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Resting-state functionalMRI (R-fMRI) has emerged as a promisingneuroimaging technique used to identify glob-
al hubs of the human brain functional connectome. However,most R-fMRI studies on functional hubsmainly uti-
lize traditional R-fMRI data with relatively low sampling rates (e.g., repetition time [TR] = 2 s). R-fMRI data
scannedwith higher sampling rates are important for the characterization of reliable functional connectomes be-
cause they canprovide temporally complementary information about functional integration amongbrain regions
and simultaneously reduce the effects of high frequency physiological noise. Here, we employed a publicly avail-
able multiband R-fMRI dataset with a sub-second sampling rate (TR = 645 ms) to identify global hubs in the
human voxel-wise functional networks, and further examined their test–retest (TRT) reliability over scanning
time.We showed that the functional hubs of human brain networksweremainly located at the default-mode re-
gions (e.g., medial prefrontal and parietal cortex as well as the lateral parietal and temporal cortex) and the sen-
sorimotor and visual cortex. These hub regionswere highly anatomically distance-dependent,where short-range
and long-range hubswere primarily located at the primary cortex and themultimodal association cortex, respec-
tively. We found that most functional hubs exhibited fair to good TRT reliability using intraclass correlation coef-
ficients. Interestingly, our analysis suggested that a 6-minute scan duration was able to reliably detect these
functional hubs. Further comparison analysis revealed that these results were approximately consistent with
those obtained using traditional R-fMRI scans of the same subjects with TR = 2500 ms, but several regions
(e.g., lateral frontal cortex, paracentral lobule and anterior temporal lobe) exhibited different TRT reliability. Fi-
nally,we showed that several regions (including themedial/lateral prefrontal cortex and lateral temporal cortex)
were identified as brain hubs in a high frequency band (0.2–0.3 Hz), which is beyond the frequency scope of
traditional R-fMRI scans. Our results demonstrated the validity of multiband R-fMRI data to reliably detect func-
tional hubs in the voxel-wisewhole-brainnetworks,whichmotivated the acquisition of high temporal resolution
R-fMRI data for the studies of human brain functional connectomes in healthy and diseased conditions.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Resting-state fMRI (R-fMRI) has emerged as a promising and power-
ful tool to explore intrinsic functional networks in the resting brain (i.e.,
functional connectome) (Biswal et al., 1995, 2010; Fox and Raichle,
2007; Kelly et al., 2012). Graph-theoretical analysis on resting-state
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brain networks has revealed a few global hubs with a disproportionally
large number of functional connections (Achard et al., 2006; Buckner
et al., 2009). The hub regions aremainly located at themedial prefrontal
and parietal cortex as well as the lateral temporal and parietal cortex
(Achard et al., 2006; Buckner et al., 2009; He et al., 2009; Liang et al.,
2013; Tomasi and Volkow, 2011; Zuo et al., 2012). These spatially dis-
tributed hubs play essential roles in the interconnection of distributed
functionally specified regions and in coordinating performance across
the brain. Recently, several R-fMRI studies have demonstrated abnor-
malities in the hub configuration of brain functional networks in
neuropsychiatric diseases (e.g., Alzheimer's disease, depression and
schizophrenia) (Alexander-Bloch et al., 2013; Buckner et al., 2009;
Wang et al., 2013; Zhang et al., 2011), indicating an important
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association between the hub regions and a pathophysiological mecha-
nism. Thus, the exploration of the spatial patterns of functional hubs is
crucial for the understanding of the physiological basis for cognition and
pathological behavior.

Until recently, most R-fMRI studies on functional hubs of brain
networks have employed traditional fMRI data with relatively low
sampling rates (e.g., repletion time [TR] = 2 s, fsampling = 0.5 Hz)
in which the functional connections could be affected by the aliasing
of high frequency respiratory (~0.3 Hz) and cardiac (~1 Hz) oscilla-
tions, even after temporal band-pass filtering (0.01–0.1 Hz) (Birn
et al., 2006; van den Heuvel and Pol, 2010). Thus, the use of high
sampling rate R-fMRI is of great importance because it is able to re-
duce the artificial correlations by preventing the aliasing of high fre-
quency oscillations (Cordes et al., 2001; Lowe et al., 1998; van den
Heuvel and Pol, 2010) and simultaneously provide additional tem-
poral information about the functional integrity among brain regions
(Feinberg et al., 2010; Smith et al., 2012; Zahneisen et al., 2011). Re-
cently, several promising imaging techniques that enable whole-
brain acquisition at sub-second temporal resolution have been pro-
posed, including MR-encephalography (Zahneisen et al., 2011) and
multiband echo planar imaging (Feinberg et al., 2010; Moeller
et al., 2010). Using the multiband R-fMRI protocol, additional vol-
umes of images can be acquired in the same scan duration without
a significant loss in spatial resolution and the effect of non-neural os-
cillations (particularly the respiratory and cardiac signals) can be
largely removed. However, whether multiband R-fMRI scans can ef-
fectively identify the spatial patterns of functional hubs in the brain
remains largely unknown. Moreover, even though the functional
hubs can be successfully detected, whether they can exhibit good
test–retest (TRT) reliability is still unclear.

