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Abstract

Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of
attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps.
However, the influence of these factors on the topological properties of functional brain networks has not been
systematically examined. Here, we investigated the influences of correlation metric choice (Pearson’s correlation versus
partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01–0.027 Hz) versus
slow-4 (0.027–0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and
we employed test-retest (TRT) analyses for further guidance on how to choose the ‘‘best’’ network modeling strategy from
the reliability perspective. Our results show significant differences in global network metrics associated with both
correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks
derived from Pearson’s correlation versus partial correlation. TRT analysis revealed that the reliability of both global and
local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed
for Pearson’s-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a
spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT
reliability in Pearson’s-correlation-based brain networks. Moreover, we found that there were significant frequency-related
differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027–0.073 Hz band
exhibited greater reliability than those in the 0.01–0.027 Hz band. Taken together, our results provide direct evidence
regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological
properties of functional brain networks. This study also has important implications for how to choose reliable analytical
schemes in brain network studies.
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Introduction

Resting-state functional MRI (R-fMRI) has recently emerged as a

powerful tool for exploring spontaneous brain function [1]. The

low-frequency (,0.1 Hz) fluctuations in the fMRI signal temporally

interact across functionally related areas, collectively constituting a

complex neural network, which has been referred to as ‘‘functional

connectome’’ [2,3]. Analyses of functional brain networks based on

graph theory have revealed many non-trivial topological properties,

such as small-world attributes (high local clustering and short path

lengths [4]) [5], high efficiency at a low wiring cost [6] and highly

connected hubs [7,8,9,10]. Graph-based analysis has also been used

to investigate the topological changes of functional brain networks

under pathological conditions [3,11,12,13]. These studies have

shaped our understanding of how the functional brain network is

topologically organized under both healthy and diseased states.

In general, a brain network is composed of two basic elements:

nodes and edges. In R-fMRI-based brain networks, nodes usually

represent brain entities (e.g., brain regions), and edges represent

functional associations between the brain entities. How to define

nodes and edges are two core questions in graph-based network

analysis [3,12,14]. Recent studies have demonstrated that different

nodal definitions lead to different results in brain network analysis

[15,16,17,18]. Likewise, there are similar concerns regarding the

effects of edge definitions on the topological properties of brain

networks. Different functional connectivity metrics have been used

to define network edges in fMRI data analysis, including Pearson’s

correlation [8,10,17,19] and partial correlation [20,21,22]. The

former measures the general dependence between variables,

whereas the latter estimates the direct interdependence after

ruling out third-party effects [23,24]. Recently, Smith et al. [25]

demonstrated that both correlation methods provide excellent

performance at estimating functional connections, but Pearson’s

correlation outperformed partial correlation when the number of

nodes in brain networks significantly increased. Of note, most

fMRI-based brain network studies have focused on only one of the
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two correlation metrics, and it remains unclear how the use of

these different correlation metrics influences the topological

properties of brain functional networks.

Another major concern in R-fMRI studies is related to

preprocessing procedures. For example, some studies have

removed global brain signals by regression to reduce confounding

physiological effects [26,27,28,29]. However, the validity of global

signal regression in fMRI studies is still under debate [30,31].

Recently, Weissenbacher et al [32] has quantitatively evaluated

the impact of global signal regression on resting-state functional

connectivity and found approximately doubled specificity of

connections and widespread artificial anticorrelations after global

signal regression. In the literature of functional brain networks,

using R-fMRI, several research groups have constructed brain

functional networks by regressing out the global signal [8,10,17],

whereas others have not [7,15,20,33]. A recent R-fMRI study has

demonstrated that global signal removal alters topological

structure of brain functional networks [34]. However, it remains

unclear how the removal of global signals affects the topological

properties of Pearson’s-correlation-based and partial-correlation-

based brain networks.

Another preprocessing factor that likely affects R-fMRI analysis

is the use of different temporal filtering frequency bands. Buzsáki

and colleagues [35,36] observed that the center and range of

different brain oscillation bands are distributed linearly on the

natural logarithmic scale, suggesting that each band serves a

different physiological function. Using R-fMRI, Salvador et al.

[37,38] found that the functional connectivity among brain regions

depends on different frequency bands within the detectable

frequency range. Moreover, functional brain networks derived

from R-fMRI data exhibit differential small-world attributes across

different frequency bands [6,7,39]. However, direct, detailed

comparisons are needed to elucidate the influences of different

frequency bands on the topological analysis of functional brain

networks.

In consideration of these factors, relevant questions include how

to choose among these different processing strategies and which

combination of these factors provides the most appropriate

descriptions for modeling R-fMRI-based brain networks. Given

that no ‘golden standard’ currently exists, in this study, we sought

to answer this question by assessing the test-retest (TRT) reliability

of network analyses while varying processing factors, assuming that

a ‘better’ network analytic strategy will produce a more reliable

network structure. Although several recent studies have examined

the TRT reliability of structural [40,41] and functional

[42,43,44,45] brain networks, the effects of these processing

factors on R-fMRI brain networks remain to be further elucidated.

In this study, we aimed to systematically investigate i) whether

topological structures of brain functional networks derived from R-

fMRI data are significantly influenced by varying processing

choices (e.g., different correlation metrics: Pearson’s correlation

versus partial correlation; with and without global brain signal

regression; different frequency bands) and ii) which R-fMRI

processing strategy produces the most reliable topological structure

across short-term (,1 h apart) and long-term (.5 months apart)

scans. To address these questions, we first used a public R-fMRI

dataset with 22 participants (http://www.nitrc.org/projects/

fcon_1000/) (dataset 1) to construct functional brain networks

under different processing strategies, and we then compared the

topological properties of the resultant networks using paired

statistical tests. Finally we employed another public R-fMRI

dataset with 25 participants (http://www.nitrc.org/projects/trt)

(dataset2) to evaluate the short- and long-term TRT reliability of

brain networks derived from these different processing choices.

Materials and Methods

Data Acquisition
Dataset1. Dataset1 was selected from a large sample R-fMRI

dataset that was publicly released as a part of the 1000 Functional

Connectomes Project (http://www.nitrc.org/projects/fcon_1000/)

[2]. This dataset includes 22 right-handed healthy volunteers

(20.161.67 years, 11 males) with no history of neurological or

psychiatric disorders. Written informed consent was obtained from

each participant, and the protocols were approved by the Ethics

Committee of the Institutional Review Board of the Imaging Center

for Brain Research, Beijing Normal University. All of the subjects

were scanned in a 3.0 Tesla SIEMENS MR scanner at Beijing

Normal University Imaging Center for Brain Research. The

functional images were obtained using an echo-planar imaging

sequence with the following parameters: 33 axial slices, thickness/

gap = 3/0.6 mm, in-plane resolution = 64664, time

repetition = 2000 ms, time echo = 30 ms, flip angle = 90u and field

of view = 2006200 mm2. During the resting-state session, the

participants were instructed to hold still, keep their eyes closed, stay

awake and not think of anything in particular. According to a simple

questionnaire administered after the scan, none of the participants

fell asleep during the scan.

