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Abstract
The human brain is topologically organized into a set of spatially distributed, functionally specific networks. Of these networks,
the default-mode network (DMN), executive-control network (ECN), and salience network (SN) have received themost attention
recently for their vital roles in cognitive functions. However, very little is known aboutwhether and how the interactionswithin
and between these 3 networkswould bemodulated by cognitive demands. Here, we employed graph-basedmodularity analysis
to identify the DMN, ECN, and SN during an N-back working memory (WM) task and further investigated the modulation of
intra- and inter-network interactions at different cognitive loads. As the task load elevated, functional connectivity decreased
within the DMN while increased within the ECN, and the SN connected more with both the DMN and ECN. Within-network
connectivity of the ventral and dorsal posterior cingulate cortex was differentially modulated by cognitive load. Further, the
superior parietal regions in the ECN showed increased internetwork connections at higher WM loads, and these increases
correlated positively withWM task performance. Together, these findings advance our understanding of dynamic integrations
of specialized brain systems in response to cognitive demands andmay serve as a baseline for assessing potential disruptions of
these interactions in pathological conditions.
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Introduction
An emerging concept in cognitive neuroscience advocates that
cognitive constructs arise from a collection of brain areas acting
together as large-scale networks. In support of this concept,
functional brain imaging data have revealed that the human
brain is topologically organized into a set of domain-specific, dis-
tributed brain networks (Damoiseaux et al. 2006; Smith et al.
2009; Power et al. 2011). Of the major brain networks, the

default-mode network (DMN), executive-control network (ECN),
and salience network (SN) have received themost attention in re-
cent literature (Bressler and Menon 2010; Cocchi et al. 2014). The
putative DMN includes mainly the cinguloparietal regions of the
medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC),
and inferior parietal lobe (IPL). Based on its increased activity in
response to internally focused cognitive processes, the DMN is
thought to be associated with a range of internal cognitive func-
tions such as self-referential thinking and autobiographical
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memory (Gusnard et al. 2001; Raichle et al. 2001). In contrast to
the DMN, the ECN, distributed in the frontoparietal areas, is typ-
ically engaged in a broad spectrum of externally directed tasks
and has been implicated in themanagement of exogenous cogni-
tive functions. The SN, anchored primarily in the bilateral anter-
ior insula (AI) and dorsal anterior cingulate cortex (Seeley et al.
2007), has been proposed to allocate resources to themost home-
ostatically salient events among internal (involved in the DMN)
and external (involved in the ECN) activities (Sridharan et al.
2008; Menon and Uddin 2010).

These 3 brain networks have been reliably identified during
passive resting state aswell as internally and externally demand-
ing cognitive task states (Smith et al. 2009). Furthermore, it has
been demonstrated that functional interactions among these 3
brain networks could reconfigure in response to cognitive tasks.
Studies have shown that the task-positive ECN increases its own
integration and interactionswith the SN to support cognitive pro-
cesses (Honey et al. 2002; Newton et al. 2011; Ma et al. 2012;
Repovš and Barch 2012). Other studies that focused on the DMN
also provided evidence of task-induced modulations on its in-
ternal and external functional interactions (Fransson 2006;
Hampson et al. 2006; Repovš and Barch 2012). However, it is still
largely elusive how these 3 large-scale brain networks reconfig-
ure their intra- and inter-interactions in response to cognitive
modulations (Cocchi et al. 2014).

In this study, we systematically examined functional interac-
tions within and between the DMN, ECN, and SN in 40 healthy
subjects undergoing a functional MRI scan while performing an
N-backworkingmemory (WM) task. To identify these 3 brain net-
works, we used the graph theory-based modularity analysis,
which partitions the brain based on its connectivity profiles
and therefore naturally provides further information about net-
work interactions (Power et al. 2011; Sporns 2014). Based on the
distinct roles of the DMN and ECN in cognitive functioning, we
hypothesized that the interactions within the DMN would de-
crease whereas the interactions within the ECN would increase
with elevated cognitive load. Moreover, given the putative role
of the SN in toggling activities between the DMN and ECN, we
postulated that the interactions between the SN and both the
DMN and ECNwould bemodulated by the cognitive load.We fur-
ther hypothesized that the interactions of these brain networks
would be associated with task performance across individuals.

Materials and Methods
Participants

Forty healthy adults participated in the study. All participants
were screened to ensure no history of neurological/psychiatric
conditions or drug abuse. Informed consent was obtained
from all subjects in accordancewith the guidelines of the Institu-
tional Review Board of the Intramural Research Program of the
National Institute on Drug Abuse. See Table 1 for population
demographics.

