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Abstract Local functional homogeneity of the human

cortex indicates the boundaries between functionally het-

erogeneous regions and varies remarkably across the cor-

tical mantle. It is unclear whether these variations have the

neurobiological and structural basis. We employed struc-

tural and resting-state functional magnetic resonance

imaging scans from 482 healthy subjects and computed the

vertex-wise regional homogeneity of low-frequency fluc-

tuations (2dReHo) and five measures of cortical morphol-

ogy. We then used these metrics to examine regional

variation, morphological association and functional

covariance network of 2dReHo. Within the ventral visual

stream, increases of 2dReHo reflect reduced complexity of

information processing or functional hierarchies. Along the

divisions of the prefrontal cortex and posteromedial cortex,

the gradients of 2dReHo revealed the hierarchical organi-

zation within the two association areas, respectively.

Individual differences in 2dReHo are associated with those

of cortical morphology, and their whole-brain inter-regio-

nal covariation is organized into a functional covariance

network, comprising five hierarchically organized modules

with hubs of both primary sensory and high-order associ-

ation areas. These highly reproducible observations suggest

that local functional homogeneity has neurobiological rel-

evance that is likely determined by anatomical, develop-

mental and neurocognitive factors and should serve as a

neuroimaging marker to investigate the human brain

function.

Keywords Functional homogeneity � Prefrontal cortex �
Posteromedial cortex � Functional hierarchy � Structural
morphometry � Functional covariance � Network

Introduction

Functional connectomics has become an increasingly

powerful tool for characterizing human brain function

(Biswal et al. 2010; Zuo et al. 2012; Craddock et al. 2013).

Although previous studies have extensively investigated

the intrinsic functional connectivity among distant regions

using resting-state functional magnetic resonance imaging

(RFMRI), the regional homogeneity of local functional

activity (i.e., functional homogeneity) has been overlooked

for some time (Biswal et al. 1995; Kelly et al. 2012).

Observations of the structural basis of functional
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connectivity performed using computational simulations

have indicated the potential roles of local functional

homogeneity and of its regional variation (Sporns et al.

2005; Deco et al. 2009, 2010; Honey et al. 2009; Break-

spear et al. 2010). In this study, we aim to justify local

functional homogeneity as a biologically meaningful

measure for exploring human brain connectomics by

examining its regional variation, morphological correlates

and covariance network organization.

Local functional homogeneity of the human cortex indi-

cates the boundaries between functionally heterogeneous

regions. Although the whole-brain functional homogeneity

has been mapped in previous studies (Zang et al. 2004; He

et al. 2007a; Long et al. 2008; Tomasi andVolkow 2010) and

is highly test–retest reliable (Zuo et al. 2013; Zuo and Xing

2014), its regional variation and robustness across individ-

uals have never been systematically investigated. The

homogeneity of cell number/type and neuron density most

likely contributes to functional homogeneity within a small

region (Lichtman and Denk 2011); thus, this regional vari-

ation inmicro-level homogeneity could also contribute to the

regional variation in local functional homogeneity.

Regarding brain connectomics, although previous large-

scale functional connectomes studies have provided great

insights into brain network organization (Bullmore and

Sporns 2009, 2012), regional variations in local functional

homogeneity have suggested that defining a node based on a

large structural region and building an edge in a functional

connectivity graph can be problematic. Simply averaging the

voxel-wise time series in a large region ignores the fact that

the strength of functional homogeneity within large struc-

tural areas is typically low and highly variable across spatial

locations, leading to difficulties in interpreting themean time

series and derived connectome metrics. A promising solu-

tion to this problem is to parcellate the brain into a set of

functionally homogeneous regions (i.e., functional parcel-

lation) at both the groups (Bellec et al. 2010; Yeo et al. 2011;

Craddock et al. 2012; Zuo et al. 2012) and individual levels

(Blumensath et al. 2013;Wig et al. 2013). For this purpose, a

comprehensive map of local functional homogeneity across

the human cortex, particularly its regional variations, is

essential.

The regional variation in local functional homogeneity

within a brain circuit or region can help provide insight into

the intrinsic architecture of the human brain function. The

ventral visual stream (VVS) is one of the two widely

accepted and influential models of the neural processing of

the visual circuit in both nonhuman primates and humans.

The VVS has a clear hierarchical organization (Ungerleider

and Haxby 1994). Identifying the relation between the

regional homogeneity and the information processing hier-

archy in this stream would begin to clarify neurobiological

and cognitive roles of local functional homogeneity.

The prefrontal cortex (PFC) is related to all higher brain

functions, including affect, social behavior, and cognitive

control (see Amodio and Frith 2006; Wood and Grafman

2003; Miller et al. 2000 for reviews). These previous

studies have proposed several unifying theories of PFC

function; however, the functional organization of the PFC

is currently under much debate. Existing parcellation par-

adigms of the PFC have primarily been generated for the

macaque based on stained cell bodies and/or fiber patterns.

RFMRI has recently improved this situation and gained

new insights into the functional anatomy of macaque PFC

(Hutchison and Everling 2013). This technology has also

accelerated the recent advances concerning functional

parcellation of the human brain (e.g., Yeo et al. 2011).

Examining the regional variation in the local functional

homogeneity of common functional connectivity networks

that overlap with the human PFC will greatly enrich the

current knowledge of the PFC’s functional hierarchy.

The posteromedial cortex (PMC) has been less accu-

rately mapped with its brain connectivity profile using

traditional brain mapping technologies because the PMC is

hidden in a deep anatomical location and is rarely hurt

under various traumatic brain injury conditions. Recent

RFMRI studies have revealed that the highest functional

homogeneity (hot spots) appeared in the (PMC) (He et al.

2007a; Long et al. 2008; Tomasi and Volkow 2010; Zuo

et al. 2013) across the cerebral cortex. This finding might

be an indication of the previous observation that this

unique and mysterious high-order association area in the

human brain exhibits the highest resting metabolic rates

(Raichle et al. 2001) and network centrality of information

flow (Hagmann et al. 2008; Buckner et al. 2009; He et al.

2009; Zuo et al. 2012). Long-distance connectivity with

different portions of the PMC has been increasingly

investigated within both healthy and clinical populations

(see Cavanna and Trimble 2006; Leech and Sharp 2014 for

reviews). Surprisingly, regional variation in local func-

tional connectivity within the PMC has rarely been

examined although this variation has great potential

insights into the PMC’s functional anatomy. We will sys-

tematically investigate the regional variation in 2dReHo

within the VVS, PFC and within the PMC.

Although individual differences in distant functional

connectivity have been demonstrated with its biologically

meaningful indication of brain morphology (Mueller et al.

2013; Alexander-Bloch et al. 2013), the individual vari-

ability of 2dReHo and its morphological association have

rarely been examined. The inter-regional covariation in

brain morphological measurements (i.e., structural covari-

ance) across individuals has been proposed to reflect the

synchronization of development processes between two

regions (Mechelli et al. 2005; Alexander-Bloch and Giedd

2013). Mapping the structure covariance networks has been
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increasingly applied to study the brain’s topological orga-

nization (He et al. 2007b; Zhang et al. 2011), development/

aging (Zielinski et al. 2010; Montembeault et al. 2012; Li

et al. 2013), behavior/cognition (Kanai and Rees 2011;

Bernhardt et al. 2013) and disease (Zielinski et al. 2012;

Liao et al. 2013). A comprehensive assessment on 2dRe-

Ho’s correlates of various brain morphological metrics,

which are based on its individual differences and on its

inter-regional functional covariance, can offer a unique

opportunity for mapping the human brain’s functional

organization at both local spatial scale (millimeters) and

long temporal scale (years), as well as its structural basis.

This study used a large sample (N = 482) of multimodal

imaging datasets of the human brain to examine the

regional variation in local functional homogeneity within

the ventral visual stream, the PFC and within the PMC. We

also investigated the inter-regional covariation in local

functional homogeneity by mapping the derived functional

covariance network and its network properties such as

centrality and modules. To directly examine the morpho-

logical association of local functional homogeneity, we

conducted a correlational analysis between local functional

homogeneity and cortical morphology across the cerebral

cortex. The findings presented in this study are highly

reproducible across three imaging sites and reliable across

a 2-day test–retest occasion. These results suggest that

local functional homogeneity has neurobiological rele-

vance that is likely determined by cognitive, structural, and

by developmental factors.

Materials and methods

Participants and magnetic resonance imaging

A total of 504 healthy participants were scanned at three

different sites using Siemens MAGNETOM TrioTim 3T

scanners: (1) Beijing Enhanced (N = 180) (Yan et al.

2011), (2) Cambridge (N = 198) (Yeo et al. 2011), and (3)

Nathan Kline Institute (NKI)/Rockland (N = 126) (Nooner

et al. 2012; Yang et al. 2014; Cao et al. 2014). Details of

MRI information for the three imaging sites are summa-

rized in Table 1. As an open science effort, these datasets

have been made publicly available via the 1000 Functional

Connectomes Project (FCP1: Biswal et al. 2010) and the

International Data-sharing Initiative (INDI2: Milham

2012).

