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Abstract
Diffusion-weighted MRI (DW-MRI), the only non-invasive technique for probing human brain white matter structures in vivo,
has been widely used in both fundamental studies and clinical applications. Many studies have utilized diffusion tensor
imaging (DTI) and tractography approaches to explore the topological properties of human brain anatomical networks by
using the single tensor model, the basic model to quantify DTI indices and tractography. However, the conventional DTI
technique does not take into account contamination by the cerebrospinal fluid (CSF), which has been known to affect the
estimated DTI measures and tractography in the single tensor model. Previous studies have shown that the Fluid-
Attenuated Inversion Recovery (FLAIR) technique can suppress the contribution of the CSF to the DW-MRI signal. We
acquired DTI datasets from twenty-two subjects using both FLAIR-DTI and conventional DTI (non-FLAIR-DTI) techniques,
constructed brain anatomical networks using deterministic tractography, and compared the topological properties of the
anatomical networks derived from the two types of DTI techniques. Although the brain anatomical networks derived from
both types of DTI datasets showed small-world properties, we found that the brain anatomical networks derived from the
FLAIR-DTI showed significantly increased global and local network efficiency compared with those derived from the
conventional DTI. The increases in the network regional topological properties derived from the FLAIR-DTI technique were
observed in CSF-filled regions, including the postcentral gyrus, periventricular regions, inferior frontal and temporal gyri,
and regions in the visual cortex. Because brain anatomical networks derived from conventional DTI datasets with
tractography have been widely used in many studies, our findings may have important implications for studying human
brain anatomical networks derived from DW-MRI data and tractography.
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Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) is
the only available tool for non-invasively probing human brain
tissue microstructure and the microanatomical organization of
human brain white matter in vivo. Recent advances in diffusion
tensor imaging (DTI) techniques and white matter tractography
have made it possible to visualize the fiber tracts comprised of
coherently oriented axons and to map the anatomical connectivity
patterns of healthy and diseased human brains [1,2,3,4]. In the last
few years an explosion of studies that constructed human brain
anatomical networks using DTI techniques and tractography and
analyzed the topological characteristics of the brain networks using
graph theory has occurred [5,6,7,8,9,10]. The analysis of human
brain anatomical networks based on graph theory has been
applied to study normal aging [6], behavior performance [11], and
various brain disorders [12,13,14,15]. In order to investigate the
reliability and replicability of human brain anatomical networks
based on graph theory, several studies [10,16] have investigated

the influence of different scanning techniques or different
definitions of nodes on the topological properties of anatomical
networks.Acquiring reliable DTI datasets is undoubtedly essential
if we want to obtain accurate information from DTI and
tractography for understanding the properties of human brain
anatomical networks [17,18]. In order to construct human brain
anatomical networks, we need to define nodes that represent brain
regions and edges (or links) that represent the strength of the
connectivity between the nodes. The connectivity strengths are
usually estimated using tractography. The basic model used in
quantifying DTI indices and tractography is the single tensor
model. However, a potential problem which affects the accuracy
of tractography and the estimated DTI metrics derived from the
single tensor model, but which is often ignored, is contamination
by cerebrospinal fluid (CSF) [19,20,21,22,23]. Previous studies
[17,19] have shown that the single tensor model would lead to
highly variable and inaccurate measurements of diffusion when
two or more distinct tissues with different diffusion tensors occupy
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the same voxel. If a voxel contain CSF and brain tissue, the
accuracy of its diffusion tensor measurement and the diffusion
parameter of the brain tissue estimated using the single tensor
model may be significantly influenced [17,18,19,24]. Previous
studies showed that CSF contamination can significantly influence
diffusion measurements in ways such as overestimating the
apparent diffusion coefficient (ADC) by about 15�30% [21] and
underestimating the diffusion anisotropy [17,25,26,27].

To reduce the influence of CSF on the measurement of
diffusivity and to increase the accuracy of the tractography, at least
two kinds of solutions have been proposed to mitigate any CSF
contamination. One is to improve the DTI sequence by
suppressing the CSF signal using a radio-frequency pulse inversion
recovery during DTI acquisition, such as the Fluid-Attenuated
Inversion Recovery (FLAIR) technique [27,28,29,30]. Another is
to introduce a mathematical model, such as the two compartment
tensor model [31,32,33], to process the DTI dataset. In the present
study, we mainly focus on the effect of the FLAIR-DTI technique
on removing the CSF contamination in the single tensor model.
Magnetic resonance theory indicates that using the FLAIR-DTI
technique to suppress the contamination by the CSF will yield MR
signals that primarily represent the contributions of brain tissues
(white matter and gray matter). The main reason is that FLAIR
suppressed the CSF contamination to DTI signal, and then the
measurements of diffusion derived from the single tensor model
are more accurate than that obtained from the conventional DTI
technique. Although the FLAIR-DTI technique may also diminish
the signal-to-noise ratio (SNR) of DTI datasets [34,35], research
indicates that the increased volume of fiber tracts derived when
using FLAIR-DTI is primarily due to eliminating CSF effects
rather than to a decreased SNR [25]. Therefore, measures of
diffusivity and tractography using the single tensor model derived
from a FLAIR-DTI dataset should more accurately reflect neural
connectivity than those derived from a conventional DTI dataset.
To improve the accuracy of the tractography, some studies of
microanatomical changes in white matter have already utilized the
FLAIR-DTI technique [36,37].