Imaging Data Acquisition

MRI scanswere performed on a 3 Tesla Siemens AllegraMR Scan-
ner (Siemens) equipped with a quadrature volume head coil.
High-resolution anatomical images were acquired using a 3-D
MPRAGE T1-weighted sequencewith 160 slices, 1.0-mm isotropic
voxels, repetition time (TR) = 2500 ms, echo time (TE) = 4.38 ms,
and flip angle (FA) = 8°. Functional BOLD images were acquired
using an echo-planar imaging sequence with TR = 2000 ms, TE =

27 ms, FA = 77°, thirty-nine 4-mm slices without interslice gap,
field of view (FOV) = 220 × 220 mm2, and an in-plane resolution
of 3.44 × 3.44 mm2. Head movement was minimized using indi-
vidually custom-made foam padding, and earplugs were used
to attenuate scanner noise.

N-back WM task data were acquired for each participant. The
task was presented as a block paradigm with 4 conditions: 3 ac-
tive WM tasks (1-back, 2-back, and 3-back) and a low-level vigi-
lance task (0-back). In the vigilance task, following the
instruction “press for D,” participants pressed one button each
time the letter D (or d) appeared on the screen. In the 3 active
WM task conditions, following the instruction “N back” (where
N = [1, 2, 3]), participants pressed a buttonwhen the current letter
shown on the screen matched the one presented “N” items back.
The task included 6 runs, with one 0-back, 1-back, 2-back, and
3-back block in each run and took a total of about 27 min to com-
plete. Each block lasted 62 s and included a 2-s indication of the
task difficulty level followed by 30 consecutive trials of single-
letter stimuli (500-ms duration and 1500-ms interstimulus inter-
val). Each run therefore lasted 4 min, 24 s and began with an 8-s
fixation followed by the 0-back block and then the randomized 1-,
2-, and 3-back blocks. All 6 possible orders of 1b, 2b, and 3b oc-
curred in the 6 runs, with the run order counter-balanced across
subjects. An additional 8-s fixation occurred at the end of each
run. Visual stimuli were presented and responses were collected
using E-Prime (Psychology Software Tools, Inc.). The stimuli were
back-projected onto a screen inside the scanner using an LCD
projector. The WM fMRI data were previously used by Zou et al.
(2013) and Liang et al. (2013) for separate studies.

Image Preprocessing

The fMRI datawere preprocessed using the Analysis of Function-
al Neuroimaging software package (Cox 1996). Preprocessing
steps included slice-timing correction, head motion correction,
linear trend removal, high-pass filtering with 0.01 Hz, and spatial
smoothing (FWHM= 6 mm). The task-state time series of each
run were divided into separate conditions (0-back, 1-back,
2-back, and 3-back) as follows: For each 60-s block in each run,
the first 4 volumes (8 s) were discarded and 2 volumes (4 s) of
the next block were included to minimize the effects of hemo-
dynamic delay from previous conditions (Mostofsky et al. 2009).
Then, all task fMRI data were aligned to their corresponding
T1-weighted images, and normalized fMRI images were created
by applying the transformation of T1-weigthed images to the
ICBM452 template. Finally, several nuisance variables, including
6 head motion parameters, the averaged signal from white

Table 1 Demographic characteristics of the participants

Demographic factor

Age (years) 27.4 ± 7.1
Gender (male/female) 15/25
Education (years) 14.4 ± 1.52
WAIS vocabulary score 59.95 ± 7.25
Ethnicity
African American 17
Asian 3
Caucasian 17
Hispanic 1
Mixed 2

Note: Mean ± SD are shown. WAIS: Wechsler Adult Intelligence Scale.

2 | Cerebral Cortex

 at B
eijing N

orm
al U

niversity L
ibrary on January 20, 2015

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


matter, and the averaged signal from ventricles were removed by
multiple linear regression analysis.

Network Construction

To confine the network node definition within brain regions that
are related to the WM task, we created a task mask as an “or”
combination of the significant activation maps for the 1-back,
2-back, and 3-back conditions compared with the 0-back condi-
tion. Briefly, task activation maps for the 1-back, 2-back, and
3-back conditions compared with the 0-back condition were gen-
erated using general linear models of box-car regressors con-
volved with a hemodynamic response function for the 3 WM
task conditions. Quadratic trends and the 6 motion parameters
were included as covariates of no interest. For each task condi-
tion, a one-sample t-test was performed across subjects against
the null hypothesis. The significance thresholdwas set to P < 0.01
corrected for whole brain multiple comparisons based on Monte
Carlo simulations (Cox 1996); this threshold corresponded to an
uncorrected single voxel significance level of P < 0.01 and a min-
imum cluster size of 297 mm3.

For each individual, we extracted time courses from the task
mask and computed the voxel-wise Pearson correlation matrix
within each block. We then averaged across the 6 runs for each
task load condition and thresholded the resultant correlation
matrices to generate binary brain graphs.Weused a set of thresh-
olds ranging from 1% to 5% connection density with a step of 1%.
The lowest threshold (1%) was determined to ensure that the re-
sulting graphs are not severely fragmented (the largest compo-
nent size >90%), whereas the highest threshold (5%) was set to
remove weak correlations so that only the correlations whose
corresponding P-values passed a statistical threshold (P < 0.05)
were retained. The P-values were corrected for multiple compar-
isons using the false discovery rate procedure at a q-value of 0.05.
Note that the negative correlations took only a very small portion
in the voxel-wise correlationmatrices after the thresholding pro-
cess nomatter the global signal was removed or not, herewe only
focused on the positive connections in our analysis by setting the
negative correlations to zero.

