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Neurobiology of Disease

Abnormal Changes of Multidimensional Surface Features
Using Multivariate Pattern Classification in Amnestic Mild
Cognitive Impairment Patients
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and Ying Han2,3

1School of Biological Science & Medical Engineering, Beihang University, Beijing 100191, China, 2Department of Neurology, Xuanwu Hospital, Capital
Medical University, Beijing 100053, China, 3Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing 100053, China, 4Department of
Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China, and 5State Key Laboratory of Cognitive Neuroscience and Learning & IDG/
McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China

Previous studies have suggested that amnestic mild cognitive impairment (aMCI) is associated with changes in cortical morphological
features, such as cortical thickness, sulcal depth, surface area, gray matter volume, metric distortion, and mean curvature. These features
have been proven to have specific neuropathological and genetic underpinnings. However, most studies primarily focused on mass-
univariate methods, and cortical features were generally explored in isolation. Here, we used a multivariate method to characterize the
complex and subtle structural changing pattern of cortical anatomy in 24 aMCI human participants and 26 normal human controls. Six
cortical features were extracted for each participant, and the spatial patterns of brain abnormities in aMCI were identified by high
classification weights using a support vector machine method. The classification accuracy in discriminating the two groups was 76% in
the left hemisphere and 80% in the right hemisphere when all six cortical features were used. Regions showing high weights were subtle,
spatially complex, and predominately located in the left medial temporal lobe and the supramarginal and right inferior parietal lobes. In
addition, we also found that the six morphological features had different contributions in discriminating the two groups even for the same
region. Our results indicated that the neuroanatomical patterns that discriminated individuals with aMCI from controls were truly
multidimensional and had different effects on the morphological features. Furthermore, the regions identified by our method could
potentially be useful for clinical diagnosis.

Key words: aMCI; cortical surface feature; entorhinal; MRI; multivariate classification

Introduction
Mild cognitive impairment (MCI) represents the transition state
between normal age-related cognitive changes and Alzheimer’s
disease (AD; Petersen, 2003). Amnestic MCI (aMCI) refers to one
MCI subtype characterized by primary memory deficits and has a
high risk of progression to AD (Petersen et al., 2001a, b). Previous
MRI studies have reported that aMCI subjects have gray matter
(GM) atrophy or volume decline in the entorhinal cortex, the

posterior cingulate, and the medial prefrontal cortex (Apostolova
et al., 2007; Seo et al., 2007).

Morphological parameters, based on a 3D surface model of
the cerebral cortex, have been widely used to detect the brain
abnormalities of aMCI (Lerch et al., 2005a; Apostolova et al.,
2007; Frisoni et al., 2007). These parameters that measure volu-
metric and geometric features of the cerebral cortex, such as cor-
tical thickness, surface areas, GM volume, sulcal depth, metric
distortion, and mean curvature, have been proven to have unique
neuropathological and genetic underpinnings (Rakic., 1988;
Huttenlocher, 1990; Van Essen, 1997; Panizzon et al., 2009). The
definitions and physiological meanings of the various morpho-
logical measures are shown in Table 1. Several studies have re-
ported abnormalities in these morphological parameters in aMCI
subjects. For example, aMCI patients showed overall cortical
thinning and sulcal widening compared with normal controls
(Liu et al., 2013) and a reduced average mean curvature in the
temporal lobe (Im et al., 2008). Compared with healthy elderly,
aMCI patients lost asymmetry in the entorhinal cortex as mea-
sured by cortical thickness (Long et al., 2013). However, these
studies used a mass-univariate method, and the cortical features
were generally explored in isolation.
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The multivariate method, which is superior to the mass-
univariate method, treats all cortical features together and allows
us to determine the relationships among different features be-
yond their individual values (Johnson, 2005). Thus, this ap-
proach could provide valuable insights into the multifactorial
etiology of neurologic disease. The multivariate method has pre-
viously been applied in some brain disorders, such as autism
spectrum disorder (Ecker et al., 2010), multiple sclerosis (Bend-
feldt et al., 2012), and schizophrenia (Yu et al., 2013). For exam-
ple, Ecker et al. (2010) found that different cortical features in the
inferior parietal lobe and the temporal sulcus had unequal con-
tributions in discriminating individuals with autism spectrum
disorders from normal controls by using the multivariate
method. Additionally, Westman et al. (2013) found that a high
classification accuracy could be obtained by using un-normalized
cortical thickness and normalized volumes and a multivariate
analysis in AD and MCI patients. However, there are few studies
that investigated abnormalities of multiple cortical features in
aMCI patients using the multivariate method.

Here, we used a multivariate computational approach that
combined six surface features to investigate the cortical changes
between aMCI and normal control (NC) groups. Due to abnor-
mal changes in multiple cortical features in aMCI participants
revealed by previous studies, we expected to observe multidimen-
sional neuroanatomical patterns in discriminating the aMCI pa-
tients from the controls. Furthermore, we explored whether these
features have equal contributions when differentiating the two
groups.