TRT reliablemeasurements (e.g., networkmetrics) are important for
the inference of convincing conclusions, and serve as potential clinical
biomarkers. Recently, increasing attention has been given to the TRT re-
liability studies using R-fMRI data, particularly in the assessment of var-
ious network metrics (Braun et al., 2012; Guo et al., 2012; Liang et al.,
2012; Wang et al., 2011; Zuo et al., 2012). The TRT reliability of the net-
work metrics may be potentially affected by several factors, such as ac-
quisition parameters (Van Dijk et al., 2010; Whitlow et al., 2011) and
fluctuations of conscious states (Greicius et al., 2008; Horovitz et al.,
2008). The selection of different preprocessing strategies (e.g., global
signal removal) is another important factor that affects TRT reliability
of network metrics and has also been previously discussed in detail
(Braun et al., 2012; Guo et al., 2012; Liang et al., 2012; Schwarz and
McGonigle, 2011). For multiband R-fMRI data, the TRT reliability of re-
gional functional homogeneity has been systematically investigated in
a previous report (Zuo et al., 2013); however, the TRT reliability of net-
work metrics for whole-brain functional networks still remains to be
elucidated.

In the present study, we analyzed a recently published public
multiband test–retest R-fMRI dataset (TR = 645 ms), which includ-
ed 11 participants who were each scanned twice around one week
apart. To address the above-mentioned questions, we employed
this sub-second multiband R-fMRI dataset and the measure of
nodal degree centrality to detect functional hubs in the voxel-wise
functional networks, and further assessed their TRT reliability using
intraclass correlation coefficients. Next, we investigated the effect
of scan duration and global signals on TRT reliability of degree be-
cause these factors are relevant to the TRT analysis of traditional
fMRI scans (Braun et al., 2012; Guo et al., 2012; Liang et al., 2012;
Van Dijk et al., 2010; Whitlow et al., 2011). Furthermore, we com-
pared the functional hubs and their TRT reliability with those derived
from traditional R-fMRI data (TR = 2500 ms, fsampling =0.4 Hz) of
the same subjects. Finally, using the sub-second multiband R-fMRI
data, we explored the functional hubs and their TRT reliability in a
high frequency band (0.2–0.3 Hz), which is beyond the frequency
scope of traditional R-fMRI scans.
Materials and methods

Subjects

Weused themultiband imaging test–retest pilot dataset that is pub-
licly available from INDI (http://fcon_1000.projects.nitrc.org/indi/pro/
eNKI_RS_TRT/FrontPage.html), consisting of 24 subjects (age: 34.4 ±
12.9, 6 females). The phenotype information of these subjects was pro-
vided in detail (see Table S1 in Supplementary materials). Recently, this
dataset has been used to examine the TRT reliability of regional func-
tional homogeneity in the human brain (Zuo et al., 2013). In this
study, in order to exclude the potential effects of confounding health is-
sues, we first discarded the data of 7 subjects with current/historical
psychiatric disorders, and discarded 4 subjects without diagnostic infor-
mation. The unique subject identification numbers for these 11 subjects
were marked in Table S1. Then we further discarded the data of 1
healthy subject with obvious brain atrophy (subject 21001) and 1
healthy subject with excessive head motion (subject 3795193, see
Data preprocessing). Finally, the data of the remaining 11 healthy sub-
jects were analyzed in this study.

Data acquisition

All subjects were scanned on a Siemens Trio 3.0 T scanner. For each
subject, the R-fMRI scans were performed twice (session 1 and session
2), around one week apart, using three different sampling rates (see
below for details). During the resting-state scans, the subjects were
instructed to keep their eyes open and to look at the fixation cross, but
not to stare or strain their eyes.

For each session, R-fMRI data were acquired using three scanning
protocols: (1) Multiband R-fMRI (mR-fMRI) scan with TR = 645 ms:
time echo = 30 ms; flip angle = 60°; 40 slices, multiband accelerate
factor = 4; matrix = 74 × 74; field of view = 222 × 222 mm2; voxel
size = 3 × 3 × 3 mm3; scan duration ~10 min (i.e., 900 volumes).
Due to a malfunction in the temporary storage transfer protocol, the
last (900th) volume was missing in 15 subjects. Thus, we removed the
last volume (900th) from the dataset so that each subject would have
the same number of volumes (n = 899); (2) mR-fMRI scan with
TR = 1400 ms: time echo = 30 ms; flip angle = 65°; 64 slices, multi-
band accelerate factor = 4; matrix = 112 × 112; field of view =
224 × 224 mm2; voxel size = 2 × 2 × 2 mm3; scan duration ~10 min
(i.e., 404 volumes); and (3) Traditional R-fMRI (tR-fMRI) using common
echo-planar imaging sequence with TR = 2500 ms: time echo =
30 ms; flip angle = 80°; 38 slices; matrix = 72 × 72; field of view =
216 × 216 mm2; voxel size = 3 × 3 × 3 mm3; scan duration = 5 min
(i.e., 120 volumes). In addition, a high-resolution T1-weighted anatomi-
cal image, task-based fMRI images and diffusion tensor imaging data
were also obtained for each subject. In this study, we just employed
the test–retest mR-fMRI data with TR = 645 ms, which provided the
sub-second temporal resolution for the functional network analysis.
The repeated tR-fMRI data (TR = 2500 ms) with the same spatial reso-
lution were also used for reference and complementary analysis.