Modularity Analyses

The resulting brain graphs were then subjected to a graph-based
modularity analysis to identify brain modules (i.e., brain net-
works) and to estimate module-based graph properties.

To identify modules (i.e., groups of nodes that are highly con-
nected with each other but less connected with other nodes), a
module identification algorithm optimizes the total number of
modules and the associated module membership of nodes by
maximizing modularity, Q, which was defined as follows:

Q ¼
XM
s¼1

½ls=L� ðds=2LÞ2�;

where M is the number of modules, ls is the number of within-
module edges in the module s, L is the total number of edges in
the network, ds is the sumof the degrees at each node in themod-
ule s, and the degree of a node is the numberof linked edgeswith-
in the given node (Newman 2004). In practice, themodularity of a
network with a strong modular structure typically ranges from
0.3 to 0.7 (Newman and Girvan 2004). In this study, we used the
Louvain algorithm (Blondel et al. 2008), a fast and relatively accur-
ate algorithm suitable for detecting modules in large networks.

For each task condition, themodularity analysis was first per-
formed on every individual brain graph. Given thatmodule num-
ber and membership vary between subjects, we also performed
themodularity analysis on group-level brain graphs to determine
the modular structure at each task load. For the group-level ana-
lysis, a group brain graph was obtained by averaging all correl-
ation matrices across the subjects and then thresholding at
each of the pre-selected network densities from 1% to 5%. After
the group-level modular analysis, the similarity between the
modularity partition obtained at 0-back and that obtained at
the 1-back, 2-back, and 3-back conditions was estimated using
normalized mutual information (NMI) (Danon et al. 2005), a
measure of the similarity between 2 partitions that ranges from
0 for unrelated partitions to 1 for identical partitions. DMN, SN,
and ECN modules, which were of particular interest in the pre-
sent study, were selected from the module partitions at each
task load by visual inspection. Since the modular partitions
were very similar between task loads according to the NMI ana-
lysis (see Results), we used the modules of DMN, SN, and ECN
at the low-level task state of 0-back to compute the following
module-based graph properties at both module and nodal levels.

At the module level, the intramodule connectivity was calcu-
lated as the sum of connections within a module, whereas the
intermodule connectivity was calculated as the sum of connec-
tions between any pair of 2 modules.

At the nodal level, we measured the within-module degree
(WD) z-score and participation coefficient (PC) across the mod-
ules of DMN, SN, and ECN (Guimera and Amaral 2005a, b). WD
measures the normalized degree of connections of a nodewithin
its corresponding module:

zi ¼
ki � ks
σs

;

where ki is the number of intramodule connections of a node i
within module s, and ks is the average number of intramodule
connections of all nodes in module s. σsis the standard deviation
of the intramodule connection numbers of all nodes inmodule s.
Thus, zi will be large for a node that has a large number of intra-
module connections relative to other nodes in the samemodule.
The PC for node i is defined as follows:

PCi ¼ 1�
XNM

s¼1

kis
ki

� �2

;

where NM is the number of modules and kis is the number of con-
nections between the node i and module s. ki is the total number
of connections of node i in the network. The PC of node i will be
close to one if its connections are distributed among different
modules and zero if it is connected exclusively within its own
module.

Statistical Analysis

Weused a repeated-measures analysis of variance (ANOVA), with
WM load as a within-subject fixed effect, to determine the effect
of memory load on each module-based graph metric. For mod-
ule-wise measures (i.e., intra-/inter-module connectivity), the
significant threshold was set at 0.05/6 = 0.0083 using a Bonferroni
correction method for multiple comparisons. For those network
metrics showing significant effects of WM load, statistical differ-
ences between all pairs of memory load levels were estimated
using paired t-tests. The Bonferroni-corrected significance
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threshold was set at 0.05/6 = 0.0083. For nodal-wise (i.e., voxel-
wise)WD and PCs, the significance level was set at Pcorrected < 0.05
combined with a cluster threshold of 68 voxels based on Monte
Carlo and an uncorrected single voxel significance level of
P < 0.05. Subsequently, paired t-tests were performed on the aver-
aged WD/PC values of the brain regions that were significantly
modulated by WM load. The Bonferroni-corrected significance
threshold was set at 0.05/6 = 0.0083.