Even though measures of diffusivity and tractography derived
from the FLAIR-DTI technique should be more useful for
analyzing the property of brain tissue and brain connectivity, no
study to date has investigated the differences between human
brain anatomical networks derived from FLAIR-DTI and those
derived using conventional DTI (non-FLAIR-DTI) techniques. In
this study, we acquired DTI datasets from twenty-two normal,
healthy volunteers using both FLAIR-DTI and conventional DTI
sequences, constructed anatomical networks using a deterministic
tractography method, analyzed the topological properties of the
networks, and compared the statistical differences between the
anatomical networks constructed from the two types of DTI
datasets. We hypothesized that the brain anatomical networks
derived from the FLAIR-DTI datasets would have more fibers as
edges because this method can capture the ��real�� anatomical
connectivity patterns of the human brain due to the reduced CSF
contamination. We expected that the brain anatomical networks
constructed from the FLAIR-DTI datasets would exhibit more
efficient small-world properties and that the topological properties
of brain regions with high concentrations of CSF would show
significant differences from those constructed using the conven-
tional DTI dataset.

Materials and Methods

Subjects
Twenty-two right-handed healthy volunteers (12 F/10 M, aged

18�29 yrs, mean 6 SD = 20.0562.73 yrs) participated in this
study. None of the volunteers had a history of neurological or
psychiatric disease or brain injury. The protocols were approved
by the Review Board of the Institute of Cognitive Neuroscience
and Learning at Beijing Normal University (BNU). Informed
written consent was obtained from each participant prior to the
MR scanning.

MRI Data Acquisition
Each of the twenty-two subjects was scanned on a 3T Siemens

Trio MR scanner using a conventional DTI sequence and a
FLAIR-DTI sequence with a twelve-channel phased array head
coil with the implementation of the parallel imaging scheme
GRAPPA (GeneRalized Autocalibrating Partially Parallel Acqui-
sitions) and an acceleration factor of 2. Both the conventional DTI
and the FLAIR-DTI scans were performed using a single-shot
twice-refocused spin-echo diffusion-weighted EPI sequence [38],
with the exception that a slice selective 180u inversion RF-pulse
was added before the 90u excitation RF-pulse in the FLAIR-DTI
sequence. The parameters of the conventional DTI sequence were
as follows: repetition time (TR) = 9000 ms, echo time
(TE) = 92 ms, slice thickness = 2 mm, voxel size = 26262 mm3,
field of view (FOV) = 256 mm6248 mm and data ma-
trix = 1286124, 30 directions with b = 1000 s/mm2 and a b = 0
volume, and 68 transverse slices without gap covering the whole
brain. When we acquired the conventional DTI and FLAIR-DTI
datasets, we arranged the 30 diffusion-sensitive gradient directions
in an icosahedral scheme. The parameters of the FLAIR-DTI
sequence were same as those of the conventional DTI sequence
except the inversion time (TI) = 2250 ms, and TR = 18000 ms.

In addition, we also acquired 3D brain anatomical images using
a T1-weighted MP-RAGE sequence for each subject (TE/TR/
TI = 3.44 ms/1900 ms/900 ms, flip angle = 9u, voxel si-
ze = 16161 mm3, 176 sagittal slices).

All of the MR scans were performed in the same MR scanner in
the State Key Laboratory of Cognitive Neuroscience and
Learning, Beijing Normal University. For each subject, the scan
times for the FLAIR-DTI, the conventional DTI, and the 3D
anatomical images were about 10, 5, and 5 minutes, respectively.
We scanned each subject twice for both the conventional DTI and
FLAIR-DTI sequences. The two DTI datasets from each type of
DTI sequence were averaged for each subject in order to improve
the signal-to-noise ratio (SNR) before further processing.

SNR Calculation
Considering the fact that FLAIR-DTI yields lower signal-to-

noise ratio (SNR) in the acquired raw images than those in the
Conventional-DTI, we calculated the SNR values in each DTI
dataset and adjusted its effect to explore the pure CSF effect on the
properties of brain anatomical networks. SNR calculations were
performed using the most commonly used ��two region�� method
(SNRmean) described by Dietrich [39]. This method uses two
regions of interest (ROIs) in a single image, one in the tissue of
interest (ROItissue), the other in the image background (ROIair).
The SNR was then calculated as the mean value of the signal in
the ROItissue divided by the mean value of the signal in the
ROIair. Finally, a correction factor (0.8) was used because of the
Rayleigh distribution of background noise in magnitude images. In
our study, we selected the splenium of the corpus callosum as the
ROItissue in the b0 image and calculated the SNR for the
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conventional DTI datasets (22.07861.953) and the FLAIR-DTI
datasets (20.12261.510). The SNR value for each subject is listed
in Table S1 (Supplementary Materials). Although SNR effect is
one of the factors that can affect DTI tractography reliability
[40,41], we should note that the SNRs in the splenium of the
corpus callosum calculated here are not a direct measure of the
tractography reliability.

Construction of Human Brain Anatomical Networks
We followed the procedures described in previous studies [5,42]

to construct human brain anatomical networks (Fig. 1). Specifi-
cally, the method contains four steps.

Step 1: Node definition. The nodes were defined according
to the automated anatomical labeling (AAL) template [43] which
parcellates the whole cerebral cortex into 90 cortical and
subcortical regions. The name and the abbreviations of these
ROIs are listed in Table S2 (Supplementary Materials). After
performing coregistration, we obtained 90 ROIs in the diffusion
space for each subject. Each ROI was defined as a node in a brain
network [5,42].

Step 2: Fiber tracking. The white matter fibers of the whole
brain for each subject were reconstructed using the DtiStudio
software package (Version 3.0.3) [44]. Taking the conventional
DTI datasets from one subject as an example, we concatenated all
the diffusion images of the two repeated DTI scans (3162
volumes) and corrected for the effects of head motion and eddy
currents by selecting the first b = 0 image as the reference volume
and using an affine registration from the FSL-FDT Toolbox
(http://www.fmrib.ox.ac.uk/fsl). The corrected DTI datasets were
then split and averaged to generate the averaged 31 volumes of

DTI datasets that were subsequently used in fiber tracking. We
reconstructed the fibers for the whole brain based on the Fiber
Assignment by Continuous Tracking (FACT) algorithm, which
was implemented in DtiStudio. Fiber tracking was terminated at
voxels with a fractional anisotropy (FA),0.20 and a tract turning-
angle.45u.