To minimize MRI spatial distortion and signal loss

(especially in the orbital frontal cortex of the PFC) as well

as achieve a higher temporospatial resolution in exploring

the functional hierarchy of the PFC, we employed another

public RFMRI dataset from the Human Connectome Pro-

ject (HCP3) (Van Essen et al. 2013). These data were

acquired with advanced multi-band RFMRI sequences

from 80 unrelated healthy participants in the HCP Q3

release database. Each HCP subject underwent 1 h of

Table 1 MRI information

across three imaging sites

Repetition time (TR), Echo

Time (TE), Inversion Time (TI),

Flip Angle (FA), Field of View

(FoV)
a A multiecho (four different

TEs) MP-RAGE sequence was

used to increase image contrast

through weighted averaging of

the four derived images

Beijing enhanced Cambridge NKI Rockland

Scanner

Manufacturer Siemens Siemens Siemens

Magnet 3.0 Tesla 3.0 Tesla 3.0 Tesla

System TrioTim B15 TrioTim B15 TrioTim B15

MP-RAGE

TR 2,530 ms 2,200 ms 2,500 ms

TE 3.39 ms 1.04–7.01 msa 3.50 ms

TI 1,100 ms 1,100 ms 1,200 ms

FA 7� 7� 8�
FoV 256 mm 230 mm 256 mm

#Slices 128 144 192

Voxel size 1.3 9 1.0 9 1.0 mm 1.2 9 1.2 9 1.2 mm 1.0 9 1.0 9 1.0 mm

EPI

TR 2,000 ms 3,000 ms 2,500 ms

TE 30 ms 30 ms 30 ms

FA 90� 85� 80�
FoV 200 mm 216 mm 216 mm

#Slices 33 47 38

Voxel size 3.1 9 3.1 9 3.6 mm 3.0 9 3.0 9 3.0 mm 3.0 9 3.0 9 3.3 mm

#Time points 240 124 260

1 http://fcon_1000.projects.nitrc.org/fcpClassic/FcpTable.html.
2 http://fcon_1000.projects.nitrc.org/indi/pro/nki.html.
3 http://www.humanconnectome.org.
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whole-brain RFMRI scanning acquired with two pairs of

15-min runs in 2 days and thus had four 15-min RFMRI

scans (rfMRI_REST1_LR, rfMRI_REST1_RL, rfMRI_R-

EST2_LR, rfMRI_REST2_RL). A spatial resolution of

2-mm voxel and a temporal resolution of 0.7 s were

achieved with a multi-band EPI acceleration factor of 8

(Moeller et al. 2010; Feinberg et al. 2010). All subjects

were instructed to lie with their eyes open, with ‘‘relaxed’’

fixation on a white cross (on a dark background), think of

nothing in particular, and not fall asleep. More details of

these data can be found in HCP Q3 release reference

manual.4

Overall analytic strategy

Figure 1 illustrates the following overall analytic strategy:

(1) first, individual structural and functional images are

preprocessed, followed by (2) a quality control procedure

(QCP) to exclude data with severe problems (e.g., incom-

plete scan, head motion, or bad registration). (3) For all

data passing the QCP, metrics of both brain functional

homogeneity and structural morphology are computed

vertex-wise on the cortical mantle. (4) Using these metrics,

an outlier detection procedure (ODP) is developed to fur-

ther exclude participants from subsequent group-level

analyses. All computational procedures are performed on

the Dell Blade Cluster System at the Institute of Psychol-

ogy, Chinese Academy of Sciences. Finally, we conduct

three types of functional homogeneity analyses at the group

level to systematically investigate the (5) regional varia-

tion, (6) morphological association, and (7) functional

covariance network of local functional homogeneity in the

human brain.

Image preprocessing

For each participant, all MRI images were preprocessed

using the Connectome Computation System (CCS).5 The

CCS was developed based on FCP scripts6 and extends the

functionality onto the cortical surface by integrating AFNI

(Cox 2012), FSL (Jenkinson et al. 2012) and FreeSurfer

(Fischl 2012) software with shell and MATLAB scripts.

The CCS combines anatomical, structural and functional

information to provide a computational platform for brain

connectome analysis with multi-modal neuroimaging data.

The data preprocessing was composed of steps for both

anatomical and functional processing.

The structural image processing included the following

steps of brain cortical surface reconstruction (Dale et al.

1999; Fischl et al. 1999; Segonne et al. 2004, 2007): (1)

MR image noise removal using a spatially adaptive non-

local means filter (Xing et al. 2011; Zuo and Xing 2011)

and MR intensity inhomogeneity correction; (2) brain

extraction using a hybrid watershed/surface deformation

procedure; (3) automated segmentation of the cerebrospi-

nal fluid (CSF), white matter (WM) and deep gray matter

(GM) volumetric structures; (4) generation of cutting

planes to disconnect the two hemispheres and subcortical

structures; (5) repair of the interior holes of the segmen-

tation; (6) a triangular mesh tessellation and the mesh

deformation over the GM-WM boundary to produce a

smooth representation of the GM-WM interface (white

surface) and of the GM-CSF interface (pial surface); (7)

topological defect correction on the surface, (8) individual

surface mesh inflation into a sphere; and (9) estimation of

the deformation between the resulting spherical mesh and a

Fig. 1 Flowchart of the overall

analytic strategy and

computational pipeline

4 http://www.humanconnectome.org/documentation/Q3.

5 http://lfcd.psych.ac.cn/ccs.html.
6 http://www.nitrc.org/frs/downloadlink.php/2628.
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common spherical coordinate system that aligned the cor-

tical folding patterns across subjects.

The functional image preprocessing involved the fol-

lowing processes: (1) removing the first 5 EPI volumes

from each scan to allow for signal equilibration; (2) de-

spiking time series with an hyperbolic tangent function to

detect and reduce outliers (spikes); (3) slice timing using

Fourier interpolation to temporally correct the interleaved

slice acquisition; (4) aligning each volume to a ‘‘base’’

image (the mean EPI image) using Fourier interpolation to

correct the between-head movements; (5) normalizing the

4D global mean intensity to 10,000 to allow inter-subject

comparisons; (6) regressing out the WM/CSF mean time

series and the Friston-24 motion time series to reduce the

effects of these confounding factors (Zuo et al. 2013; Yan

et al. 2013a); (7) filtering the residual time series with a

band-pass (0.01–0.1 Hz) to extract the low-frequency

fluctuations; (8) removing both linear and quadratic trends;

and (9) aligning individual motion corrected functional

images to the individual anatomical image using the GM-

WM boundary-based registration (BBR) algorithm (Greve

and Fischl 2009).

Using the combination of BBR deformation and spher-

ical surface normalization, first, the individually prepro-

cessed 4D RFMRI time series were projected onto the

fsaverage standard cortical surface with 163,842 vertices

per hemisphere apart from 1 mm neighboring pairs of

vertices on average. Then, the data were down-sampled

onto the fsaverage5 standard cortical surface (3.8-mm

neighboring-vertex distance), which contained 10,242

vertices per hemisphere (Yeo et al. 2011).

The HCP datasets underwent the HCP preprocessing

pipeline (Smith et al. 2013; Glasser et al. 2013). Similar to

the CCS, this pipeline puts significant effort into obtaining

an accurate registration of the RFMRI images to the high-

resolution (0.7-mm isotropic voxel) structural image of

each subject. This accurate registration allows the trans-

formation of the cortical RFMRI signal from the originally

acquired 3D voxel matrix onto a gray matter surface mesh.

Surface-based analysis represents gray matter with greater

respect to its natural geometry and therefore allows for

better functional alignment across subjects (Van Essen and

Dierker 2007) and reliability improvements (Zuo et al.

2013). The minimally preprocessed individual RFMRI

time series were transferred from native surface meshes to

the Conte69 32 k template mesh (2-mm average vertex

spacing, with 32,494 vertices per hemisphere) (Van Essen

et al. 2012) and further smoothed (2-mm FWHM) on the

surface (Smith et al. 2013). Several efforts have also been

made to address various noisy confounds in these RFMRI

data. A minimal high-pass filtering with a 2000-s FWHM

was applied, which was similar to the removal of linear

trends from the data. The 24 confound time series derived

from the motion estimation were also regressed out of the

data (Yan et al. 2013a; Satterthwaite et al. 2013). FIX

(FMRIB’s ICA-based X-noiseifier) was applied to classify

RFMRI data components in the volume space into ‘‘good’’

versus ‘‘bad’’ (Salimi-Khorshidi et al. 2014; Griffanti et al.

2014). Then, bad components identified as artifactual

processes by FIX were removed from the RFMRI data in

the surface space.

Quality control procedure

Following the preprocessing steps of individual images, the

CCS provides a quality control procedure (QCP) to ensure

the quality of processed images. Specifically, this procedure

produces basic information concerning preprocessed images

including screenshots for visual inspection of: (1) brain

extraction or skull stripping, (2) brain tissue segmentation,

(3) pial and white surface reconstruction, (4) BBR-based

functional image registration, and (5) head motion during

RFMRI, and several quantities, including the following: (1)

the maximum distance of translational head movement

(maxTran), (2) the maximum degree of rotational head

movement (maxRot), (3) the mean frame-wise displacement

(meanFD) (Power et al. 2012; Patriat et al. 2013), and (4) the

minimal cost of the BBR co-registration (mcBBR). All

subjects with bad brain extraction, tissue segmentation and

with bad surface construction will be excluded from the

subsequent analysis. In addition, all datasets entering the

subsequent analysis must meet the following criteria: (1)

maxTran B 2 mm, (2) maxRot B 2�, (3) mean-

FD B 0.2 mm, and (4) mcBBR\ 0.6. More details con-

cerning these steps can be found at the CCS website.7

Functional homogeneity

We applied surface-based 2dReHo computation to char-

acterize local functional homogeneity. Specifically, for a

given vertex v0 on the surface grid of interest (fsaverage5

or Conte69_32 k), we identified its K nearest neighbors

v1;2;...;K and denoted vi(t) as their RFMRI time series. The

2dReHo measure of this vertex was computed as Kendall’s

coefficient of concordance (KCC) among the time series of

all nearest neighbors, including itself. The mathematical

formula is shown as Eq. (1)

KCC ¼
Pn

i¼1 R
2
i � n R

� �2

1
12
K2 n3 � nð Þ ¼ 12

Pn
i¼1 Ri

� �2

n3 � nð Þ � 3
nþ 1ð Þ
n� 1ð Þ ;

ð1Þ

where Ri¼1;...;n represents the ranks of vi(t), n is the number

of time points, Ri is the mean rank across its neighbors at

7 http://lfcd.psych.ac.cn/QC.html.
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the ith time point, and R is the overall mean rank across all

neighbors and across all time points. This equation clearly

indicates ReHo’s advantages in theory, i.e., this metric

integrates noise-filtering operations in both the temporal

domain (the order-rank filter) and the spatial domain (the

mean-rank filter). Thus, this metric has high robustness

against temporospatial noise and outliers, which provides

this RFMRI metric with high test–retest reliability (Zuo

et al. 2013). This computation is repeated for every vertex

that has BOLD time series to produce a vertex-wise local

functional homogeneity surface map. The ReHo compu-

tation is intrinsically a type of spatial and temporal

smoothing operation on the cortical surface that is helpful

for suppressing the time series noise and for mitigating the

inter-individual spatial normalization issue. Length-one (6

neighbors) 2dReHo maps were estimated on the fsaverge5

surface for the 402 participants from the three sites.

