate gyrus (ACG) and left superior
occipital gyrus (SOG) become hubs only at the toddler and pre-
adolescent group. The post hoc pair-wise comparisons of the
normalized nodal efficiency of the 3 groups show that normal-
ized nodal efficiencies change monotonically at the nodes,
where significant (P < 0.01, FDR-corrected) differences were
detected with the 1-way ANOVA test. Figure 5d demonstrates
that significantly increased normalized nodal efficiencies take
place at the bilateral cingulate, bilateral medial parietal, bilat-
eral occipital, and left medial frontal cortical regions (including
bilateral PCG, bilateral PCUN, bilateral CUN, bilateral calcarine
fissure and surrounding cortex, bilateral SOG, left superior
frontal gyrus, medial, right middle occipital gyrus, and right
inferior occipital gyrus). Significantly decreased normalized
nodal efficiencies are clustered at the left lateral temporal and
parietal cortex during development. In Figure 5d, the nodal
sizes indicate F values of ANOVA, and red and blue colors

Figure 3. (a) Group differences in global network measures among 3 groups under different thresholds. Asterisks: significant group differences with ANOVA at P< 0.05
(Bonferroni-corrected). (b) Group differences in integrated global network measures among 3 groups. **P<0.01. The error bars indicate standard deviation.
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Figure 4. (a) Group differences in the number of modules, the number of connectors, and modularity of the structural networks among 3 groups under different thresholds.
Asterisks: significant group differences with ANOVA at P<0.05 (Bonferroni-corrected). The error bars indicate standard deviation. (b) 3D representations (axial view) of the mean
WM structural networks demonstrate network modules of each group. The nodes are colored-coded by the modules. The edges are encoded with their connection weights, which
were thresholded with 0.05.

Figure 5. Distributions of hub regions in each group (a–c) and regions with significantly increased (nodes in red) or decreased (nodes in blue) normalized efficiency (P< 0.01,
FDR-corrected) during development (d). Normalized efficiency of right PCG and left HES, which represents the one with most increased and most decreased normalized efficiency,
respectively, is shown in (d). The error bars in (d) indicate standard deviation.
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indicate the direction of monotonically increased and monoto-
nically decreased normalized nodal efficiency, respectively. It
is clear from Figure 5d that largest increase of normalized
nodal efficiency takes place at bilateral PCG, which play a
pivotal role in functional network development. To demon-
strate the magnitude of the normalized efficiency changes, the
values of the normalized efficiency of left Heschl’s gyrus (HES)
and right PCG, which has most significantly decreased (P <
0.01, FDR-corrected) and increased (P < 0.01, FDR-corrected)
normalized nodal efficiency during development, are also
shown in the left and right side of Figure 5d. It should be
noted that although the normalized nodal efficiency can in-
crease or decrease during development, the absolute nodal ef-
ficiency increases monotonically as demonstrated in Figure 8a
below.

Topological Robustness of the Developmental Networks
Figure 6 shows the topological robustness properties of WM
networks indicated by the values of the area under the ROC
curve (AUC) of the LCC as a function of the removed node
number by targeted attacks (Fig. 6a) or random failures
(Fig. 6b). The preadolescent, toddler, and neonate groups are
represented by red, blue, and green lines, respectively. Under
both target attack and random failure, the AUC of LCC is
highest in the preadolescent group, following in turn by the
toddler and neonate groups with different edge weight
thresholds (Fig. 6a,b). These differences become more appar-
ent with higher edge weight thresholds (P < 0.05, Bonferroni-
corrected). The examples at threshold 0.05 are highlighted by
blue boxes in Figure 6a,b and shown in details in the right
panels. With different numbers of removed nodes, the values

of LCC of the preadolescent group are highest, followed in turn
by the toddler and neonate groups in most node-removal situ-
ations (right panels of Fig. 6). The entire Figure 6 demonstrates
that the brain is getting more robust to both target attack and
random failure during both development periods from
neonate to toddler and from toddler to preadolescent. In
addition, the brain networks of the toddler group are approxi-
mately as robust as those of the preadolescent group in
response to target attacks in the smaller range of edge weight
threshold around 0–0.01 (P > 0.1) (Fig. 6a). The neonate group
generally displays remarkably reduced stability against both
targeted attack and random failure when compared with the
other 2 groups with edge threshold from 0.025 to 0.05 and the
number of removed nodes from 20 to 60, indicating special
vulnerability of the neonate brain networks.