Step 3: Edge definition. The edges of the anatomical
networks were defined as the anatomical connections between
any pair of nodes. Given two ROIs i and j, we assumed they were
connected if there was at least one fiber f with end points located
in these two regions. We calculated the connection density
between these two regions as the weighted index w(e) of the edge
[45]

w(e)~
2

sizsj

X

f [Fe

1
l(f )

, ð1Þ

where si and sj are the cortical surface areas of two ROIs i and j,
Fe stands for all fibers connecting the two ROIs i and j, and lf
represents the length of the fiber f .

Step 4: Network construction. Taking each ROI as a node
and the weighted index between any pair of nodes as the edge, we
obtained a weighted brain anatomical network for each subject for
each type of DTI data.

Graph Theoretical Analysis
We used seven global network parameters, the weighted

clustering coefficient (Cw), weighted characteristic shortest path
length (Lw), normalized weighted clustering coefficient (c),
normalized weighted characteristic shortest path length (l), global
efficiency (Eglob), local efficiency (Eloc), and sparsity (S), to
characterize the global topological properties of the brain
networks. Their definitions are provided in the Text S1
(Supplementary materials). To examine the small-world proper-
ties, we computed the normalized clustering coefficient (c) and the
normalized characteristic shortest path length (l). A network is
considered as small-world if it satisfies the following criteria [46]:
l~Lreal

w =Lrand
w &1 and c~Creal

w =Crand
w w1, where Lrand

w and
Crand

w are the mean clustering coefficient and characteristic path
length of the matched random networks that keep the same
number of nodes, edges, and degree distribution as the real
networks [47].

We used four nodal parameters, degree (Ki), nodal local
efficiency (Ei loc), nodal global efficiency (Ei glob), and node
betweenness (Bi) to characterize the nodal properties of the
human brain anatomical networks. Their definitions are provided
in the Text S1 (Supplementary materials).

Hub Identification
The hub regions of the brain anatomical networks were

identified according to the normalized betweenness, bi~Bi=SBT,
where SBT is the average nodal betweenness of the networks. A
node i is recognized as a hub region if the value of bi is at least one
standard deviation (SD) greater than the average normalized
betweenness of the network, or bi.mean+SD [5].

Backbone Network
Following the methodology used in previous studies [5,48,49],

we also calculated the backbone network for both types of DTI
datasets. Backbone networks are population-based networks that
capture an underlying consistent connectivity pattern, rather than
being a subject-specific or a very detailed network based on an

Figure 1. Flowchart for constructing human brain anatomical
networks using DTI datasets and tractography. (1) Individual
anatomical images were first coregistered into b0 images to obtain rT1
images in diffusion space. The rT1 images were then mapped to a T1-
weighted template of ICBM152 in MNI space. (2) The obtained inverse
matrix was used to transform the AAL template from the MNI space into
individual diffusion space. (3) Fibers in the whole brain were
reconstructed using the deterministic tractographic method (DtiStudio
software). For display purposes only, fibers shown here were calculated
using TrackVis software. (4) Construction of the weighted connectivity
matrices and the human brain anatomical networks.
doi:10.1371/journal.pone.0071229.g001
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individual brain. We constructed 90690 symmetric weighted
connectivity matrices by computing the weighted index for each
pair of the 90 regions. Then a nonparametric one-tailed sign test
(with Bonferroni correction) was applied element-by-element to
these weighted connectivity matrices across the subjects to identify
the consistent inter-regional anatomical connections (the backbone
network).

Statistical Analysis
To determine whether the CSF had significant effects on the

topological properties of human brain anatomical networks
formed using the FLAIR-DTI and conventional DTI datasets, a
multiple linear regression analysis with a paired t-test was
performed on each network metric. The effect of SNR was
adjusted for all of these analyses. Several previous studies
[10,14,50,51,52,53] have used the linear regression to model
effects of total brain volume, head motion, gender, age and years
of education on each network metric for each participant. In this
study, we adopted the similar procedure to regress out the
influence of SNR on the network metric. We performed the
normality test of the residuals on each network metric and found
the residuals satisfy the normal distribution. The results of the
normality test are listed in Tables S3 and S5, Figures S1 and S2
(Supplementary Materials). For the global and nodal parameters,
we used the threshold p = 0.05. To solve the problem of multiple
comparisons, a height statistical standard (FDR correction,
q = 0.05) [54] and an extent threshold of p,0.01 (uncorrected)
was adopted. To justify that the sample size in this study is enough
to infer a statistically significant difference, we performed a power
analysis according to a previous study [55]. The results of the
power analysis are listed in Tables S3 and S4 (Supplementary
Materials). The details of normality test and power analysis are
provided in Text S2 (Supplementary Materials). To test the
reproducibility of our findings between different statistical
methods, we also chose the non-parametric permutation test and
presented the results and brief discussion in Tables S6, S7 and
Text S3 (Supplementary Materials).

Results

Global Measures of the Human Brain Anatomical
Networks

We calculated the values of l and c for the human brain
anatomical networks derived from the conventional DTI and
FLAIR-DTI datasets. Both anatomical networks showed l&1 and
cw1, which indicated that the anatomical networks for both types
of DTI datasets had small-world properties. Table 1 lists five other
global parameters (Eglob, Eloc, Cw, Lw and S) of the anatomical
networks as well as results of the statistical comparisons.
Compared with the anatomical network from the conventional
DTI datasets, we found statistically significant higher values of
Eglob and Eloc as well as of S but a statistically significant lower
value of Lw for the anatomical networks from the FLAIR-DTI
datasets.