Data preprocessing

All of the R-fMRI datawere preprocessed using Statistical Parametric
Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm) and Data Processing
Assistant for Resting-State fMRI (DPARSF) (Yan and Zang, 2010). Briefly,
the volumes in the first 10 s were discarded (16 volumes for mR-fMRI
and 4 volumes for tR-fMRI) for signal equilibrium. The remaining data
were corrected for head motion, and one subject (subject 3795193)
was excluded from further analysis due to excess head motion
(rotation N 3°). These data were then spatially normalized to the Mon-
treal Neurological Institute (MNI) space and resampled to 3-mm isotro-
pic voxels. Next, the linear trend of the datawas removed, and temporal
band-pass filtering (0.01–0.1 Hz) was performed to reduce the effects
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of low-frequency drift and high-frequency physiological noise (Biswal
et al., 1995; Lowe et al., 1998). Finally, six head motion parameters
and three potential nuisance signals, including the cerebrospinal fluid,
white matter and global signals, were removed from the time course
of each voxel using multiple linear regression (Fox et al., 2005). We
did not perform spatial smoothing, because spatial smoothing prior to
the network construction might introduce artificial local correlations
to the adjacent voxels.

Network analysis

Given that some regions on the top of the brain and at the bottom of
the cerebellumwere not fully covered during the R-fMRI scans, we gen-
erated a group gray matter mask (gray matter probability ≥ 0.2) that
included the cortical and subcortical regions (N = 44,401 voxels),
which were present across all subjects in the repeated R-fMRI scans.
The subsequent network analysis was performed within this mask.

Network construction
For a voxel-wise functional network, the functional connectivity be-

tween two voxels (nodes) was estimated using the temporal similarity
between their BOLD signals. Initially, the time courses of all voxels were
extracted from the preprocessed R-fMRI data. Next, a symmetric corre-
lationmatrix R = [rij] was generated, where rij represents the Pearson's
correlation coefficient between the BOLD signals of the voxels i and j. Fi-
nally, a threshold rth was applied to estimate whether a connection
existed, and the network sparsity was calculated as the ratio of the
total number of connections in the network to the maximum possible
number of connections. Both the binary and weighted networks were
generated for each subject, and different correlation threshold values
(rth = 0.1, 0.2, 0.3, 0.4) were considered. A binary adjacency matrix
representing the functional network was defined as

aij ¼
0; rij≤rth
1; rijNrth

:

�
ð1Þ

Similarly, theweighted adjacencymatrix was also considered as fol-
lows

aij ¼
0; rij≤rth
zij; rijNrth

;

�
ð2Þ

where zij indicates the Fisher's r-to-z transformation (Zar, 1996) of ele-
ment rij to improve the normality of the correlation distribution. Given
the same threshold rth, the network sparsity was identical for both bina-
ry and weighted functional networks, as it only took into account the
number of connections regardless of the weight. Importantly, we just
focused on the connectionswith positive correlations because the phys-
iological basis of the negative correlations was ambiguous (Fox et al.,
2009; Murphy et al., 2009; Weissenbacher et al., 2009).

Degree centrality
Degree centrality is one of the most popular graphical measures

used to identify global hubs in the brain (Bullmore and Sporns, 2009;
Rubinov and Sporns, 2010). In graph theory, the degree k for voxel i in
the network is defined as (Dai et al., 2012; Opsahl et al., 2010;
Rubinov and Sporns, 2010)

ki ¼
1

N−1

X
j≠i

aij; ð3Þ

where N is the total number of voxels in the group gray matter mask.
The degree centrality of a voxel indicates its average functional connec-
tivity strength with all of the other voxels, and characterizes its influ-
ence in the network. According to Eqs. (1) (2) and (3), we computed
both the binary and weighted degree centralities of the brain networks.
Distance-dependent degree centrality maps
The functional connections between different regions are closely

associated with their anatomical locations (Achard et al., 2006; Liang
et al., 2013; Salvador et al., 2005a; Sepulcre et al., 2010). To explore
the effects of anatomical distance on functional connections, the
three-dimensional anatomical distance between every pair of voxels
(i and j) was approximated using the Euclidean distance:

Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xj

� �2 þ yi−yj

� �2 þ zi−z j
� �2

r
; ð4Þ

where (xi,yi,zi) and (xj,yj,zj) are stereotaxic coordinates for voxels i and j,
respectively, in MNI space. The functional connections of each voxel
were classified as either short-range or long-rangewith a distance crite-
rion of 75 mm (Achard et al., 2006). Consequently, the short-range and
long-range degree centralities were computed as the average functional
connection strength of a voxel with other voxels in different spatial
ranges.

Using the combination of network types and distance factors, we
generated six types of degree maps for each subject, including binary
overall degree (boDeg), binary short-range degree (bsDeg), binary
long-range degree (blDeg),weighted overall degree (woDeg),weighted
short-range degree (wsDeg) and weighted long-rang degree (wlDeg)
maps. Prior to statistical analysis, all of the individual degree centrality
maps were spatially smoothed using SPM8 with a Gaussian smoothing
kernel (FWHM = 6 mm).

Identification of global hubs
For each session, we generated six group-level voxel-wise degree

centrality maps by averaging the individual degree maps across all of
the subjects (i.e., boDeg, bsDeg, blDeg, woDeg, wsDeg and wlDeg). For
each group-level map, the degree values were standardized by
converting into z-scores as follows (Buckner et al., 2009):

zi ¼
ki−k
σ

; i ¼ 1;2; :::;N: ð5Þ

In the formula, k represents themean degree across the brain, and σ
represents the corresponding standard deviation. Regions displaying
relatively strong functional connectivity (zi ≥ 1) were identified as
functional hubs. The spatial similarity of the functional hubs in different
conditions was evaluated using Pearson's correlation coefficient across
voxels. Because the neighbor voxels were dependent due to physiolog-
ical correlations and the spatial processing, the effective degree of free-
dom in the across-voxel correlation analysis was corrected to estimate
the p-values (Liang et al., 2013; Xiong et al., 2004).