To test whether WM task-related network measures might
correlate with behavioral performance, Pearson correlation ana-
lyses were carried out with dprime. Dprime is defined as the dif-
ference between the normalized values of the hit rates and false
alarm rates. The better the participant maximizes hits andmini-
mizes false alarms, the better the participant performs to dis-
criminate target during the task, and then the higher dprime
scores (Haatveit et al. 2010). Note that we did not use the reaction
time as ameasure of task performance becausewe did not specif-
ically instruct the subjects to respond as quickly as possible dur-
ing theWM task. Task-related networkmeasureswere calculated
as the ratio of each WM task load (1-back, 2-back, and 3-back) to
its baseline (0-back) value; behavioral performance was accord-
ingly calculated as the ratio of dprime under each task load to
that under 0-back. The analyses were performed for the 2-back
and 3-back conditions only, as performance in the 1-back condi-
tion was at its ceiling.

Validation Analysis

To evaluate the reliability of our results, we examined the influ-
ences of different preprocessing and analysis strategies. First, we
explored the reproducibility of our results with global signal
regression, given that there is still ongoing debate about the com-
plex composition of global signal, which likely originates from
both nuisance (e.g., respiration, cardiac signals, etc.) and neuron-
al signals (Schölvinck et al. 2010; Chai et al. 2012; Saad et al. 2012).
Second, we also repeated our analyses on weighted networks to
evaluate the reproducibility of our findings.

Results
Behavior Analysis

There was significant WM load-effect in task performance as
measured by dprime (F3,156 = 125.02, P < 0.005) (Supplementary
Fig. 1). Post hoc t-tests using Bonferroni correction for multiple
comparisons revealed that dprimewas significantly different be-
tween each pair of the 2 conditions (P < 0.01). As noted earlier,
dprime was calculated on the basis of the hit rate and the false
alarm rate. WM load has significant effects in both hit rate (F3,156
= 20.43, P < 0.005) and false alarm rate (F3,156 = 125.03, P < 0.005)
(Supplementary Fig. 1). Post hoc t-tests using Bonferroni correc-
tion for multiple comparisons found that both these 2 measures
were significantly different between each pair of the 2 conditions
(P < 0.01).

Brain Module Identification

By combining the task activation maps across task loads, we ob-
tained aWM-related task mask consisting of both task-activated
and -deactivated regions. Task-activated regions included the in-
ferior and middle frontal gyrus, superior parietal lobe (SPL), AI,
dorsal ACC, and thalamus (Fig. 1A), whereas the deactivated re-
gions were observed in the medial prefrontal cortex, PCC, hippo-
campus/parahippocampal gyrus, paracentral and postcentral

gyrus, superior frontal gyrus, superior temporal gyrus, and cu-
neus (Fig. 1A)

Modularity analysis was performed on brain graphs within
the task mask over a range of density thresholds. All subjects
showed high modularity Q-values at all 4 WM task loads across
the density range (Fig. 1B). As the network density decreased,
modularity Q increased monotonically. A two-way repeated
ANOVA revealed no significant effect of task load on modularity
(F3,117 = 1.19, P = 0.317). There was also no significant interaction
between task load and density threshold (F12,468 = 1.477, P =
0.129). NMI was computed for module partitions obtained from
the group brain graphs between different density thresholds
and between task loads. For each task load, NMI ranged from
0.55 to 0.85, indicating similar module assignments across
thresholds. For each density threshold, the NMI of module parti-
tions between task loads also exhibited high values (ranging from
0.61 to 0.85), indicating themodule structure of the brain network
was relatively stable across different task loads. Given the above
observation of highly consistent module assignments between
density thresholds and task loads, we chose to report our results
based on the module partitions of the 0-back brain graph thre-
sholded at the sparsest density of 1%.

Figure 1C plots the module assignments of the 0-back brain
network at 1% threshold onto the brain surface. A total of 16mod-
ules were identified, including the DMN, SN, and ECN modules,
which were selected for further analysis. As illustrated in Fig-
ure 1D, the 3 networks of DMN, SN, and ECN were present at all
task loads. The DMNmodule is composed of regions of the rostral
ACC, mPFC, superior frontal cortex, inferior temporal lobe, PCC/
precuneus (PCu), and inferior parietal cortex; the SN module in-
cludes regions of dorsal ACC and bilateral insula; and the ECN
module includes primarily the bilateral lateral frontal and
parietal cortices. Figure 1E depicts the 3 modules in a spring-
embedded layout, where ties act as springs to position the
nodes in space such that well-connected groups of nodes are
pulled together.

Load-Dependent Changes in Interactions among
the DMN, ECN, and SN

Module-Wise Changes
We then examined how interactions within and between DMN,
SN, and ECN networks varied withWM load. Repeated-measures
ANOVA revealed significant main effects of WM load on intra-
module connectivity within the DMN (F4, 40 = 13.3, P < 0.001) and
ECN modules (F4, 40 = 8.17, P < 0.001). Post hoc tests indicated
that connectivity within the DMN decreased when WM load
increased from 0-back to 2-back and 3-back, and from 1-back to
2-back and 3-back (Fig. 2A), whereas connectivity within the
ECN network increased from 0-back to 1-back, 2-back, and
3-back (Fig. 2B).