Materials and Methods
Participants. Twenty-four aMCI subjects (6 males and 18 females) and 26
demographically matched controls (11 males and 15 females) were re-
cruited through a clinical research program at the Xuan Wu Hospital/
Institute of Neurology (Beijing, China). This study was approved by the
Research Ethics Review Board of Xuan Wu Hospital, and all volunteers
provided informed consent. All subjects were right-handed and were
between 54 and 68 years of age. The diagnosis of aMCI was determined by
the consensus of two experienced neurologists according to the criteria
for aMCI (Petersen et al., 1999, 2001a,b), which included: (1) memory
complaint, preferably confirmed by an informant; (2) objective memory
impairment, adjusted for age and education; (3) normal or near-normal
performance on general cognitive functioning and no or minimal im-
pairment of daily life activities; (4) a Clinical Dementia Rating (CDR)
score of 0.5; and (5) not meeting the criteria for dementia according to
the Diagnostic and Statistical Manual of Mental Disorders, fourth edi-
tion, revised (DSM-IV). The healthy controls were screened using the
Structured Interview for DSM-IV Non-Patient Edition to confirm the
lifetime absence of psychiatric and neurological illnesses. The following
exclusion criteria applied to all subjects: the existence of a neurological
disorder, alcohol or drug abuse, or any physical illness, such as hepatitis,
brain tumor, trauma, or epilepsy, as assessed based on clinical evalua-
tions and medical records. The demographic and clinical data of the
participants are presented in Table 2.

MRI data acquisition. MRI data were acquired on a 3.0 T Siemens
scanner by using a sagittal MP-RAGE sequence with the following imag-
ing parameters: TR � 1900 ms; TE � 2.2 ms; inversion time � 900 ms;
flip angle � 9 degrees; FOV � 250 mm � 250 mm; matrix � 256 � 256;
176 slices, thickness � 1.0 mm. Brain MR images were inspected by an
experienced neuroradiologist, and no gross abnormality was observed
for any subject.

Image processing. Cortical reconstruction and morphological feature
extraction were performed using the FreeSurfer image analysis suite
(http://surfer.nmr.mgh.harvard.edu/), with a standard cortical auto-
matic handling protocol. Briefly, the MRI data were first normalized to a
standard anatomical template (Talairach and Tournoux, 1988) and cor-
rected for bias-field inhomogeneities. Then, the resulting images were
skull stripped using a watershed algorithm (Ségonne et al., 2004) and
subsequently segmented into the subcortical white matter and deep GM
volumetric structures (Fischl et al., 2002, 2004b). The initial tessellation
was formed by reconstructing the GM/white matter boundary (white
surface) and the outer cortical surface (pial surface; Dale et al., 1999;
Fischl et al., 2000). Subsequently, a series of deformation procedures was
performed, including surface inflation (Dale et al., 1999), registration to
a spherical atlas (Fischl et al., 1999), and parcellation of the cerebral
cortex into units based on the gyral and sulcal structures (Fischl et al.,
2004b). All reconstructed surfaces were visually inspected for gross ana-
tomical topological defects. Finally, a variety of morphological features at
each vertex on the pial surface were computed, including volumetric
(cortical thickness, surface area, and GM volume) and geometric (sulcal
depth, metric distortion, and mean curvature) measures. It is worth
mentioning that the thickness across the cortical mantle was extracted by
computing the closest distance between the white and pial surfaces at
each vertex on the tessellated surface (Fischl et al., 2000). The surface area
at each vertex was calculated as the average of the area of the triangles
touching that vertex on the pial surface. The GM volume measure at each
vertex was defined as the sum of the volumes of the individual triangles
that lie within the neighborhood of the vertex, where the volume of each
triangle was computed as the product of its area and the thickness at the
center of the triangle. Sulcal depth measures the displacement from each
vertex to the average surface. The average surface is a hypothetical “mid-
surface” that exists between the gyri and sulci. The metric distortion (i.e.,
Jacobian), which indicated the degree of cortical folding, was calculated
as the degree of displacement and convolution of the cortical surface
relative to the average template (Fischl et al., 1999; Wisco et al., 2007).
The mean (radial) curvature was measured as 1/r (r is the radius of an
inscribed circle) and was used to assess the folding of the small secondary

Table 1. Definitions and meanings of the six morphological measures

Morphological measures Definitions Meanings

Cortical thickness The closest distance between the white and pial surfaces at each vertex on the cortical surface Reflects dendritic arborization (Huttenlocher, 1990)
Surface area The average area of the triangles that touch the vertex on the pial surface Linked to the number of minicolumns in the cortical

layer (Rakic, 1988)
GM volume The sum of the volumes of the individual triangles that lie within the neighborhood of the vertex A product of the thickness and surface area
Sulcal depth The displacement from each vertex to the sulcal surface The degree of cortical folding
Metric distortion The degree of displacement and convolution of the cortical surface relative to the average template The degree of cortical folding
Mean curvature 1/r (r is the radius of an inscribed circle) Reflects folding of the small secondary and tertiary

folds in the surface

Table 2. Subject demographics

aMCI (n � 24) Control (n � 26) p value

Gender (M/F) 6/18 11/15 0.206
Age 61.0 � 4.3 (54 – 68) 60.0 � 1.4 (57– 63) 0.179
Education 8.7 � 4.6 (0 –21) 9.3 � 3.4 (0 –15) 0.581
MMSE 24.3 � 3.6 (17–30) 28.3 � 2.1 (20 –30) �0.001
MoCA 19.7 � 3.8 (15–30) 26.5 � 3.1 (18 –30) �0.001

Age, education, MMSE, and MoCA data are expressed as the mean � SD (range). There were no significant differ-
ences between the two groups in gender, age, or education years. The aMCI and NC groups showed significant
differences in the MMSE and MoCA scores ( p � 0.01). Statistical p value was analyzed using a t test, except for
gender (Wilcoxon test).
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and tertiary folds in the surface. All surface features were smoothed using
a 20 mm FWHM surface-based diffusion kernel to improve the ability to
detect groupwise differences. For these smoothed parameters, we re-
moved the effects of age using a general linear model in FreeSurfer and
applied them in the further multivariate analysis. Additional technical
details of these procedures have been described in previous publications
(Dale et al., 1999; Fischl et al., 1999, 2000, 2002, 2004a,b; Ségonne et al.,
2004; Jovicich et al., 2006).