Global and Regional Relationship Between Network
Metrics and WM FA
Figure 7 shows the statistically significant correlation (P < 0.001
for all global correlations) between the global network metrics
(including network strength, global, and local efficiency) and
whole-brain FA. It indicates a strong and positive global
relationship between network strength and WM microstruc-
tural integrity and between network efficiencies and WM
microstructural integrity.

Figure 8a shows the differences in absolute nodal efficiency
of the 3 groups with the nodal size encoded by ANOVA
F-values. The uniform red colors of all nodes in Figure 8a indi-
cate the absolute nodal efficiency of every node increases
monotonically (P < 0.0001, FDR-corrected) during develop-
ment. Among all nodes, nodal efficiencies at the bilateral PCG

Figure 6. Topological robustness of the structural networks in each group. The graphs show the AUC of the LCC as a function of the removed node number by targeted attacks (a)
or random failures (b). To demonstrate the details, the graphs of relative size of LCC at threshold 0.05 as a function of the number of removed nodes are shown in the right panels.
The brain networks in the preadolescents (red line) were approximately as robust as those in toddlers (blue line) in response to both target attacks and random failures. However,
the neonates (green line) displayed remarkably reduced stability against both targeted attack and random failure when compared with the other 2 groups. Asterisks: significant
group differences with ANOVA at P< 0.05 (Bonferroni-corrected). The error bars indicate standard deviation.
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show largest magnitude of increase. All nodal FA in Figure 8b
also increases monotonically (P < 0.0001, FDR-corrected) with
brain development. The statistically significant (P < 0.001) and
positive correlations of the corresponding nodal efficiency and
nodal FA are clear in Figure 8c, suggesting regional association
of the increased nodal WM integrity and nodal efficiency.
However, such correlations are heterogeneous among different
nodes and whole brain. For example, with pair-wise tests, the
statistically significant correlation slope differences (P < 0.001)
were found between right PCG or left supramarginal gyrus
(SMG) and the whole brain. The slope differences are also sig-
nificant between right PCG and left SMG (P < 0.001). Figure 8c
shows that the same magnitude of WM FA increases leads to
heterogeneous nodal efficiency increases among different
nodes and the whole brain.

Evaluation of the Maturity Level of Brain Structural
Networks of Preadolescents with That of Adults as the
Reference
Figure 9 shows the maturity level of brain structural networks
of preadolescents with those of adults as a reference. Figure 9a
indicates that the connectivity is getting even stronger from
preadolescents to adults with a higher distribution of edge
weights from 0.25 to 1 for adults. There is no significant differ-
ence of small-worldness, normalized Lp or normalized Cp

between the 2 age groups, while global, local, and cost efficiency
continues to increase from preadolescents to adults (Fig. 9b).
Figure 9c shows that the hub distributions of the 2 groups are
similar. For example, PCG-L/R and PCUN-L/R are the hubs in
both groups. But in the adult group, the hubs at the anterior
brain, for example ACG-L/R, get more prominent, whereas those
in the right occipital lobe, for example right superior occipital
gyrus and right cuneus, get diminished (Fig. 9c).

Evaluation of Scanner Effects
The preadolescent group was divided into 2 subgroups based
on the data acquisition site. Comparisons of integrated values
of the network metrics from each of these 2 subgroups with
those from neonate and toddler groups were conducted to
evaluate the scanner effects. The change patterns of integrated
values of these network metrics are almost identical (Sup-
plementary Fig. 1a, Supplementary Fig. 1b, and Fig. 3b), re-
gardless of the preadolescent data from 1 of the 2 subgroups
or from the entire preadolescent group. Furthermore, the com-
parisons of integrated values of the same network metrics
between 2 preadolescent subgroups show no statistical

significance (P > 0.05) for all network metrics, except inte-
grated local efficiency (Supplementary Fig. 1c).