Dataset2. Dataset2 is a TRT R-fMRI dataset with 25

participants (30.768.8 years, 9 males) that is publicly available

at NITRC (http://www.nitrc.org/projects/trt). All participants

had no history of psychiatric or neurological illness. Informed

consent was obtained prior to participation. Data collection was

carried out according to protocols approved by the institutional

review boards of New York University (NYU) and the NYU

School of Medicine. Three resting-state scans were obtained for

each participant using echo-planar imaging sequence on a

Siemens Allegra 3.0-Tesla scanner with the following

parameters: 39 axial slices, in-plane resolution = 64664, time

repetition = 2000 ms, time echo = 25 ms, flip angle = 90u, field of

view = 1926192 mm2. Scans 2 and 3 were conducted in a single

scan session, 45 min apart, 5–16 months (mean 1164) after scan

1. All individuals were asked to relax and remain still with their

eyes open during the scan.

Data Preprocessing
Both dataset1 and dataset2 were preprocessed as follows: the

first 10 volumes were discarded to allow the MRI signal to reach a

steady state and allow the subjects to adapt to the scanner noise.

We used the statistical parametric mapping package (SPM5,

http://www.fil.ion.ucl.ac.uk/spm) to perform image preprocessing

as follows. First, functional images were corrected for the

acquisition time delay between slices of each volume and for

head motion between volumes using a six-parameter (rigid body)

spatial transformation. The resulting images were further spatially

normalized to the Montreal Neurological Institute (MNI) EPI

template and resampled into 3-mm isotropic voxels. Given the

widely used frequency interval of 0.01–0.1 Hz in the R-fMRI

literature [1,46], the preprocessed data were band-pass filtered

within this primary band to reduce the effects of low frequency

drift and high-frequency physiological noises. To investigate the

impact of different frequency bands, we also applied Buzsaki’s

nomenclature [35] to divide the whole frequency spectrum into

four different frequency intervals: slow-5 (0.01–0.027 Hz; centered

at 0.0185 Hz), slow-4 (0.027–0.073 Hz; centered at 0.05), slow-3

(0.073–0.198 Hz; centered at 0.14 Hz) and slow-2 (0.198–

0.25 Hz; centered at 0.22 Hz). This division has been used in

several previous R-fMRI studies [47,48,49]. We restricted our

analysis to the slow-5 and slow-4 bands because the other bands

Connectivity Effects on Brain Networks

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e32766



mainly reflect high-frequency physiological noises. Network

analysis was performed for the two bands in the same manner

as for the primary broadband (0.01–0.1 Hz) analysis (for a

flowchart of the data process, see Fig. 1).

Correlation Matrix and Graph Construction
We defined network nodes by parcellating the brain into 90

regions of interest (ROIs) according to the Anatomical Automatic

Labeling atlas (AAL) [50] (Table S1). A representative mean time

series for each region was extracted by averaging the time series of

all voxels within that region followed by multiple linear regression

analysis to remove head motion profiles.

Global signal regression. To evaluate the effects of global

signal regression on network structure, we obtained two sets of

time courses, one acquired using linear regression of global signals

and the other acquired without it.

Correlation metrics. The two sets of time series were then

used to measure functional connectivity among regions by

calculating Pearson’s correlation coefficients and partial

correlation coefficients between any possible pair of regional

time series. The mean time course for each subject can be denoted

as X~(xi(t))i~1,:::90, where xi(t)t~1,:::N is the mean time series of

the ith region. The two connectivity metrics are calculated as

follows:

Pearson’s correlation:

r(xi,xj)~

PN
t~1

½xi(t)-xi�½xj(t)-xj �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t~1

½xi(t)-xi�2
PN
t~1

½xj(t)-xj �2
s ,

where xi denotes the average of xi.

Partial correlation:

r(xi,xj)~-
cov(Xi,j)

-1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov(Xi,i)

-1 cov(Xj,j)
-1

q ,

where cov(Xi,j)
-1 represents the (i,j)th element in the inverted

covariance matrix from the data in matrix X . Note that in partial

correlation analysis, the length of the time series should be larger

than the number of regions because the covariance matrix needs

to be inverted; if not, the inversion can be numerically unstable. In

the present analysis, we have more time series (N = 230 for

dataset1 and N = 184 for dataset2) than regions (n = 90), and the

inversions of partial correlation were stable all through the

analysis.

Combination of the two sets of time series (global-signal

regressed or not) with the two correlation methods (Pearson’s

correlation and partial correlation) resulted in four correlation

matrices for each participant: 1) Pearson’s-correlation-based

functional connectivity estimation on data with global-signal

regression (WGR-PEAR); 2) Partial-correlation-based functional

connectivity estimation on data with global-signal regression

(WGR-PAR); 3) Pearson’s-correlation-based functional connectiv-

ity estimation on data without global-signal regression (WOGR-

PEAR); and 4) Partial-correlation-based functional connectivity

estimation on data without global-signal regression (WOGR-

PAR).

All of the four types of correlation matrices derived above were

further thresholded into binary networks. We chose network

sparsity (S) (the number of existing edges divided by the maximum

possible number of edges) as the threshold measurement. The

sparsity threshold makes two groups of networks comparable by

normalizing the number of edges among all of the networks and

Figure 1. A flowchart for varying processing strategies prior to brain network construction.
doi:10.1371/journal.pone.0032766.g001
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excluding the effects of low-level correlation discrepancies on

topological architecture. Given the lack of a definitive way to select

a single threshold, a continuous range of 0,S,1 was employed to

threshold the correlation matrices into a set of binary matrices (i.e.,

networks).

Given that binary graphs neglect detailed information that may

bias the topological analysis, we also generated weighted brain

networks over the whole range of sparsity (0,S,1) from

correlation matrices to explore the influences of the factors studied

here (for details, see Text S1

Network Analysis
We investigated the topological properties of brain networks at

both the global and regional level. At the global level, we focused

on small-world parameters [clustering coefficient (Cp), character-

istic path length (Lp), normalized clustering coefficient (c),

normalized characteristic path length (l) and small-worldness

(s)], network efficiency [global efficiency (Eglob) and local

efficiency (Eloc)], assortativity (a) and hierarchical topology (b).

At the regional level, we computed the degree of centrality (k) for

each brain region and employed the measure to identify network

hubs because k is the most reliable nodal measurement [44]. To

provide a threshold-independent network assessment, we calcu-

lated the area under the curve (AUC, i.e., the integral) for each

network metric (both global and nodal). The integrated network

metrics were used to perform further statistical comparisons and

TRT reliability analysis. Network hubs were also identified by

using the integrated degree values. The network parameters used

in the present study are summarized in Table 1. For details about

the computation of network parameters, see Text S1 and [51].