Regional Measures of Human Brain Anatomical Networks
Statistical analyses revealed no significant differences in Ei loc

and Bi, but significant differences in Ei glob and Ki. Table 2 lists
the statistical comparisons between the nodal parameters of the
anatomical networks corresponding to the two types of DTI
datasets. Statistically significant differences in two regional nodal
parameters (Ei globand Ki) were found primarily at the same
nodes, except that the number of nodes showing a difference in
Ei glob was greater than the number of nodes showing difference in

Ki (Table 2, Fig. 2). Compared with the network corresponding to
the conventional DTI datasets, the network from the FLAIR-DTI
datasets showed a statistically significant higher value of degree Ki
at five different brain regions, including two paralimbic regions
(HIP.R and PHG.R) which survived using a height FDR
correction, and three other regions (PoCG.L, FFG.R, and ROL.L)
which survived using a extent threshold (p,0.01, uncorrected). For
the nodal global efficiency (Ei glob), the network corresponding to
the FLAIR-DTI datasets showed significantly higher values for
nine different brain regions, including four regions (IFGoperc.L,
HIP.R, PHG.R, and FFG.R) which survived by applying a height
FDR correction and another five regions (IFGtriang.L, ROL.L,
LING.R, HES.R, andITG.R) which survived using an extent
threshold (p,0.01, uncorrected). From Table 2 and Fig. 2, we can
see that at PHG.R and HIP.R, the anatomical networks showed
significant differences in both the nodal parameters, Ei glob and Ki.

Hub Regions of the Human Brain Anatomical Networks
Table 3 lists the thirteen and sixteen hubs that were identified in

the human brain anatomical networks corresponding to the
conventional DTI datasets and FLAIR-DTI datasets, respectively.
The FLAIR-DTI and conventional DTI techniques were consis-
tent with each other for most of the identified hubs. As shown in
Table 3, the hubs that were shared by the networks derived from
both the conventional DTI and FLAIR-DTI datasets were the
following ten association brain regions: three frontal regions
(IFGtriang.R and bilateral SFGdor), four occipital regions
(LING.R, MOG.L, bilateral PCUN), two temporal regions
(MTG.L and ITG.L), and one parietal region (SPG.R). Moreover,
the PoCG.R, SPG.L, and MTG.R were detected as hubs in the
network related to the conventional DTI but not in the hubs
related to the FLAIR-DTI. However, the following six brain
regions, the IFGtriang.L, HIP.R, CAL.L, LING.L, SOG.R, and
PUT.R, were detected as hubs in the networks related to the
FLAIR-DTI datasets but not to the conventional DTI datasets. All
of these brain regions are shown in Fig. 3.

Similarity and Variability of Nodal Parameters
We first calculated each regional parameter for a subject and

then averaged the regional parameter across all subjects. Thus, for
the four regional parameters (Ki,Ei glob,Ei loc, and Bi), we
obtained four group-averaged regional parameters. Fig. 4 shows
a plot of the coincidence of the four group-averaged regional
parameters (Ki,Ei glob,Ei loc, and Bi) of the anatomical networks
between the two types of DTI datasets. A significant correlation
was observed in each of the four regional parameters between the
anatomical networks corresponding to the conventional DTI and
the FLAIR-DTI datasets, indicating a good agreement between
the parameters derived from the two types of DTI datasets for
each of these four regional parameters. We noticed that the
correlation coefficient between the degree (Ki) of the anatomical
networks related to the two types of DTI datasets as well as the
correlations between the regional global efficiency (Ei glob) were
higher than those of the regional local efficiency (Ei loc) and the
node betweenness (Bi) (Fig. 4). Moreover, the values of the degree
(Ki) and nodal global efficiency (Ei glob) for the 90 brain regions
corresponding to the FLAIR-DTI were consistently higher than
those corresponding to the conventional DTI (Fig. 4a2b). The
values of nodal local efficiency (Ei loc) for most of the 90 brain
regions corresponding to the FLAIR-DTI were higher than those
corresponding to the conventional DTI and were concentrated in
a small range (Fig. 4c). In addition, the patterns of the node
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betweenness derived from the both DTI datasets were similar to
each other (Fig. 4d).

Backbone Network
The population-based backbone networks for both types of DTI

datasets are shown in Fig. 5. We can see that the binary matrices
of the two backbone networks have similar connectivity patterns,
but the network corresponding to the conventional DTI datasets
was sparser than the one corresponding to the FLAIR-DTI
datasets. The sparsity of the backbone network corresponding to
the FLAIR-DTI datasets was 0.1251, whereas the sparsity of the
backbone network corresponding to the conventional DTI
datasets was 0.1159, a decrease of 7.4% compared with that of
the FLAIR-DTI dataset. We detected 464 edges in the backbone

network derived from the conventional DTI datasets and 501
edges in the backbone network derived from the FLAIR-DTI
datasets. These results also suggested that more connections could
be detected in the backbone network from the FLAIR-DTI
technique than in the one from the conventional DTI technique
(Fig. 6).

Variability in the Connectivity Patterns of the Anatomical
Networks

We compared the number of edges in the networks derived
from the FLAIR-DTI and conventional DTI datasets. We found
that the connectivity patterns of the anatomical networks derived
from the two types of DTI datasets were similar to each other.
However, we noticed more edges in the anatomical networks

Table 1. Comparison between the topological properties of the human brain anatomical networks derived from the conventional
DTI and FLAIR-DTI datasets.