Discussion

The human brain development from birth to adolescence is
characterized by dramatic changes in connectivity and
network configuration. With the coverage of 3 landmark cross-
sectional ages from birth to the onset of adolescence, we
found that the brain structural configuration was reshaped to
be more efficient, stronger, more modularly organized, and
more robust against attacks. The efficiency and strength in-
crease continues into adulthood. Modular and hub reorganiz-
ations happen throughout the early childhood. Bilateral PCG,
which play a pivotal role in functional network development,
were found to undergo largest nodal efficiency increase in
the structural network development. The heterogeneous nodal
efficiency changes and relationship between the WM micro-
structural integrity and network nodal efficiency suggested
that emergence of the maturing brain networks is underlined
by both microstructural enhancement of some WM tracts and
synaptic pruning of other fibers. To our knowledge, this study
is the first comprehensive network investigation covering 3
landmark cross-sectional ages from neonates to adolescents
with the weighted connectivity matrices and correlating
network properties with WMmicrostructural integrity.

The Brain Structural Connections GrowMonotonically
Stronger andMore Efficient
The network quantification shows a general stronger and more
efficient connectivity with development. The monotonic in-
crease of network strength, global, and local efficiency indi-
cates that the brain networks are consistently getting more
efficient. On the other hand, monotonic decrease of clustering
coefficients and small-worldness suggests that segregation de-
creases consistently with brain maturation from birth to onset
of adolescent (Fig. 3). Figure 8a also reveals that the nodal effi-
ciency of all nodes increases monotonically and significantly.
This monotonic increase of network property during develop-
ment is accompanied with that of microstructural property
(Fig. 8b) also observed in the previous studies (e.g., Snook
et al. 2005; Eluvathingal et al. 2007; Lebel et al. 2008; Tamnes
et al. 2010). The dMRI-based binary network study (Yap et al.
2011) on infant brains has revealed that the small-worldness
exists in the very early life of human brains. This small-
worldness property was also found in our study of the neonate
brain right around birth at 40 gestational weeks, even 2 weeks

Figure 7. Relationship between whole-brain WM FA and network strength (a), whole-brain WM FA and global efficiency (b), and whole-brain FA and local efficiency (c).
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earlier than the youngest age reported in that literature (Yap
et al. 2011). The dMRI-based study (Hagmann et al. 2010) on
the developing human brain from 2 to 18 years old found in-
creased efficiency, node strength, and reduced modularity of
the structural networks during development through weighted
network analysis. The dynamics of these network metrics are
consistent with our results except that these monotonic

network changes are extended further to include 0 to 2 years
old in our study. Hence, our results suggest that the integration
increase and segregation decrease of the human brain net-
works start as early as birth and continue till the onset of ado-
lescence. These network processes are likely to be monotonic
and contribute to the maturation of the human brain configur-
ation. It should be noted that not all developmental procedures

Figure 9. Comparisons of connectivity matrix and edge weight distribution pattern (a), network metrics (b), and hub distribution (c) between preadolescents and adults.
In (b), asterisks indicate significant group differences at P<0.05 (Bonferroni-corrected); **P< 0.01. The error bars in (b) indicate standard deviation.

Figure 8. Differences in absolute nodal efficiency and nodal FA of the 3 groups with the nodal size encoded by ANOVA F-values are shown in (a) and (b), respectively. The F-values
encoding the ball sizes in (a) and (b) are also shown at the bottom of these panels. For all the nodes shown in (a) and (b), there are significant absolute nodal efficiency increase
(P< 0.0001, FDR-corrected, in a) and FA increase (P< 0.0001, FDR-corrected, in b). The correlations of nodal efficiency of right PCG, left SMG, or whole-brain and corresponding
WM FA for individual subjects of all the age groups are shown in (c). The linear fitting lines and square of Pearson’s correlation coefficient are also displayed in (c).
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from birth to the onset of adolescence are associated with
monotonic processes. For example, the previous functional
study measuring local cerebral metabolic rates for glucose with
positron emission tomography indicated the measured values
rose rapidly to adult values by 2 years, reached a plateau to 3
and 4 years, maintained until 9 years, and began to decline
then (Chugani et al. 1987). With incorporation of the 3 impor-
tant developmental landmark cross-sectional ages in our study,
the monotonicity of these network metric changes from birth
to the onset of adolescence suggests that the brain networks
are reconfigured to continuously get stronger and more effi-
cient during this period.