Regarding a slightly spatial smoothing (2-mm FWHM)

performed for HCP datasets, length-two (19 neighbors)

2dReHo maps were calculated on the Conte69_32 k sur-

face for the 80 unrelated HCP participants.

Structural morphology

In this study, the cortical thickness (CT), surface area (SA),

mean curvature (CURV), sulcal depth (SD), and local gy-

rification index (LGI) were estimated to measure different

properties of the brain cortical surface morphology. Spe-

cifically, the CT was measured in native space millimeters

using the averaged linking distance between the pial and

white surfaces (Fischl and Dale 2000). This measure of

cortical thickness has been demonstrated to show good

test–retest reliability across time, scanner manufacturers

and field strengths (Han et al. 2006). The SA was set to the

total area of the triangles that were connected to a vertex

(Fischl and Dale 2000). The total cortical SA yielded by

this method shows high agreement with the surface area

derived from postmortem studies, has been validated on

several brain phantoms, and has been compared with other

surface-based analysis packages (Lee et al. 2006; Makris

et al. 2006). Given a vertex on the cortical surface, its

CURV is the mean of the two principal curvatures, which

measure the maximum and minimum bending of the cor-

tical surface at that vertex (Pienaar et al. 2008). The

principal curvatures correspond to the maximum and

minimum values of normal curvatures, which are generally

measured as the inverses of the radii of inscribed circles at

the vertex. The SD is the integrated dot product of the

movement vector with the surface normal during inflation,

which highlights the large-scale geometry of the cortical

surface. When deep regions consistently move outward,

these regions have positive values of SD, whereas when

superficial regions move inward, they have negative values

of SD. The gyrification index is a metric that quantifies the

amount of cortex buried within the sulcal folds compared

with the amount of cortex on the outer visible cortex. A

cortex with extensive folding has a large GI, whereas a

cortex with limited folding has a small GI. The computa-

tional method of LGI used in the current work computes

local gyrification measurements at thousands of points over

the entire cortical surface (Schaer et al. 2008).

The metrics described above have potentially distinct

geometrical meanings as shape descriptors of the cortical

surfaces, motivating their uses in improving the transfor-

mation from 3D volume images into 2D surfaces (i.e., per-

forming the surface-based registration) by including more

accurate shape information. Additionally, thesemetrics have

been associated with genetic (e.g., Kippenhan et al. 2005;

Panizzon et al. 2009; McKay et al. 2013; Vuoksimaa et al.

2014), neurodevelopmental (e.g., Rettmann et al. 2006; Al-

eman-Gomez et al. 2013; Hogstrom et al. 2013; Li et al.

2014; Wright et al. 2014; Lyall et al. 2014), and cognitive/

behavioral factors (e.g., Frye et al. 2010; Li et al. 2010;

Blackmon et al. 2011; Fjell et al. 2013; Schnack et al. 2014)

and with disruptions in various brain disorders (e.g., Levitt

et al. 2003; Nordahl et al. 2007; Dierker et al. 2013; Im et al.

2013), underling their anatomical implications. All indi-

vidual maps of these morphological measures were gener-

ated in the native space and then transferred onto the

fsaverage standard spherical surface. To make these maps

comparable with those maps of local functional homogene-

ity, we also down-sampled all maps of these morphological

measures onto the fsaverage5 standard surface space and

spatially smoothed the maps on the surface using a Gaussian

filter with a small kernel (FWHM = 4 mm).

Outlier detection procedure

An outlier detection procedure (ODP) was further per-

formed to exclude subjects with extremely low/high mea-

sures of both functional homogeneity and structural

morphology for ensuring their normal distributions across

subjects. For each site, a subject was excluded from the

subsequent analyses when any of the six measures

observed from this subject was an outlier at any vertex of

the fsaverage5 surface. The outliers were determined using

the generalized extreme studentized deviate (ESD) test

(p\ 0.001) (Rosner 1983), which eliminates the masking

effect caused by using an underestimated number of pos-

sible multiple outliers as the pre-assigned number of these

outliers in Grubbs test (Grubbs 1969).

Adjustment for confounding factors

For all subjects passing the QCP and ODP, their maps of

both local functional homogeneity and five morphological
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measures are adjusted for various confounding factors.

Specifically, first, a group mask surface is generated to

ensure these subjects have nonzero metrics of all vertices in

the mask for all six cortical measures. Given a vertex

v 2 M, there are N samples (YiðvÞ; i ¼ 1; . . .;N) of the

cortical measure Y where N is the number of subjects. To

account for confounding factors such as site, age, sex, brain

size, global mean metric, warp distortion amount and in-

scanner motion, linear regression models are employed as

shown in Eq. (2):

Y
adj
i ðvÞ ¼ YiðvÞ � ðbage � agei þ bsex � sexi þ bsite � sitei

þ bgm � gmi þ bicv � ICVi þ bfd �meanFDi

þ bbbr �mcBBRi þ bjacðvÞ � JACiðvÞÞ:
ð2Þ

In the above equation, to model imaging site vari-

ability, subjects from the three sites, Beijing, Cambridge,

and Rockland, are represented with numbers 1, 2, 3,

respectively. For each of the six metrics Y, its global

mean (gm) across the entire cortex is computed by

averaging the vertex-wise values of the metric across the

entire cortex. The brain size is quantified using the

intracranial volume (ICV) estimated using FreeSurfer

software. The warp distortion amount for BBR-based

function-to-structure realignment is the mcBBR. The in-

scanner head motion of frame-wise displacements is

measured using the meanFD. To account for heteroge-

neous changes in regional volume, the amount of

regional volume changes required to warp a subject into

the standard surface fsaverage is measured using the

vertex-wise covariate derived from the jacobian deter-

minant of the spherical transform (JAC). Notably, all the

above covariates are demeaned (i.e., subtraction of the

mean), and both mcBBR and meanFD are included as

covariates for local functional homogeneity adjustment.

Regional variation in local functional homogeneity

To gain structural and neurocognitive insights into the

regional differences in local functional homogeneity, we

used the adjusted functional homogeneity measure (2dRe-

Hoadj) to calculate the mean 2dReHo across vertices within

each of the six VVS areas (Fig. 2a), which are labeled with

the following Brodmann Atlas (BA) areas: 17, 18, 19, 37,

20, and 21. These areas are ordered by their hierarchies

from low to high complexity of information processing

(Ungerleider and Haxby 1994) for examining the relation

between the changes in 2dReHo and the increased com-

plexity of information across the stream. We employed

Friedman tests to examine whether the within-subject

rankings of 2dReHo systematically differed across these

regions and between subjects.

The hot spots (the highest values) of local functional

homogeneity (the upper-left of Fig. 3) were observed

within the posteromedial cortex (PMC), and few regional

differences were observable within this high-order associ-

ation area by visual inspection (Zang et al. 2004; Long

et al. 2008; Zuo et al. 2013). As shown in the upper-right of

Fig. 3, we adopted the PMC masks generated in our pre-

vious work (Zuo et al. 2013) by including the four elements

of the Destrieux Atlas (Destrieux et al. 2010): (1) the

subparietal sulcus (SbPS), (2) the precuneus or medial part

of P1 (PrCun), (3) the posterior–dorsal part of the cingulate

gyrus (PosDCgG), and (4) the posterior–ventral part of the

cingulate gyrus (PosVCgG). With a similar method of

analysis for the ventral visual stream, the mean 2dReHo of

each subject is calculated for each of the four regions. The

Fig. 2 Regional variation of local functional homogeneity in the

ventral visual system. Six areas of Broadmann Atlas (BA) are

rendered on the cortical surface (the ventral view of fsaverage)

(a) and comprise the ventral visual stream and ordered by processing

hierarchy (BA17, BA18, BA19, BA37, BA20, and BA21). All

individual mean 2dReHo values are calculated for each of the six

areas and plotted across the 402 subjects for both hemispheres (b) or
left hemisphere (LH)/right hemisphere, respectively (c). The bar

indicates the standard derivation (STD) across the 402 subjects
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Friedman tests are also used to examine the order of these

changes.

To aid our interpretations on the findings of the regional

differences in 2dReHo across the four PMC subregions, we

proposed a whole-brain connectivity density mapping

(CDM) method for each subregion using RFMRI. Specif-

ically, given a subregion P containing Np vertices, we

performed the whole-brain functional connectivity using

any vertex vn 2 Pðn ¼ 1; . . .;NpÞ as a seed based on the

RFMRI time series (Fox et al. 2005). Notably, the RFMRI

data used for this analysis were spatially smoothed versions

of the preprocessed RFMRI data for 2dReHo computation.

The spatial smoothing (FWHM = 6 mm) was first per-

formed for the preprocessed RFMRI time series (see Image

Preprocessing) on the standard cortical surface fsaverage

to increase the signal-to-noise ratio and then down-sampled

onto the fsaverage5 surface. The global signal was not

removed from the data (Saad et al. 2012). As shown in Eq.

