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Abstract: The brain is a complex network with time-varying functional 
connectivity (FC) and network organization. However, it remains largely 
unknown whether resting-state fNIRS measurements can be used to 
characterize dynamic characteristics of intrinsic brain organization. In this 
study, for the first time, we used the whole-cortical fNIRS time series and a 
sliding-window correlation approach to demonstrate that fNIRS 
measurement can be ultimately used to quantify the dynamic characteristics 
of resting-state brain connectivity. Our results reveal that the fNIRS-derived 
FC is time-varying, and the variability strength (Q) is correlated negatively 
with the time-averaged, static FC. Furthermore, the Q values also show 
significant differences in connectivity between different spatial locations 
(e.g., intrahemispheric and homotopic connections). The findings are 
reproducible across both sliding-window lengths and different brain 
scanning sessions, suggesting that the dynamic characteristics in fNIRS-
derived cerebral functional correlation results from true cerebral fluctuation. 
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1. Introduction 

The human brain is a dynamic and highly complex network with the capability of generating 
and integrating information from various sources in real time [1]. Recently, a large number of 
studies have demonstrated the dynamic fluctuation of the brain in functional connectivity 
(FC) by monitoring brain activity at rest using functional magnetic resonance imaging 
(fMRI), electroencephalography (EEG), or magnetoencephalography (MEG) techniques [2–
9]. The temporal fluctuations of FC have been shown to be an essential property that is 
necessary for normal brain function and their disruption is evidence of abnormal brain 
activity in schizophrenia [10], depression [11], and Alzheimer’s disease [12]. 

The brain imaging technique of functional near-infrared spectroscopy (fNIRS) is an 
emerging optical tool used to measure functional brain connectivity. The biophysical origin of 
the technique is the variation in concentrations of oxyhemoglobin (HbO) and 
deoxyhemoglobin (HbR) in the cerebral cortex that frequently results from changes in 
cerebral blood flow and the cerebral metabolic rate of oxygen [13–15]. Recent studies have 
proven the detectability of resting-state FC by fNIRS [14], which characterizes the 
synchronization of spontaneous neural activities between spatially remote brain regions, such 
as between bilateral sensorimotor cortices [16, 17], auditory cortices [18], visual cortices [16, 
17], and language-related cortices [19]. Such FC measured by fNIRS shows remarkable 
consistency across adult subjects [20, 21]; however, substantial variations are also seen 
throughout normal development [22] and during activities indicating neurological disorders 
[23] in young infants. These accumulated findings indicate the potential value of fNIRS as a 
useful brain-imaging tool to study functional brain network in varying participant 
populations. 

Currently, the analysis of fNIRS-based resting-state FC typically employs approaches 
such as seed correlation and independent component analysis [24]. The seed correlation 
approach utilizes a single correlation coefficient calculated from a pair of time series of the 
entire temporal scan to represent the relationship between the selected seed(s) and other brain 
regions of interest [25] over the duration of the temporal scan. Similarly, ICA uses time series 
over the entire measurement period to identify the spatially independent functional sub-
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networks. In general, both approaches assume that the strength of interaction between two 
brain regions is constant or static throughout the duration of the measurement period. 
However, recent research on dynamic FC has provided compelling evidence that compared to 
the time-averaged, static resting-state FC, dynamic FC may better reflect and reveal “changes 
in macroscopic neural activity patterns underlying critical aspects of cognition and behavior” 
[6, 9]. Thus, studying the dynamic functional brain connectivity is of great importance and 
advantage that can provide us with an imaging tool to better understand the mechanisms that 
underlie the dynamic features of the brain. Since the research on dynamic FC is relatively 
new, there exist limitations regarding data analysis and result interpretation [6, 9]; much 
research and development in this area are needed. Because fNIRS has a much higher 
sampling rate than the widely used fMRI technique, fNIRS provides rich temporal 
information that can be used to investigate the time-varying functional organization in the 
human brain. Therefore, fNIRS is an excellent research tool to be explored and then used for 
studying dynamic FC. 