Strengthened Networks with Development Involves not
only Microstructural Enhancement of WM, but also
Other Factors Possibly Including Pruning
Studies on development of functional connections (e.g., Fair
et al. 2007, 2008; Supekar et al. 2009; Dosenbach et al. 2010;
Power et al 2010; Hwang et al. 2012) have suggested that the
formation of the human brain networks is associated with some
important structural developmental events taking place in paral-
lel. Specifically, these events include myelination of certain WM
fibers (e.g., Yakovlev and Lecours 1967; Benes et al. 1994),
pruning of other WM fibers (e.g., Innocenti 1981; Cowan et al.
1984; LaMantia and Rakic 1990; LaMantia and Rakic 1994; Woo
et al. 1997; Innocenti and Price 2005), and integration through
synchronization (Varela et al. 2001). The structural connectivity
and functional connectivity are linked to each other (e.g., Grei-
cius et al. 2009; Honey et al. 2009; van den Heuvel et al. 2009).
Hence, the factors reshaping the functional connectivity during
brain maturation may also reshape structural connectivity.
However, unlike developmental networks established with
functional connectivity, the structural networks established
with dMRI tractography in this study include only connectivity
with axonal connections. The 2 regions connecting each other
through a relay at a third region can be detected to have connec-
tion in the networks built with correlation analysis of resting-
state fMRI, but not in the networks built with tractography of
dMRI. Therefore, the integration through synchronization
cannot be apparently manifested in the dMRI-based develop-
mental networks in our study.

Overproduction, elimination, and reshaping of corpus
callosum (Innocenti 1981; LaMantia and Rakic 1990), anterior
commissure (LaMantia and Rakic 1994), and prefrontal asso-
ciational circuitry (Woo et al. 1997) have been found in
previous studies with monkey or cat models. Synaptic overpro-
duction in infancy, persistence of high levels of synaptic
density to adolescence and decrease after adolescence, has
also been observed in the human brain (Chugani et al. 1987;
Huttenlocher and Dabholkar 1997; Petanjek et al. 2011). These
time-dependent changes vary across visual, auditory, and pre-
frontal cortices (Huttenlocher and Dabholkar 1997). The fol-
lowing specific findings may be related to axon pruning. First,
from Figure 8c, although positive and significant correlations
exist between nodal efficiencies and FA, the correlation slopes
are significantly different. Of note, these FA values represent
the microstructural integrity of the WM axons connected with
the nodes. The largest increase of nodal efficiency takes place
at PCG-R. The major WM tract connecting PCG is the cingulum
bundle in cingulate gyrus. To our knowledge, there is no direct
evidence so far showing cingulum bundle in cingulate gyrus

undergoes most rapid increase of microstructural integrity
among all major WM tracts from birth to preadolescence. It
suggests that other factors, possibly including pruning of small
fibers or axonal branches, in addition to the microstructural en-
hancement of major fiber bundles, contribute to the variability
of nodal efficiency change rates among different nodes. Pre-
viously, we found that major WM tracts including the associ-
ation tracts and commissural tracts connecting different
cortical regions are well formed in the neonate brains, and the
general morphological pattern is quite similar to that of the 5-
to 6-year-old children (Huang et al. 2006). The microstructural
enhancement of major WM tracts is heterogeneous during de-
velopment in childhood (e.g., Lebel et al. 2008; Lebel and
Beaulieu 2011). Not only increased but also decreased normal-
ized efficiency observed in Figure 5d is probably associated
with axon pruning and heterogeneous microstructural en-
hancement of major WM tracts, but not with formation of new
major WM tracts. With Figure 5d and Figure 8c, it is likely that
the strengthening of the growing structural networks is the
outcome of both the heterogeneous microstructural enhance-
ment (including myelination) of the major WM tracts and
pruning of the small fibers. The analysis of integrated effects of
microstructural enhancement of long-range fibers and
pruning of short range fibers in the future may provide
further insights on the underlying mechanism of growing
human brain networks.