Fig. 3 Local functional homogeneity and connectivity density map-

ping of the posteromedial cortex. Mean vertex-wise maps of 2dReHo

is generated across the 402 subjects and visualized onto the medial

surfaces of fsaverage5. Regional variations in ReHo within both the

left (L-PMC) and right posteromedial cortex (R-PMC) are illustrated

via a zoomed-in window of this specific region (upper-left). All

individual mean 2dReHo values are calculated for each of the four

subregions of the PMC (SbPS: subparietal sulcus; PrCun: precuneus;

PosDCgG: dorsal part of the posterior cingulate gyrus; PosVCgG:

ventral part of the posterior cingulate gyrus) and plotted across the

402 subjects for both hemispheres (upper-middle) or left hemisphere

(LH)/right hemisphere, respectively (upper-right). The bar indicates

the standard derivation (STD) across the 402 subjects. The bottom

sub-figures illustrate connectivity density maps of the four PMC

subregions for each hemisphere (LH: A/C/E/G; RH: B/D/F/H). All

these maps are rendered onto the lateral and medial surfaces of

fsaverage5 and visualized. The mean connectivity density values of 8

subcortical areas (Amg Amygdala, CaN Caudate, Hipp Hippocampus,

NAcc Nucleus Accumbens, Pall Pallidum, Puta Putamen, Thal

Thalamus, ThalP Thalamus-Proper, BStem Brain-Stem) are computed

and plotted as the color grids at the bottom of each surface rendering
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(3), given a vertex vm 2 M ðm ¼ 1; . . .;NMÞ where M is the

group surface mask, its connectivity density to the region P

is defined as the proportion of vertices within P showing

significant functional connectivity, as measured using a

temporal correlation of the time series (ts) to the vertex vm.

qðvmÞ ¼
# vn 2 P corrðtsðvnÞ; tsðvmÞÞ[ ¼ 0:2jf g

Np

ð3Þ

To examine the connectivity density of subcortical

regions, the mean time series were extracted by averaging

the time series of all voxels within each of 17 subcortical

regions based on the preprocessed RFMRI data in indi-

vidual native volumetric spaces. The masks of these sub-

cortical regions were first generated in individual native

anatomical spaces using the segmentation procedure in

FreeSurfer software and then transformed to the corre-

sponding individual functional spaces using the BBR-based

co-registration, namely, Amygdala (Amg), Caudate (CaN),

Hippocampus (Hipp), Nucleus Accumbens (NAcc), Palli-

dum (Pall), Putamen (Puta), Thalamus (Thal), Thalamus-

Proper (ThalP) for each hemisphere, and Brain-Stem

(BStem). The connectivity densities of the 17 regions were

calculated using the same method as those densities of

cortical regions in Eq. (3). The choosing of a high corre-

lation threshold for significant functional connectivity was

inspired by a previous study (Buckner et al. 2009). Selec-

tions of different thresholds did not qualitatively change

our findings. Only the NKI/Rockland lifespan datasets

were used for this analysis.

The functional organization of the PFC remains poorly

understood. To understand the functional hierarchy of the

network organization in the PFC, we adopted a well-

established and highly reproducible functional parcellation

recently developed by Yeo et al. (2011) based on RFMRI

datasets from 1000 healthy participants. The entire brain

was parcellated into 17 functional networks, among which

the following 9 networks overlapped with the PFC: dorsal

attention networks A/B (DorsAttnA/DorsAttnB), ventral

attention networks A/B (VentAttnA/VentAttnB), control

networks A/B (ContA/ContB), default mode networks A/B

(DefaultA/DefaultB), and the limbic network (Limbic B).

Notably, there was only an extremely small piece of

DorsAttnA covered by the PFC; thus, we merged that piece

into DorsAttnB, leading to 8 final PFC subnetworks, as

illustrated in the left panel in Fig. 4, namely, VentAttnA

(overlapping with BAs 6, 24 and 4), ContA (overlapping

with BAs 44, 6 and 46), DorsAttnB (overlapping with BAs

6 and 4), DefaultB (overlapping with BAs 6 and 4), Ven-

tAttnB (overlapping with BAs 8, 9, 46, 11, 6, 45 and 47),

ContB (overlapping with BAs 10, 11, 8, 9 and 6), DefaultA

(overlapping with BAs 8, 10, 32, 24, and 9), and LimbicB

(overlapping with BAs 11 and 25). This order was ranked

along with both the dorsal–ventral axis and the posterior–

anterior axis. Using a similar method, we derived the

individual mean length-two 2dReHo values across vertices

within each of the 8 PFC networks for each of the four

RFMRI scans of all 80 HCP participants. Friedman tests

were utilized to examine whether the within-participant

Fig. 4 Functional network hierarchy of local functional homogeneity

of the prefrontal cortex. A well-established and highly reproducible

functional parcellation is adopted (Yeo et al. 2011) to parcellate the

whole brain into 17 functional networks, among which 9 networks

covered the PFC: dorsal attention networks A/B (DorsAttnA/Dors-

AttnB), ventral attention networks A/B (VentAttnA/VentAttnB),

control networks A/B (ContA/ContB), default mode networks A/B

(DefaultA/DefaultB), and limbic network (Limbic B). Of note, there

were only a very small piece of DorsAttnA covered by the PFC, and

we thus merged that piece into DorsAttnB, leading to final 8 PFC

networks as illustrated in the left panel, namely, VentAttnA, ContA,

DorsAttnB, DefaultB, VentAttnB, ContB, DefaultA, LimbicB. This

order was ranked along with both dorsal–ventral axis and posterior–

anterior axis. The individual mean length-two 2dReHo values across

vertices within each of the 8 PFC networks for each of the four

RFMRI scans of all 80 HCP participants are computed and plotted in

the right panel
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rankings systematically differed across these regions and

between participants.

Morphological association with local functional

homogeneity

A vertex-wise multiple linear regression was employed to

estimate the linearly structural contribution to 2dReHo, as

formulated in Eq. (4),

2dReHo
adj
i ¼ lþ bCT � CT

adj
i þ bSA � SA

adj
i þ bCURV

� CURV
adj
i þ bSD � SD

adj
i þ bLGI � LGI

adj
i þ ei:

ð4Þ

For each vertex on the fsaverage5 surface, the percent-

age of variances of the adjusted 2dReHo that was explained

by each of the five structural metrics was estimated by

solving the regression model (4). The partial correlation

coefficients between the adjusted 2dReHo and each of

these morphological measures and their statistical signifi-

cances were also computed from the multiple linear

regression (4). Then, the final p value maps of these sig-

nificant associations were corrected for multiple compari-

sons using FDR (p\ 0.05).

For delineating the covariation of spatial distribution

patterns between the functional homogeneity and mor-

phology, first, we computed the mean maps of 2dReHo and

the five morphological metrics across all subjects passing

both QCP and ODP from the three imaging sites. Then, the

Kendall’s rank correlation coefficients of the spatial maps

between 2dReHo and each of the five structural metrics

(the CT, SA, CURV, SD, and LGI) were estimated and

further visualized as the two-dimensional histograms by

enhancing scatterplots with smoothed densities (Eilers and

Goeman 2004).

Functional covariance network of local functional

homogeneity

To investigate the inter-regional covariation pattern of local

functional homogeneity across subjects within the entire

cortical mantle, a whole-brain vertex-wise covariance net-

work of 2dReHoadj (i.e., a covariance connectome) was

generated. Due to the intrinsic feature of spatial smoothing in

the ReHo computation, we decided to down-sample the

2dReHoadj from the fsaverage5 surface to the fsaverage4

surface (2,562 vertices per hemisphere, with a 5.5-mm

neighboring-vertex distance), eliminating all possible arti-

ficially introduced connections between any pair of geo-

metrically neighboring vertices in the fsaverage5 grid.

For any pair of vertices (u, v) on the fsaverage4 surface,

their inter-vertex covariation was determined using the

inter-vertex correlation across subjects corrð2
dReHoadjðuÞ; 2dReHoadjðvÞÞ. A p value of 0.001 was used to

threshold these correlations (Zuo et al. 2012), resulting in an

adjacency matrix, which is a binary graphical description of

the complete set of brain connections, i.e., a brain connec-

tome (Sporns et al. 2005). Both the degree centrality (DC)

and betweenness centrality (BC) were computed to charac-

terize the network connectivity pattern (Rubinov and Sporns

2010) and the putative hubs within these connectomes of

functional homogeneity covariance using multiple network

centrality metrics (Zuo et al. 2012).

Then, the degree distribution of the 2dReHo-derived

connectome was modeled using an exponentially truncated

power-law function regarding previous voxel-wise brain

network analyses (Hayasaka and Laurienti 2010) and

compared with exponential and power-law models (He

et al. 2009). To further examine the hierarchy and modular

organization of the 2dReHo-derived connectome, we

applied a fast algorithm of unfolding communities in large

networks (Blondel et al. 2008) to the functional covariance

network. More details concerning this algorithm can be

found in the previous study (Zuo et al. 2012). The visual-

ization procedure was completed using a Mac Pro graphics

workstation armed with 24 CPU cores, 64 GB RAM, and

an ATI Radeon HD5770 video card (1 GB physical

memory).

Results

Overall, 132 subjects from the Beijing sample, 159 subjects

from the Cambridge sample and 111 subjects from NKI/

Rockland sample passed our QCP and ODP, as detailed in

the ‘‘Materials and Methods’’ section, resulting in 402

usable datasets across the three sites. Basic information

describing these participants is shown in Table 2, including

age range, gender, ICV, mcBBR and meanFD.

Regional variation in local functional homogeneity

In the present study, the local functional homogeneity of

the human brain architecture across a large sample was

mapped vertex-wise onto the cortical mantle for the first

time. The vertex-wise high-resolution 2dReHo maps

allowed us to examine the spatial distribution details for

insights into regional variations. This measure exhibited

rich regional variations across the cortical mantle, whereas

its overall spatial pattern was highly similar to the previous

observations in a small sample (Zuo et al. 2013).

The Friedman test concerning the presence of region

ordering within the ventral visual stream (the purple curve

in Fig. 2b) revealed robust changes in 2dReHo (p\ 1e–

2494 Brain Struct Funct (2015) 220:2485–2507

123



10): BA17 (0.564), BA18 (0.531), BA19 (0.533), BA37

(0.424), BA20 (0.345) and in BA21 (0.344). This order of

regional changes in 2dReHo is reproducible across the two

hemispheres (Fig. 2c). Within the PMC, the ReHo exhib-

ited both anterior–posterior and dorsal–ventral gradients

(upper-left of Fig. 3), where a robust ordering pattern of

regional differences in 2dReHo across the four subregions

of the PMC (p\ 1e–10) was confirmed by the Friedman

test (upper-middle of Fig. 3): the SbPS (0.741), PrCun

(0.710), PosDCgG (0.683) and PosVCgG (0.670). This

ordering of 2dReHo regional variations is robust across the

two hemispheres, except for the PosVCgG (upper-right of

Fig. 3).

The CDM analysis revealed that (1) SbPS highly con-

nects to the medial prefrontal cortex (MPFC), lateral

parietal cortex (LPC), dorsal lateral prefrontal cortex

(DLPFC) and to the anterior temporal cortex (Fig. 3a, b);

(2) PrCun has the highest density of functional connectivity

with the visual cortex and with the DLPFC (Fig. 3c, d);

(3)the PosDCgG demonstrates the most dense functional

connectivity with the anterior and ventral parts of the

MPFC (i.e., the aMPFC and vMPFC), LPC, DLPFC,

temporal cortex and two subcortical regions (the Hipp and

ThalP) (Fig. 3e, f); (4) the PosVCgG mutually connects to

the medial visual cortex, vMPFC, Hipp, ThalP, LPC,

DLPFC and to the posterior insular cortex with the highest

connectivity density (Fig. 3g, h).