Global parameters Conventional DTI (Mean ± SD) FLAIR-DTI (Mean ± SD) t-value p-value

Eglob 0.67960.063 0.73760.062 22.634 0.016*

Eloc 0.98660.076 1.06460.082 22.354 0.029*

Cw 0.33960.018 0.35260.019 21.535 0.140

Lw 1.48660.151 1.36660.107 2.510 0.021*

S 0.14560.014 0.15960.013 22.255 0.036*

The negative (positive) t-value indicates that the value of the global parameter corresponding to the FLAIR-DTI datasets is higher (lower) than that of the conventional
DTI datasets. The symbol (*) stands for statistically significant difference, as determined by a threshold of p,0.05.
doi:10.1371/journal.pone.0071229.t001

Figure 2. Locations of the cortical regions showing statistically significant differences in two nodal parameters, Ki and Ei{glob, of the
anatomical networks. The lower panel shows the differences in the nodal global parameter (Ei{glob), and the upper panel shows the differences in
degree (Ki) of the anatomical networks. The dotted white line shows the critical FDR threshold (q = 0.05; see Materials and Methods). Most of the
significantly different regions were in the brain medial plane. In these regions, the values of these two nodal parameters were higher in the
anatomical networks derived from the FLAIR-DTI datasets than those derived from the conventional DTI datasets.
doi:10.1371/journal.pone.0071229.g002
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corresponding to the FLAIR-DTI datasets. Figs. 6a�b illustrate
this by showing the plots of the connectivity patterns of the
anatomical networks that correspond to the two DTI datasets for a
single subject. These figures show that the weighted anatomical
networks that were derived from the FLAIR-DTI datasets
contained more edges with high weights than those from the
conventional DTI datasets (Figs. 6a�b). Based on the backbone
networks, we plotted a histogram of the edges in the backbone
networks that corresponded to each of the two DTI datasets
(Figs. 6c�d). We found that the number of edges in the backbone
network from the FLAIR-DTI was larger than the number of
edges from the conventional DTI over a wide range of
connectivity densities. We performed a paired t-test (with
Bonferroni correction) to detect any statistically significant
difference between the edges in the anatomical networks
corresponding to the FLAIR-DTI and conventional DTI datasets,
but no statistically significant difference was found.

Discussion

In this study, we compared the topological properties of human
brain anatomical networks constructed using graph theory and
utilizing datasets collected by conventional DTI and FLAIR-DTI
techniques. The anatomical network derived from the FLAIR-
DTI datasets showed statistically significant high global efficiency
(Eglob) as well as high local efficiency (Eloc). A statistical analysis
indicated that the topological properties of several brain regions
close to CSF-filled spaces, primarily in the periventricular regions,
postcentral gyrus, inferior frontal and temporal gyri, and the
regions in the visual cortex, showed significant differences between
the anatomical networks derived from the FLAIR-DTI and
conventional DTI datasets.

Table 2. Statistically significant differences in the nodal
parameters of the anatomical networks between the
conventional DTI (C-DTI) and FLAIR-DTI (F-DTI) datasets.

Regions Classification
t-value (C-DTI) -
(F-DTI) p-value

Ki Ei-glob Ki Ei-glob

FFG.R Association 23.310 23.698 0.004* 0.001**

HIP.R Subcortical 23.909 23.987 8.857e-4** 7.247e-4**

HES.R Primary – 22.906 – 0.009*

IFGoperc.L Association – 23.536 – 0.002**

IFGtriang.L Association – 23.311 – 0.004*

ITG.R Association – 22.940 – 0.008*

LING.R Association – 23.334 – 0.003

PHG.R Paralimbic 24.919 24.385 8.284e-5** 2.863e-4**

PoCG.L Primary 22.972 – 0.008* –

ROL.L Association 23.042 23.142 0.006* 0.005*

Note:Ei{glob and Ki represent nodal global efficiency and degree, respectively.
Bold, italic text indicates that these common brain regions showed statistically
significant differences in the anatomical networks corresponding to the two
types of DTI datasets with respect to both the parameters, Ki and Ei{glob . A
negative t-value indicates that the value of the nodal parameter corresponding
to the FLAIR-DTI datasets is higher than that of the conventional DTI dataset.
The symbol ‘‘–’’ shows that these regions were not statistically significantly
different with respect to Ki or Ei{glob .
*p,0.01 (uncorrected),
**p,0.05 (FDR corrected).
doi:10.1371/journal.pone.0071229.t002

Figure 3. Rendering plot of the hub regions detected in the human brain anatomical networks for the conventional DTI (upper) and
for the FLAIR-DTI (lower). Sixteen hub regions were identified in the anatomical network derived from the FLAIR-DTI datasets, whereas thirteen
hub regions were derived in the network from the conventional DTI datasets. The size of the node represents the magnitude of the normalized
betweenness centrality (see Table 3 for more details). Nodes in red represent hub regions shared by the networks derived from both types of DTI
datasets. Nodes in green (blue) represent the hub regions specific to the network derived from the conventional DTI (FLAIR-DTI) datasets.
doi:10.1371/journal.pone.0071229.g003
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Increased Efficiency of the Anatomical Networks Derived
from the FLAIR-DTI Datasets

Our study showed that the human brain anatomical networks
derived from both types of DTI datasets had almost identical path
lengths (c&1) but were more locally clustered (lw1) than matched
random networks. This result was consistent with previous studies
[6,9,42,45,56] which demonstrated that small-world topology is
the conserved architecture of human brain anatomical networks.