Formation of the Modular Organization
and Reconfiguration of the Brain Hubs
From Birth to Adolescence
During development, there is a general trend of increases for
the numbers of modules and connectors, indicating emergence
of the modular organization and more communications among
the modules with brain development (Fig. 4a). Moreover, at
edge weight threshold from around 0.015 to 0.05, the modular-
ity decreases during development, indicating loss of intramo-
dule links. This reduction of the intramodule links is possibly
through the pruning process during development. The 3 plots
in Figure 4a jointly suggest the strengthening of intermodule
connections and the weakening of intramodule connections.
We also identified modular organization of the brains at each
age group (Fig. 4b). The modular organizations are different
among the 3 age groups (Fig. 4b). There is no clear monotonic
tread regarding with the modular organization during develop-
ment. These findings suggest that the activity levels of 2 brain
development processes discussed previously, major WM tract
strengthening and small fiber pruning, are varied during differ-
ent developing periods. It has been found that more pro-
nounced synaptic elimination occurs in later childhood (e.g.,
Huttenlocher and Dabholkar 1997).

The differences of normalized nodal efficiency revealed that
the largest increases of normalized nodal efficiency take place
at the bilateral PCG (Fig. 5d). It is consistent to the microstruc-
tural integrity increase of the cingulum bundle in the cingulate
gyrus (the major WM tract connecting PCG) during childhood
observed in previous studies (e.g., Lebel et al. 2008; Lebel and
Beaulieu 2011). We also found that the bilateral PCG are struc-
tural network hubs in all the 3 landmark cross-sectional ages
(Fig. 5a–c) and remain to be the hubs in adulthood (Fig. 9c).
PCG plays a pivotal role in default mode network in resting-
state functional connectivity (e.g., Greicius et al. 2003). The
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relationship between structural and functional connectivity has
been confirmed previously (e.g., Greicius et al. 2009; van den
Heuvel et al. 2009). Our finding on PCG, therefore, provides
evidence for the structural basis of the formation of the default
mode network (Fair et al. 2008; Gao et al. 2009) during brain
maturation. Default mode network supports mental activities
such as episodic memory (Frith and Firth 1999), mentalizing
(Frith and Frith 2003), and self-projection (Buckner and
Carroll 2007). At early school age (7- to 9 years old), the
default regions are only sparsely functionally connected; these
regions integrate into a cohesive and interconnected network
over development (Fair et al. 2008). Emergence of the default
mode network has also been shown in neonate brains (Doria
et al. 2010). As a key component of default mode network, we
speculate that the prominent increase of PCG efficiency from
birth to preadolescence (Fig. 5d and Fig. 8c) in the structural
networks contributes to the formation of a cohesive functional
default mode network (Fair et al. 2008). It is not clear why
other key components of the default mode network do not
manifest remarkable efficiency increases. However, it has been
reported that PCG is a highly connected and metabolically
active brain region (Leech and Sharp 2013). Of note, highly
structurally connected PCG has been consistently found in
adult brains in previous dMRI studies (Hagmann et al. 2008;
Gong et al. 2009; van den Heuvel and Sporns 2011), and our
study also demonstrated that it continues to be the structural
network hub in adulthood (Fig. 9c).