Statistical Analysis
To determine the impact of each of the three processing factors

(correlation metric, global signal regression and frequency band)

on integrated global network parameters (Cp, Lp, c, l, s, Eloc,

Eglob, a and b) and regional nodal property (k), nonparametric

paired-sample Wilcoxon signed rank tests were performed on

dataset1 in the following manner: 1) To evaluate the influence of

the correlation measure, statistical comparisons were made

between Pearson’s-correlation-based networks and partial-corre-

lation-based networks (i.e., WGR-PEAR vs. WGR-PAR and

WOGR-PEAR vs. WOGR-PAR). 2) To evaluate the influence of

removing global signals, statistical comparisons were made

between networks with and without global signal regression in

the case of Pearson’s correlation metric (i.e., WGR-PEAR vs.

WOGR-PEAR) because removing global signals is inherent to

the partial correlation metric and makes the global signal an

insignificant factor. The Bonferroni correction was used for

multiple comparisons and the significance level set at p,0.017

(0.05/3). Of note, given the commonly used frequency band of

0.01 to 0.1 Hz in the existing literature of R-fMRI studies and for

simplicity, the effects of the correlation metrics and global signals

were estimated using only datasets that were band-filtered in the

specific frequency interval of 0.01 to 0.1 Hz. 3) To evaluate the

influence of different frequency bands, statistical comparisons

were made between networks at two different frequency bands

(i.e., slow-5 vs. slow-4). These networks were separately

constructed under the following four conditions: WGR-PEAR,

WOGR-PEAR, WGR-PAR and WOGR-PAR (Fig. S1, S2, S3,

S4).

Test-Retest Reliability
To evaluate the TRT reliability of brain networks under

different processing choices, we computed an intraclass correlation

coefficient (ICC) [52] based on Dataset 2. For each global or nodal

network measure derived under each combination of the three

factors mentioned above, we obtained its short-term ICC between

scans 2 and 3 and its long-term ICC between scan 1 and the

average of scans 2 and 3. Of note, the averaging was done on

individual functional connectivity matrices rather than graph

metrics between scan 2 and scan 3 followed by computing graph

metrics. The ICC has been defined as [52]:

ICC~
MSb{MSw

MSbz(k{1)MSw

Where MSb is the between-subject variance, MSw is the within-

subject variance and k is the number of repeated observations per

subject. ICC is close to 1 for reliable measures that show low

within-subject variance relative to between-subject variance and 0

(negative) otherwise. In the current study, reliability was recorded

in terms of the criteria of [53,54], with an ICC value from 0 to

0.25 indicating poor, 0.25 to 0.4 indicating low, 0.4 to 0.6

indicating fair, 0.6 to 0.75 indicating good and 0.75 to 1.0

indicating excellent reliability. Because the network metrics were

integrated over the entire threshold range, ICC is a single scalar

for each network measure.

Results

We generated both binary and weighted brain networks to

evaluate the influences of processing factors on network topology

and found similar results, indicating robust findings regardless of

binary or weighted approach. Therefore, we only reported the

results derived from binary networks here. For weighted results,

see Supplemental figures (Fig. S5, Fig. S6, Fig. S7, Fig. S8, Fig. S9,

Fig. S10, Fig. S11, Fig. S12).

Robust small-world functional brain networks
Graph theoretical analysis revealed that functional brain

networks derived from R-fMRI data show prominent small-

world architecture across a wide sparsity range, Figure 2 showed

the global network parameters within a sparsity range from 0.1 to

0.4, where the networks are sparse and their small-world

attributes are estimable [4]. Compared with random networks,

brain networks are highly clustered (i.e., c.1) and have

approximately equivalent path lengths (l,1). We also compared

the global and local efficiency of the brain networks with those of

comparable random networks and regular lattices. The results

show that the efficiency curves of the brain networks are generally

intermediate between the two extreme cases: the brain networks

have greater global efficiency than the lattices but less than the

random networks, and they have greater local efficiency than the

random networks but less than the lattices (Fig. 2). Taken

together, our observations indicate that human functional brain

networks have efficient small-world properties regardless of the

correlation metric selected or the application of global signal

regression. Furthermore, functional brain networks were found to

be assortative (assortative coefficients aw0) and hierarchical

(hierarchy coefficients bw0) over a wide sparsity range (Fig. 2).

Under the two subdivided frequency bands (i.e., slow-5 and slow-

4), all of the above-mentioned global topological characteristics

(small-world, network efficiency, assortative and hierarchy) were

also found to be present in the functional brain networks

constructed under all four different conditions: WGR-PEAR (Fig.

S1), WGR-PAR (Fig. S2), WOGR-PEAR (Fig. S3) and WOGR-

PAR (Fig. S4).

Connectivity Effects on Brain Networks

PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | e32766



Correlation metrics and global signal regression:
dependence and reliability

Effects of correlation metrics. We examined the effects of

the different correlation metrics on both the global and regional

properties of functional brain networks derived from the widely-

used frequency band ranging from 0.01 to 0.1 Hz (i.e., WGR-

PEAR vs. WGR-PAR and WOGR-PEAR vs. WOGR-PAR). We

found that, compared with partial-correlation-based networks,

Pearson’s-correlation-based networks had greater Cp (WGR-

PEAR.WGR-PAR: p = 4.61e25; WOGR-PEAR.WOGR-

PAR: p = 4.01e25) and Eloc (WGR-PEAR.WGR-PEAR:

p = 4.61e25; WOGR-PEAR.WOGR-PAR: p = 4.01e25) but

longer Lp (WGR-PEAR.WGR-PAR: p = 9.15e25; WOGR-

PEAR.WGR-PAR: p = 4.01e25) and l (WGR-PEAR.WGR-

PAR: p = 4.01e25; WOGR-PEAR.WOGR-PAR: p = 4.01e25)

and lower Eglob (WGR-PEAR,WGR-PAR: p = 4.61e25; WOGR

-PEAR,WOGR-PAR: p = 4.01e25) (Fig. 3). When scaled to

degree-matched random networks, differences in Cp between the

WGR-PEAR and WGR-PAR networks disappeared in c, which

could be due to the effect of normalization to random networks

with topological property magnitudes similar to those of the

corresponding brain networks. Moreover, compared with partial-

correlation-based networks, Pearson’s-correlation-based networks

with global signal regression are marginally more assortative

(WGR-PEAR.WGR-PAR: p = 0.018), and they are more

hierarchical regardless of global signal regression (WGR-

PEAR.WGR-PAR: p = 0.0036; WOGR-PEAR.WOGR-PAR:

p = 0.001) (Fig. 3).