Test–retest reliability of degree centrality

To further evaluate the TRT reliability of the voxel degree between
the two sessions, ameasurement of the intraclass correlation coefficient
(ICC) was employed. Given a voxel, the individual degree values of all
subjects in the two sessions were first analyzed using one-way
ANOVA analysiswith random subject effects. Then an ICC valuewas cal-
culated according to the equation (Shrout and Fleiss, 1979)

ICC ¼ BMS−WMS
BMSþ m−1ð ÞWMS

; ð6Þ

where BMS (WMS) represents the between-subject (within-subject)
mean square and m represents the number of repeated measurements
of the voxel degree (here, m = 2). We calculated the ICC value for
each voxel and generated the ICCmap for each type of degree centrality
(boDeg, bsDeg, blDeg,woDeg,wsDeg andwlDeg). Next, the TRT reliabil-
ity of the degree was assessed in a voxel-wise manner with the classify-
ing criteria of ICC values (Sampat et al., 2006): less than 0.4 indicated
low reliability; 0.4 to 0.6 indicated fair reliability; 0.6 to 0.75 indicated



Table 1
Sparsity of voxel-wise human brain functional networks (rth = 0.2, with GSR).

Scan duration (minutes) Data type Sparsity (mean ± std) p value

Session 1 Session 2

~10 mR-fMRI 0.123 ± 0.024 0.137 ± 0.020 0.114
~5 mR-fMRI 0.155 ± 0.019 0.173 ± 0.014 0.026*
~5 tR-fMRI 0.157 ± 0.014 0.179 ± 0.031 0.004**

The mean network sparsity for each session was calculated by averaging individual
network sparsity across 11 subjects. The differences of the network sparsity between
two sessions were assessed by paired t-tests, indicated by one star (p b 0.05) or two
stars (p b 0.01). In addition, no significant difference was observed in the network
sparsity between different sampling rates during the same scan duration (~5 min), with
p = 0.811 for session 1 and p = 0.531 for session 2.
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good reliability and 0.75 to 1.0 indicated excellent reliability. For mR-
fMRI data, to further assess the regional variability of TRT reliability,
we utilized a prior functional parcellation of cerebrum (Yeo et al.,
2011), and calculated themean ICC values and their standard deviations
within seven subnetworks (visual, somatomotor, dorsal attention, ven-
tral attention, limbic, frontoparietal and default-mode), respectively.

Influence of two factors: scan duration and global signals

Effects of scan duration on TRT reliability
Compared with the tR-fMRI technique, the mR-fMRI technique can

acquire more volumes and additional temporal information within the
same scan duration (Feinberg et al., 2010; Smith et al., 2012). Nonethe-
less, the signal-to-noise ratio of the imagesmight also be reduced due to
the short acquisition time of each volume (Feinberg et al., 2010). To in-
vestigate the effect of the scan duration on the patterns of functional
hubs, spatially normalized mR-fMRI data from each session were trun-
cated into 9 bins with the ith bin containing the first i minutes of signal
acquisition. Thus 9 bins of datawith a scan duration ranging from 1 min
to 9 min were generated for each subject. Next, we performed a linear
detrend, temporal filtering and nuisance regression on each bin of
data in the same manner as those in Data preprocessing. For each bin
of data, we generated individual degree maps in six cases (i.e., boDeg,
bsDeg, blDeg, woDeg, wsDeg and wlDeg) again and evaluated the TRT
reliability of the degree. To assess the influence of scan duration in tR-
fMRI, similar methods were also applied to the entire scan of tR-fMRI
data in both sessions, with a scan duration ranging from 1 min to 5 min.

Effects of global signals on functional hubs and TRT reliability
The physiological basis of the global signals is still unclear (Fox et al.,

2009; Murphy et al., 2009). In recent years there has been an ongoing
debate on global signal removal in the preprocessing (Braun et al.,
2012; Fox et al., 2009; Guo et al., 2012; Liang et al., 2012; Murphy
et al., 2009; Weissenbacher et al., 2009). To investigate the effects of
global signals on functional hubs and their TRT reliability, we also
performed a network analysis without global signal removal (GSR) on
both mR-fMRI and tR-fMRI data.

Comparisons with different sampling rates

Compared with tR-fMRI, mR-fMRI demonstrated a higher temporal
resolution by improving the sampling rates. To explore the effect of
the sampling rates, functional hub detection and TRT reliability analysis
were also performed on the tR-fMRI data of the same subjects with
TR = 2500 ms using the following procedure: (i) To determine
whether the regions exhibited significantly different degree values be-
tween mR-fMRI and tR-fMRI, a voxel-wise paired t-test was separately
performed on the degree maps across subjects for each session. (ii) To
further explore the differences in TRT reliability of the voxel degree be-
tween mR-fMRI and tR-fMRI, a direct comparison of the TRT reliability
maps was performed by subtracting the tR-fMRI maps from the mR-
fMRI maps. Importantly, to ensure comparability of results with differ-
ent sampling rates, the R-fMRI data within the same scan duration
(i.e., scan duration = 290 s, which corresponded to the total 116
volumes for tR-fMRI and first 450 volumes for mR-fMRI) were used in
the quantitative comparisons. (iii) To exclude scanning order effects
on the degree difference, the order effects during a single scanwere fur-
ther examined. The singlemR-fMRI scan (i.e., 883 volumes)was divided
into two sections with approximately equal scan duration: the first half
scan (442 volumes) and the second half scan (441 volumes). In each
session, individual degree maps were separately generated for two sec-
tions, and regions exhibiting significantly different degree values be-
tween the two half scans were identified by a voxel-wise paired t-test
across subjects. All of the resulting t-maps were corrected for multiple
comparisons within the group mask using a Monte Carlo simulation
(AlphaSim by B. Douglas Ward) at a corrected p b 0.05 (uncorrected
p b 0.05, cluster size N 131 voxels). (iv) Using the whole scan of the
mR-fMRI data, we explored the functional hubs and their TRT reliability
in a higher frequency band (0.2–0.3 Hz) that was undetectable using
the tR-fMRI dataset with TR = 2500 ms. To obtain the mR-fMRI data
at this frequency range, we applied temporal band-pass filtering
(0.2–0.3 Hz) during the data preprocessing.