Growing Robustness of the Brain Structural Networks
with Development
Another intriguing finding is the growing robustness of the
brain structural networks through topological tests after target
attack or random failure. These tests of robustness against
attack in the framework of developing brain revealed interest-
ing topological advantages of the networks of the more mature
brains. Figure 6 shows that, from neonates to adolescents, the
younger the age, the more vulnerable the brain networks are
against target attack or random failure. Increased robustness
with early brain development may be related to an increased
number of connectors (Fig. 4a), which play an important role
in keeping the robustness and stability of the brain networks
(He et al. 2009). This relatively poor topological robustness in
younger brains has significant implication of autism, which de-
velops during infancy and early childhood. Specifically, it has
been speculated that excess neuron numbers may be one poss-
ible cause of early autistic brain overgrowth and produce
defects in neural patterning and wiring, with exuberant local
and short-distance cortical interactions impeding the function
of large-scale, long-distance interactions between brain
regions (e.g., Courchesne et al. 2007). Such disruptions of
large-scale connections located in frontal and temporal regions
and associated with corpus callosum have been observed in
several studies investigating autism with dMRI (e.g., Barnea-
Goraly et al. 2004; Weinstein et al. 2011; Lewis et al. 2013).
These connections underlie socio-emotional and communi-
cation functions and alterations of these connections could
relate to the early clinical manifestations of autism. Connector
nodes identified by graph theory interconnect modules
(Guimera et al. 2004; Sporns et al. 2007; Rubinov and Sporns
2010) and are likely to be associated with long-range connec-
tions. It is reasonable to extrapolate that disruptions of

long-range connectivity in the autistic brain may impede in-
crease of connectors in a normal developmental process (see
Fig. 4a) and hence yield a less robust network. The other
implication of this network robustness test is plasticity. Human
brains become less plastic during development. It seems that
network robustness and plasticity are inversely correlated to
each other. The early developing brain has a poor topological
robustness but more plasticity. A developing brain gives up
some of its plasticity in favor of efficiency and stability (Vogel
2012), which has been jointly illustrated by our results of
network efficiency (Fig. 3) and robustness (Fig. 6).

Technical Issues, Limitations, and Further
Considerations
There are several technical issues related to edge weight in the
weighted network analysis used in this study. As argued in a
previous structural network study (Gong et al. 2009), it is
impossible to choose a single threshold with the probabilistic
tracking used in this study. Hence, network property measure-
ments (Fig. 3a), modular quantifications (Fig. 4a), and
network robustness measurements (Fig. 6) were conducted at
different edge weight thresholds. Higher thresholds usually
indicate less spurious tracing results included. However, there
are also risks of removing “real” connectivity by increasing
thresholds. Most of the between-group comparisons (Fig. 3a
and Fig. 6) are consistent with different thresholds, while
modular quantifications are more sensitive to the changes of
thresholds (Fig. 4a). From birth to adolescence, the brain un-
dergoes dramatic microstructural and macrostructural changes,
both of which need to be taken as the edge weight factors. To
account for the microstructural changes, 1/ADC used by
Hagmann et al. (2010) was adopted as one of the edge weight
scalars. For a brain with larger volume, the connectivity prob-
ability Pij tends to be smaller after WM fibers are traced for
longer distance. To make up for the smaller Pij in a larger
brain, brain size is another edge weight scalar. These factors
were used for the fair weighted network comparisons among
the 3 age groups. Currently, there has been no consensus of
the weight definition for the edges derived from dMRI tracto-
graphy. The variations in the brain size and microstructures of
WM during development add complexity. To evaluate the
effects of the factor of 1/ADC on network property changes
during maturation process, we also conducted network analy-
sis without this factor. As shown in Supplementary Figure 2,
the significant differences are still preserved and order of the
differences is the same as that shown in Figure 3a.

Owing to difficulty of obtaining good sample number, the da-
tasets were acquired from 2 sites, but with the same imaging
protocol and same Philips 3T scanners. Rigorous quality control
of both scanners is conducted routinely. To evaluate the scanner
effects, we have divided the preadolescents into 2 subgroups
depending on the data acquisition site. Compared with
Figure 3b, it is clear from Supplementary Figure 1a,b that the
scanner difference does not impose noticeable effects on the
network measurements in that the same change patterns with
statistical significance can be found for all measured network
metrics. Furthermore, there are no statistical differences of these
network metrics between the 2 preadolescent groups (Sup-
plementary Fig. 1c) except integrated local efficiency, which is
likely to be caused by the individual differences of 2 subgroups
of samples rather than the scanner differences. The FA
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measurements could be affected by the scanner difference too.
In another study by our group, a healthy young subject (“in vivo
human phantom”) was scanned in 2 Philips 3T scanners (same
type of scanner as those used in this study) at 2 sites with the
same dMRI sequence. Quantitative FA measurement differences
caused by scanner difference were tested to be within the range
of variability of scanning the same subject twice with one
scanner (Saxena et al. 2012). It should also be noted that even
the MR data obtained by scanning the same subject with the
same scanner twice could have slight differences due to constant
subtle fluctuations of the scanner. With the same type of scan-
ners used in this study and rigorous quality control of both scan-
ners, the effects of scanner differences may lead to relatively
subtle changes of the presented results, but cannot be big
enough to affect the statistical significance and overall trend of
the network configurations during development found in this
study. Furthermore, with the subgroup 1 of the preadolescent
group from children with a relatively diverse races and the sub-
group 2 exclusively from Asian children, the similar network
metrics shown in Supplementary Figure 1c and dramatic differ-
ences shown in Figure 3b jointly suggest that the effects of
genetic background, socio-cultural, or educational environment
on brain structural networks are relatively trivial compared with
those caused by normal brain development.