The novelty of the present study is to investigate whether and how fNIRS measurements 
can be ultimately used to quantify the dynamic characteristics of resting-state FC. In the 
study, a sliding-window correlation (SWC) analysis [6, 9] was performed on fNIRS time 
series to obtain dynamic network organization at resting state from 18 participants. For data 
analysis and result interpretation, this study is organized as follows: First, we will 
demonstrate the characteristics of temporal variation in the resulting FC time series from all 
participants. Next, we will define and quantify the FC variability strength (Q) and explore the 
dynamic relationship between FC variability strength Q and static connectivity strength. 
Subsequently, we will reveal the differences in FC variability across different spatial 
locations (homotopic, heterotopic, long and short intrahemispheric connections). Finally, we 
will examine the repeatability of our dynamic FC findings using different window lengths and 
two separate fNIRS test data sets (Session 1 versus Session 2). The present work, for the first 
time, utilizes whole-cortical fNIRS time series to derive dynamic FC in the human brain and 
reveals the fNIRS-based temporal-spatial features of dynamic FC network in the resting-state 
brain. 

2. Materials and methods 

2.1 Participants 

The data used in this study were obtained from a previous experiment that examined the test-
retest reliability of the graph metrics of the resting state fNIRS brain network [20]. 
Specifically, 21 healthy right-handed college students (17 males and 4 females, ages 21 to 27 
years) were recruited and written informed consent was obtained from all participants prior to 
the experiment. This study was approved by the Institutional Review Board of Beijing 
Normal University Imaging Center for Brain Research. 

2.2 Experimental protocol 

This experiment consisted of two sessions of resting-state fNIRS recordings. Each session 
lasted 11 minutes with intervals between them of approximately 20 minutes. During the 
recordings, participants were instructed to remain still and keep their eyes closed without 
falling asleep. During the 20-min interval of the two scanning sessions, participants were 
instructed to sit (wearing the probe holder) and were allowed slight body and head motion. In 
the present study, we used the first-session data to perform dynamic FC analysis and then 
validated our findings with the second-session data. 

2.3 Data acquisition 

A continuous-wave (CW) near-infrared optical imaging system (CW6, TechEn Inc., MA, 
USA) was used to measure the variations of the HbO and HbR concentration (Fig. 1(A)). The 
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system generated two wavelengths (690 and 830 nm) of near-infrared light and collected the 
hemoglobin-dependent signals at a sampling rate of 25 Hz. Twelve light sources (each with 
two wavelengths) and 24 detectors were designed to conFig. 46-measurement channels to 
allow for the whole brain (i.e., frontal, temporal, parietal, and occipital lobes) to be covered 
bilaterally (Fig. 1(B)). The spatial separation between any adjacent source and detector pair 
was 3.2 cm. The positioning of the probes was set according to the international 10-20 
system. 

2.4 Data preprocessing 

For the time course of HbO or HbR signals, we first conducted a temporal ICA analysis to 
remove typical motion-induced artifacts and systematic physiological noise [17, 20, 26]. 
Then, we filtered the data using a band pass filter with a band-pass frequency of 0.01 to 0.1 
Hz to reduce the effect of high-frequency noise and baseline drift and, at the same time, we 
sought to obtain low frequency hemodynamic signals that are thought to emanate from 
spontaneous neural activity [16, 27]. Finally, we extracted 10-min data from the continuous 
time course of each participant to conduct dynamic FC analysis. Three of the subjects were 
excluded due to poor optical contact between the head probe and scalp on at least one 
measurement channel. The data of the remaining 18 subjects was used for further dynamic FC 
analysis. 

2.5 Dynamic FC calculation and analysis 

For each individual data set, we first of all calculated the static FC (Fig. 1(C)) with Pearson 
correlation analysis between any two time series of the measurement channels. Subsequently, 
we also calculated the dynamic FC of the signals with a SWC approach (Fig. 1(D)). The SWC 
is the most commonly used strategy for examining FC dynamics in the present neuroimaging 
studies [2, 3, 7, 12, 28–30]. In our framework of SWC analysis, a 60-s time window was 
selected and then shifted in an increment of 1 s along the entire time course. The FC within 
each time window was quantitatively calculated for each selected pair of brain regions using 
the Pearson correlation strategy. The 10-min measurement duration and a 60-s time window 
yielded 541 sliding-time windows and thus resulted in 541 dynamic FC maps. 