Classification using support vector machine. A linear support vector
machine (SVM) was used to classify the differences between the two
groups on the basis of their cortical morphological features. An SVM is a
supervised multivariate classification method that identifies the optimal
hyperplane with the maximum margin (i.e., maximal separation between
classes; Vapnik, 1999). A large body of studies has applied an SVM in
MRI data classification (Burges, 1998; Schoelkopf et al., 2002; Mourão-
Miranda et al., 2006; Davatzikos et al., 2008; Klöppel et al., 2008). Our
procedures were as follows. First, all features extracted from each image
constructed a feature vector. The number of dimensions of each feature
vector equaled the number of voxels/vertices per image multiplied by the
number of measures. Thus, each image was represented by a feature
vector and treated as a point in a high-dimensional space. Then, an SVM
was used to train on a subset of the data �x, c� to identify a hyperplane
that best separated the input space according to the class labels c (e.g.,�1
for patients, �1 for controls), where x represented the input data (i.e.,
feature vector). The hyperplane was defined by a weight vector, which
was a linear combination of the support vectors and an offset. In this
study, a linear kernel function was used to train the SVM classifier
because this ensured the weight vector could be represented as an
image (i.e., the SVM discrimination map). The penalty parameter C
of the error term was fixed at C � 1 for all cases (default value), which
controlled the trade-off between having zero training errors and al-
lowing misclassifications. For each hemisphere, we trained the re-
spective classifier. Finally, the different SVM classifiers were trained
using each individual morphological feature and a combination of all
features. The LIBSVM toolbox for MATLAB was used to perform the
classifications (http://www.csie.ntu.edu.tw/	cjlin/libsvm/).

Discrimination maps. The discrimination map was an image con-
structed by the weight vector that was acquired after the SVM training.
The weight vector was normal to the hyperplane and had equal dimen-
sions with the feature vector. Its value was related to the contribution of
discriminating two classes. In this study, each feature vector had n � m
dimensions, where n equaled the number of vertices (here n � 163,842)
and m denoted the number of measures (i.e., six). Due to the two groups
(aMCI vs controls) with the labels �1 and �1, respectively, a positive
weight value in the discrimination map (red/yellow color scale) indicated
relatively higher feature values in the aMCI patients compared with the
controls with respect to the hyperplane and vice versa (blue/cyan color
scale). To enable visualization of the discriminating pattern for each
morphological measure, the weight vector was cut into its constituent
parts and then mapped back onto the average white matter surface. We
visualized all brain regions with color bars that represented their contrib-
uted weights.

Intraregional morphometric profiles. To identify the different contribu-
tion of each morphological measure in discriminating the two groups on
the cortical surface, we displayed the intraregional morphometric pro-
files. These profiles were derived by calculating the average weights of the
vertices within the ROIs for the six different parameters. The choice of
the ROI was motivated by the high-parameter weights for a specific
morphometric feature (e.g., high weights for the cortical thickness in the
parahippocampal gyrus). The ROIs were defined as contiguous weight
clusters from the overall discrimination maps. The ROI analysis aimed to
illustrate that different cortical features had different contributions in the
classification of aMCI and NC for a specific region, and thus might be
related to different pathological causes of aMCI.

Cross-validation and permutation testing. The performance of the clas-
sifier was validated using a leave-one-out cross validation approach. In
each leave-one-out cycle, one subject was removed from the whole group
(aMCI and NC) and used as the test sample. The remaining subjects were
used to train the classifier, and the constructed classifier was then used to

test the subject who had been removed. This procedure was repeated 50
times, i.e., the total sample size of the group. The classification accuracy
was measured by the proportion of observations that were correctly clas-
sified into the patient or control groups. In addition, we evaluated the
sensitivity and specificity of the classifier, where sensitivity was defined as
TP/(TP � FN ), and specificity was defined as TN/(TN � FP). The TP
(i.e., true positive) is the number of patient images correctly classified,
whereas the TN (i.e., true negative) is the number of control images
correctly classified. The FP (i.e., false positive) is the number of controls
images classified as patients, whereas the FN (i.e., false negative) is the
number of patient images classified as controls. Subsequently, the basic
receiver operating characteristic (ROC) graphs were plotted. The classi-
fications were performed by including all six morphological measures
into the feature vector, as well as each individual measure.

The classifier performance was further evaluated using permutation
testing, which computed the probability of getting specificity and sensi-
tivity values higher than the ones obtained during the cross-validation
procedure by chance. We randomly assigned patient and control labels to
each subject and performed the cross-validation procedure. This process
was repeated 5000 times. We then counted the percentage that the accu-
racies for the permuted labels were higher than the ones obtained for the
real labels as the p value.

Results
Between-group volumetric differences
Group differences in the intracranial volume, the total brain vol-
ume, and the GM volume were assessed using two-sample t tests
before classification. There was no significant between-group dif-
ference in the intracranial volume at a level of p � 0.05 (Table 3),
but significant differences were found in the total brain volume,
the total GM volume, and the bilateral GM volumes between the
two groups at p � 0.05.