To explore influences on regional network architecture, we

computed the degree of each node and then identified the network

hub regions with the highest degree (for details, see Materials and

Methods). Fig. 4 shows the nodal degree of all hub regions in

WGR-PEAR, WGR-PAR, WOGR-PEAR and WOGR-PAR

networks. As illustrated in Figure 4, brain networks derived from

Pearson’s versus partial correlation metrics appeared to have

different hub distributions. In Pearson’s-correlation-based net-

works (i.e., WGR-PEAR and WOGR-PEAR), the hubs are

predominately located at several association cortical regions (e.g.,

the inferior temporal gyrus [ITG], the middle temporal gyrus

[MTG] and the superior temporal gyrus [STG]) and paralimbic

cortical regions (e.g., the superior temporal pole [TPOsup] and the

middle cingulate gyrus [MCG]). However, in partial-correlation-

based networks (i.e., WGR-PAR and WOGR-PAR), the network

hubs are primarily located at regions in the primary cortex (e.g.,

the postcentral gyrus [PoCG] and calcarine [CAL]) and

subcortical cortex (e.g., the thalamus [THA] and putamen

[PUT]) with high degree (for details, see Fig. 4). Indeed, the

correlation in nodal degree was very low between the Pearson’s-

correlation- and partial-correlation-based networks [r = 0.163 and

p = 0.124 (WGR-PEAR vs. WGR-PAR); r = 0.176 and p = 0.09

(WOGR-PEAR vs. WOGR-PAR)].

Global signal effects. We next evaluated the influence of

global signal regression on global topological parameters in

Pearson’s-correlation-based brain networks (i.e., WGR-PEAR vs.

WOGR-PEAR). WOGR-PEAR networks have greater Cp

(p = 5.3e25), c (p = 0.0001) and Eloc (p = 0.0002) values than

WGR-PEAR networks (Fig. 3). Additionally, WGR-PEAR

networks are more assortative (p = 0.018) and hierarchical

(p = 0.005) than WOGR-PAR networks. Brain networks with

global signals removed versus conserved had a relatively consistent

spatial pattern of hubs primarily distributed in the association

cortex (e.g., ITG, MTG and STG) and paralimbic cortex (e.g.,

TPOsup and MCG) (Fig. 4). The nodal degree of all regions in

WGR-PEAR networks were highly correlated with those in

WOGR-PEAR networks (r = 0.966 and p,2.5e-4).

TRT reliability of network metrics. Given that particular

choices of processing options (i.e., correlation metrics and global

signal regression) can make significant differences in network

topological parameters, we next asked which analytical scheme

would perform the best at modeling brain networks from the

perspective of TRT reliability. Figure 5 shows the TRT reliability

of 9 global network metrics under four different processing

Table 1. Topological parameters of brain functional networks used in this study.

Parameters Character Descriptions Range

Global network properties

Clustering coefficient Cp The capability of local clustering of a network [0, 1], where 1 means full clustering

Characteristic path length Lp The extent of overall routing efficiency of a network [1,‘), where 1 for fully connected network,
‘ for network with disconnected nodes

Gamma c The normalization of Cp divided by those of
comparable random networks

(0, ‘)

Lambda l The normalization of Lp divided by those of comparable
random networks

(0, ‘)

Sigma s The small-worldness indicating the extent of a network
between randomness and order

(0, ‘)

Local efficiency Eloc How efficient of information transfer over a node’s direct
neighbors

[0, 1]

Global efficiency Eglob How efficient of information transfer through the whole
network

[0, 1]

Assortativity a The tendency of nodes to link with those nodes
with similar number of edges

[21, 1], where positive means assortative

Hierarchy b The tendency of self-similar nesting of different
groups or modules into each other

(2‘,‘), where positive means hierarchy

Regional nodal properties

Degree ki The number of connections linked directly to a node [0, N-1], N is the number of nodes

doi:10.1371/journal.pone.0032766.t001
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choices. Generally, most global network metrics exhibited poor to

low reliability irrespective of the correlation metric or global signal

regression. To test whether there is a difference in the TRT

reliability associated with different processing options, we further

performed a nonparametric paired-sample Wilcoxon signed rank

test on the ICCs of global graph metrics. Our results showed that

global graph metrics derived from Pearson’s-correlation-based

networks are more reliable than those derived from partial-

correlation-based networks for both short-term scans (WOGR-

PEAR.WOGR-PAR: p = 0.04) and long-term scans (WGR-

PEAR.WGR-PAR: p = 0.003; WOGR-PEAR.WOGR-PAR:

p = 0.016). Global signal regression produced less reliable results

for short-term scans (WOGR-PEAR.WGR-PEAR: p = 0.019)

but no significant differences for long-term scans (p = 0.46).

We next evaluated the reliability of nodal degree in brain

networks under the four different processing schemes, and the

reliability of nodal degree was rendered onto brain surfaces

(Fig. 6A, B). Our results showed that in Pearson’s-correlation-

based networks (WGR-PEAR and WOGR-PEAR networks),

brain regions with fair reliability were predominately located in

the association and limbic/paralimbic cortexes (Mesulam 1998).

The association cortex regions include the left ANG, right

paracentral lobe (PCL), right precunues (PCUN), bilateral superior

frontal gyrus (dorsolateral) (SFGdor) and right ITG. The limbic/

paralimbic regions include the bilateral hippocampus (HIP),

bilateral MCG and left posterior cingulate gyrus (PCG). In

addition, one primary cortex region of the left CAL was found to

be fairly reliable. In partial-correlation-based networks, certain

limbic/paralimbic and subcortical cortex regions exhibited fair

reliability including the left PCUN, right HIP, right parahippo-

campal gyrus (PHG) and bilateral PUT. Statistical analysis of

nodal reliability revealed that the TRT reliability of nodal degree

was modulated by the two processing factors: Pearson’s-correla-

tion-based networks were more reliable than partial-correlation-

based networks for both short-term scans (WGR-PEAR.WGR-

PAR: p = 7.6e27; WOGR-PEAR.WOGR-PAR: p = 1.2e214)

and long-term scans (WGR-PEAR.WGR-PAR: p = 3.6e28;

WOGR-PEAR.WOGR-PAR: p = 1.1e210) (Fig. 6C, D). Net-

works without global signal regression were more reliable for both

short-term scans (WOGR-PEAR.WGR-PEAR: p = 2.2e27) and

long-term scans (WOGR-PEAR.WGR-PEAR: p = 0.03) (Fig. 6C,

D). These results suggest that WOGR-PEAR networks exhibit the

Figure 2. Global topological properties of Pearson’s-correlation and partial-correlation-based networks with and without global
signal regression. Plots show the changes in small-world parameters (Cp, Lp, c, l and s), network efficiency (Local efficiency and Global efficiency),
assortativity coefficient (a) and hierarchy coefficient (b) in functional brain networks dependent on both correlation metrics (Pearson’s correlation or
partial correlation) and global signal (regressed or not) as a function of sparsity thresholds. Local and global efficiency of random and regular
networks with the same number of nodes and edges as the real networks were shown in gray lines in the network efficiency plots.
doi:10.1371/journal.pone.0032766.g002
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most reliable topological properties for both short-term and/or

long-term scans.