The PFC shaped its 8 functional networks into a hier-

archical organization of the local functional homogeneity

with the following order, which is shown in Fig. 4: Ven-

tAttnA, ContA, DorsAttnB, DefaultB, VentAttnB, ContB,

DefaultA, and LimbicB. This hierarchical structure was

statistically robust within and between subjects and con-

firmed by the Friedman test (all p values\ 1e–10). The

within-network gradient of 2dReHo is evident along the

dorsal–ventral axis for the three major networks, ventral

attention, control and default networks The between-net-

work gradient of 2dReHo essentially matches the poster-

ior–anterior axis.

Morphological association of local functional

homogeneity

Figure 5 summaries the main findings concerning the

morphological association of 2dReHo. The first column of

Fig. 5 demonstrates the mean surface maps of the five

common morphological measures. The two-dimensional

histograms of the mean 2dReHo map and each mean

morphology map are visualized, as shown in the third

column. Our rank-based spatial correlation analyses

revealed significant relations (all p values\ 1e–25) of

spatial patterns between 2dReHo and the following mor-

phological measures: (1) CT: Kendall tau = -0.1074; (2)

SA: Kendall tau = -0.1556; (3) CURV: Kendall

tau = 0.3897; (4) SD: Kendal tau = 0.2496; (5) LGI:

Kendall tau = 0.1900. The second column depicts the

cortical surface mapping of the vertex-wise partial corre-

lation between 2dReHo and each of the five structural

metrics. Widely distributed negative correlations between

the surface area and 2dReHo were detected regionally

across the cortex where the posterior–dorsal part of the

cingulate gyrus exhibited the highest area-homogeneity

association (the second row). The functional homogeneity

of the parieto-occipital sulcus, marginalis cingulate sulcus

and of the cingulate cortex exhibited significant positive

correlations with the CT (the first row). The CURV

exhibited high positive correlations with 2dReHo in a

variety of sulcal clusters distributed in the frontal, tempo-

ral, parietal and in the occipital cortex, particularly the

positive correlations along the cingulate sulcus (the third

row). 2dReHo showed significant negative correlations

with the SD in several temporal and parietal clusters and

with the aMPFC (the fourth row). Significant positive

correlations between LGI and 2dReHo were observed in

the DLPFC and in the middle temporal gyrus (the fifth

row). Over 88 % of the variances in local functional

homogeneity across subjects were unique to each of the

five morphology measures, which only account for or

explain less than 12 % of the variability of 2dReHo.

Table 2 Basic information for participants with usable datasets

Beijing (N = 132) Cambridge (N = 159) Rockland (N = 111) Combined (N = 402)

Age (Years) 21.3 ± 2.05 21.0 ± 2.24 37.1 ± 20.80 25.5 ± 13.15

Age range (Years) 18.0–28.0 18.0–30.0 8.0–85.0 8.0–85.0

Gender (Males) 47 55 61 163

ICVa (Liter) 1.1 ± 0.14 1.2 ± 0.17 1.2 ± 0.20 1.2 ± 0.17

mcBBRb 0.5 ± 0.04 0.4 ± 0.05 0.5 ± 0.05 0.5 ± 0.06

meanFDc (mm) 0.04 ± 0.023 0.04 ± 0.021 0.08 ± 0.039 0.05 ± 0.0317

a ICV is the intracranial volume
b mcBBR is the minimal cost of the intra-subject co-registration with the boundary-based registration
c meanFD is the mean frame-wise displacement for in-scanner head motion
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Functional covariance network of local functional

homogeneity

The community detection algorithm produced five modules

(bottom-right in Fig. 6) by maximizing the modularity

Qmax = 0.62) of the functional covariance network derived

by local functional homogeneity (2dReHo). The largest

(41.72 % nodes) module (I) includes high-order association

areas, such as the frontal, parietal and temporal cortices,

representing an association network. The second (20.89 %

nodes) module (II) is a motor network containing both the

pre- and post-central cortex as well as the posterior portion

of the insular cortex. The third (15.65 % nodes) module

(III) primarily covers the occipital cortex, namely, a visual

network. In the remaining two modules, one module (IV) is

in the primary temporal cortex as an auditory network

(9.75 % nodes), whereas another module (V) appears to

contain nodes of boundaries between the high-level module

(I) and the other three low-level modules (II, III, and IV),

leading to a transition network (11.99 % nodes). The

adjacency matrix of the functional homogeneity connec-

tome is depicted in Fig. 6, representing a high-resolution

vertex-wise covariance connectome with 4,389 nodes and

with 752,404 edges. Notably, this brain graph is fully

connected and has a connection density of 3.9 %. The

order of vertices in this adjacency matrix was followed that

of the five modules. The adjacency matrix of the 2dReHo-

derived connectome was further rendered onto the cortical

surface, showing only the inter-module edges (bottom-left

in Fig. 6).

Compared with pure power-law distribution and with a

pure exponential distribution, both the degree centrality

(DC) and betweenness centrality (BC) of this connectome

appear to demonstrate an exponentially truncated power-

law distribution across nodes (DC: Fig. 7b; BC: Fig. 7d)

although this distribution explains the much lower vari-

ability of the empirical BC data compared with the DC data

(46.4 vs. 78.5 %). This distribution indicates that this

functional covariance network is not a scale-free network,

implying a lower probability of nodes with extremely high

centrality metrics due to physical constraints or associated

with a cost (Amaral et al. 2000). Figure 7a and c show the

network centrality maps of the functional covariance

network, revealing a set of hub regions, including the

visual, the post-central cortex, the supplementary motor

area, the posterior insula, the DLPFC and the aMPFC.

Although both the DC and BC indicate the same set of

network hub regions, the BC tends to emphasize the high-

order areas (the posterior insula, DLPFC and aMPFC);

however, the DC more emphasizes the primary sensory

areas (the visual, the post-central cortex, and the supple-

mentary motor area). This result is not surprising consid-

ering that the BC characterizes a more global feature of the

information flow in the network, whereas the DC is a local

characterization of this information.

Reproducibility and reliability

This study combines 402 samples from three different

imaging sites to increase the statistical power in the pro-

posed analyses. RFMRI-based functional connectomics has

been demonstrated to be sensitive to various factors

including the imaging sequences (Yan et al. 2013b).

Therefore, it is crucial to examine the reproducibility of our

findings across three imaging sites. Accordingly, we

repeated all the analyses proposed in the ‘‘Methods’’ sec-

tion for each individual imaging site. The results of the

reproducibility analysis confirmed that all the findings

reported above were reproducible across the three sites.

Due to space limitations, we only presented the reproduc-

ibility of the results of regional variation in this study. The

matching of local functional homogeneity and the hierar-

chy of information processing in the ventral visual stream

were highly reproducible across the three sites (the first

row in Fig. 8). Similarly, the gradient of local functional

homogeneity within the four subregions of the PMC was

highly reproducible and robust across the three sites (the

second row in Fig. 8). Finally, the functional hierarchy of

the PFC was highly test–retest reliable across the four

RFMRI scans within 2 days, exhibiting almost identical

network orders (the third row in Fig. 8).

Discussion

Local functional homogeneity varies markedly across the

human cortical mantle and its functional covariance across

individuals indicates a whole-brain network with a hierar-

chically organized modular structure. A posterior–anterior

decreasing gradient is obvious for the overall pattern of the

spatial distribution of local functional homogeneity. The

increases in local functional homogeneity reflect a reduced

complexity of information processing or hierarchies of

functional segregation and integration within the ventral

visual stream. Consistently, gradients of local functional

homogeneity along the subregions of a multimodal high-

bFig. 5 Morphological association of local functional homogeneity.

The mean maps of the five measures of structural morphology (CT

cortical thickness, SA surface area, CURV mean curvature, SD sulcal

depth, LGI local gyrification index) are calculated across the 402

subjects and rendered onto the fsaverage5 surfaces (the first column).

The two-dimensional histograms of the mean map of 2dReHo and

mean maps of each of the five morphological measures are displayed

as in the third column. The significant partial correlations between

2dReHo and each of the five morphological measures are displayed

on the fsaverage5 surfaces (the second column)
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order association area, the posteromedial cortex (PMC),

mirror the degree of the multimodal integration in pro-

cessing information reflected in the functional anatomy of

the PMC. A functional hierarchy of sub-networks is

detectable for the human PFC, echoing its network-level

organization of ventral attention-cognitive control-default

networks. The whole-brain inter-regional covariation of

local functional homogeneity across individuals is orga-

nized into a complex network with five biologically

meaningful and hierarchically organized large-scale

modules. Network centrality analyses of this functional

covariance network detect hubs of both primary sensory

and high-order association areas. Finally, the functional

homogeneity exhibits significant correlations with the

cortical morphology, thus revealing the potential structural

basis of the local functional activity. In the following

sections, we explore the details of these maps and discuss

what the above findings suggest concerning the neurobio-

logical importance of local functional homogeneity and the

significance for functional connectomics.

Fig. 6 Functional covariance

network and its modules. The

adjacency matrix of whole-brain

vertex-wise functional

covariance network derived

with the inter-regional

covariation of 2dReHo is

depicted as the up of the plot,

representing a fully connected

brain graph with 4,389 nodes

and 752,404 edges (connection

density: 3.9 %). There are five

modules (I: association module;

II: sensory motor module; III:

visual module; IV: auditory

module: V: transition module)

detected by the community

detection algorithm applied to

this matrix and rendered onto

the fsaverage4 surfaces (right-

bottom). The order of vertices in

this adjacency matrix is

according to the five modules as

the red lines outline. The

adjacency matrix the

connectome is further rendered

onto the cortical surface with

showing only the inter-module

edges (left-bottom) by using

Gephi (https://gephi.org)
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Biological meanings of local functional homogeneity

Mapping functional homogeneity illustrates the gradient

distribution of the functional homogeneity across the cor-

tical mantle and suggests that this measure most likely

reflects the degree of regional segregation in human brain

function. ReHo is an index of local functional connectivity

or synchronization (Zang et al. 2004; Zuo et al. 2013) and

has been related to functional segregation as a short-dis-

tance connection (Sepulcre et al. 2010). As strong support

for this speculation regarding the functional meaning of

regional homogeneity, the information processing hierar-

chy in the ventral visual stream is perfectly matched with

its regional gradient order of functional homogeneity, thus

adding an indication of the complexity of information

processing into the neurocognitive meanings of regional

segregation.