Head motion analysis

Recent R-fMRI studies have reported that headmotion induces spu-
rious and systematic functional correlations despite performing nui-
sance regression with head motion parameters (Power et al., 2012;
Satterthwaite et al., 2013; Van Dijk et al., 2012). To further assess the ef-
fects of transient head motion, we removed volumes with large instan-
taneous head motion from both the mR-fMRI and tR-fMRI data (Power
et al., 2012). We scrubbed the volumes with framewise displacement
(FD) above 0.5 mm and their adjacent volumes (1 back and 2 forward)
for each subject. Subjects who retained more than 80% of the original
data in both sessions were included in the analysis. We then re-
calculated the individual degree maps and assessed their TRT reliability
for both mR-fMRI and tR-fMRI data.

Results

Using the mR-fMRI data, we generated both binary and weighted
voxel-wise whole-brain functional networks and further investigated
the functional hubs and their TRT reliability. The results were highly
similar, not dependent on the binary or weighted approaches or differ-
ent correlation thresholds considered (rth = 0.1, 0.2, 0.3, 0.4). For this
reason, we mainly reported the results in weighted brain networks
thresholded with rth = 0.2. The other results from the binary and
weighted networks with different thresholds can be found in the Sup-
plementary materials.

Functional hubs in whole-brain functional networks

For the mR-fMRI data, voxel-wise functional networks were gener-
ated for each subject, which had sparse functional connections (mean
sparsity b 0.2, Table 1), and no significant difference was observed
between two sessions. For each session, we generated group-level
voxel-wise degree centrality maps in three cases (woDeg, wsDeg and
wlDeg). The functional hubs (Figs. 1A and B) were spatially non-
homogeneous across regions, whereas their spatial patterns were high-
ly similar between the two sessions. Quantitative spatial correlation
analysis (Pearson's correlation across voxels) revealed high correlation
coefficients between the maps in the two sessions (Fig. 1C, session 1
vs. session 2, woDeg: r = 0.96; wsDeg: r = 0.97; wlDeg: r = 0.97, all
ps b 0.00001, dfeffs = 5548). In the weighted overall degree map
(Figs. 1A and B, woDeg), the functional hubs were predominately



Fig. 1. Group-level voxel-wise degree centrality maps on the basis of mR-fMRI data and their consistency across sessions. A, spatial patterns of functional hubs in session 1. B, spatial pat-
terns of functional hubs in session 2. C, spatial similarity of functional hubs between the two sessions. Three types of degree centralities (woDeg, wsDeg and wlDeg) were considered to
explore the effect of anatomical distance, and all of the degree values were converted into z-scores to identify the global hubs. Only voxels with z-scores above zero are displayed in the
maps. These hemispheric surfaceswere visualizedusing BrainNet Viewer (http://www.nitrc.org/projects/bnv/, Xia et al., 2013), and the subcortical regions are displayed in 4 coronal slices
with y coordinates from 13 mm to −14 mm with 9 mm space, same hereinafter.
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located at several default-mode regions (e.g., posterior cingulate gyrus,
medial prefrontal cortex and inferior parietal cortex), superior parietal
lobule, inferior frontal gyrus, the sensorimotor cortex and visual regions.
Moreover, these functional hubs were distance-dependent. Short-range
hubs were mainly located at the sensorimotor cortex, visual regions,
thalamus, superior parietal lobule and medial frontal cortex (Figs. 1A
and B, wsDeg). In contrast, the long-range hubs were primarily located
at themedial prefrontal and parietal cortex aswell as the lateral frontal,
temporal and parietal cortex (Figs. 1A and B, wlDeg). Similar functional
hub configurations were identified in both binary and weighted brain
networks derived at different thresholds (Fig. S1), whichwere elucidat-
ed by quantitative spatial correlation analysis. Functional hubs in
the weighted networks derived at other thresholds (rth = 0.1, 0.3,
0.4) are displayed in Fig. S2, and we observed that the posterior cingu-
late gyrus/precuneus became more conspicuous as the threshold
increased.
Test–retest reliability of degree centrality

For each type of degree, the TRT reliability at each voxel was evalu-
ated by an ICC value. The resulting reliability maps were spatially non-
homogeneous across the brain in all cases (see Fig. 2A, woDeg, wsDeg
and wlDeg). Briefly, normalized histograms of ICC values across the
brain are displayed in Fig. 2B, with a mean ICC value around 0.31 for
woDeg, 0.34 for wsDeg and 0.33 for wlDeg. For the category of ICC
values, approximately 41.6% of the voxels exhibited fair to excellent re-
liability in the overall networks (fair: around 26.7%; good: around
12.4%; excellent: around 2.5%), and this proportion changed to 47.5%
and 42.3% for short-range and long-range degree centralities, respec-
tively. Specifically, several hub regions, including some default-mode
areas (e.g., precuneus, ventromedial prefrontal cortex and inferior pari-
etal lobule), inferior frontal gyrus and the sensorimotor cortex, showed
fair to good TRT reliability (ICC N 0.4), independent of the degree type.