It should be noted that this study is not a longitudinal one as
the subjects at each cross-sectional age were not the same. It
could also be one limitation that the sample size (n = 13) of the
toddler’s group is less than those (n = 25) of the other 2 age
groups due to greater difficulty of subject recruitment and data
acquisition of toddlers. However, shown in Figure 3 and
Figure 4, the standard deviations of the network metrics of tod-
dlers are comparable with those of the other 2 age groups,
suggesting the uneven sample numbers across the age groups
have relatively limited effects on group comparisons of the
network metrics.

Besides dMRI, the brain structural networks can also be in-
vestigated by measuring inter-regional covariance of gray
matter morphological features (e.g., thickness or volume)
derived from T1-weighted data (He et al. 2007; Bassett et al.
2008; for review, see Alexander-Bloch, Giedd, et al. 2013).
Several recent studies have suggested that such structural
covariance is likely to reflect developmental coordination or
synchronized maturation in anatomically related regions (Raz-
nahan et al. 2011; Alexander-Bloch, Raznahan, et al. 2013) and
exhibits shared global and local topological organization with
dMRI WM networks (Gong et al. 2012). Notably, a recent study
(Fan et al. 2011) reported that the structural covariance net-
works, even in neonates, already display high efficient small-
world properties and significant modular organization, and
that these properties further increase during the first 2 years of
life. The developmental patterns of structural covariance are
highly compatible with our findings (e.g., small-worldness in
Fig. 3 and modular organization in Fig. 4) based on dMRI data.
Further studies combining large sample dMRI and structural
MRI data would be interesting to explore developmental
changes in the brain’s structural covariance and WM connec-
tivity networks.

Conclusion

By quantitatively characterizing the brain network properties
of neonates, toddlers, and preadolescents, we found a

significant and monotonic increase of network efficiency and
strength through infancy and childhood with the brain’s struc-
tural networks more modularly organized and more robust
against attacks. We observed that the brain maturation process
in this period is accompanied with heterogeneous regional
nodal efficiency increases, and such increases are significantly
correlated with the microstructural enhancement of the associ-
ated WM. Highest efficiency increase takes place at PCG, the
pivotal component of functional default mode network and
the hub of structural networks at all 3 cross-sectional ages
during development and at the age of adulthood. The charac-
terized network reconfiguration during this period could be
contributed by heterogeneous enhancement of some axons
and pruning of others. These findings may provide insight into
pathologies of development such as autism and potentially
allow us to define structural network correlates for human cog-
nitive and behavior development.
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Supplementary Material can be found at http://www.cercor.oxford-
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Appendix

Network Strength

For a network (graph) G with N nodes and K edges, we calcu-
lated the strength of G as:

SpðGÞ ¼ 1
N

X
i[G

SðiÞ ð1Þ

where S(i) is the sum of the edge weights wij linking to node i.
The strength of a network is the average of the strengths across
all the nodes in the network.