The examination of the local functional anatomy of the

PMC and of the PFC also provides similar evidence.

Quantitative tests showed a highly reproducible and sta-

tistically robust order of 2dReHo along the four subregions

of the PMC. The sub-parietal sulcus primarily connects to

high-order association areas (Fig. 3a, b) and thus exhibits

the highest functional homogeneity. Beyond the high-order

connectivity, the precuneus extends its connectivity to

visual areas (Fig. 3c, d) and leads to lower functional

homogeneity than the sub-parietal sulcus. By adding sub-

cortical connectivity (primarily with the hippocampus and

with the thalamus), the dorsal PCC and ventral PCC are

more functionally heterogonous with the ventral PCC as

the most functionally heterogonous or with the lowest

functional homogeneity regarding its connectivity with

multiple primary sensory areas and with the insula. Our

findings suggest that the functional homogeneity reflects

the degree of multimodal information integration within

the PMC. These findings provide new insight into the clear

boundaries in the PMC regarding its anterior–posterior and

dorsal–ventral changes in functional homogeneity and in

its functional anatomy (Margulies et al. 2009; Cauda et al.

2010; Zhang et al. 2014).

Similarly, at network level, the PFC encodes the dorsal–

ventral and posterior–anterior gradients of local functional

homogeneity into its network topology. Part of the limbic

network (i.e., LimbicB or the orbital frontal cortex)

exhibits the lowest homogeneity. This finding could indi-

cate the actual reflection of the functional heterogeneity

within this region or of the low quality of BOLD signal

detection in this region. Notably, the HCP Q3 data were

used for this analysis, and thus, we expected low homo-

geneity as an indication of function. Beyond this network,

our findings revealed a novel gradient of functional

homogeneity across the following three high-order

Fig. 7 Functional covariance

network centrality mapping.

Network centrality maps are

rendered on the fsaverage5

surfaces for (a) degree centrality
and (c) betweenness centrality.
Log–log plots of the cumulative

probability of nodal centrality

distribution are also plotted for

(b) degree centrality and

(d) betweenness centrality. The
red solid, blue dashed and black

dotted lines indicate the fits of

exponentially truncated power

law [p(x)–xa-1ex/xc],

exponential [p(x)–ex/xc], and

power law [p(x)–xa-1],

respectively. R-squared values

indicate the goodness of the fits

(Retp R-squared value for an

exponentially truncated power-

law fit, Re R-squared value for

an exponential fit, Rp R-squared

value for a power-law fit)
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association networks: attention, cognitive control and

default networks. The main function of the PFC has been

assigned to human cognition, which has been increasingly

characterized as an emergent property of interactions

among distributed, functionally specialized brain networks

(McIntosh 2000). Interestingly, although limited in the

PFC, the attention network is primarily driven by external

stimulation (the highest functional homogeneity), whereas

the default network is related to internal self-related

experiences (the lowest functional homogeneity). Recent

studies have demonstrated a complex, distributed and

dynamic interaction among the three networks (Luckmann

et al. 2014; Elton and Gao 2014; Andrews-Hanna et al.

2014). These recent advances concerning inter-network

connectivity increasingly support a role of the control

network as a feasible modulator between the other two

networks, i.e., the modulation between external goal-

directed stimulation and internal self-generated thought

(Spreng et al. 2013; Cole et al. 2013; Zanto and Gazzaley

2013). The level of local functional homogeneity in the

control network between the other two networks might

reflect this network organization of the human PFC. The

Fig. 8 Reproducibility of

regional variation in local

functional homogeneity. This

figure illustrates the

reproducibility of regional

variation in local functional

homogeneity for ventral visual

stream (top panel) and the

posteromedial cortex (middle

panel) across the three imaging

sites (Beijing, Cambridge and

Rockland). The bottom panel

demonstrates the reproducibility

of the network-level functional

homogeneity variation for the

prefrontal cortex across the

three multiband RFMRI

sessions (rfMRI_REST1_RL,

rfMRI_REST2_LR,

rfMRI_REST2_RL). The

legends of the X-axis are

consistent with those legends of

Figs. 2, 3, 4
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full picture of the functional hierarchy in the PFC revealed

by 2dReHo represents a novel addition to the current

knowledge concerning the human PFC by linking the

functional hierarchy findings, which were delineated based

on sophisticated cognitive task FMRI (e.g., Badre and

D’Esposito 2007, 2009; Badre 2008), to hierarchical

functional network organization revealed by RFMRI. This

finding has important consequences on the interpretation of

previous task-based local functional homogeneity studies

(e.g., Tian et al. 2012; Wang et al. 2014).

The module organization that was revealed by the

functional covariance network (FCN) derived using

2dReHo added novel insight into the human brain archi-

tecture. The distinction between the association module

and the primary sensory module has rarely been demon-

strated using resting-state functional connectivity approa-

ches. One exception can be found in Zhang et al. (2011), in

which the FCNs based on the amplitude of low-frequency

fluctuations revealed a similar distinction. However, in

many ways, this network organization is different from

those network organizations in recent resting-state func-

tional connectivity studies (Yeo et al. 2011; Power et al.

2011; Zuo et al. 2012; Wig et al. 2013). For example, the

fronto-parietal cortices are organized into several distinct

networks in those previous studies; however, these cortices

appear integrated into a large association module. The

default mode network is also another cardinal network that

seems to be less prominent in the current study, which is

also part of the same association module. This finding

suggests that the covariance of 2dReho might be pretty

different from conventional resting-state correlations. This

covariance pattern seems closer to anatomical organization

but does not directly reflect the functional coupling of

segregated brain systems.

The FCN analysis indicates a possible role of neurode-

velopmental factors in organizing functional homogeneity

into a brain connectome. The structural covariance in the

human cortex has increasingly been recognized to reflect

developmental coordination or synchronized maturation

between brain areas (Mechelli et al. 2005; He et al. 2007b;

Alexander-Bloch and Giedd 2013). In this study, we

demonstrated for the first time the topological organization

and modular structure of the high-resolution covariance

network of functional homogeneity in the human brain.

The functional covariance network is organized with a

clear hierarchy of the five modules: three primary sensory

(visual, motor and auditory) modules developed early and

one high-order association (fronto-parieto-temporo) mod-

ule developed late, as well as one transition module on the

boundaries between primary sensory and association

modules. This topology may be an indication of inter-

regional relations in processing information or in devel-

oping cognitive capacities during brain development. The

network centrality metrics (both degree and betweenness)

follow an exponential truncated power-law distribution,

implying a physically embedded complex network with a

limitation on its wiring cost (Bullmore and Sporns 2009).

Highly connected nodes (i.e., hubs) within the network

architecture are clearly categorized into primary sensory

areas (the visual and sensory motor cortices) and high-

order association areas (the DLPFC, aMPFC and insula).

These sensory motor areas (particularly bilateral precentral

cortex) have been demonstrated to play the role of the ‘‘rich

club’’ within the connectomes to form its central commu-

nication backbone (van den Heuvel and Sporns 2011; van

den Heuvel et al. 2012; Collin et al. 2013). Interestingly,

the degree centrality map of the functional homogeneity

covariance network (Fig. 6a) exhibits a highly similar

spatial pattern to those patterns of myelin maps (Fig. 3 in

Glasser and Van Essen 2011). This finding indicates a

potential link in neurodevelopment between structure and

function regarding the inter-regional covariation in func-

tional homogeneity.

In further consideration of the neurodevelopment link in

complex network theory, the combined feature of highly

connected nodes (hubs) and of hierarchical modules has

been proposed as a principle of both segregated and inte-

grated information processing (Tononi et al. 1994; Sporns

et al. 2000; Tononi and Sporns 2003; Basset and Bullmore

2006; Gallos et al. 2012). Considering this view with the

background of brain development, segregated (or special-

ized) information processes related to primary sensory

functions, would benefit from highly connected topological

neighbors and could be developed first. In contrast, inte-

grated (or distributed) information processes related to

high-order cognition such as executive functions, would

benefit from global information transfer following the

hierarchy of modular organization, which produces the

delay in the development of these functions to the primary

sensory functions. Our findings are consistent with the

previous developmental studies (Gogtay et al. 2004). The

detection of these patterns of functional covariance reveals

five functionally well-segregated and hierarchically inte-

grated modules, suggesting that such a functional covari-

ance network encodes the neurodevelopmental aspects of

the human cognitive capacities (Zhang et al. 2011; Alex-

ander-Bloch et al. 2013).

Functional homogeneity and brain connectomics

Our results provide additional insight into human brain

connectomics. Brain connectomics is facing various

challenges, as discussed by Sporns (2013). The first

challenge concerns the mechanism underlying the struc-

ture–function relation. Using 2dReHo, we demonstrated

this linear relation between functional homogeneity and
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cortical morphology. However, the linear structure–func-

tion relation appears to be capable of interpreting a small

portion (\12 %) of the variability. This observation

should motivate studies concerning this relation using

biologically plausible physical models of the human brain

(normally nonlinear) (Cabral et al. 2011; Deco and Jirsa

2012; Nakagawa et al. 2013, see Deco et al. 2013 for

review). The second challenge is to create a meaningful

definition of the nodes in the connectome. Beyond the

multiple-scale nature of both structure and function in the

human brain, our findings showed a striking gradient of

the regional variations in local functional homogeneity,

particularly calling into question how a brain graph node

can be reasonably determined with appropriate consider-

ations of the regional functional homogeneity changes.

This finding somehow challenges the predefined brain

parcellation strategies and demands a more sophisticated

brain parcellation that considers regional variation and

individual variability in both the structure and function of

the human brain at the group and individual levels. From a

functional perspective, regional homogeneity offers a

suitable starting point for parcellating the brain into ele-

ments of its function at both group and individual levels

(e.g., Blumensath et al. 2013). For large-scale brain con-

nectome analysis (50–200 nodes), the connectivity density

mapping we proposed in this work could provide a sat-

isfactory choice for defining more reasonable edges

regarding the regional variation of local functional

homogeneity.