http://www.nitrc.org/projects/bnv/


Fig. 2. TRT reliability for three types of degree centralities (woDeg, wsDeg andwlDeg) on the basis of repeatedmR-fMRI scans. A, TRT reliabilitymaps of degree. Only voxelswith ICC values
above 0.4 are displayed, same hereinafter. B, normalized histograms of voxel ICC values across the brain. C, mean ICC values and their standard deviations within seven specific subnet-
works obtained from a prior parcellation of the cerebrum (Yeo et al., 2011). The dash-dotted line indicates themean ICC value across the whole brain. Seven colors indicate different sub-
networks, including the visual (Vis), somatomotor (Mot), dorsal attention (dATN), ventral attention (vATN), limbic (LMB), frontoparietal (FPN) and default (DN) networks.
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Besides, some non-hub subcortical regions (e.g., caudate nuclei, puta-
men, insula and hippocampus) also exhibited fair to good reliability,
irrespective of the degree type. Regional variability of TRT reliability
was also assessed in Fig. 2C within seven specific subnetworks (visual,
somatomotor, dorsal attention, ventral attention, limbic, frontoparietal
and default-mode) (Yeo et al., 2011), with large standard deviations
identified. Similar ICC values were found in different subnetworks, ex-
cept the visual subnetwork. The hub region of the cuneus exhibited
poor TRT reliability (mean ICC b 0.2) in woDeg and wsDeg, which
could be due to the uncontrolled eye movements during the resting-
state scans. Similar spatial patterns were found in the reliability maps
of weighted networks derived at other thresholds (Fig. S3), with high
spatial correlation coefficients (e.g., woDeg, rth = 0.1 vs. 0.2: r = 0.98;
rth = 0.3 vs. 0.2: r = 0.97; rth = 0.4 vs. 0.2: r = 0.86, all ps b 0.00001,
dfeffs = 5548).

Influence of scan duration on TRT reliability of degree centrality

For theweighted overall degree (i.e., woDeg), the voxel-wise TRT re-
liabilitymaps are illustrated in Fig. 3A for each bin ofmR-fMRI data,with
a scan duration ranging from 1 min to 9 min. To get more details on the
changes of TRT reliability across time, the normalized frequency poly-
gons of ICC values (Fig. 3B) across the brain and their mean values
(Fig. 3C) were displayed for different scan durations separately. Similar
trends were observed for the three types of degree (woDeg, wsDeg and
wlDeg). In general, we found that the distribution profile of the ICC
values considerably shifted to the right as the scan duration increased.
Nonetheless, the increasing trend of mean ICC values was slightly fluc-
tuating during the first 5 min, and became inconspicuous after 6 min,
suggesting that the TRT reliability of degree centrality tended to be
stable after 6 min. This phenomenon was also observed in the TRT
reliability maps of the short-range and long-range degree centralities
(i.e., wsDeg and wlDeg, Fig. S4). Similar changing trends were found
for TRT reliability maps derived from tR-fMRI data (Fig. S5). For the tR-
fMRI data, the TRT reliability of the degree increased with fluctuations
when the scan duration increased from 1 min to 5 min.

Influence of global signals on functional hubs

To explore the influence of global signals, we constructed functional
networks on the basis of the entire scan of mR-fMRI data without GSR.
The mean network sparsity across subjects was 0.331 ± 0.127 and
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Fig. 3. Influence of scan duration on TRT reliability of degree derived from mR-fMRI data. A, TRT reliability maps of woDeg with increasing scan duration ranging from 1 min to 9 min.
B, normalized frequency polygons of voxel ICC values across the brain for different scan durations. C, mean ICC values and their standard deviations across the brain for different scan du-
rations. For three types of degree centralities, the distribution profile and themean ICC values tended to be stable after 6 min. Only the TRT reliability maps for woDeg are illustrated here.
The results for wsDeg and wlDeg can be found in the Supplementary materials (Fig. S4).
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0.379 ± 0.162 for session 1 and session 2, respectively, which was
significantly larger than that derived with GSR (p b 0.001 for both ses-
sions). The spatial patterns of the functional hubs in session 1 and
session 2 are displayed in Figs. 4A and S6A, respectively. Compared
with the results with GSR (Fig. 1), the functional hub configurations
were slightly changed. Although several brain regions (e.g., the sen-
sorimotor cortex, visual cortex andmiddle temporal gyrus) were still
detected as functional hubs, several regions in the default-mode net-
work were inconspicuous, such as the medial prefrontal cortex in all
of the degree maps, and the inferior parietal cortex in the woDeg
map. These changes in functional hubs were also observed for the
tR-fMRI data without GSR (see Figs. S6B and C). Furthermore, the
TRT reliability analysis showed similar spatial maps for three types
of degree (Fig. 4B, woDeg vs. wsDeg, r = 0.96; woDeg vs. wlDeg,
r = 0.98, all ps b 0.00001, dfeffs = 5548). Importantly, most brain
regions exhibited increased TRT reliability compared with the results
of GSR (Fig. 2A). This increasing effect was mostly clear for the lateral
temporal areas. Normalized histograms of voxel ICC values for the
two regression strategies are displayed in Fig. 4C, which confirmed a
higher level of reliability for the analysis without GSR, with approxi-
mately the same mean ICC values around 0.46 for all three types of
degree.
Influence of sampling rates on functional hubs

To investigate the influence of sampling rates on functional hubs, we
analyzed both the tR-fMRI and mR-fMRI data within the same scan du-
ration (i.e., scan duration = 290 s, which corresponded to the total 116
volumes for tR-fMRI and the first 450 volumes for mR-fMRI).