To demonstrate whether the obtained FC maps at different time windows dynamically 
fluctuate over time, we had to quantitatively compare them with a common reference map 
that was chosen to be the static FC map obtained over the entire 10-min time window. 
Mathematically, each FC correlation map included 46 × 45/2 correlation coefficients 
calculated from any two-measurement channels and could be arranged as a column vector. 
We formed a total of 541 dynamic FC correlation vectors and one static FC vector. To 
quantify the similarity between each dynamic FC map with the static FC map, we calculated 
another correlation coefficient between each dynamic vector and the static vector for each 
subject. To be clear, we named this new correlation coefficient as “between-map” correlation 
coefficient, rm, which was used to quantify the degree of similarity between two maps and the 
degree of fluctuation between the dynamic FC maps. In this way, each dynamic FC 
correlation map gave rise to a single rm with respect to the static FC map. For the entire 10-
min window, we obtained a time series of 541 values of rm for each subject (Fig. 2(B)). 

To quantitatively estimate the variability of whole-cortex FC across a series of sliding 
time windows, we further calculated the spectrum power of the dynamic FC time series (with 
Fourier analysis) [2]for each participant (see Fig. 7 in appendix). Thus, the area under the 
curve of the power spectrum across the low frequency (< 0.1 Hz) band was used as a 
fluctuation strength index, Q, to mark time-varying characteristics of dynamic FC (Fig. 3(A)). 
A higher Q value represented a more variable FC, whereas a smaller Q value represented a 
less variable FC. To explore the potential fluctuation properties of dynamic FC, we examined 
the linear relationship between FC variability strength and the corresponding static 
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connectivity strength using a Spearman correlation analysis at both group and individual 
levels, respectively. 

 

Fig. 1. Illustration of fNIRS-based FC analysis. (A)Photograph of whole-head fNIRS data 
acquisition on a participant. (B) The schematic of whole-head imaging pad (12 sources, red, 
and 24 detectors, blue). The sources and detectors were symmetrically placed on the left and 
right hemispheres and constituted 46 measurement channels, which allowed for the whole 
brain (i.e., frontal, temporal, parietal, and occipital lobes to be measured. (C) Static FC 
analysis. The static FC was calculated from time series of entire scanning between any two 
channels. (D) Dynamic FC analysis. The dynamic FC was calculated using sliding-window 
correlation approach. In this approach, a time window of fixed length was selected, and data 
points within that window were used to calculate the FC. The window was then shifted in time 
by a fixed number of data points. This process results in quantification of the time-varying FC 
over the duration of the scan. 

Furthermore, to reveal whether the values of index Q are different across varying cortical 
locations, we further classified the entire cortical FC into four spatially different connectivity 
groups (Fig. 4(A)) and then examined their difference in FC variability strength between 
groups. These four connectivity groups included: (1) homotopic connectivity, which indicated 
connectivity between inter-hemispheric homologous regions [23 pairs, i.e., 46/2]; (2) long 
intrahemispheric connectivity, which indicated connectivity between different anatomical 
areas in the same hemisphere with a length larger than 10 cm [82 pairs]; (3) short 
intrahemispheric connectivity, which indicated connectivity between different anatomical 
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areas in the same hemisphere with a length smaller than 10 cm [424 pairs]; and (4) 
heterotopic connectivity, which indicated connectivity between different anatomical areas in 
opposite hemispheres [506 pairs]. 