The final challenge is how to account for the individual

differences when building a connectome, particularly a

functional connectome. Both inter- and intra-individual

differences in the brain structure and function have been

demonstrated to have biologically meaningful parts (Mac-

Donald et al. 2006; Van Horn et al. 2008; Kanai and Rees

2011; Garrett et al. 2013), both of which contribute to the

test–retest reliability of structural and functional measures.

In our previous work, functional homogeneity was dem-

onstrated to be a highly test–retest reliable functional

measure (Zuo et al. 2013). In this study, we demonstrated

that individual differences can be helpful for mapping the

regional variation, inter-regional covariation and morpho-

logical association of local functional homogeneity and can

lead to a novel approach for building a vertex-wise func-

tional covariance network.

Limitations and directions

Several limitations should be considered in interpreting the

current findings. First, the subcortical areas were excluded

from our present analysis because these areas were not of

interest at this time. No aspects of functional homogeneity

presented in this study should be generalized to these

regions until directly examined in future work. Second, the

linear correlation may be too simple to examine the

structural basis of functional homogeneity, particularly

when we consider the entire brain cortex. In the future, a

computational modeling study could be employed to

directly examine these associations within a small region of

the human brain and provide insights into the structure–

function relation. Third, RFMRI data usually contain var-

ious physiological noises and are sensitive to various

confounding factors (Yan et al. 2013b). The individual

differences in functional homogeneity not only reflect the

inter-individual variability of the local connectivity but

also may indicate the variability of vascular structures

across individuals. However, the high test–retest reliability

of the 2dReHo metric (Zuo et al. 2013) and the repro-

ducibility of the current findings mitigate this concern.

Specifically, 2dReHo is an adaptive noise-suppression

approach to quantify local functional homogeneity. We

controlled for various nuisance signals, including those

signals associated with vascular factors, and obtained

highly reproducible findings across the three imaging sites.

Fourth, in concluding the developmental implications of

this covariance network analysis, notably, these conclu-

sions were speculative in nature because we were not

directly evaluating the age effects on 2dReHo but rather

based the discussion on previous structural covariance

network studies. 2dReHo-derived structural covariance

matrices were constructed across subjects encompassing a

rather large lifespan age range, and thus, we concluded that

any coherent pattern should reflect synchronization across

the lifespan. How to evaluate the age effects and how to

construct a statistical model (e.g., a linear or quadratic

term) for structural covariance networks remain open

questions because all individual features (e.g., age) were

wrapped into the covariance networks at the group level.

One possible method of examining the age effects on the

covariance network is to have sufficient samples across

every age spans, to construct the covariance networks for

each age span and then to examine the age effects across

these spans. Currently, we do not have sufficient samples

for this purpose and will examine age effects in the future

once the samples are available. Finally, the local functional

homogeneity exhibited a significant correlation with the

surface area, which indicates the structural basis of the

local functional homogeneity, contributing to the inter-

individual variability of the local functional homogeneity

and of the functional covariance networks. Regarding the

small percentage (\12 %) of variability of 2dReHo

explained by the cortical morphology, we thus believe that

the functional aspect of 2dReHo primarily drives the FCN

findings. In the future, to achieve insights regarding the

patterns of surface area variation across subjects, a more

sophisticated investigation (e.g., regressing out the surface
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area in the construction model of the FCNs) of this struc-

ture–function relation is warranted.

Conclusions

We observed remarkable regional variation, functional

covariance and morphological association of local func-

tional homogeneity across the cortical mantle. Our findings

assign 2dReHo possible biological significance as a func-

tional measure of regional segregation and integration of

information processing regarding its cognitive and neuro-

developmental aspects.

Acknowledgments The authors would like to thank Drs. Olaf

Sporns, Michael Peter Milham, Yu-Feng Zang and Hui-Jie Li for

comments on an early version of the manuscript. All authors declare

no competing financial interests. This work is partially supported by

the National Key Technologies R&D Program of China (No.

2012BAI36B01), the Startup Foundation for Young Talents of

Institute of Psychology (Y1CX222005, LJ), the Hundred Talents

Program and the Key Research Program (KSZD-EW-TZ-002, XNZ)

of Chinese Academy of Sciences, the Major Joint Fund for Interna-

tional Cooperation and Exchange of the National Natural Science

Foundation (81220108014, XNZ) and others from Natural Science

Foundation of China (11204369, 81270023, 81171409). Data were

provided [in part] by the HCP WU-Minn Consortium, which is fun-

ded by the 16 NIH institutes and centers that support the NIH Blue-

print for Neuroscience Research 1U54MH091657 (PIs: David Van

Essen and Kamil Ugurbil), the McDonnell Center for Systems Neu-

roscience at Washington University.

References

Aleman-Gomez Y, Janssen J, Schnack H, Balaban E, Pina-Camacho

L, Alfaro-Almagro F, Castro-Fornieles J, Otero S, Baeza I,

Moreno D, Bargallo N, Parellada M, Arango C, Desco M (2013)

The human cerebral cortex flattens during adolescence. J Neuro-

sci 33:15004–15010

Alexander-Bloch A, Giedd JN (2013) Imaging structural co-variance

between human brain regions. Nat Rev Neurosci 14:322–336

Alexander-Bloch A, Raznahan A, Bullmore E, Giedd J (2013) The

convergence of maturational change and structural covariance in

human cortical networks. J Neurosci 33:2889–2899

Amaral LA, Scala A, Barthelemy M, Stanley HE (2000) Classes of

small-world networks. Proc Natl Acad Sci USA 97:

11149–11152

Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal

cortex and social cognition. Nat Rev Neurosci 7:268–277

Andrews-Hanna JR, Smallwood J, Spreng RN (2014) The default

network and self-generated thought: component processes,

dynamic control, and clinical relevance. Ann N Y Acad Sci

1316:29–52

Badre D (2008) Cognitive control, hierarchy, and the rostro-caudal

organization of the frontal lobes. Trends Cogn Sci 12:193–200

Badre D, D’Esposito M (2007) Functional magnetic resonance

imaging evidence for a hierarchical organization of the

prefrontal cortex. J Cogn Neurosci 19:2082–2099

Badre D, D’Esposito M (2009) Is the rostro-caudal axis of the frontal

lobe hierarchical? Nat Rev Neurosci 10:659–669

Bassett DS, Bullmore E (2006) Small-world brain networks. Neuro-

scientist 12:512–523

Bellec P, Rosa-Neto P, Lyttelton OC, Benali H, Evans AC (2010)

Multi-level bootstrap analysis of stable clusters in resting-state

fMRI. Neuroimage 51:1126–1139

Bernhardt BC, Klimecki OM, Leiberg S, Singer T (2013) Structural

covariance networks of the dorsal anterior insula predict

females’ individual differences in empathic responding. Cereb

Cortex. doi:10.1093/cercor/bht1072

Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional

connectivity in the motor cortex of resting human brain using

echo-planar MRI. Magn Reson Med 34:537–541

Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM,

Beckmann CF, Adelstein JS, Buckner RL, Colcombe S,

Dogonowski AM, Ernst M, Fair D, Hampson M, Hoptman MJ,

Hyde JS, Kiviniemi VJ, Kötter R, Li SJ, Lin CP, Lowe MJ,

Mackay C, Madden DJ, Madsen KH, Margulies DS, Mayberg

HS, McMahon K, Monk CS, Mostofsky SH, Nagel BJ, Pekar JJ,

Peltier SJ, Petersen SE, Riedl V, Rombouts SA, Rypma B,

Schlaggar BL, Schmidt S, Seidler RD, Siegle GJ, Sorg C, Teng

GJ, Veijola J, Villringer A, Walter M, Wang L, Weng XC,

Whitfield-Gabrieli S, Williamson P, Windischberger C, Zang

YF, Zhang HY, Castellanos FX, Milham MP (2010) Toward

discovery science of human brain function. Proc Natl Acad Sci

USA 107:4734–4739

Blackmon K, Halgren E, Barr WB, Carlson C, Devinsky O, DuBois J,

Quinn BT, French J, Kuzniecky R, Thesen T (2011) Individual

differences in verbal abilities associated with regional blurring of

the left gray and white matter boundary. J Neurosci 31:

15257–15263

Blondel VD, Guillaume GL, Lambiotte R, Lefebvre E (2008) Fast

unfolding of communities in large networks. J Stat Mech P10008

Blumensath T, Jbabdi S, Glasser MF, Van Essen DC, Ugurbil K,

Behrens TE, Smith SM (2013) Spatially constrained hierarchical

parcellation of the brain with resting-state fMRI. NeuroImage

76:313–324

Breakspear M, Jirsa V, Deco G (2010) Computational models of the

brain: from structure to function. Neuroimage 52:727–730

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T,

Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical

hubs revealed by intrinsic functional connectivity: mapping,

assessment of stability, and relation to Alzheimer’s disease.

J Neurosci 29:1860–1873

Bullmore E, Sporns O (2009) Complex brain networks: graph

theoretical analysis of structural and functional systems. Nat Rev

Neurosci 10:186–198

Bullmore E, Sporns O (2012) The economy of brain network

organization. Nat Rev Neurosci 13:336–349

Cabral J, Hugues E, Sporns O, Deco G (2011) Role of local network

oscillations in resting-state functional connectivity. Neuroimage

57:130–139

Cao M, Wang JH, Dai ZJ, Cao XY, Jiang L, Fan FM, Song XW, Xia

MR, Shu N, Dong Q, Milham MP, Castellanos FX, Zuo XN, He

Y (2014) Topological organization of the human brain functional

connectome across the lifespan. Dev Cogn Neurosci 7:76–93

Cauda F, Geminiani G, D’Agata F, Sacco K, Duca S, Bagshaw AP,

Cavanna AE (2010) Functional connectivity of the posterome-

dial cortex. PLoS ONE 5:e13107

Cavanna AE, Trimble MR (2006) The precuneus: a review of its

functional anatomy and behavioural correlates. Brain 129:

564–583

Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver

TS (2013) Multi-task connectivity reveals flexible hubs for

adaptive task control. Nat Neurosci 16:1348–1355

Collin G, Sporns O, Mandl RC, van den Heuvel MP (2013) Structural

and functional aspects relating to cost and benefit of rich club

Brain Struct Funct (2015) 220:2485–2507 2503

123

http://dx.doi.org/10.1093/cercor/bht1072


organization in the human cerebral cortex. Cereb Cortex. doi:10.