Frequency bands: dependence and reliability
To assess the influence of frequency band selection on network

topology, we next divided the widely used frequency interval

(0.01–0.1 Hz) into two sub-bands: slow-5 (0.01–0.027 Hz) and

slow-4 (0.027–0.073 Hz) and re-performed the network analysis in

these two bands in the case of WOGR-PEAR, given that the

WOGR-PEAR networks exhibit the most reliable global and

nodal topological architecture as shown above.

Effects on network topology. There was no significant

difference in the clustering coefficients or local efficiency of brain

graphs driven by the different frequency bands. However, brain

networks constructed in the 0.027–0.073 Hz frequency band were

found to be more globally efficient than those in 0.01–0.027 Hz as

indicated by shorter Lp (p = 0.0007) and greater global efficiency

(p = 0.001) (Fig. 7). Additionally, our results revealed that brain

networks in slow-4 are less assortative (p = 0.002) but more hierarchical

(p = 3.79e29) than those in slow-5 (Fig. 7). These results indicate that

the selection of different frequency bands can have a significant

influence on the global topological properties of functional brain

Figure 3. Correlation metrics and global signal dependent differences in global network properties. Bars show the differences in the
areas under curves (AUC) of (A) small-world parameters (Cp, Lp, c, l and s), (B) network efficiency (Local efficiency and Global efficiency) and (C)
assortativity coefficient (a) and hierarchy coefficient (b). Error bars correspond to standard deviation of the mean across participants. The asterisk
indicates p,0.05.
doi:10.1371/journal.pone.0032766.g003
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networks. Fig. 8 shows the hubs in WOGR-PEAR networks in the two

different frequency bands. Similar spatial patterns of network hubs

were observed in the two frequency intervals mainly in association

cortex regions (e.g., ITG, MTG, fusiform gyrus [FFG] and SFGdor)

and paralimbic/limbic cortex regions (e.g., MCG, TPOsup and

TPOmid) with a high correlation coefficient (r = 0.85, p = 0.00).

TRT reliability of network metrics. The brain networks in

both frequency bands showed overall low reliability (Fig. 9). The

TRT reliability of global brain network metrics appeared to be

greater in slow-4 (0.027–0.073 Hz) than in slow-5 (0.01–0.027 Hz)

by visual inspection. Subsequent statistical comparisons revealed

that the TRT reliability of global network metrics was modulated

by the frequency band with higher reliability observed for

networks in slow-4 for long-term scans (p = 0.004) but not for

short-term scans (p = 0.65). Nodal degree in the slow-5 and slow-4

brain networks exhibited similar short-term reliability with fair

reliability regions mostly located in association and limbic/

paralimbic cortex regions such as the right medial superior

frontal gyrus (SFGmed), right medial orbitofrontal cortex

(ORBmed), left ITG and bilateral MCG (Fig. 10A). Regions

with fair long-term nodal degree reliability were also located in

association and limbic/paralimbic cortex regions. However,

networks in the slow-4 band displayed more fair reliability

regions than slow-5 band networks including the left FFG, left

ITG, bilateral ORBmed, right PCL, right PCG and right HIP

(Fig. 10B). Statistical comparisons revealed that the nodal degree

of brain networks in slow-4 showed greater reliability than those in

slow-5 for long-term scans (p = 0.0018) but not for short-term

Figure 4. Functional hubs derived from networks using different correlation metrics and global signal strategies. (A) WGR-PEAR, (B)
WOGR-PEAR, (C) WGR-PAR and (D) WOGR-PAR. Regions with degree.the mean+standard deviation were considered hubs. Node colors were coded
according to their membership of classical cortex classifications: association cortex (red), limbic cortex (purple), paralimbic cortex (green), subcortical
regions (light blue) and primary cortex regions (dark blue).
doi:10.1371/journal.pone.0032766.g004

Figure 5. TRT reliability of global topological properties for Pearson’s-correlation and partial-correlation-based networks with and
without global signal regression. The reliability was estimated using areas under curves (AUC) of each metric. Statistical analysis revealed
significant differences in (A) short-term and/or (B) long-term TRT reliability driven by correlation metrics and/or global signal regression.
doi:10.1371/journal.pone.0032766.g005
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scans (p = 0.26) (Fig. 10C, D). Note that for short-term scans, even

not significant, slow-4 demonstrates greater ICC values than slow-

5 on visual inspection, indicating a trend of frequency-dependent

differences in reliability for short-term scans. The strengthened

differences in reliability between slow-4 and slow-5 for long-term

scans could be a result of decreased inter-scan reliability in slow-5

band. We performed statistical tests between inter-scan and intra-

scan ICCs in the two slow bands, and confirmed that reliability is

significant lower for long-term scans than short-term scans in slow-

5 band (p = 0.004) but not in slow-4 band (p = 0.18). These results

suggest that brain networks constructed in the slow-4 band are

more reliable than those in slow-5, which may reflect the fact that

different frequency bands could be associated with different

physiological functions (Buzsaki and Draguhn, 2004).

Nevertheless, further work is needed to verify this finding and

investigate the specific brain function in different frequency bands.

Discussion

In this study, we investigated the influences of different correlation

metrics and preprocessing steps (the application of global signal

regression and the selection of a frequency band) on the topological

properties of functional brain networks obtained using R-fMRI. Our

results showed that both the global (Cp, Lp, c , l, Eloc, Eglob, a and b)

and regional (nodal degree) topological properties of brain networks

depend heavily on the correlation method (Pearson’s correlation/

partial correlation) used and the application of global signal removal.

TRT analysis showed that Pearson’s-correlation-based brain networks

with global signals conserved (WOGR-PEAR) had the most reliable

topological properties. We further found that there were significant

frequency-related differences in topological properties in WOGR-

PEAR networks. Brain networks in 0.027–0.073 Hz exhibited greater

reliability than to those in 0.01–0.027 Hz. These results provide

quantitative evidence regarding the influence of correlation metrics and

specific preprocessing choices on both the global and nodal topological

properties of functional brain networks. This study also has important

implications on how to choose reliable analytical schemes and for the

application of brain network studies under healthy and pathological

conditions.