Significant effects of WM load on intermodule connectivity
between the SN and DMNmodules (F4, 40 = 11.7, P < 0.001) and be-
tween the SN and ECNmodules (F4, 40 = 5.28, P = 0.0019) were also
observed. The SN module routed more connections to both the
DMN and ECN networks with increasing WM load. Connectivity
between the SN and DMN networks increased significantly
from 0-back to 2-back and 3-back, and from 1-back to 2-back
and 3-back (Fig. 2C), whereas connectivity between the SN
and ECN increased significantly from 0-back to 1-back and 3-
back (Fig. 2D). By correlating between beta weights (activation/
deactivation) and changes in module-wise connectivity, we
found that the task deactivation correlated negatively with SN-
DMN connectivity (r = −0.34, P = 0.035) at 3-back, whereas the
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task activation correlated positively with SN-DMN connectivity
(r = 0.35, P = 0.027) at 3-back (Supplementary Fig. 2). However,
these correlations were not significant after correcting for mul-
tiple comparisons.

Note that connectivity within the ECNmodule and connectiv-
ity between the SN and ECN modules reached its highest value
at 1-back and then dropped at 2-back and 3-back in comparison
with the 1-back condition, but these differences did not
reach the statistical threshold after correction for multiple
comparisons.

Nodal-Wise Changes
We thenmoved on to characterizing the topological roles of each
node (i.e., voxel) within and between theDMN, SN, and ECNmod-
ules, and determining whether and how they weremodulated by
increasing WM load.

Two standard network metrics, WD and PC, were used to de-
pict the localization and diversity of connections linked to every
node. WD helps to identify the nodes that are highly connected
within their own modules. Fig 3A mapped the WD onto the
brain surface, which exhibited very similar spatial patterns
across the 4 memory loads. Brain regions of high WD were lo-
cated in the PCC andmPFC within the DMNmodule, the bilateral
AI within the SN module, and the bilateral posterior parietal

gyrus within the ECN module. A repeated-measure ANOVA re-
vealed that the WD was significantly modulated by WM load in
the regions of the mPFC/ACC, left IPL, and ventral and dorsal
PCC (Fig. 3B). Post hoc paired t-tests further revealed that WD in
the ventral PCC and left IPL decreased significantly when WM
load increased from 0-back to 2-back and 3-back, and from
1-back to 2-back and 3-back, whereasWD in mPFC/ACC and dor-
sal PCC increased significantly when WM load increased from 0-
back to 2-back and 3-back, and from 1-back to 2-back and 3-back
(Fig. 3C).

The PC measures the extent to which a node connects to dif-
ferent modules other than its own. Low PCs indicate that nodes
are solely connected within their own modules, whereas higher
coefficients indicate that their connections are distributed in a
variety of modules. Fig. 4A shows very similar patterns of PCs
at different WM loads. Brain regions with high PCs were mainly
distributed in the bilateral AI, bilateral frontal and parietal
gyrus, dorsal ACC, and dorsal PCC. Significant effects of WM
load were observed in the mPFC/ACC, PCC, left SPL, and right
MFG (Fig. 4B). Further post hoc tests indicated that PCs in these
regions increased significantly when WM load increased from
0-back to 2-back and 3-back, and from 1-back to 2-back and 3-
back (Fig. 4C). The observed increase of PC in the PCC covered
both its ventral and dorsal components; however, given the

Figure 1. Illustration of module identification results. (A) Task mask generated from a combination of activation/deactivation maps across 1-back, 2-back, and 3-back

against 0-back. Modularity analyses were performed within this mask. Brain areas showing task-related activation are depicted in red; areas showing task-related

deactivation are depicted in blue. (B) The mean modularity across subjects obtained for 0-back, 1-back, 2-back, and 3-back at network sparsities ranging from 1% to

5%. (C) Module partitions of the 0-back brain graph thresholded at the highest density of 1%. (D) Maps of the DMN (blue), ECN (red), and SN (yellow) at 0-back, 1-back,

2-back, and 3-back. (E) A spring-embedded layout of nodes and edges within the DMN, ECN, and SN networks at 0-back. The network was visualized with the Pajek

program (Batagelj and Mrvar 1998).
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opposite patterns in the change ofWD of these 2 PCC subregions,
it may worth further exploring whether they have different pro-
files of connectivity change with ECN and/or SN modules. Thus,
we anatomically partitioned the PCC cluster into a dorsal sub-
region and a ventral subregion. We then separately computed
the ROI-module connectivity for these 2 subregions as the num-
ber of connections between the subregion and the ECN or SN
module. Repeated ANOVA analysis revealed that while the ven-
tral PCC had more connections with both ECN and SN modules,
the dorsal PCC showedmore connections only with the SNmod-
ule (Supplementary Fig. 3). This result indicated that although
both ventral and dorsal PCC had increased PC as task load in-
creased, these 2 PCC subregions could be distinguished by the dif-
ferent patterns of their connectivity change with the ECN
module.