1093/cercor/bht064

Cox RW (2012) AFNI: what a long strange trip it’s been. Neuroimage

62:743–747

Craddock RC, James GA, Holtzheimer PE, Hu XP, Mayberg HS

(2012) A whole brain fMRI atlas generated via spatially

constrained spectral clustering. Hum Brain Mapp 33:1914–1928

Craddock RC, Jbabdi S, Yan CG, Vogelstein JT, Castellanos FX, Di

Martino A, Kelly C, Heberlein K, Colcombe S, Milham MP

(2013) Imaging human connectomes at the macroscale. Nat

Methods 10:524–539

Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis.

I. Segmentation and surface reconstruction. Neuroimage

9:179–194

Deco G, Jirsa VK (2012) Ongoing cortical activity at rest: criticality,

metastability, and ghost attractors. J Neurosci 32:3366–3375

Deco G, Jirsa V, McIntosh A, Sporns O, Kötter R (2009) Key role of

coupling, delay, and noise in resting brain fluctuations. Proc Natl

Acad Sci USA 106:10302–10307

Deco G, Jirsa VK, McIntosh AR (2010) Emerging concepts for the

dynamical organization of resting-state activity in the brain. Nat

Rev Neurosci 12:43–56

Deco G, Jirsa VK, McIntosh AR (2013) Resting brains never rest:

computational insights into potential cognitive architectures.

Trends Neurosci 36:268–274

Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic

parcellation of human cortical gyri and sulci using standard

anatomical nomenclature. Neuroimage 53:1–15

Dierker DL, Feczko E, Pruett JR Jr, Petersen SE, Schlaggar BL,

Constantino JN, Harwell JW, Coalson TS, Van Essen DC (2013)

Analysis of cortical shape in children with simplex autism. Cereb

Cortex. doi:10.1093/cercor/bht294

Eilers PH, Goeman JJ (2004) Enhancing scatter plots with smoothed

densities. Bioinformatics 20:623–628

Elton A, Gao W (2014) Divergent task-dependent functional

connectivity of executive control and salience networks. Cortex

51:56–66

Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K,

Consortium WU-MH (2013) The WU-Minn human connectome

project: an overview. Neuroimage 80:62–79

Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S,

Gunther M, Glasser MF, Miller KL, Ugurbil K, Yacoub E (2010)

Multiplexed echo planar imaging for sub-second whole brain

FMRI and fast diffusion imaging. PLoS ONE 5:e15710

Fischl B (2012) FreeSurfer. Neuroimage 62:774–781

Fischl B, Dale AM (2000) Measuring the thickness of the human

cerebral cortex from magnetic resonance images. Proc Natl Acad

Sci USA 97:11050–11055

Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis.

II. Inflation, flattening, and a surface-based coordinate system.

Neuroimage 9:195–207

Fjell AM, Westlye LT, Amlien I, Tamnes CK, Grydeland H, Engvig

A, Espeseth T, Reinvang I, Lundervold AJ, Lundervold A,

Walhovd KB (2013) High-expanding cortical regions in human

development and evolution are related to higher intellectual

abilities. Cereb Cortex. doi:10.1093/cercor/bht201

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,

Raichle ME (2005) The human brain is intrinsically organized

into dynamic, anticorrelated functional networks. Proc Natl Acad

Sci USA 102:9673–9678

Frye RE, Liederman J, Malmberg B, McLean J, Strickland D,

Beauchamp MS (2010) Surface area accounts for the relation of

gray matter volume to reading-related skills and history of

dyslexia. Cereb Cortex 20:2625–2635

Gallos LK, Makse HA, Sigman M (2012) A small world of weak ties

provides optimal global integration of self-similar modules in

functional brain networks. Proc Natl Acad Sci USA

109:2825–2830

Garrett DD, Samanez-Larkin GR, MacDonald SW, Lindenberger U,

McIntosh AR, Grady CL (2013) Moment-to-moment brain

signal variability: a next frontier in human brain mapping?

Neurosci Biobehav Rev 37:610–624

Glasser MF, Van Essen DC (2011) Mapping human cortical areas

in vivo based on myelin content as revealed by T1-and T2-

weighted MRI. J Neurosci 31:11597–11616

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B,

Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van

Essen DC, Jenkinson M, Consortium WU-MH (2013) The

minimal preprocessing pipelines for the Human Connectome

Project. Neuroimage 80:105–124

Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis

AC, Nugent TF, Herman DH, Clasen LS, Toga AW (2004)

Dynamic mapping of human cortical development during

childhood through early adulthood. Proc Natl Acad Sci USA

101:8174–8179

Greve DN, Fischl B (2009) Accurate and robust brain image

alignment using boundary-based registration. NeuroImage

48:63–72

Griffanti L, Salimi-Khorshidi G, Beckmann CF, Auerbach EJ,

Douaud G, Sexton CE, Zsoldos E, Ebmeier KP, Filippini N,

Mackay CE, Moeller S, Xu J, Yacoub E, Baselli G, Ugurbil K,

Miller KL, Smith SM (2014) ICA-based artefact removal and

accelerated fMRI acquisition for improved Resting State

Network imaging. Neuroimage 95C:232–247

Grubbs FE (1969) Procedures for detecting outlying observations in

samples. Technometrics 11:1–21

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen

VJ, Sporns O (2008) Mapping the structural core of human

cerebral cortex. PLoS Biol 6:e159

Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S,

Busa E, Pacheco J, Albert M, Killiany R (2006) Reliability of

MRI-derived measurements of human cerebral cortical thick-

ness: the effects of field strength, scanner upgrade and manu-

facturer. Neuroimage 32:180–194

Hayasaka S, Laurienti PJ (2010) Comparison of characteristics

between region-and voxel-based network analyses in resting-

state fMRI data. NeuroImage 50:499–508

He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, Jiang T (2007a)

Regional coherence changes in the early stages of Alzheimer’s

disease: a combined structural and resting-state functional MRI

study. Neuroimage 35:488–500

He Y, Chen ZJ, Evans AC (2007b) Small-world anatomical networks

in the human brain revealed by cortical thickness from MRI.

Cereb Cortex 17:2407–2419

He Y, Wang J, Wang L, Chen ZJ, Yan C, Yang H, Tang H, Zhu C,

Gong Q, Zang Y, Evans AC (2009) Uncovering intrinsic

modular organization of spontaneous brain activity in humans.

PLoS ONE 4:e5226

Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM (2013) The
structure of the cerebral cortex across adult life: age-related

patterns of surface area, thickness, and gyrification. Cereb

Cortex 23:2521–2530

Honey C, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R,

Hagmann P (2009) Predicting human resting-state functional

connectivity from structural connectivity. Proc Natl Acad Sci

USA 106:2035–2040

Hutchison RM, Everling S (2013) Broad intrinsic functional connec-

tivity boundaries of the macaque prefrontal cortex. Neuroimage

88:202–211

Im K, Pienaar R, Paldino MJ, Gaab N, Galaburda AM, Grant PE

(2013) Quantification and discrimination of abnormal sulcal

patterns in polymicrogyria. Cereb Cortex 23:3007–3015

2504 Brain Struct Funct (2015) 220:2485–2507

123

http://dx.doi.org/10.1093/cercor/bht064
http://dx.doi.org/10.1093/cercor/bht064
http://dx.doi.org/10.1093/cercor/bht294
http://dx.doi.org/10.1093/cercor/bht201


Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM

(2012) FSL. Neuroimage 62:782–790

Kanai R, Rees G (2011) The structural basis of inter-individual

differences in human behaviour and cognition. Nat Rev Neurosci

12:231–242

Kelly C, Biswal BB, Craddock RC, Castellanos FX, Milham MP

(2012) Characterizing variation in the functional connectome:

promise and pitfalls. Trends Cogn Sci 16:181–188

Kippenhan JS, Olsen RK, Mervis CB, Morris CA, Kohn P, Meyer-

Lindenberg A, Berman KF (2005) Genetic contributions to

human gyrification: sulcal morphometry in Williams syndrome.

J Neurosci 25:7840–7846

Lee JK, Lee JM, Kim JS, Kim IY, Evans AC, Kim SI (2006) A novel

quantitative cross-validation of different cortical surface recon-

struction algorithms usingMRI phantom. Neuroimage 31:572–584

Leech R, Sharp DJ (2014) The role of the posterior cingulate cortex in

cognition and disease. Brain 137:12–32

Levitt JG, Blanton RE, Smalley S, Thompson PM, Guthrie D,

McCracken JT, Sadoun T, Heinichen L, Toga AW (2003)

Cortical sulcal maps in autism. Cereb Cortex 13:728–735

Li S, Han Y, Wang D, Yang H, Fan Y, Lv Y, Tang H, Gong Q, Zang

Y, He Y (2010) Mapping surface variability of the central sulcus

in musicians. Cereb Cortex 20:25–33

Li X, Pu F, Fan Y, Niu H, Li S, Li D (2013) Age-related changes in

brain structural covariance networks. Front Hum Neurosci 7:98

Li G, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D (2014)

Mapping longitudinal development of local cortical gyrification

in infants from birth to 2 years of age. J Neurosci 34:4228–4238

Liao W, Zhang Z, Mantini D, Xu Q, Wang Z, Chen G, Jiao Q, Zang

YF, Lu G (2013) Relationship between large-scale functional

and structural covariance networks in idiopathic generalized

epilepsy. Brain Connect 3:240–254

Lichtman JW, Denk W (2011) The big and the small: challenges of

imaging the brain circuits. Science 334:618–623

Long XY, Zuo XN, Kiviniemi V, Yang Y, Zou QH, Zhu CZ, Jiang

TZ, Yang H, Gong QY, Wang L, Li KC, Xie S, Zang YF (2008)

Default mode network as revealed with multiple methods for

resting-state functional MRI analysis. J Neurosci Methods

171:349–355

Luckmann HC, Jacobs HI, Sack AT (2014) The cross-functional role

of frontoparietal regions in cognition: internal attention as the

overarching mechanism. Prog Neurobiol 116:66–86

Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L, Hamer RM,

Shen D, Gilmore JH (2014) Dynamic development of regional

cortical thickness and surface area in early childhood. Cereb

Cortex. doi:10.1093/cercor/bhu027
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