The statistical analysis of index Q between connectivity groups was performed using 
permutation testing [31, 32]. First, for each individual connection, the value of index Q was 
averaged across subjects and then was used as factors for statistical analysis. Second, the 
between-group differences of the averaged Q values were tested between any two 
connectivity groups using permutation test. Third, during the permutation test, two random 
surrogate groups were first generated by randomly assigning each edge (i.e., connectivity) to 
one of these two groups, while maintaining the same number of edges as the original two 
groups. Next, the difference in variability index Q between these two random groups was 
computed. This procedure was repeated for 10,000 permutations, resulting in a sampled 
between-group difference and null distribution for the index Q. Finally, the observed 
between-group difference was assigned a p value by counting the proportion of the total 
number of 10,000 entries resulting from the permutation that was greater than (or smaller than 
if the effect was negative) the original group difference. A significance threshold of p < 0.01 
(Bonferroni corrected) was used to confirm the difference in index Q between connectivity 
groups. 

Finally, to assess the effect of time window lengths on dynamic characteristics of FC, we 
selected two additional window lengths, namely 30 s and 90 s, to repeat the above analysis. 
Meanwhile, to examine the reproducibility of the dynamic FC findings across scanning 
sessions, we also adopted a separate fNIRS data set (Session 2) to conduct the same data 
analysis based on the 60-s sliding-window length. 

3. Results 

3.1 FC dynamics 

As described in Section 2.5, a correlation coefficient map was generated to reflect FC 
between each pair of channels at different cortical locations. As seen in Figs. 1(C) and 1(D), it 
is expected that different FC strengths among different channels should give rise to different 
color patterns. The redder the map pattern is, the stronger the FC is. In a quantitative 
expression, the value of between-map coefficient, rm, is close to 1 if the color patterns of two 
FC maps are similar or close to one another. Otherwise, mismatched color patterns among 
different FC maps indicate low values of rm and a relatively large fluctuation among dynamic 
FC strengths. 

Figure 2(A) shows an example of a single participant's 135 dynamic FC maps derived 
from HbO (left) and HbR (right) signals at a temporal interval of 4 seconds. Visually, while 
each dynamic map was too small to show details, the overall color patterns and their 
variability across 135 maps at different time windows might be clearly observed. It was seen 
that FC patterns between most of time windows displayed noticeable dynamic variations over 
the 10-min scanning duration. Quantitatively, Fig. 2(B) plots the Pearson “between-map” 
correlation coefficients, rm, calculated between the successive dynamic FC maps and the 
static FC map from Subject 14. This figure displayed strong and notable fluctuations with a 
mean value and standard deviation of 0.62 ± 0.11 for HbO and 0.76 ± 0.07 for HbR over the 
scanning duration. Using the same analysis framework, we calculated the temporal 
fluctuations of FC maps from all 18 participants; all respective values of rm were temporally 
mapped in Fig. 2(C). We found that FC of each participant dynamically changed across the 
duration of scanning, irrespective of HbO and HbR signals, which reflect the expected 
dynamic neural activities from each participant. 
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Fig. 2. FC dynamics derived from HbO (left) and HbR (right) signals. (A) An example of 
dynamic FC maps displayed at an interval of 4 s on an arbitrary participant (Subject 14). (B) 
The Pearson “between-map” correlation coefficients, rm, calculated between the successive 
dynamic FC maps and the static FC map from Subject 14. The dotted straight line represents 
the mean and standard derivation of rm across the 10-min time window. (C) Similar calculation 
to (B) on all 18 subjects. The sliding-window length used to evaluate dynamic FC was 60 s. 