Table 3. Between-group differences in the intracranial volume, overall brain
volume, and GM volume

aMCI
(�10 5mm 3)

Control
(�10 5mm 3) t(48) P

ICV 13.40 � 0.15 1.39 � 0.14 �1.14 0.260
Total brain volume 9.67 � 0.79 10.30 � 1.15 �2.35 0.013
Total GM volume 4.26 � 0.35 4.57 � 0.44 �2.71 0.007
Right GM volume 2.12 � 0.16 2.28 � 0.22 �2.75 0.008
Left GM volume 2.14 � 0.18 2.29 � 0.22 �2.66 0.011

Data are expressed as the means � SD. ICV, total intracranial volume.

Table 4. Results of the SVM classification between the aMCI and control groups
using different brain morphometric features in the left and right hemispheres

Morphometric feature
Accuracy
(%) *p_acc

Sensitivity
(%) *p_sen

Specificity
(%) *p_spe

Left hemisphere
All parameters 76 0.0126 58 0.2478 92 0.0040
Cortical thickness 78 0.0020 62 0.1470 92 �0.0002
Sulcal depth 58 0.1774 50 0.4338 65 0.1008
Surface area 66 0.0484 62 0.1518 69 0.0704
Metric distortion 84 �0.0002 75 0.0148 92 �0.0002
Mean curvature 76 0.0094 54 0.3248 96 0.0004
GM volume 64 0.0604 54 0.3246 73 0.0348

Right hemisphere
All parameters 80 0.0040 66 0.1080 92 0.0040
Cortical thickness 60 0.1326 45 0.5876 73 0.0334
Sulcal depth 78 0.0020 66 0.0790 88 0.0006
Surface area 76 0.0044 66 0.0930 85 0.0030
Metric distortion 60 0.1148 54 0.3300 65 0.0850
Mean curvature 62 0.0988 54 0.3142 69 0.0696
GM volume 56 0.2186 41 0.7072 69 0.0642

*p_acc (*p_sen, *p_spec) values indicate the percentage that the accuracies (sensitivities, specificities) for the
permuted labels were higher than the ones obtained for the real labels in 5000 permutations tests.
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Overall classifier performance
The classification accuracies, as well as
the sensitivity and specificity for each
classifier, are listed in Table 4. For the
left hemisphere, high accuracies were
observed in all features, including the
cortical thickness, surface area, sulcal
depth, metric distortion, mean curve,
and GM volume. The permutation test p
values for these classifiers were �0.05.
Thus, the probability of obtaining accura-
cies higher than the ones obtained during
the cross-validation procedure by chance is
extremely low. If a classifier has high sensi-
tivity and specificity, it corresponds to a
point in the upper left part of the ROC
graph. In the left hemisphere, the best dis-
crimination was obtained when the metric
distortion measures were used to classify the
difference between the groups with 75%
sensitivity and 92% specificity (Fig. 1A). The
individuals were correctly assigned to the
appropriate diagnostic category in 76% of
cases when all parameters were considered
simultaneously (Fig. 1C). The specificity of
the multiparameter classification in the left
hemisphere was 92%, which indicated that
92% of the controls subjects were correctly
classified as controls.

For the right hemisphere, we obtained
a similar parameter importance profile.
High accuracies were observed in all fea-
tures, including the sulcal depth and the
surface area. The permutation test p val-
ues for these classifiers were �0.05. In the
ROC graph, the best discrimination was observed when all mea-
sures were used to classify between groups with 66% sensitivity
and 92% specificity (Fig. 1B). The individuals were correctly as-
signed to the appropriate diagnostic category in 80% of cases
when all parameters were considered simultaneously (Fig. 1D).

To test the effectiveness of the classifier, we computed the
correlation coefficients between the Mini Mental State Examina-
tion (MMSE), the Montreal Cognitive Assessment (MoCA), and
the test margin (the decision value of the weight vector) obtained
from the combined model. The results are listed in Table 5. The
test margin in both hemispheres was negatively correlated with
the MMSE (Left: r � �0.5198, p � 0.0001; Right: r � �0.4656,
p � 0.0007) and the MoCA scores (Left: r � �0.5655, p�0.0001;
Right: r � �0.4925, p � 0.0003). Therefore, the individuals with
higher values on the MMSE or the MoCA scores were located on
the extreme left relative to the hyperplane, while the individuals
with a lower level of these diagnostic criteria scores were predom-
inately located right to the hyperplane overall.

Effects of different combinations of features on classification
To test the effects of different combinations with subsets of the six
morphological parameters on the classification performance, we
chose the combinations of any two features to construct the classi-
fier. The scatter diagrams of the classification results are shown in
Figure 2. Our experiments showed that the different feature combi-
nations yielded different classification results. For example, for the
left hemisphere (Fig. 2A), the highest classification accuracy was ob-
tained by the combination of metric distortion and cortical thickness

features. For the right hemisphere (Fig. 2B), the combination of all
features obtained the highest classification accuracy, which was
higher compared with 15 pairwise combinations.

In addition, we also constructed the classifiers by combining
the left and right hemispheres and compared the results with the
individual hemispheres (Fig. 2C). Our results showed that the
classification performances after including the two hemispheres
were not higher compared with those derived from the individual
hemispheres except for the sulcal depth measurement.