Consistency and difference in the spatial patterns of the degree maps
The sparsity of functional networks derived from tR-fMRI and mR-

fMRI data was listed in Table 1, and no significant difference was ob-
served between different sampling rates. For each session, the spatial
patterns of the functional hubs were highly consistent between tR-
fMRI and mR-fMRI (Fig. S7), with high spatial correlation coefficients
(≥0.95) for all three types of degree centralities. However, several re-
gions exhibited significantly different short-range degree values at dif-
ferent sampling rates, which were identified using a voxel-wise paired
t-test within each session with a corrected p b 0.05 (Figs. 5A and B).
Compared with the tR-fMRI data, themR-fMRI data showed consistent-
ly higher weighted short-range degree values in both sessions, which
were mainly located in the left medial prefrontal cortex and right mid-
dle frontal gyrus (wsDeg, Fig. 5A). These regions were also identified in
binary functional networks (bsDeg, Fig. 5B). When considering the

image of Fig.�3


Fig. 4. Spatial patterns of functional hubs and their TRT reliability on the basis of the mR-fMRI data without GSR. A, Spatial patterns of functional hubs derived without GSR in session 1.
B, TRT reliability maps in the case of without GSR. C, normalized histograms of voxel ICC values in two cases (i.e., with GSR andwithout GSR). These distributions indicated that the degree
centrality exhibited enhanced reliability in the latter case, regardless of the types of degree centralities.
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scanning order effects (Fig. 5C), we observed that only a small area of
the right lingual gyrus showed significantly different degree values be-
tween the two halves of a single mR-fMRI scan for both sessions. These
results indicated that the degree differences observed between tR-fMRI
and mR-fMRI cannot be explained by the scanning order effects.

Effects of sampling rates on TRT reliability of degree centrality
We analyzed the TRT reliability of three types of degree for the tR-

fMRI and mR-fMRI data (Figs. 6A and B, woDeg, wsDeg and wlDeg). In
general, the spatial patterns of TRT reliability maps were discrepant be-
tween different sampling rates with low spatial similarity (tR-fMRI vs.
mR-fMRI, woDeg: r = 0.04; wsDeg: r = 0.08; wlDeg: r = 0.05, all
ps b 0.05, dfeffs = 5548). The mean ICC values across the brain
were dissimilar for both datasets (tR-fMRI vs. mR-fMRI, woDeg:
0.31 ± 0.20 vs. 0.20 ± 0.30; wsDeg: 0.27 ± 0.22 vs. 0.26 ± 0.29;
wlDeg: 0.32 ± 0.21 vs. 0.17 ± 0.31). Most regions exhibited different
reliability patterns when the sampling rates changed. The direct con-
trasts of the reliability maps (mR-fMRI−tR-fMRI) are displayed in
Fig. 6C. We found that several regions, including the posterior medial
prefrontal cortex, lateral frontal cortex, right angular gyrus, anterior
temporal lobe and paracentral lobule, displayed higher TRT reliability
for mR-fMRI, while the lateral temporal lobe and right cuneus exhibited
a lower TRT reliability, independent of the type of degree.

Global hubs in high frequency band functional networks
We explored the functional hubs and TRT reliability of degree in a

high frequency band (0.2−0.3 Hz), using the whole scan of the mR-
fMRI data. Interestingly, this frequency band was not detectable using
the tR-fMRI data with TR = 2500 ms. Functional hubs for two sessions
are displayed in Figs. 7A and B, respectively, with high spatial similarity
(session 1 vs. session2, woDeg: r = 0.91; wsDeg: r = 0.87; wlDeg:
r = 0.95, all ps b 0.00001, dfeffs = 5548). Similar to the regions in the
low frequency band (0.01−0.1 Hz, Fig. 1), some regions in the
default-mode network (e.g., medial prefrontal cortex, middle temporal
gyrus and inferior parietal lobule) and inferior frontal gyrus were iden-
tified as functional hubs.Moreover, themedial and lateral frontal cortex
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Fig. 5. Difference of the short-range degree maps between the mR-fMRI and tR-fMRI data within the same scan duration (290 s). A, difference in the wsDeg maps for both sessions.
B, difference in the bsDeg maps for both sessions. Degree maps for tR-fMRI were set as reference in (A) and (B). C, difference in the wsDeg maps between two sections in a single mR-
fMRI scan, in order to account for scanning order effects. The corrected t-maps in session 1 and session 2 are shown in the left and middle column, respectively. These t-maps were
corrected for multiple comparisons using AlphaSim with a corrected p b 0.05. Conjunctions of corrected positive t-maps for the two sessions are shown in the right column, with inter-
section areas of two sessions displayed in red.
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was identified without distance-dependence, and the middle temporal
gyrus and inferior parietal cortexwere evident in the long-range degree
maps. In addition, some areas of the cuneus and thalamus were also de-
tected in the short-range degree maps. Furthermore, a large proportion
(approximately 65%) of regions across the brain exhibited fair to good
reliability (ICC N 0.4) for all three types of degree (Fig. 7C).
Head motion effects