3.2 Relationship between FC variability strength and static connectivity strength 

Figure 3 shows the group-level FC variability strength (Q), static FC strength as well as the 
linear relationship between them derived from both HbO and HbR signals, respectively. 
Visually, the spatial patterns between index Q and the static connectivity strength exhibited a 
contrary trend. For example, near diagonal connectivity trace of the matrix maps (Figs. 3(A) 
and 3(B)), a smaller Q value (Fig. 3(A)) was accompanied by a larger static FC strength (Fig. 
3(B)). The quantitative correlation analysis between them also revealed that there was a 
strong and significant negative correlation relationship across both HbO (r = −0.78, p < 10−10) 
and HbR (r = −0.37, p < 10−10) (Fig. 3(C)). The result indicates that the weaker the static 
connectivity strength, the larger the value of index Q in a series of temporal brain activities 
and vice-versa. Similarly, the individual-level correlation analysis revealed that the index Q 
also showed a significantly negative correlation (p < 0.001) with the static connectivity 
strength, which was almost present in all participants across two hemoglobin signals (except 
for one subject in the HbR signal) (see Table 1 in appendix). The average correlation between 
index Q and the static connectivity strength across subjects was −0.72 ± 0.16 for HbO and 
−0.35 ± 0.23 for HbR. Furthermore, the Q values in Fig. 3(A) also illustrated regional 
differences of FC variability strength in the entire cortical connectivity network. For example, 
much bigger Q values were found in connectivity between frontal and parietal/occipital 
cortical regions (Fig. 3(A)). 
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Fig. 3. Pattern comparison between FC variability strength, Q, and static FC strength. (A)The 
group-averaged Q values, (B) static FC strength and (C) the linear relationship between them 
derived from HbO and HbR, respectively. The values of index Q were quantified as the area 
under the curve of the power amplitude of the FC time series across the low-frequency band (< 
0.1Hz). 

3.3 Differences in FC variability strength between different interregional connectivity 

Figure 4(A) shows the connectivity groups with spatially different connectivity patterns 
(homotopic, long and short intrahemispheric and heterotopic connections). Generally, the 
long intrahemispheric connections showed a larger Q value than the other connections in both 
numerical (Fig. 4(B)) and statistical (Fig. 4(C)) analysis across HbO and HbR signals. In 
contrast, the index Q in homotopic and short intrahemispheric connections appeared to be 
numerically similar to each other, but smaller than that in the long intrahemispheric or 
heterotopic connections (Figs. 4(B) and 4(C)). The results indicate that, compared to the long 
intrahemispheric and heterotopic connections, the homotopic and short intrahemispheric 
connections maintain a less variable FC pattern during resting-state brain activity. Moreover, 
the analysis of static FC strength also produced the expected results. For example, the 
connectivity strength in long intrahemispheric connections was significantly smaller than that 
in homotopic and short intrahemispheric connections for both HbO and HbR signals. 
However, it is noteworthy that the difference of static connectivity strength between long 
intrahemispheric and heterotopic connections was not significant; whereas the index Q 
between the two groups was significantly different, irrespective of HbO or HbR signals. The 
results suggest that the FC fluctuation index, Q, relative to traditional static FC strength, is yet 
a more sensitive measure in distinguishing different interregional connectivity in the brain. 
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Fig. 4. Q difference and the static FC-strength difference in spatially different connectivity 
groups. (A) Configurations of selected connectivity groups (homotopic, long and short 
intrahemispheric and heterotopic connections) (B) Group-averaged power spectra of the 
dynamic FC time series in the four connectivity groups. The subplot showed the average of the 
power spectra across connections in each group. The lines with blue, red, yellow and green 
color represent the homotopic, long and short intrahemispheric and heterotopic connections, 
respectively. (C) Group differences in values of index Q between connectivity groups. (D) 
Group differences in static FC strength between connectivity groups. In (C and D), one and 
two asterisks represent significant group differences with permutation test at p <0.05 and 0.01 
(Bonferroni-corrected), respectively. Error bars indicate standard deviations. 