We also added the MMSE and the MoCA in the SVM classifi-
cation for each hemisphere. Here, we performed the permutation
tests 5000 times and gave the null histograms for the different
conditions, such as the pure morphometric-based classification,
the morphometric feature with the MMSE and MoCA, the
MMSE alone, the MoCA alone, and the MMSE and MoCA com-
bined classification. The detailed results are shown in Figure 3
(left hemisphere), Figure 4 (right hemisphere), and Figure 5
(MMSE and MoCA). In these experiments, we did not observe
obvious changes in the classification results by comparing the
pure morphometric-based classification to the morphometric

Figure 1. A, B, The ROC graphs for the seven discrete classifiers in the left hemisphere (A) and the right hemisphere (B).
Individual points on the graph depict the classifiers on the basis of the cortical thickness (A), sulcal depth (B), surface area (C), metric
distortion (D), mean curvature (E), GM volume (F), and all parameters (G). C, D, The classification plots for the left (C) and right (D)
hemispheres.

Table 5. Correlation coefficients between the aMCI diagnostic criteria MMSE, the
MoCA, and the weight vector for the model that combined all parameters

Diagnostic test

Left hemisphere Right hemisphere

r p r p

MMSE (n � 50) �0.5198 0.0001 �0.4656 0.0007
MoCA (n � 50) �0.5655 �0.0001 �0.4925 0.0003
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feature combined with the MMSE and MoCA classification. We
did determine that the classification results that used the MMSE
and MoCA scores were better compared with the morphology-
based features.

Discrimination maps of aMCI-specific abnormalities
A discrimination map is a spatial representation of the SVM
weight vector and represents a spatially distributed pattern that
shows the relative contribution of each voxel to the decision func-
tion. Due to the multivariate nature of the SVM, each region in
the discrimination maps should be considered in the context of
the entire discriminating pattern. Here, we used all combined six
morphological features to construct the classifiers; the brain re-
gions identified by the weight vector are shown in Figure 6, and a
summary description can be found in Tables 6 (left hemisphere)
and 7 (right hemisphere).

Cortical thickness
In the left hemisphere, the high-discriminative patterns for cor-
tical thickness in classifying the two groups are located in the
supramarginal gyrus, the middle frontal gyrus, the lingual, para-

hippocampal, and isthmus cingulate gyrus. In the right hemi-
sphere, the high-discriminative pattern for cortical thickness was
involved in the superior temporal sulcus, the superior frontal
gyrus, the postcentral gyrus, the intraparietal and parietal trans-
verse sulcus, and the subcentral region (Fig. 6A).

Sulcal depth
The left parieto-occipital sulcus, the superior frontal sulcus, the
precentral gyrus, and the middle temporal gyrus showed high
weights in the discrimination map. The right inferior frontal sul-
cus, the parieto-occipital sulcus, the postcentral gyrus, the pars
opercularis, the angular gyrus, the inferior temporal gyrus, the
precentral gyrus, the superior parietal gyrus, the superior tempo-
ral sulcus, and the central sulcus were observed in relatively large
clusters with generally high weights (Fig. 6B).

Surface area
The regions that showed high-weight values included the supe-
rior temporal gyrus, the lingual gyrus, and the superior frontal
gyrus in the left hemisphere. In the right hemisphere, the high-
weight value regions were the angular gyrus, the lateral orbito-

Figure 2. Classifications of the combinations of the different morphological features. The classification results of the combinations of any two morphological features are presented for the left
hemisphere (A) and the right hemisphere (B). The classification results of the combined features from the two hemispheres are shown in C.
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Figure 3. Null histograms generated by 5000 permutation tests of the SVM classification based on the cortical thickness (A), sulcal depth (B), surface area (C), metric distortion (D),
mean curvature (E), GM volume (F ), and all parameters (G) for the left hemisphere. The null histograms from left to right represent the accuracy, sensitivity, and specificity, respectively.
The odd-numbered rows represent the classifications that were performed only using morphological features, while the even-numbered (pink background) rows represent the
classifications that used a combination of the morphological features and the MMSE and MoCA scores.
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Figure 4. Null histograms generated by 5000 permutation tests of the SVM classification based on the cortical thickness (A), sulcal depth (B), surface area (C), metric distortion (D), mean
curvature (E), GM volume (F ), and all parameters (G) for the right hemisphere. The null histograms from left to right represent the accuracy, sensitivity, and specificity, respectively. The
odd-numbered rows represent the classifications that were performed only using the morphological features, while the even-numbered (pink background) rows represent the classifications that
used a combination of the morphological features and the MMSE and MoCA scores.
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frontal sulcus, the inferior parietal sulcus, the middle frontal
rostral region, the pars triangularis gyrus, the central sulcus, the
temporal pole, the superior temporal sulcus, and the precentral
gyrus (Fig. 6C).

Metric distortion
In the left hemisphere, the superior temporal sulcus, the occipital
pole, the parietal occipital sulcus, the postcentral gyrus, the lateral
orbital sulcus, and the supramarginal gyrus had high-weight val-
ues. In the right hemisphere, the regions that showed the high-
weight values were found in the cuneus gyrus, the cingulate gyrus,
the frontal gyrus, the postcentral gyrus, and the precentral gyrus
(Fig. 6D).

Mean curvature
The left superior occipital gyrus, the transverse temporal gyrus,
the pars opercularis, and the parahippocampus showed the high
weights in the discrimination map of the mean curvature. Right
high-weight value regions were observed in the central sulcus, the
superior occipital gyrus, the calcarine sulcus, and the superior
frontal gyrus (Fig. 6E).

GM volume
We identified a high weight in the left superior temporal gyrus in
the GM volume discrimination map. In the right hemisphere, the
high discriminative pattern was found in the temporal pole, the
central sulcus, and the middle frontal rostral gyrus (Fig. 6F).