Small-World Properties

Small-world network parameters (clustering coefficient, Cp,
and shortest path length, Lp) were originally proposed by
Watts and strogatz (1998). In this study, we investigated the
small-world properties of the weighted brain networks. The
clustering coefficient of a node i, C(i), which was defined as
the likelihood whether the neighborhoods were connected
with each other or not, is expressed as follows:

CðiÞ ¼ 2
kiðki � 1Þ

X
j;k

ðwijw jkwkiÞ1=3 ð2Þ
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where ki is the degree of node i, and w is the weight, which is
scaled by the mean of all weights to control each participant’s
cost at the same level. The clustering coefficient is zero, C
(i) = 0, if the nodes are isolated or with just one connection,
that is, ki = 0 or 1. The clustering coefficient, Cp, of a network is
the average of the clustering coefficient over all nodes, which
indicates the extent of local interconnectivity or cliquishness in
a network (Watts and Strogatz 1998).

The path length between any pair of nodes (e.g., nodes i
and j) is defined as the sum of the edge lengths along this
path. For weighted networks, the length of each edge was as-
signed by computing the reciprocal of the edge weight, 1/wij.
The shortest path length, Lij, is defined as the length of the
path for nodes i and j with the shortest length. The shortest
path length of a network is computed as follows:

LpðGÞ ¼ 1
N ðN � 1Þ

X
i=j[G

Lij ð3Þ

where N is the number of nodes in the network. The Lp of a
network quantifies the ability for information propagation in
parallel.

To examine the small-world properties, the clustering coeffi-
cient, Cp, and shortest path length, Lp, of the brain networks
were compared with those of random networks. In this study,
we generated 100 matched random networks, which had the
same number of nodes, edges, and degree distribution as the
real networks (Maslov and Sneppen 2002). Of note, we re-
tained the weight of each edge during the randomization pro-
cedure such that the weight distribution of the network was
preserved. Furthermore, we computed the normalized shortest
path length (lambda), l ¼ Lrealp =Lrandp , and the normalized clus-
tering coefficient (gamma), g ¼ C real

p =C rand
p , where Lrandp and

C rand
p are the mean shortest path length and the mean cluster-

ing coefficient of 100 matched random networks. Of note, the
2 parameters correct the differences in the edge number and
degree distribution of the networks across individuals. A real
network would be considered small-world if g . 1 and l � 1
(Watts and Strogatz 1998). In other words, a small-world
network has not only the higher local interconnectivity, but
also the approximately equivalent shortest path length com-
pared with the random networks. These 2 measurements can
be summarized into a simple quantitative metric, small-
worldness,

s ¼ g=l ð4Þ

which is typically greater than 1 for small-world networks.

Network Efficiency

The global efficiency of G measures the global efficiency of
the parallel information transfer in the network (Latora and
Marchiori 2001), which can be computed as:

EglobðGÞ ¼ 1
N ðN � 1Þ

X
i=j[G

1
Lij

ð5Þ

where Lij is the shortest path length between nodes i and j inG.
The local efficiency of G reveals how much the network is

fault tolerant, showing how efficient the communication is
among the first neighbors of the node i when it is removed.

The local efficiency of a graph is defined as:

ElocðGÞ ¼ 1
N

X
i[G

EglobðGiÞ ð6Þ

where Gi denotes the subgraph composed of the nearest
neighbors of node i.

The cost efficiency of G is defined as the global efficiency
divided by the cost of the network.

EcostðGÞ ¼ EglobðGÞ=CostðGÞ ð7Þ

The network cost was to measure the expense for building up
the connecting elements of a graph. Typically, the cost of a
connection is proportional to its distance, which is the inverse
of the edge weight in this study, and therefore, the overall cost
of a graph is derived by taking the sum of distance, that is,
Cost = sum (1/wij). The cost efficiency measures the relative
network efficiency normalized by its cost.

Regional Nodal Characteristics

To determine the nodal (regional) characteristics of the WM
networks, we computed the regional efficiency, Enodal(i)
(Achard and Bullmore 2007):

EnodalðiÞ ¼ 1
N � 1

X
i=j[G

1
Lij

ð8Þ

where Lij is the shortest path length between nodes i and j in
G. Enodal(i) measures the average shortest path length between
a given node i and all of the other nodes in the network. The
node i was considered a brain hub if Enodal(i) was at least 1 SD
greater than the average nodal efficiency of the network (i.e.,
Enodal(i) > mean + SD).

Notes
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