Efficient small-world functional brain networks
We found robust small-world properties in all functional brain

networks regardless of the correlation metric or global signal

Figure 6. TRT reliability of nodal degree for Pearson’s-correlation and partial-correlation-based networks with and without global
signal regression. Nodal TRT reliability values were projected onto MNI brain surface using the BrainNet viewer (http://www.nitrc.org/projects/bnv/)
for (A) short-term scans and (B) long-term scans in WGR-PEAR networks, WGR-PAR networks, WOGR-PEAR networks and WOGR-PAR networks.
Significant differences were found in TRT reliability of nodal degree driven by correlation metrics (Pearson’s correlation/partial correlation) and global
signal regression (with/without) for (C) short-term and (D) long-term scans. Nodal degree in WOGR-PEAR networks showed the highest ICC values. The
asterisk indicates p,0.05. L, left hemisphere; R, right hemisphere.
doi:10.1371/journal.pone.0032766.g006
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regression (Fig. 2), which is in accordance with previous network

studies [7,17,20]. We also found that functional brain networks

constructed in different frequency bands all possess small-world

organization (Fig. S1, S2, S3, S4), which has also been shown in

previous studies [7,39]. These results indicate that small-world

architecture is well-suited and prevalent for functional brain

networks with respect to densely connected clusters bridged by

short paths, which may maximize the efficiency of information

processing at a relatively low wiring cost [55].

In addition, the functional brain networks appeared to be

assortative and hierarchical, irrespective of the correlation metric,

global signal presence or frequency band. Assortativity is the

tendency for a high degree hub to connect preferentially to other

hubs, and this organization is most common in social networks. It

has been shown that many networks can break down (become

disconnected between pairs of nodes) by removing just a few of the

hubs. However, Newman [56] revealed that assortative networks

are robust against targeted removal of high-degree nodes,

probably because the targeted hubs tend to be united together

and removing them is somewhat redundant. Our results show that

functional brain networks are assortative, which is consistent with

previous studies [57,58] and may suggest that functional brain

Figure 7. Frequency dependent differences in global network properties of functional brain networks. Bars show the differences in the
areas under curves (AUC) of (A) small-world parameters (Cp, Lp, c, l and s), (B) network efficiency (Local efficiency and Global efficiency), (C)
assortativity coefficient (a) and hierarchy coefficient (b). Error bars correspond to standard deviation of the mean across participants. The asterisk
indicates p,0.05.
doi:10.1371/journal.pone.0032766.g007
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systems are resilient when facing pathological attacks. Hierarchical

networks are composed of numerous small, integrated clusters that

are assembled into larger, less integrated groups. This self-similar

nesting structure can be captured by the scaling relationship

between the clustering coefficient and the network node degree.

Hubs in hierarchical networks prefer to connect with nodes that

have a small chance of linking to each other, which enables them

to play the important role of bridging the small clusters into a

single, integrated network [59]. Our observation that functional

networks are hierarchical corresponds well with previous studies

[39,44,45].

Effects of correlation metrics on brain network topology
We found significant correlation metric-dependent discrepan-

cies in the global topological attributes of functional brain

networks, which is in accordance with a recent EEG study [60].

Our results strongly indicate that most global topological

parameters are sensitive to the correlation metric used. The

observed differences should be attributable to the inherent

properties of each metric. Pearson’s correlation measures the

interdependence between two time series. However, the correla-

tion value may result from indirect relationship caused by

common sources. Partial correlation parcels out common driver

components and measures the direct temporal relationship

between brain regions [23]. Including indirect connections in a

network may have an influence on topological parameters. In

addition, the methodological distinction may also result in

differences in the strength and distribution of functional

connectivity, thus accounting for the observed between-group

differences in certain network attributes.

Regional network analysis revealed a distinct spatial pattern of

hubs between Pearson’s-correlation-based networks and partial-

correlation-based networks. Hubs in the former were predomi-

nately composed of association cortical regions, which were in

accordance with both functional [7,10] and structural [61]

network studies using Pearson’s correlation, whereas hubs in the

latter also appeared in primary cortex, paralimbic/limbic cortex

and subcortical regions. There were very few studies have used

partial correlation for hub identification. A structural network

study has found hub regions mostly distributed in association

Figure 8. Functional hubs derived from networks in different frequency bands. Regions with degree.the mean+standard deviation are
considered to be hubs. Node colors were coded according to their membership of classical cortex classifications: association cortex (red), limbic
cortex (purple), paralimbic cortex (green), subcortical regions (light blue) and primary cortex regions (dark blue). (A) slow-5 (0.01–0.027 Hz). (B) slow-4
(0.027–0.073 Hz).
doi:10.1371/journal.pone.0032766.g008

Figure 9. TRT reliability of global topological properties for networks in different frequency bands. The reliability was estimated using
areas under curves (AUC) of each metric. Statistical analysis revealed significant differences in (A) short-term and/or (B) long-term TRT reliability driven
by different frequency bands.
doi:10.1371/journal.pone.0032766.g009
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cortex regions, and only 2 paralimbic cortex regions and 1 primary

motor region were identified as hubs [62]. However, these results

are hardly comparable with the present study because of different

imaging modalities, different parcellation schemes (node defini-

tion) and different nodal metrics used for hub identification. The

discrepancy in the spatial pattern of hub regions between

Pearson’s- and partial-correlation-based networks is not complete-

ly understood. A possible explanation could be that association

cortex regions integrate multiple perceptive and cognitive

functional systems [63] and thus play an important role in

functional brain networks regardless of the connectivity metric

used. Paralimbic/limbic and subcortical regions with extensive

direct projections have been shown to mediate the homeostatic

and autonomic aspects of the internal milieu [63]. These relatively

isolated functions may account for their non-hub status in

Pearson’s correlated brain networks, whereas their extensive direct

connections make them hubs in partial correlated networks

because partial correlation counts only the direct interactions

between brain regions.

TRT analysis showed that the reliability of global and nodal

network metrics is modulated by the correlation metric used.

Pearson’s-correlation-based brain networks tended to have higher

TRT reliability than partial-correlation-based networks. Possible

reasons for this observation are due to the emergence of negative

connectivity related to the partial correlation method. Previous

studies have shown that negative correlations reduce the TRT

reliability of functional connectivity [48] and network metrics [44].

Another reason could stem from validity issues surrounding the

partial correlation method. Although partial correlation is

prominent for its ability to cut indirect edges, it raises the opposite

problem of losing real connections, which could lead to false-

negative errors. A recent study demonstrated that partial

correlation performs poorly at detecting connections in networks

with a large number of node [25]. Together with this evidence, our

results suggest that Pearson’s correlation is more valid and reliable,

whereas partial correlation should be treated with caution for

resting-state brain network studies.

Effects of the global signal on brain network topology
We found significant global signal-related differences in the

global network parameters of Pearson’s-correlation-based net-

works, which may be associated with the effects of global signal

correction on functional correlativity. These effects include the

improved specificity of positive correlations and the emergence of

negative correlations [27,28,30]. Although the exact biological

basis of the global signal and the effect of its removal are not fully

understood [30,31], our results indicate that global signal

correction may have a broad influence on the global topological

properties of Pearson’s-correlation-based networks.