ROI analysis
In this study, we selected the parahippocampal gyrus and the
entorhinal area as the ROIs because many studies had shown
cortical thickness or GM volume decline in the two regions in
aMCI subjects (Karas et al., 2004; Pennanen et al., 2004). The
morphological profiles for the two ROIs are shown in the box
plot of Figure 7A and B. The weight for each ROI was derived
by averaging the weight vector scores across the vertices within
the ROI for each morphometric parameter. We observed that
different cortical parameters had different contributions for
each region in discriminating the two groups. For the parahip-
pocampal gyrus, the high weights were observed for cortical
thickness, which had a mean weight value of �2.71 (negative
sign indicates that aMCI had lower parameter values com-
pared with NC), but low weights were observed in the surface
area (�1.00), the metric distortion (�1.35), and the mean
curvature (1.01; Fig. 7A). A similar profile was also seen in the
entorhinal area. Here, the weight values were very low for the
cortical thickness (�0.39), the sulcal depth (�0.79), the sur-

face area (�0.88), the metric distortion (�0.34), and the GM
volume (�0.81), while high-discrimination weights were ob-
served in the mean curvature (�2.70; Fig. 7B). The ROI anal-
ysis indicated that the discrimination maps were spatially
distributed, and the different measures showed different
weight values from region to region.

Discussion
In this study, we used a multiparameter classification approach
that combined six cortical features to investigate the subtle and
spatially distributed GM abnormalities in aMCI patients. The
accuracy of the SVM in classifying the aMCI and NC groups was
76% in the left hemisphere and 80% in the right hemisphere. The
high-classification weight regions, which were generated in a
multivariate way under the framework established by the SVM,
were spatially distributed and largely nonoverlapping, predomi-
nately located in the temporal, frontal, and parietal regions. The
weight value analysis of the chosen ROIs (the parahippocampal
gyrus and the entorhinal cortex) also showed that the different
morphological features had unique contributions to the classifi-
cation of the aMCI and NC groups. These results suggested that
the neuroanatomical changes of aMCI were truly multidimen-
sional. The weight value maps detected using the SVM may help
further exploration of the genetic and neuropathological under-
pinnings of aMCI.

The high SVM accuracy is the cornerstone of this study. In the
left hemisphere, the SVM correctly classified 76% of cases overall
using six cortical features; in the right hemisphere, the accuracy
was 80%. When combining any two features for the left hemi-
sphere, the highest classification accuracy (84%) was obtained by
combining the metric distortion and the cortical thickness fea-
tures. This accuracy is comparable to previous reports (Westman
et al., 2011; Wolz et al., 2011; Zhang et al., 2011; Liu et al., 2012;
O’Dwyer et al., 2012; Park et al., 2012; Zhou et al., 2012). An SVM
study that used combined features (cortical thickness and sulcus
depth) had a 69% accuracy in classifying the MCI and NC groups,
and the accuracy reached 79% after the principle component
analysis for the feature selection (Park et al., 2012). Zhang et al.
(2011) used a kernel combination method based on the SVM to
classify MCI patients and controls by using multimodality data
(MRI, PET, and CSF) and obtained a classification accuracy of
76.4%. These classification accuracies were also consistent with
the behaviorally guided diagnostic tools (MMSE and MoCA),
which had accuracies of 	80% in this study. Our classification
results indicated that the cortical morphological features could

Figure 5. Null histograms generated by 5000 permutation tests of the SVM classification based on the MMSE and MoCA scores. The null histograms from left to right represent the accuracy,
sensitivity, and specificity, respectively. The first two rows represent the classification with only the MMSE or MoCA score. The third row represents the classification that used the combination of the
two scores.
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potentially be used to construct an effective classifier in discrim-
inating aMCI patients from normal controls.

The SVM is a multivariate method that considers inter-
regional correlations, and it can be used to identify complex
neuroanatomical changes. In the present study, each region in
the discrimination maps should be considered in the context
of the entire pattern of discrimination. The spatial distribu-
tion of the weight vector provided information about the con-
tribution of each region to the classification and made it
possible to obtain the distributed pattern of a relative deficit or
excess in aMCI with respect to the controls. We found cortical
thickness reductions in the medial temporal lobe regions, such

as the parahippocampus and the lingual and isthmus cingulate
gyrus. These findings were in line with previous studies (Karas
et al., 2004; Pennanen et al., 2004; Singh et al., 2006; Wang et
al., 2009). We also observed that the depth decreased in the left
middle temporal sulcus in the aMCI patients compared with
the controls. Our result was similar to a study by Im et al.
(2008), and they reported aMCI showed shallower sulcal
depth in the temporal lobe. In addition, we found that aMCI
had a significant GM volume reduction in the left lateral su-
perior temporal gyrus. Previous studies have reported a GM
volume decline in the hippocampus, the middle temporal
gyrus, and the inferior parietal lobe in aMCI subjects (Pen-

Figure 6. Discrimination maps for the six different morphometric features in the left (L) and right (R) hemispheres. The color maps represent the weight vector on the basis of the six modality
classification for the cortical thickness (A), sulcal depth (B), surface area (C), metric distortion (D), mean curvature (E), and GM volume (F ). The positive weights are displayed in red and the negative
weights are displayed in blue.
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nanen et al., 2004; Bell-McGinty et al., 2005; Fan et al., 2008).
The consistencies between our findings and previous studies
indicated that the regions that displayed high-classification
weights could reflect the differences in the cortical cytoarchi-
tecture and folding patterns between aMCI patients and nor-
mal controls and might help the clinical diagnosis of aMCI.