3.4 Validation 

We evaluated the reproducibility of our primary findings in the study. First, using the current 
Session-1 data set, we separately changed the sliding-window sizes from 60 s to 30 s and 90 s 
to examine the impact of varying window lengths on dynamic FC findings. The main results, 
e.g., FC fluctuation Q was significantly negatively correlated with the static connectivity 
strength (Figs. 5(A) and 5(B)) and that the values of Q were significantly different between 
distinct interregional connectivity groups (Figs. 5(C) and 5(D)), kept good consistency 
compared to those obtained with 60-s sliding-window length (Figs. 3 and 4). This good 
reproducibility indicates that our findings were robust to different temporal window sizes. 
Meanwhile, we also noted that different window lengths led to different frequency spread 
patterns in respective power spectra of the FC time traces (Figs. 5(E) and 5(F)). Second, by 
using a separate fNIRS data set (Session 2), we also examined the reproducibility of our 
findings across scanning sessions. The fluctuation features in dynamic FC were kept 
consistent (Fig. 6) with the prior dynamic investigations using the Session-1 data set (Figs. 3 
and 4). 
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Fig. 5. Reproducibility of the primary findings derived from HbO and HbR signals over two 
various sliding-window lengths (30 s and 90 s). (A, B) The negative correlation relationship 
between index Q and the static connectivity strength. (C, D) The group differences in values of 
index Q between connectivity groups. (E, F). The group-averaged power spectra of dynamic 
FC time series in the four connectivity groups. The lines with blue, red, yellow and green color 
represent the homotopic, long and short intrahemispheric and heterotopic connections, 
respectively. All these results show good reproducibility over varying sliding-window lengths. 
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Fig. 6. Reproducibility of our primary findings derived from HbO and HbR signals across 
different fNIRS test data sets (Session 2). (A) The negative correlation relationship between 
index Q and static connectivity strength. (B, C) The group differences in values of index Q 
among four connectivity groups as well as the static connectivity strength among groups, 
respectively. The SWC approach with 60 s lengths was used to derive the dynamic FC. 

4. Discussion 

In this study, we explored the temporal characteristics of fNIRS-derived dynamic FC using 
SWC analysis. We found that the cortical FC network was highly variable over time (Fig. 2), 
and the variability strength Q in FC exhibited a significantly negative correlation relationship 
with the static FC strength (by the long-period fix-window analysis) (Fig. 3). Furthermore, the 
variability strength Q also showed significant differences between spatially various cortical 
locations/groups (i.e., homotopic, long and short intra-hemispheric and heterotopic 
connections), with a larger Q for long intrahemispheric connections and a smaller Q for 
homotopic and short intrahemispheric connections. The findings were highly reproducible, 
irrespective of sliding window lengths (Fig. 5) and recording sessions (Fig. 6), suggesting that 
the observed dynamic characteristics in the resting brain resulted from true cerebral 
fluctuation, rather than from non-cerebral physiological noise and/or movement artifacts. 
Collectively, our results derived from fNIRS signal correlations provide, to our knowledge, 
the first dynamic characterization of fNIRS-based FC and regional connectivity heterogeneity 
in FC variability in the range of whole-cortex regions. These results and their implications are 
discussed as follows. 

The brain is a dynamic system even in the resting state. However, studies in the previous 
fNIRS-derived signal correlations merely characterized spatial features of the cerebral 
functional activity, and neglected temporal varying information included in it. Here, we 
introduced a dynamic analysis strategy (SWC) and for the first time investigated and explored 
temporal FC variations in the resting brain. Our results showed that the entire cortical FC was 
dynamic fluctuation over time (Fig. 2), consistent with previous investigations from other 
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neuroimaging techniques, such as EEG [4, 8], MEG [5], and fMRI [7], which indicated that 
the dynamic fluctuations in the brain FC represent a fundamental and essential property of 
normal brain function [33–36], whereas this property sustains the operation of the brain and 
its response to internal and external stimuli in a real time. 

The results in Figs. 3(A) and 3(B) revealed that the organization of cortical networks with 
regard to increase or decrease in FC fluctuation strength depend on the cortical regions. For 
example, the index Q was found to be much bigger between the frontal and posterior cortical 
regions (Fig. 3(A)) in the entire cortical network. This observation was approximately in 
accordance with a previous dynamic study of resting-state fMRI that identified a group of 
more variable connections between brain regions of dorsal attention cortex, default-mode 
network, and superior occipital cortex [2]. Of note, the regions with great variable FC 
observed in our study and the previous fMRI study are of the most globally connected 
configuration in the whole-brain organization [37]. Meanwhile, some of the regions even 
consistently emerge as functional hubs in topological characterization of brain architecture 
[38], indicating heterogeneous and integrative functions of these great variable brain regions 
during dynamic brain activity. However, it needs to point out that the regions with more 
variable FC in cerebral cortex were generally neglected since the static FC strength between 
them were too small (Fig. 3(C)) to be significant. Herein, our current study based on all 
connections (i.e., including both strong and weak correlations) were expected to motivate FC 
analyses to focus on both weak and strong connections in the future study. Positive concerns 
on weak connections may bring about great benefit to identifying brain regions with more 
variable functional connections, which could be helpful in understanding roles of different 
functional systems in adaptive processes better. 