We further found that the PC of the left SPL correlated posi-
tively with WM task performance at the 3-back level (r = 0.39,
P = 0.01) (Fig. 5); that is, the subjects with higher PC values in
the left SPL performed better during the 3-backWM task. This re-
sult indicates that the interactions of left SPL with other brain
modules may play vital role in predicting individual variations
in performing the WM task. Therefore, we went on to explore
the detailed connectivity pattern of the left SPL to answer 2 fur-
ther questions: 1) which specific regions are left SPL more con-
nected with during high loads; (2) which specific connections
with left SPL would correlate with the WM performance. We

first computed the connectivity between left SPL and every
other voxels within the task mask as the number of connections
between a specific voxel and the voxels within the left SPL region.
Repeated ANOVA and post hoc analysis revealed increasing
trends (uncorrected P < 0.05) in connectivity between left SPL
with frontoparietal cortices, dorsal ACC, and precuneus as task
load increased (Supplementary Fig. 4). By correlating WM per-
formance dprime and left SPL connectivity,we found that dprime
correlated positively with the connectivity between left SPL and
the regions of bilateral lateral frontal and parietal cortices, right
AI, dorsal anterior, and posterior cingulate cortices at 3-back
under an uncorrected significance level of P < 0.05 (Supplemen-
tary Fig. 5).

Reproducibility of the Findings
With global signal regression,most of our above-mentioned find-
ings in task load-effect on intra- and inter-module connectivity
remained similar (Supplementary Fig. 6). However, the positive
correlation between the PC in the left SPL andWM task perform-
ancewas no longer significant (r = 0.24, P = 0.15). This result partly
supported the notion that the global signal is reflective of neur-
onal signals and the removal of it couldwash out interesting vari-
ance related to behavioral performance. When applying our
analyses on weighted networks, most of our findings reported
above were reproducible except for the increased SN–ECN con-
nectivity as task load increased (Supplementary Fig. 7).

Figure 2. Load-dependent differences in intranetwork connections within the DMN (A) and the ECN (B), and internetwork connections between the SN and the DMN (C)

and between the SN and the ECN (D). Error bars refer to SE. **Pcorrected < 0.05, *Puncorrected < 0.05.
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Figure 3. Load-dependent effects inWD. (A) TheWDmapat 0-back, 1-back, 2-back, and 3-back. (B) Repeated-measuresANOVA revealed significantlymodulatedWDvalues

by task load in the ACC (1) and ventral PCC (2), dorsal PCC (3), and left IPL (4). (C) Significant differences inWD across the 4 task loads in the 4 regions. Error bars refer to SE.

*Pcorrected < 0.05.

Figure 4. Load-dependent effects in PC. (A) The PCmap at 0-back, 1-back, 2-back, and 3-back. (B) Repeated-measures ANOVA revealed significantlymodulated PC values by

task load in the rACC (1) and PCC (2), left SPL (3), and right MFG (4). (C) Significant differences in PC across the 4 task loads in the 4 regions. Error bars refer to SE.

*Pcorrected < 0.05.
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Discussion
We used graph-based modularity analysis to identify the DMN,
ECN, and SN, the 3 brain networks that are thought to play im-
portant roles in cognitive function and dysfunction. By assessing
functional interactions within and between each of these 3 brain
networks during an N-back WM task, we aimed to elucidate
whether and how their interactions are modulated by cognitive
load. Our results showed that as WM load increased, functional
connectivity decreased within the DMN and increased within
the ECN. Additionally, the SN connected more with both the
DMN and ECN. We further identified specific brain regions that
were modulated by increasing cognitive load in terms of their
within-network or between-network connectivity profile.

Modular Organization of Brain Networks in WM Tasks

Modularity analysis showed that functional brain graphs exhib-
ited modular organization with high modularity at all WM
loads, which is consistent with previous findings during both
resting (He et al. 2009; Power et al. 2011) and task states
(Kitzbichler et al. 2011). Modular topology is “optimal” for brain
networks because it provides greater robustness, adaptability,
and evolvability of network function (Meunier et al. 2010). Since
modular organization favors functional segregations through
relatively rapid within-module processes, a less modular struc-
ture would be expected during cognitively effortful conditions
that support brain-wide global integration and synchronization
(Kitzbichler et al. 2011). Although we did not find a significant
cognitive load-dependent effect on modularity, we observed a
trend of decreases in modularity at higher cognitive loads
(2-back and 3-back) compared with lower cognitive loads (0-back
and 1-back) (Fig. 1B), suggesting that the functional brain network
is adapting toward a more globally oriented organization.

We also noticed that the spatial distribution of brain modules
was largely preserved across the 4 task conditions and that the
major modules, especially the DMN, ECN, and SN which were
of particular interest in the current study, showed spatial pat-
terns consistent with those identified during a task-free resting
state (Power et al. 2011). These observations suggest that the
modular topology is a fundamental setting of the brain system;
while each brain module may specialize in specific functions,
an integration of modules through dynamic interactions is ne-
cessary in order to perform a complex, cognitively demanding
task.