In this study, we found that the classification accuracies varied
across different morphometric parameters during the discrimi-
nation of the two groups. The high accuracies were obtained
when using the metric distortion and cortical thickness in the left
hemisphere and the sulcal depth in the right hemisphere in clas-
sifying the aMCI and NC groups. Many studies have explored the
changes in the cortical thickness (Bell-McGinty et al., 2005; Singh
et al., 2006; Seo et al., 2007) and the sulcal depth (Im et al., 2008;
Liu et al., 2013) in aMCI subjects. However, metric distortion was
seldom used to measure the cerebral changes in aMCI patients.
Our study used metric distortion to characterize the cortical sur-
face feature and obtained 84% classification accuracy in the left
hemisphere, which was better compared with the other cortical
measures. This finding may indicate that the aMCI patients had a
significant overall cortical transformation compared with the
normal controls. The existing studies had predominately focused
on the GM atrophy in aMCI. Our finding suggested that metric
distortion might contain important information to distinguish
aMCI patients and normal controls and should receive greater
attention in future aMCI studies.

Notably, the different measures reflect different neurophysi-
ological processes, and the region- and parameter-dependent

variations may reflect the pathology/ pathophysiology of aMCI.
For example, the cortical thickness may reflect the dendritic ar-
borization (Huttenlocher, 1990) or the changing myelination at
the gray/white matter interface (Sowell et al., 2004). In contrast,
the surface area is influenced by the division of progenitor cells
in the embryological periventricular area and is associated with
the number of minicolumns (Rakic, 1988). The cortical thickness
and surface area reflect different neurobiological processes and
are associated with different genetic mechanisms (Panizzon et al.,
2009). In contrast, the geometric differences, such as the average
convexity, the metric distortion, and the sulcal depth, measure
different aspects of cortical geometry and are predominantly
linked with the development of neuronal connections and the
cortical pattern of connectivity (Van Essen, 1997). Our findings

Table 6. Regions that displayed high-discrimination weights between the aMCI
and control groups for the measures of the left hemisphere

Annotation NVtxs Size (mm 2) TalX TalY TalZ Max

Cortical thickness
Supramarginal 1601 645.6 �45.8 �47.7 41 �5.00
Caudal middle frontal 2138 1299.5 �39.2 5.3 51.4 �4.05
Lingual, parahippocampal,

isthmus cingulate
gyrus

800 336 �15.6 �41.8 �7.3 �3.16

Sulcal depth
Cuneus 1315 700.0 �16.1 �68.8 15.1 4.17
Sulcus superior frontal 1511 960.7 �22.2 17.5 53 �4.08
Gyrus precentral 1362 634.4 �34.9 �12 60.1 4.05
Gyrus middle temporal 987 544.4 �58.5 �15.7 �18.7 �4.00

Surface area
Gyrus superior temporal 1406 559.3 �44.5 �34.7 5.8 5.00
Pericalcarine 883 592 �9.7 �83.8 1.1 �4.17
Gyrus superior frontal 1016 578.3 �7.7 28.3 41.5 �3.66

Metric distortion
Inferior parietal, middle

temporal, lateral
occipital

2504 1394.4 �48.2 �63.4 10.5 �4.55

Pericalcarine 1491 1207.7 �13.1 �97.6 1.6 4.09
Precuneus 1662 940.1 �17.1 �60.4 22 �4.04
Postcentral 923 395.5 �12.5 �36.3 68.4 3.95
Pars triangularis 970 620.1 �44.3 37 �5.4 3.46
Supramarginal 2166 969.3 �48.6 �28.2 19.3 3.25

Mean curvature
Superior parietal 1058 810.2 �11.2 �91.5 26.5 �4.09
Transverse temporal 1031 425.8 �52.2 �13.5 1.6 �3.47
Pars opercularis

entorhinal
932 380.6 �39.8 6.2 21.2 3.40

986 399.5 �23.5 �18.7 �25.1 �3.37
GM volume

Superior temporal 1214 601.7 �57.4 �1.5 �4.8 3.57

The classifiers were constructed by combining all six morphological features.

Table 7. Regions that displayed high-discrimination weights between the aMCI
and control groups for the measures of the right hemisphere

Annotation NVtxs Size (mm 2) TalX TalY TalZ Max

Cortical thickness
Inferior parietal 1156 632.4 40 �61.4 21.5 �4.56
Superior frontal 2061 995.8 6.7 2 65.6 3.70
Postcentral 1424 595.0 30.3 �32.4 68.5 3.65
Superior parietal 1203 618.9 22.6 �62.8 35 �3.56
Postcentral 2576 1082.4 49.3 �12.6 18.1 3.42

Sulcal depth
Pars triangularis 1743 959 42.3 31.6 11.2 �5.00
Precuneus 1519 857.8 12.2 �62.8 26.2 4.95
Postcentral 1534 647.8 40 �32.7 63.3 4.66
Pars opercularis 1500 756.9 52.4 7.9 3.8 4.47
Inferior parietal 1212 634.6 53.8 �52.7 33.9 4.08
Inferior temporal 961 597.0 56.1 �28.9 �28 3.86
Precentral 1161 586.9 54.9 �3.2 34.5 3.55
Superior parietal 1455 656.9 21.2 �58.5 64.1 3.52
Inferior parietal 869 384.3 46.1 �57 14.7 3.36
Precentral 1090 427.2 20.1 �29.6 53.4 �3.23