The spatial pattern of hubs was broadly consistent between the

global signal-removed and conserved brain networks. Similar

results have been previously observed in the modular organization

of functional brain networks [10]. This relatively stable regional

topology indicates that the global signal might not significantly

influence the regional architecture of functional brain networks.

TRT analysis revealed that brain networks without global signal

removal outperform those with global signal removal with respect

to the TRT reliability of their global topological properties,

suggesting that the global signal should not be removed in

Pearson’s-correlation-based brain networks in terms of its TRT

reliability.

Effects of frequency band on brain network topology
It has been found that the neuroelectric oscillations in different

frequency bands progress linearly on the logarithmic scale [35]

and are specifically associated with a variety of cognitive functions

[64]. In the present study, on the basis of the approach of

Penttonen and Buzsaki, we focused on the widely adopted

frequency band (0.01–0.1 Hz) of spontaneous BOLD fluctuations

and divided it into a slow-5 band (0.01–0.027 Hz) and a slow-4

Figure 10. TRT reliability of nodal degree for brain networks in different frequency bands. TRT reliability values of nodal degree were
projected onto MNI brain surface using the BrainNet viewer (http://www.nitrc.org/projects/bnv/) for (A) short-term scans and (B) long-term scans in
slow-5 and slow-4. Significant differences were found in TRT reliability of nodal degree driven by different frequency bands for (C) short-term and (D)
long-term scans. Nodal degree in brain networks in slow-4 band showed higher ICC values. The asterisk indicates p,0.05. L, left hemisphere; R, right
hemisphere.
doi:10.1371/journal.pone.0032766.g010
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band (0.027–0.073 Hz). By performing network analysis on both

bands, we found that the small-world metrics (including global

efficiency and s) were significantly higher in the slow-4 band than

in the slow-5 band, which is consistent with previous studies [7,39].

An interesting observation was that frequency has influence on

global efficiency but not network hub. This could be a result with

regard to the different roles of network hubs. Although networks in

slow-5 and slow-4 bands have similar hub distribution, these hub

regions could play different roles in different frequency bands. For

example, a region could be a provincial hub in one frequency

band but a connector hub in another frequency band. Provincial

hubs are nodes that are highly connected by connections that are

mostly contained within a single modular of the network, on the

contrary, connections of connector hubs run mostly between two

or more modules [65,66]. Such discrepancy in hub roles could

result in differences in global efficiency of the networks between

slow-5 and slow-4 band. Future studies have to validate this and

investigate the detailed hub roles in different frequency bands.

Furthermore, TRT reliability analysis revealed the slow-4 band

was more reliable for both global and regional network metrics

than the slow-5 band. These results are in accordance with

previous findings that showed that the slow-4 band has higher

TRT reliability and more reliable BOLD fluctuation amplitude

voxels than the slow-5 band [48]. Moreover, in fMRI-based

studies, ADHD children have presented more diagnostic infor-

mation in the slow-4 band than in other bands [47]. Patients with

schizophrenia have been found to show widespread LFO

amplitude abnormalities in the slow-4 frequency band [67].

Together with these findings in both normal and diseased

populations, our results indicate that the topological properties

of functional brain networks are dependent on the frequency

interval used and are more reliable in the slow-4 band.

Methodological considerations
Choosing the ‘best’ processing step during network modeling is a

very difficult task given the lack of a golden standard [12,68]. In this

study, we performed a systematic analysis of factors influencing

brain networks and their TRT reliability. In addition, using balloon

models to simulate functional brain networks is also likely to offer

some informative guidance. By applying different processing choices

to simulated networks with known topological properties, the

processing pipeline resulting in the most accurate network model

can be determined. Recently, Smith et al. [25] performed a

comprehensive analysis with simulated fMRI data to validate

multiple connectivity metrics, including the Pearson’s and partial

correlation metrics discussed in our present paper. They showed

that these two connectivity metrics are very successful at estimating

functional connectivity in general but that Pearson’s correlation

performs better when the network node number dramatically

increases. This finding is confirmed by our TRT results, which show

that the topological properties of brain networks constructed using

Pearson’s correlation are more reliable than those using partial

correlation. It would be interesting to conduct simulated studies to

validate different network estimation methods in the context of

graph analysis, but this is beyond the scope of this paper.

Another consideration is the interaction between network node

and edge definitions. As mentioned before, how to define nodes and

edges are two key questions in network construction, and they are of

importance in network studies. Network nodes in fMRI data can be

defined according to a prior parcellated template or by sampling

clusters of equal numbers of voxels. It has been shown that network

topological properties can vary across different anatomical

templates [17] and different spatial nodal sizes [18], but no

absolutely standard approach to define network nodes currently

exists. The analysis of edge definition in our present study is limited

to AAL template-based brain networks, and caution should be

exercised when applying the current results to networks constructed

using other node definitions. Future studies will be required to

clarify the interactions between node and edge definitions.

Moreover, the two datasets used here were acquired under

different eyes conditions, eyes closed for dataset 1 and eyes open for

dataset 2. Recent studies have shown that regional activities (e.g.

ALFF, amplitude of low frequency fluctuations) and functional

connectivity within the default and attention networks were

significantly decreased for eyes closed scans comparing with eyes

opened (or fixation) scans [69,70]. However, whether these

differences would result in topological alterations of brain network

remains unclear. Future studies should be conducted to clarify this

issue by collecting eyes closed and eyes opened R-fMRI data on the

same subjects. In addition, the present study only investigated the

influences of the two most frequently used correlation metrics,

Pearson’s correlation and partial correlation. Many other connec-

tivity metrics exist for functional network analysis, such as mutual

information and synchronization likelihood. Further work is needed

to clarify the influences of other metrics on brain network

architecture. Finally, given that the topology of global brain

network and/or certain brain regions would be disrupted in

diseased and aging people [3,11,12,13], and thus render themselves

more vulnerable or less reliable than normal controls, it would be

interesting to explore possible specificities of such population with

respect to specific correlation metrics or preprocessing steps, which

may have important implications in the application of network

analysis to the healthy and diseased brain.

Conclusion
The current work represents a systematic and quantitative

evaluation of the effects of different processing choices on the

architecture and TRT reliability of R-fMRI brain networks. Our

results indicate that such brain networks have robust small-world

configurations regardless of the correlation metric or preprocessing

strategy (global signal regression and frequency interval) em-

ployed, but significant differences exist in both their global and

regional topological parameters. These results suggest that

comparisons of network studies with different processing strategies

should be viewed with caution. TRT analysis showed that the

reliability of network parameters was modulated by all three

processing factors. In particular, topological properties were at

their most reliable in the WOGR-PEAR networks. Furthermore,

the TRT reliability of topological parameters was higher in the

slow-4 band (0.027–0.073 Hz) than in the slow-5 band (0.01–

0.027 Hz). Our results shed light on the processing strategies of

functional brain networks acquired from resting-state fMRI. Our

findings also provide a foundation for continued examination of

network properties in typical and atypical populations.