Furthermore, in the present study, through categorizing the entire cortical FC into four 
distinct connectivity groups, we found that the values of index Q between connectivity groups 
had significant differences (Figs. 4 and 6), suggesting distinct physiological implication of FC 
fluctuation between different spatial locations of the brain system. Specifically, the long-
range intrahemispheric connections, which mainly link brain regions of frontal and 
parietal/occipital regions, were consistently found to be more variable during resting-state 
brain activity across two scanning sessions (Figs. 4(C), 5(C) and 6(B)). The result also agreed 
well with one previous, task-derived fMRI study that demonstrated larger FC variability 
emerged in the regions between intrahemispheric frontal and postierior areas as experimental 
paradigm transformed from attention to memory-related tasks [39]. One of the possible 
underlying mechanisms leading to more variable in the long intrahemispheric connections in 
the brain organization is the less neural cooperation due to relatively less structural 
connections compared to others such as homotopic connections [40, 41]. Recently, it has also 
been pointed out that the more variable characteristics in long intrahemispheric connections 
potentially reflect a large-scale network with flexible capability in functional coordination 
between different neural systems [39]. For example, the frontal-posterior cortical regions are 
actively involved in high-level cognitive functions [42]; therefore, the larger variability in FC 
between these regions reflects quick processes to internal and external cognitive activity 
within the resting brain [39]. In contrast, the short range intrahemispheric and the symmetric 
homotopic connections are found to keep less variable during dynamic brain activity. One of 
the possible mechanisms underlying the observations may be the constraint of stronger 
structural connections during neural activities. Previous several studies using diffusion tensor 
imaging have indicated that different cortical regions whose hemodynamic fluctuations show 
strong correlation were connected directly through anatomical structures [43, 44]. Please also 
note that there exist brain regions that have no tract connections but show strong functional 
connection and relationship, such as medial prefrontal cortex and medial temporal lobes [43]. 

One of the important concerns in the dynamic FC study is whether the fluctuation in FC 
results from true cerebral fluctuation. Although the nature of FC variability during resting-
state brain activity remains controversial [2, 7] and not yet fully understood, our present study 
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has shed light on this topic and has excluded the possibility of the FC fluctuation resulting 
from the influence of nonspecific physiological changes (e.g., cardiac or respiratory shifts) 
and/or head movement. Specifically, we conducted strict noise control during preprocessing 
procedures, such as adopting low frequency band-pass filtering and ICA denosing, which 
validly reduced the influence of typical noise components such as respiratory fluctuation 
(~0.2 Hz),cardiac pulsation (~1 Hz), motion-induced artifacts and skin blood flow fluctuation 
[26]. Certainly, we could not fully exclude the possibility that some portions of the low-
frequency hemoglobin signals were contaminated by blood pressure and perfusion 
fluctuations from the extra-cranial tissue layers. However, our current two important findings, 
namely, (1) that FC variability Q has a significant and negative correlation with static FC 
strength (Fig. 3), and (2) that the values of index Q show significant differences between 
different interregional connectivity groups within the entire cortical regions (Fig. 4), could not 
be accounted for only by systemic noise sources and/or artifacts-contributions. More 
importantly, we excluded the contribution of systemic influences and/or artifacts by achieving 
a robust and reproducible result across two sessions of fNIRS recordings (Figs. 4 and 6). 
Thus, we conclude that the dynamic characteristics in fNIRS-derived hemodynamic signal 
correlations reflect the intrinsic properties of neural activity. 