We found the anatomical networks corresponding to the
FLAIR-DTI showed a higher global and local efficiency
(Eglob,Eloc) and a higher sparsity (S), as well as shorter character-
istic path lengths (Lw) than those derived from the conventional
DTI datasets (Table 1). This result is consistent with several
previous studies [25,27,57]. Suppressing the CSF contamination
may underestimate the FA value [23,57] but improve the
tractography results in periventricular regions by detecting an
average of 17% more fibers in a volume than the conventional
DTI technique [25]. In the present study, we found 43 more edges
in the backbone network derived from the FLAIR-DTI datasets

than in the one derived from the conventional DTI datasets
(Fig. 6). The increased number of fiber bundles may reflect both
the long-range and short-range connections in the anatomical
networks from the FLAIR-DTI datasets and result in increased
global and local efficiency in the anatomical networks derived
from the FLAIR-DTI dataset.

One issue is that the volume of fibers detected using the FLAIR-
DTI technique would be expected to contain some minor false
tracts because of the lower SNR [25]. The SNR is known to affect
estimated DTI measures [41] and increase the uncertainty in the
direction of the major eigenvector of the diffusion tensor [34,35].
To control the SNR effect on the estimated DTI measures and to
estimate the pure CSF effect on the properties of the anatomical
networks, the SNR was regressed out as a covariate in the present
study. Thus, it is reasonable to believe that the increased global
and local efficiency of the anatomical networks for the FLAIR-
DTI datasets was primarily due to the elimination of the CSF-
based partial volume effects rather than to a decreased SNR.

Table 3. Hub regions of the human brain anatomical networks derived from both the conventional DTI (C-DTI) and FLAIR-DTI (F-
DTI) datasets.

Regions Location Hubs bi Identified as a hub in previous studies

C-DTI F-DTI C-DTI F-DTI Anatomical networks
Functional
networks

CAL.L Primary N Y – 3.133 3,9 1

HIP.R Subcortical N Y – 2.004 – –

IFGtriang.L Association N Y – 2.254 2,11 1

IFGtriang.Ra Association Y Y 2.041 2.598 2,8 1

ITG.La Association Y Y 2.095 2.818 9,10 1

LING.L Association N Y – 2.836 1,10

LING.Ra Association Y Y 2.114 2.814 9 1

MOG.La Association Y Y 2.574 2.670 4,5,7,8,9,11 1,10

MTG.La Association Y Y 2.434 2.865 2,11 1

MTG.Rb Association Y N 1.970 – 3,9,11 1,10

PCUN.La Association Y Y 3.926 4.183 3,4,5,7,8,9 1

PCUN.Ra Association Y Y 4.095 2.981 3,4,5,7,8,9 1

PoCG.Rb Primary Y N 2.178 – 2,7 1

PUT.R Subcortical N Y – 2.027 4,6,7,8 –

SFGdor.La Association Y Y 2.547 2.622 2,3, 4,5,7,9,11 1,10

SFGdor.Ra Association Y Y 2.806 2.477 2,3,4,5,7,8,9,11 1,6,10

SOG.R Association N Y – 2.163 2,5,6,8 1

SPG.Lb Association Y N 1.896 – 4 1

SPG.Ra Association Y Y 2.509 2.196 4,6,7,8 1

1. Achard et al 2006.
2. He et al 2007.
3. Hagmann et al 2008.
4. Iturria-Medina et al 2008.
5. Gong et al 2009.
6. He et al 2009.
7. Li et al 2009.
8. Shu et al 2009.
9. Yan et al 2010.
10. Tian et al 2011.
11. Chen et al 2008.
Note: aThe hub regions shared by the networks derived from both types of DTI datasets. bThe hub regions detected only from the conventional DTI datasets. The
remaining six regions are the hubs detected only from the FLAIR-DTI datasets. The symbol ‘‘–’’ stands for ‘‘not reported’’ in these previous studies. ‘‘Y’’ indicates that the
region has been identified as a ‘‘hub’’, and ‘‘N’’ indicates that it has not been identified as a hub.
doi:10.1371/journal.pone.0071229.t003
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Consistent Increases in Nodal Measures Observed in the
Anatomical Networks Derived from the FLAIR-DTI
Datasets

Increased nodal measures were observed in the anatomical
network derived from the FLAIR-DTI datasets. We detected a
significantly increased nodal degree (Ki) in five brain regions
(HIP.R, PHG.R, PoCG.L, FFG.R and ROL.L) in the anatomical
networks derived from the FLAIR-DTI datasets (Table 2 and
Fig. 2). This suggests that the number of fiber tracts connecting
pairs of brain regions detected from the FLAIR-DTI datasets
exceeded the number from the conventional DTI datasets. In
addition, we also detected significantly increased nodal global
efficiency (Ei glob) in nine brain regions (IFGoperc.L, HIP.R,
PHG.R, FFG.R, IFGtriang.L, ROL.L, LING.R, HES.R and
ITG.R) in the anatomical networks derived from the FLAIR-DTI
datasets (Table 2 and Fig. 2). These results indicate that CSF
contamination has more influence on nodal global efficiency
(Ei glob) than on degree (Ki).

The brain regions showed statistically significant differences in
nodal degree (Ki) and nodal global efficiency (Ei glob) between the
anatomical networks related to the two types of DTI datasets. This
finding is consistent with several previous studies [21,27]. Koo
et al [58] investigated the influence of CSF contamination on gray
matter mean diffusivity and found that the greatest measurement
bias in the spatial pattern of the GM mean diffusivity was
primarily located in the superior part of the central sulcus, the
parahippocampal gyrus, and the medial part of the visual cortex.
Indeed, the PHG.R and HIP.R were the two regions that showed
significant differences in both the nodal parameters, Ei glob and Ki,
in the present study (Table 2). Both these regions are close to CSF-
filled spaces (i.e., the ventricles).Previous studies have suggested
that CSF contamination could lead to overestimating of the

apparent diffusion coefficient (ADC) by about 15�30% [21] and to
underestimating the diffusive anisotropy [23,57] in CSF-filled
spaces, such as in the periventricular regions and the brain sulci.
Additionally, fiber tracking in the fornix and cingulum was also
substantially improved by using the FLAIR-DTI technique [59].
These studies provide rich evidence for the increased nodal
parameters (Ei glob,Ki) in the PHG and HIP regions in the
anatomical network derived from FLAIR-DTI datasets.