Intranetwork Interactions Modulated by Cognitive Load

We found in this study that the functional interactionswithin the
DMNand ECNweremodulated byWM load. Firstly, we found that
connectivity within the ECN increased at high loads of the WM
task, which is consistent with previous studies showing in-
creased connectivity among ECN areas during cognitive tasks
(Honey et al. 2002; Nagel et al. 2011; Newton et al. 2011; Ma
et al. 2012; Repovš and Barch 2012). In contrast, functional con-
nectivity within the DMN decreased as cognitive load increased,
which is in accordance with prior studies showing down-
regulated activity and connectivity within the DMNduring cogni-
tive tasks (Fransson 2006; Repovš and Barch 2012). This finding
also confirms that the internally oriented DMN may become
less involved as cognitive demand increases. More interestingly,
we found that the standard graph metric of WD for every node
(i.e., voxel) did not homogeneously decrease across the DMN; re-
gions of the ventral PCC and left IPL showed significantly de-
creased within-module connectivity whereas the mPFC/ACC
and dorsal PCC exhibited increased within-module connectivity
as the cognitive load increased.

Internetwork Interactions Modulated by Cognitive Load

At high cognitive loads of the WM task, we found increased con-
nections between the SN and both the ECN and DMN. More spe-
cifically, at the nodal level, DMN regions of the mPFC/ACC and
PCC and ECN regions of the SPL and MFG showed increased PCs
at high WM loads, indicating that intermodule connections in-
crease as WM load increases. These findings are consistent
with previous studies showing increased integration between
the frontoparietal and the cingulo-opercular regions (Nagel
et al. 2011; Repovš andBarch 2012; Cocchi et al. 2014) and between
DMN regions and the SN (Leech et al. 2011; Repovš and Barch
2012) during cognitively demanding states.

The SN has been proposed to monitor the most salient event
among internal and external stimuli and to dynamically relocate
resources between the ECN and DMN according to the cognitive
requirements of the salient event (Menon and Uddin 2010).
Sridharan et al. (2008) demonstrated that the key region of the
SN, the right AI, acts as a “causal hub” in activating the frontopar-
ietal ECN and deactivating the DMN across task paradigms and
stimulus modalities. A recent study has shown that damage to
the white matter tracts within the SN can result in abnormality
of DMN function and deficits in inhibitory control, suggesting

Figure 5. Relationship betweenWM task performance and PC in the left SPL at 3-back. (A) PC in the region of the left SPL showed significantmodulation effect of task loads

(3-back–0-back). (B) Plot of the average changes in PC (3-back/0-back) in the left SPL against dprime (3-back/0-back).
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that the structural integrity of the SN is necessary for efficient
regulation of activity in the DMN for efficient cognitive control
(Bonnelle et al. 2012). Together with this evidence, our observa-
tions of increased integration between the SN and both the ECN
andDMNduring highWM loads suggest that as task demands in-
crease, the SNmay engagemore closely with brain areasmediat-
ing high-order cognitive processes while disengaging the
internally directed DMN regions to facilitate externally oriented
task implementation. Moreover, althoughmarginal, we observed
the increased connectivity between SN and DMN correlated
negatively with deactivation and positively with activation,
which indicate that the interactions between SN and DMN may
mediate local activity of both default mode and ECNs in respond-
ing to elevated cognitive load.

Lastly, we observed a significant relationship between partici-
pant coefficient in the right SPL and task performance at the
3-back level, indicating that individuals who had more intermo-
dule connections with the SPL tended to have better task per-
formance. The SPL is a central region within the ECN and has
been associated with themanipulation and rearrangement of in-
formation in WM (Koenigs et al. 2009). Previous studies have de-
monstrated that greater activity in the SPL during WM tasks can
predict superior task performance (Wager and Smith 2003). Our
results complementarily suggest that the SPL actively interacts
with other WM-related regions during the task and that the de-
gree of interactions contributes to the proficiency of task
performance.