Supporting Information

Figure S1 Global topological properties in WGR-PEAR brain

networks at different frequency bands. Plots show the changes in

small-world parameters (Cp, Lp, c, l and s), network efficiency

(Local efficiency and Global efficiency), assortativity coefficient (a)

and hierarchy coefficient (b) in functional brain networks at two

different frequency bands (slow-5: 0.01–0.027 Hz, slow-4: 0.027–

0.073 Hz) in case of WGR-PEAR as a function of sparsity

thresholds. Local and global efficiency of random and regular

networks with the same number of nodes and edges as the real

networks were shown in gray lines in the network efficiency plots.

(TIF)

Connectivity Effects on Brain Networks

PLoS ONE | www.plosone.org 13 March 2012 | Volume 7 | Issue 3 | e32766



Figure S2 Global topological properties in WGR-PAR brain

networks at different frequency bands. Plots show the changes in

small-world parameters (Cp, Lp, c, l and s), network efficiency

(Local efficiency and Global efficiency), assortativity coefficient (a)

and hierarchy coefficient (b) in functional brain networks at two

different frequency bands (slow-5: 0.01–0.027 Hz, slow-4: 0.027–

0.073 Hz) in case of WGR-PAR as a function of sparsity

thresholds. Local and global efficiency of random and regular

networks with the same number of nodes and edges as the real

networks were shown in gray lines in the network efficiency plots.

(TIF)

Figure S3 Global topological properties in WOGR-PEAR brain

networks at different frequency bands. Plots show the changes in

small-world parameters (Cp, Lp, c, l and s), network efficiency

(Local efficiency and Global efficiency), assortativity coefficient (a)

and hierarchy coefficient (b) in functional brain networks at two

different frequency bands (slow-5: 0.01–0.027 Hz, slow-4: 0.027–

0.073 Hz) in case of WOGR-PEAR as a function of sparsity

thresholds. Local and global efficiency of random and regular

networks with the same number of nodes and edges as the real

networks were shown in gray lines in the network efficiency plots.

(TIF)

Figure S4 Global topological properties in WOGR-PAR brain

networks at different frequency bands. Plots show the changes in

small-world parameters (Cp, Lp, c, l and s), network efficiency

(Local efficiency and Global efficiency), assortativity coefficient (a)

and hierarchy coefficient (b) in functional brain networks at two

different frequency bands (slow-5: 0.01–0.027 Hz, slow-4: 0.027–

0.073 Hz) in case of WOGR-PAR as a function of sparsity

thresholds. Local and global efficiency of random and regular

networks with the same number of nodes and edges as the real

networks were shown in gray lines in the network efficiency plots.

(TIF)

Figure S5 Correlation metrics and global signal dependent

differences in global network properties in weighted networks. Bars

show the differences in the areas under curves (AUC) of (A) small-world

parameters (Cp, Lp, c, l ands), (B) network efficiency (Local efficiency

and Global efficiency) and (C) assortativity coefficient (a) and hierarchy

coefficient (b). Error bars correspond to standard deviation of the mean

across participants. The asterisk indicates p,0.05.

(TIF)

Figure S6 Functional hubs derived from weighted networks using

different correlation metrics and global signal strategies. (A) WGR-

PEAR, (B) WOGR-PEAR, (C) WGR-PAR and (D) WOGR-PAR.

Regions with degree.the mean+standard deviation were consid-

ered hubs. Node colors were coded according to their membership

of classical cortex classifications: association cortex (red), limbic

cortex (purple), paralimbic cortex (green), subcortical regions (light

blue) and primary cortex regions (dark blue).

(TIF)

Figure S7 TRT reliability of global topological properties for

Pearson’s-correlation and partial-correlation-based weighted net-

works with and without global signal regression. The reliability

was estimated using areas under curves (AUC) of each metric.

Statistical analysis revealed significant differences in (A) short-term

and/or (B) long-term TRT reliability driven by correlation metrics

and/or global signal regression.

(TIF)

Figure S8 TRT reliability of nodal degree for Pearson’s-

correlation and partial-correlation-based weighted networks with

and without global signal regression. Nodal TRT reliability values

were projected onto MNI brain surface using the BrainNet viewer

(http://www.nitrc.org/projects/bnv/) for (A) short-term scans and

(B) long-term scans in WGR-PEAR networks, WGR-PAR

networks, WOGR-PEAR networks and WOGR-PAR networks.

Significant differences were found in TRT reliability of nodal

degree driven by correlation metrics (Pearson’s correlation/partial

correlation) and global signal regression (with/without) for (C)

short-term and (D) long-term scans. Nodal degree in WOGR-

PEAR networks showed the highest ICC values. The asterisk

indicates p,0.05. L, left hemisphere; R, right hemisphere.

(TIF)

Figure S9 Frequency dependent differences in global network

properties of weighted functional brain networks. Bars show the

differences in the areas under curves (AUC) of (A) small-world

parameters (Cp, Lp, c, l and s), (B) network efficiency (Local

efficiency and Global efficiency), (C) assortativity coefficient (a) and

hierarchy coefficient (b). Error bars correspond to standard deviation

of the mean across participants. The asterisk indicates p,0.05.

(TIF)

Figure S10 Functional hubs derived from weighted networks in

different frequency bands. Regions with degree.the mean+standard

deviation are considered to be hubs. Node colors were coded

according to their membership of classical cortex classifications:

association cortex (red), limbic cortex (purple), paralimbic cortex

(green), subcortical regions (light blue) and primary cortex regions

(dark blue). (A) slow-5 (0.01–0.027 Hz). (B) slow-4 (0.027–0.073 Hz).

(TIF)

Figure S11 TRT reliability of global topological properties for

weighted networks in different frequency bands. The reliability

was estimated using areas under curves (AUC) of each metric.

Statistical analysis revealed significant differences in (A) short-term

and/or (B) long-term TRT reliability driven by different frequency

bands.

(TIF)

Figure S12 TRT reliability of nodal degree for weighted brain

networks in different frequency bands. TRT reliability values of nodal

degree were projected onto MNI brain surface using the BrainNet

viewer (http://www.nitrc.org/projects/bnv/) for (A) short-term scans

and (B) long-term scans in slow-5 and slow-4. Significant differences

were found in TRT reliability of nodal degree driven by different

frequency bands for (C) short-term and (D) long-term scans. Nodal

degree in brain networks in slow-4 band showed higher ICC values.

The asterisk indicates p,0.05. L, left hemisphere; R, right hemisphere.

(TIF)

Table S1 Regions of interest from AAL atlas. The regions are

listed in terms of a prior template of Anatomical Automatic

Labeling atlas (Tzourio-Mazoyer et al., 2002).

(DOC)

Text S1

(DOC)
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