Table 2 shows the regions that showed significant differences in
the nodal parameter Ki at the post postcentral gyrus (PoCG.L) and
the medial part of the visual cortex (FFG.R, LING.R). These three
regions are adjacent to CSF-filled regions. Fig. 2 indicates that
several regions (HIP.R, PHG.R, ING.R, FFG.R, and ITG.R)
were gathered into one cluster. This seems to indicate that the
nodal parameters in these regions are heavily affected by CSF
contamination.

In addition, we found that the nodal parameter Ei{glob showed
significant differences at the inferior frontal (IFGtriang.L,
IFGoperc.L) and temporal gyri (ITG.R, HES.R) between the
two anatomical networks derived from the conventional DTI
datasets and FLAIR-DTI datasets (Table 2). Our findings were
consistent with a previous study in which Koo et al. [58]reported
that CSF contamination caused 30% of the signals to be biased in
the lateral part of the prefrontal region and the temporal pole.

Figure 4. Variation in the nodal parameters derived from the
conventional DTI and FLAIR-DTI datasets. The solid line
represents the result of linear fitting. The # , 6, *, and e symbols in
(a), (b), (c), and (d) represent the 90 brain regions from the AAL
template. Three outliers in (c) correspond to HES.L, HES.R and PAL.L.
Four outliers in (d) correspond to CAL.L, LING.L, PCUN.R and MTG.R.
doi:10.1371/journal.pone.0071229.g004

Figure 5. Backbone connectivity matrices of the human brain
anatomical networks from the conventional DTI and FLAIR-DTI
datasets. (a) For the conventional DTI datasets. (b) For the FLAIR-DTI
datasets. (c) Overlapping results of the backbone networks for the
conventional DTI and FLAIR-DTI datasets. Matrix elements in blue
(yellow) represent the connections of the backbone network for the
conventional DTI (FLAIR-DTI) datasets. Elements in green represent the
common connections shared in the two backbone networks. (d)
Rendering plot of edges on a cortex diagram to highlight the
commonalities and differences between the edges in the two networks.
Color scheme is the same as (c) but indicates edges. The numbers
indicate the 90 brain regions (see Supplementary Materials Table S2 for
more detail).
doi:10.1371/journal.pone.0071229.g005
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More Hubs Detected in the Network Derived from the
FLAIR-DTI Datasets

We identified sixteen hubs in the anatomical network from the
FLAIR-DTI datasets and thirteen hubs from the conventional
datasets. Among these, ten common hubs (SFGdor, IFGtriang.R,
LING.R, MOG.L, SPG.R, PCUN, MTG.L, and ITG.L) were
detected from the anatomical networks corresponding to both
types of DTI datasets. The spatial pattern of the hubs detected
from the anatomical networks corresponding to both the types of
DTI datasets was consistent with the similarity of the betweenness
nodes derived from both types of DTI datasets (Fig. 4d). The
additional identified hubs were six regions (IFGtriang.L, HIP.R,
CAL.L, LING.L, SOG.R, and PUT.R) specific to the FLAIR-
DTI datasets and three regions (PoCG.R, SPG.L, MTG.R)
specific to the conventional DTI datasets. Because these discrep-
ancy hubs are located in brain regions close to CSF-filled spaces,
we assume that the discrepancies between the identified hubs from
the two DTI datasets may have resulted from the influences of
CSF contamination, which, in turn, resulted in tractography bias.

In order to compare the identified hubs in the present study
with other studies, we also listed network hubs reported in previous
studies (Table 3). From Table 3, we can see that the hubs
identified in both types of DTI datasets were consistent with most
previous studies [11,42,45,49,60].

Methodological Issues
Our results showed that the FLAIR-DTI technique is superior

to the conventional DTI technique in global and local network
efficiency metrics, especially in CSF-filled regions. However,
several issues need to be addressed in the present study. First,
the lower SNR and the longer scan time required for the FLAIR-
DTI technique are drawbacks that need to be considered. The
longer scan time for the FLAIR-DTI technique was not an
important issue in this study because the subjects enrolled were
healthy and cooperative during image acquisition. We controlled
the SNR and found effects of CSF contamination on the
topological properties of the anatomical networks. Therefore, the
increased scan time was tolerable and the use of FLAIR is
recommended for studying human brain anatomical networks,
especially in normal healthy people. Actually, two kinds of
approaches have been proposed to mitigate CSF contamination,
one is the FLAIR-DTI technique and the other is the two tensor
model. The two tensor model uses a data postprocessing approach
to remove the CSF signal, while the FLAIR-DTI is a MRI
technique to obtain the signals free from CSF contamination.
Although the FLAIR-DTI technique may have suffered from
disadvantages arising from a lower SNR and a longer scanning
time, in this study we were able to find the effects of CSF on the
properties of the anatomical network.