Ventral and Dorsal PCC Connections in WM Tasks

The PCC is a central region in the DMN (Buckner et al. 2008;
Hagmann et al. 2008) and also one of the most metabolically ac-
tive brain regions (Raichle et al. 2001; Liang et al. 2013). Recent
studies suggest that the PCC can be separated into ventral and
dorsal components in terms of their distinct cytoarchitectonics
(Vogt et al. 2006) and functional connectivity patterns (Margulies
et al. 2009; Leech et al. 2012). While the ventral part of the PCC
connected solely with other DMN regions and is involved in in-
ternally directed functions, the dorsal PCChas broad connections
to both DMN and cognitive control areas and has been thought to
work together with the SN to detect and regulate the internal and
external events (Margulies et al. 2009; Leech et al. 2012). In line
with previous studies showing opposite patterns in the change
of between-network interactions for ventral and dorsal PCC sub-
regions at higher task load (Leech et al. 2011), we found that as
WM load increases, the ventral PCC showed decreased within-
module interactions in DMN and increased intermodule interac-
tions with ECN, whereas the dorsal PCC exhibited increased
within-module connectivity with DMN but no significant
changes in its interactionswith ECN. These findings demonstrate
the functional heterogeneousness of the ventral and dorsal parts
of the PCC. The relatively decreased connectivity with DMN and
increased connectivity with ECN in ventral PCC during high cog-
nitive loads might reflect a suppression of internally directed
cognition in support of cognitive engagement in the externally
oriented WM task. In contrast, the dorsal PCC showed increased
functional integration with both DMN and SN as task load in-
creases, which may indicate that the dorsal PCC is actively in-
volved in mediating attention directed externally at higher task
loads.

Our results are largely in consistence with existing theories
about the neural mechanism of WM.WM is the process to main-
tain and manipulate information that no longer present in the
immediate environment but necessary for future adaptive

behavior. Active maintenance of temporarily maintained infor-
mation and executive control are 2 key components during the
WMprocess (Miyake and Shah 1999). Empirical evidences strong-
ly indicate that the active maintenance of task-relevant repre-
sentations may be represented by sustained activity in the
prefrontal and posterior parietal cortices (D’Esposito et al. 1999;
Curtis and D’Esposito 2003). Our findings of increased functional
connectivity among the frontoparietal regions as a function of
WM task load may provide further support on the neural me-
chanisms of maintenance processes. Moreover, our results of
the intermodule connectivity reorganization emphasize the
mechanism of the monitoring and detection of the internal and
external environment for the cognitive control process during
the implementation of the WM task.

Figure 6 schematically summarizes the connectivity architec-
ture changes during the WM task. As the WM load increases,
functional interactions within and between the ECN, SN, and
ECN networks reorganized in response to the task load. While
the intra-network connectivity increased in ECN and decreased
in DMN at a higher task load, the SN exhibited more connections
to both ECN and DMN. These results are largely consistent with
previous WM studies (Hampson et al. 2006; Newton et al. 2011;

Figure 6. Schematic illustration of the load-dependent reorganization of intra-

and inter-module connectivity among the DMN, SN, and ECN. As task load

increases, connectivity within DMN decreased whereas connectivity within

ECN increases. SN showed more connections to both DMN and ECN. The inset

figure circled by dashed lines shows the heterogeneous changes in intermodule

connectivity for ventral (purple) and dorsal (dark blue) PCC subregions. The

lines match the color of the brain modules or regions. Module-level

intermodule connections are depicted in green color. PCC, posterior cingulate

cortex. The 3D brain regions were drawn using the BrainNet viewer (www.nitrc.

org/projects/bnv (Xia et al. 2013)).
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Ma et al. 2012; Repovš and Barch 2012) and extend our under-
standing of the neural substrates of WM from focal activity
changes within frontoparietal regions to the reorganization of
functional connectivity between these regions. Our findings
also provide evidence to support the notion that the dynamic in-
teractions among ECN, SN, and DMN may play vital role during
cognitive functions (Cocchi et al. 2014). Interesting results were
also observed regarding the regional-specific changes with in-
creasing WM load. For example, the differential load-dependent
changes in ventral and dorsal PCC may update our understand-
ing about the function of the DMN regions as involved solely in
internal cognitive processing, and the increased intermodule
connectivity of key ECN regions may indicate the importance of
system-wise cooperation and integration to support the imple-
mentation of demanding tasks.

Further Considerations

There are several issues that need to be addressed in the present
study. First, although we used imaging voxels to construct brain
networks, there are other approaches to doing so such as those
based on structurally or functionally defined brain regions
(Wang et al. 2009; Craddock et al. 2012). Further investigation
will be necessary to compare our current voxel-wise observations
with those from region-wise brain networks and to providemore
insights on the impact of different nodal definitions. Second, the
interactions within/between different brain regions/networks
were unidirectional; it would be interesting to include directional
information using analyses such as granger causality analysis
(Roebroeck et al. 2005) and dynamic causal modeling (Friston
et al. 2003) to explore the causal influences of signaling in cortical
circuits. Third, it might be worth exploring how these intra- and
inter-network connections change in patients with neuropsychi-
atric disorders such asAlzheimer’s disease and depression, given
that previous studies have shown declines of various cognitive
functions associated with the DMN, ECN, and SN (Menon 2011).

In conclusion, the present study demonstrated that while the
spatial contents of the DMN, ECN, and SNwere largely consistent
across different WM task loads, functional connectivity within
and between these 3 brain networks was modulated by increas-
ing WM load. These findings advance our understanding of the
dynamic interactions of specialized functional systems in nor-
mal cognition and provide a baseline for assessing their potential
disruptions in neuropsychiatric disorders.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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