Several issues and further considerations need to be addressed. First, mapping the 
dynamic brain FC appropriately and precisely is a challenging task at the present stage of 
dynamic brain study [7]. We adopted a most commonly used approach, i.e., the SWC 
algorithm, to explore the dynamic brain FC characteristics; nevertheless, future studies 
employing other dynamic FC approaches, e.g., time-frequency coherence analysis with the 
wavelet transform, will possibly provide more detailed information and more comprehensive 
insights into the temporal variability properties of dynamic brain activity. Second, because the 
resting-state brain activity cannot completely exclude a subject's cognitive processes, it is also 
necessary to conduct task-evoked experiments to better explore and understand possible 
sources of low-frequency FC fluctuation. Meantime, approaches with multimodal imaging, 
such as simultaneous measurements of fNIRS with EEG or with electrophysiology recording, 
may also provide us with a vital chance to reveal a potential mechanism for information 
processing in the brain such as information exchange between different brain states. Third, 
one notable advantage of the fNIRS tool is its capability for long-period data acquisition 
because of less physical burden and body confinement on participants. This feature will allow 
researchers to record state transitions in each individual participant and obtain their repeated 
connectivity patterns in the brain, which may be critical for future dynamic studies that 
examine relationships between FC fluctuation and behavioral variability within and between 
participants. Finally, we also need to note a few limitations of our fNIRS-derived dynamic FC 
study. Since low penetration depth is a known drawback of fNIRS brain imaging, it limits 
researchers to investigate intrinsic FC and/or its fluctuations only from cortical regions in 
large scales of functional systems (e.g., motor or visual regions). Even for small-sized animal 
studies, such as rats or mice, another drawback of fNIRS is its low spatial resolution. In 
comparison, a new technology based on photoacoustic resting-state FC imaging (fcPAT), 
which utilizes optical excitation and acoustic detection, allows studies of functional brain 
network with a high spatial resolution in small animals [45]. Therefore, it is expected that the 
employment of fcPAT in small animals may provide rich information on dynamic resting-
state FC network and hence advance the understanding of how dynamic network properties 
support normal brain functions. 

Overall, this study has demonstrated the feasibility of using whole-cortical fNIRS time 
series to derive dynamic FC in the human brain. While the static method calculates a 
relatively slow temporal correlation and provides a convenient framework to examine rather 
stable functional brain circuits and remote network connections, dynamic resting-state FC 
offers a tool for researchers to gain insight into the relationship between time-varying 
macroscopic neural activity patterns and critical aspects of cognition and behavior. Overall, 
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studies on both static and dynamic brain FC network are complementary and warrant equal 
attention in future research. 

Appendix 

Table 1. Correlation coefficient, r, between Q and static FC strength at the individual 
level 

Subject HbO HbR 

r p r p 

1 −0.91 <10−10 −0.64 <10−10 

2 −0.76 <10−10 −0.03 <10−10 

3 −0.77 <10−10 −0.05 0.02 

4 −0.85 <10−10 −0.47 <10−10 

5 −0.59 <10−10 −0.47 <10−10 

6 −0.79 <10−10 −0.49 <10−10 

7 −0.87 <10−10 −0.63 <10−10 

8 −0.72 <10−10 −0.20 <10−9 

9 −0.78 <10−10 −0.57 <10−10 

10 −0.85 <10−10 −0.31 <10−10 

11 −0.81 <10−10 −0.55 <10−10 

12 −0.66 <10−10 −0.07 0.02 

13 −0.81 <10−10 −0.75 <10−10 

14 −0.72 <10−10 −0.35 <10−10 

15 −0.70 <10−10 −0.22 <10−10 

16 −0.51 <10−10 −0.22 <10−10 

17 −0.20 <10−10 −0.01 0.77 

18 −0.74 <10−10 −0.20 <10−10 

mean −0.72  −0.35  

std 0.16  0.23  

(Note: Individual values of Q and static FC strength for each subject are not listed here but 
used to quantify r and p, where p represents the statistical parameter used to compare with 
the significance level of a statistical hypothesis test.) 
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Fig. 7. Power spectral analyses of dynamic FC time series for all 18 subjects and two types of 
hemoglobin concentration signals (HbO and HbR). The sliding-window length was 60 s. In 
each panel, there are 46 × 45/2 power spectra curves that are overlapped and become a gray-
shaded area. 
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