Surface area
Inferior parietal 2669 1335.9 47.9 �60.9 31.4 4.64
Lateral orbitofrontal 1422 639.7 14.6 20.5 �13.9 4.34
Inferior parietal 912 449.2 32.2 �70.2 20.2 4.16
Rostral middle

frontal
868 665.4 29.3 56.6 �8.4 4.10

Pars triangularis 2678 1438.6 46.8 24.9 7 3.94
Precentral 1037 421.6 15.3 �28.2 57.6 3.76
Temporal pole 1006 545.3 30.5 10.5 �34.4 3.62
Middle temporal 1787 738.2 47.9 �32.7 �7.9 3.56
Precentral 933 380.2 55.8 4.9 13.7 �3.17

Metric distortion
Cuneus 10382 6808.3 7.3 �83.3 24.5 5.00
Posterior cingulate 2125 827.8 10.6 �4.2 42.8 �4.80
Superior frontal 1523 1002.1 15.6 54.5 24.2 �4.11
Rostral middle

frontal
3047 1863.8 38.3 48.7 15.9 3.97

Postcentral 1890 783.5 60.2 �18.5 19 3.63
Isthmus cingulate 1655 630.5 10.6 �48.5 5.2 3.38
Precentral 2118 1056.8 44.6 3.7 21.6 �3.18

Mean curvature
Precentral 1763 771.8 21.3 �23.2 59.6 �4.12
Superior parietal 974 613.2 14.8 �87.2 33.8 �4.10
Precuneus 1480 654.0 26.5 �65.3 6.9 4.10
Superior frontal 2621 1925.1 13.2 57.9 21.1 3.87

GM volume
Temporal pole 1002 606.6 37.3 16.2 �34.4 4.18
Precentral 895 404.9 48.7 �7.6 24.5 3.97
Rostral middle

frontal
2521 1797.1 23.6 58.9 6.4 3.78

The classifiers were constructed by combining all six morphological features.
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in the discrimination map might indicate that the spatial distri-
bution of the weight vector across the whole brain reflects multi-
ple genetic and/or neurobiological processes and requires further
investigation.

Further ROI analysis showed that the different cortical pa-
rameters played different roles for each region in discriminating
the two groups. We found that the mean curvature had the largest
weight in discriminating the aMCI and NC groups in the ento-
rhinal cortex. A previous study suggested that some geometric
measures, such as metric distortion and mean curvature, may
reflect the cortical folding pattern and vary with changes in the
intrinsic and extrinsic connectivity (Van Essen, 1997). Some
studies on early AD have reported consistent findings that the
neurofibrillary tangle distribution (Delacourte et al., 1999; Price
et al., 1999; Lee et al., 2009; Cherubini et al., 2010) and the fractal
anisotropy of the white matter (Bai et al., 2009) were initially
restricted to the entorhinal cortices, but subsequently spread to

the higher order temporoparietal association cortices (Thomp-
son et al., 2003; van der Flier et al., 2011). Thus, we speculated
that the abnormal changes of curvature in the entorhinal cortex
in the aMCI patients could be related to the pathological changes
in the white matter, and these changes might be much larger
compared with the other cortical parameters. In addition, we also
found that the cortical thickness in the parahippocampal gyrus
showed the largest weight value compared with the remaining
parameters in discriminating the two groups. Our results were
consistent with previous studies. For example, Devanand et al.
(2007) reported a volume reduction of the parahippocampal
gyrus in MCI patients. Lerch et al. (2005b) reported a signifi-
cant cortical thickness decline in the parahippocampal gyrus
in AD. Because cortical thickness correlates with the number
of neurons within an ontogenetic column, our results may
indicate the main cellular changes in the parahippocampal
gyrus in aMCI.

Figure 7. The ROI analysis of the weight values. A, The cluster of the cortical thickness in the parahippocampal gyrus, left hemisphere. B, The cluster of the mean curvature in the entorhinal, left
hemisphere. The box figure shows the average weight values in the ROI for the different morphometric parameters. The weights were identified by the SVM model based on the combined surface
features, and thus show the relative contributions of the parameters in this ROI.
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Some issues need to be considered. First, the cerebral patho-
logical changes in aMCI would be affected by the subtype, the
APOE genotype, and the developmental stage. To clarify the mul-
tidimensional changes in aMCI patients, it is better to control for
the aMCI subjects by studying patients with the same aMCI sub-
type, APOE genotype, and stage. Second, although the SVM
could solve high-dimension, small sample classification prob-
lems, the small sample size still had a negative effect on classifying
the results (Hua et al., 2005; Kuo et al., 2007; Ramírez et al., 2010).
A future study based on a large sample size will help reveal the
more complex multidimensional cortical differences in aMCI.
Third, only structural MRI was involved in this study; the com-
bination of functional and quantitative MR techniques as well as
�-amyloid (A�) 1– 42 and total tau in the CSF is expected to be
more capable in differentiating aMCI and NC with the additional
information provided for the microstructure integrity, energy
metabolism, and tissue characterization.

In conclusion, this study used an advanced multivariate
method to classify aMCI and NC and determined the spatially
complex multidimensional patterns of GM differences in aMCI.
The discrimination maps generated by our study will help further
the study of aMCI etiologies.
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Cherubini A, Péran P, Spoletini I, Di Paola, Di Iulio F, Hagberg GE, Sancesa-
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