Figure 6. Variability in the connectivity patterns of the anatomical networks corresponding to the conventional DTI datasets and
the FLAIR-DTI datasets. (a) The weighted connectivity matrix constructed from the conventional DTI data for a single subject. The weighted
connectivity matrix is displayed using a logarithmic color map. (b) Same as (a) but showing the FLAIR-DTI data from a single subject. (c) Histograms of
the edges derived from the backbone anatomical networks corresponding to the two types of DTI datasets. (d) Difference between the two types of
DTI-based networks in the number of edges vs. connectivity density. Bars in blue (red) indicate the number of edges in the anatomical networks of
the FLAIR-DTI datasets that were higher (lower) than those of the conventional DTI datasets.
doi:10.1371/journal.pone.0071229.g006
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At present, a growing number of DW-MRI strategies have been
developed for measuring and interpreting complex diffusion
properties of brain white matter. The methods vary in their
acquisition sampling and analysis approaches [18], including
Diffusion Spectrum Imaging (DSI) [61,62], High Angular
Resolution Diffusion Imaging (HARDI), Combined Hindered
and Restricted Model of Diffusion (CHARMED) imaging [63,64],
and Generalized DTI (GDTI) [65,66,67]. DSI is an model-free
imaging approach or a directly calculating the Fourier transform
approach that has the ability to map complex fiber architecture at
the scale of single MRI voxels [45,61,62,68], but the DSI requires
a very large number of gradients (256 or 512 directions). HARDI
requires a moderate amount (from about 60 to a few hundred) of
diffusion gradients in a sphere of given radius [69] and transforms
the data to a certain probability function (Orientation Distribution
Function, or Fiber Orientation, or Probability Function in a given
voxel) for estimating the apparent diffusion coefficient (ADC)
profile versus diffusion gradient encoding angle [70]. There are a
variety of HARDI methods such as the Q-ball imaging (QBI)
[71,72], Spherical Deconvolution (SD) [73,74,75], Diffusion
Orientation Transform (DOT) [76,77], and Persistent Angular
Structure MRI (PAS-MRI) [69,78] approaches. CHARMED is a
q-space derived model to describe hindered and restricted (fast/
slow) diffusion in brain tissue. GDTI uses higher order tensor
model, such as 4th order tensor, to analyses the data. Although
these DW-MRI strategies can deal with the crossing tracts
problem in the low spatial resolution (2 mm isotropic) diffusion
data in some degree, none of them has the capacity to distinguish
the fibers crossing, twisting or kissing within a voxel, to determine
exactly origins and terminations of fibers within the gray matter of
a cortical area, and to distinguish efferent/afferent fibers or mixed
projections. The single tensor model is a basic one to describe the
DW-MRI signal behavior for low values of diffusion weighting
(e.g., b,1500 s/mm2). It does not appear to be consistently
accurate in describing the signal behavior for higher values of
diffusion-weighting (e.g., b.2000 s/mm2).The single tensor model
is still the basic one to process DTI data and is known to have
problems with both CSF and crossing tracts [79], and FLAIR-DTI
is an optimized technique to suppress the CSF contamination [80].

Second, the tractography method also influences the accuracy
of the calculated network properties. We only selected the FACT
algorithm [44], a deterministic tractographic method, to perform
fiber tracking by setting the termination condition as FA,0.20
and a tract turning-angle.45u. Surely, the tractography and the
property of the anatomical networks may be influenced by the
choice of different tracking algorithms [81] and different tracking
thresholds (e.g. FA = 0.25 or 0.30 with turning-angle 45u to 60u)
[82]. Considering the deterministic tractography is widely used in
constructing the white matter structural networks, we explored the
CSF influence on the property of anatomical network constructed
using deterministic tractography with the single tensor model.

Third, no ground truth exists for which anatomical network is in
fact ��true��. No definitive answer exists about how to select the
nodes in constructing human brain anatomical networks. A study
has verified that selecting different brain templates to define
network nodes influences the topological properties of the brain
networks [10]. Although the AAL template is widely used to define
the nodes of brain networks [8,42], many other templates have
also been used, including the Brodmann atlas [9], the ANIMAL
(automated nonlinear image matching and anatomical labeling)
atlas [83], the LPBA40-atlas (LONI Probabilistic Brain Atlas) [16],
the Harvard�Oxford Atlas [16], and the parcellation obtained
using Freesurfer [45]. Moreover, no unique definition exists about
how to define an edge to construct a human brain anatomical

network. Various studies have defined edges as the number of
fibers [14], the mean FA values of the connected fibers [52], and
the weighted fiber density [42,45,84]. Different definitions of
network nodes and edges could affect the topological properties of
human brain anatomical networks. Last but not the least, we only
investigated how the CSF influences the global and nodal
parameters of brain anatomical networks in a single tensor model.
An alternative solution would be to use a two compartment tensor
model, in which one compartment models the properties of the
CSF (isotropic) and the other compartment is modeled as a tensor,
to process conventional DTI datasets [31,32,33]. The function of
the two tensor model in data post-processing is equivalent to that
of the FLAIR-DTI technique which can eliminate the CSF
contamination in the single tensor model. Finding whether brain
anatomical networks constructed from conventional DTI datasets
using a two compartment tensor model are consistent with
anatomical networks constructed from FLAIR-DTI datasets using
a single tensor model would be revealing.

Conclusions
Using graph theoretical approaches, we explored the influence

of CSF on human brain anatomical networks. Our study suggests
that human brain anatomical networks derived from FLAIR-DTI
datasets have higher network efficiency than those derived from
conventional DTI datasets. CSF contamination influences not
only the nodal properties of the brain regions close to the CSF-
filled space but also the number and location of the identified hub
regions in human brain anatomical networks. In addition, CSF
contamination influences the backbone network derived from
conventional DTI datasets. Because human brain anatomical
networks have previously been constructed primarily from
diffusion datasets acquired using the conventional DTI technique
with the single tensor model, our findings may have implications
for human brain anatomical networks and tractographic methods
in studies of normal brain development and clinical applications.
In order to pinpoint the differences in human brain anatomical
networks between different study groups, we suggest that, if
possible, selecting CSF suppression techniques such as the FLAIR-
DTI sequence to eliminate the CSF signal will increase the
accuracy of human brain anatomical networks.
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