Most results showed very few changes after the operation of data
scrubbing. For the mR-fMRI data, 10 of the 11 subjects were included
after data scrubbing, with 1 subject (subject 4176156) further excluded
due to scrubbing 71% of original data. The spatial patterns of the func-
tional hubs and TRT reliability maps in the different conditionswere re-
vealed 1) a low frequency band (0.01−0.1 Hz) with GSR (Figs. S8 and
S9) and without GSR (Fig. S10), as well as 2) a high frequency band
(0.2−0.3 Hz) with GSR (Fig. S11). The spatial patterns in these cases
were highly similar to previous results (Figs. 1, 2, 4, and 7), but the over-
all level of TRT reliabilitywas slightly improved inmost of the cases after
data scrubbing (seemore details in Table S2). When directly comparing
the degree values of the mR-fMRI and tR-fMRI data, we still found that
the regions of left medial prefrontal cortex and right middle frontal
gyrus showed a trend (uncorrected p b 0.1, paired t-test) of larger
short-range degree values formR-fMRI data (Fig. S12),whichwere con-
sistent with the results obtained without scrubbing (Fig. 5).
Discussion

This study provides a comprehensive investigation of functional
hubs and their test−retest reliability in the voxel-wise human brain
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Fig. 6. TRT reliability of degree in functional networks derived from the tR-fMRI and mR-fMRI data within the same scan duration (290 s). A, TRT reliability maps for tR-fMRI. B, TRT re-
liability maps for mR-fMRI. C, direct contrasts of TRT reliability maps are displayed to illustrate the TRT reliability differences between themR-fMRI and tR-fMRI data. The yellow and blue
colors show regions of higher reliability in the mR-fMRI and tR-fMRI data, respectively.
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functional networks derived from sub-second multiband R-fMRI scans.
The main results are threefold: first, we reproduced previous findings
that hub regions were mainly localized at the default-mode regions,
sensorimotor and visual cortex. Most hub regions exhibited fair to
good TRT reliability, except the cuneus region. Second, we found that
the 6-minute mR-fMRI data were able to identify reliable functional
hub structures and that the data preprocessing without GSR changed
the spatial patterns of functional hubs but improved their TRT reliability.
Third, we reported the effect of the sampling rates of R-fMRI scans on
functional hubs, and showed the meaningful functional hubs and their
TRT reliability in a high frequency band (0.2−0.3 Hz). These results
showed very little changes when we further assessed the effect of
head motion with data scrubbing. Together, our results suggested the
validity of sub-second multiband R-fMRI scans for identifying reliable
functional hubswith themeasure of nodal degree centrality.Wediscuss
these findings in more detail in this section.

Reliable functional hubs in human whole-brain functional networks

Based on mR-fMRI data, voxel-wise functional brain networks with
sparse connections were constructed for each subject, indicating the
low wiring-cost of functional network organization (Bullmore and
Sporns, 2012). Meanwhile, using the measure of degree centrality, we
identified functional hubs that contained large numbers of functional
connections, irrespective of scanning time (two sessions, Fig. 1) and
sampling rates of R-fMRI scans (Fig. S7). Even in a high frequency
band (0.2−0.3 Hz), several hub regions in the default-mode network
were still identified (Fig. 7). Consistent with previous studies (Achard
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Fig. 7. Spatial patterns of functional hubs and their TRT reliability in high-frequency functional networks. A, spatial patterns of functional hubs in session 1. B, spatial patterns of functional
hubs in session 2. The spatial patterns of functional hubs were consistent between the two sessions. C, TRT reliability maps for three types of degree centralities (woDeg, wsDeg and
wlDeg). The entire scan of the mR-fMRI data was temporally band-pass filtered with a high frequency band (0.2–0.3 Hz).
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et al., 2006; Buckner et al., 2009; He et al., 2009; Liang et al., 2013;
Sepulcre et al., 2010; Tomasi and Volkow, 2011; Zuo et al., 2012), we
identified functional hubs in the voxel-based brain networks. These
functional hubs are crucial for efficient information exchange and inte-
gration across distributed brain regions. Furthermore, we showed that
the distribution of hub regions was anatomically distance-dependent:
several primary and sensory association cortices, including the sensori-
motor, visual regions and superior parietal lobule, were identified as
short-range hubs;whereas, several default-mode andmultimodal asso-
ciation cortical areas integrating information frommultiple perspective
and cognitive areas were identified as long-range hub regions. This pat-
tern was highly consistent with that of recent studies on the basis of
traditional R-fMRI data (Liang et al., 2013; Sepulcre et al., 2010). In
particular, the medial prefrontal cortex displayed high levels of both
local and distant connectivities, which might reflect its crucial role in
processing and transporting sensory information and cognitive control
(Sepulcre et al., 2010).

Reliable network metrics are necessary for basic and clinical re-
search (Deuker et al., 2009; Guo et al., 2012). In voxel-wise functional
networks derived from mR-fMRI, we found that the TRT reliability
maps of degree were spatially non-homogeneous and were moderate
across the brain, which was consistent with the previous results
(Liang et al., 2012; Wang et al., 2011; Zuo et al., 2012). In addition,
most hub regions exhibited fair to good TRT reliability of degree, partic-
ularly for some areas within the default-mode network (e.g.,
precuneus, ventromedial prefrontal gyrus and inferior parietal
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cortex), which suggested a potential relationship between TRT re-
liability of degree and high functional connections as reported pre-
viously (Wang et al., 2011). Taken together, our results indicate
that the mR-fMRI technique was valid in detecting reliable func-
tional hub configurations in the human whole-brain functional
networks with the measure of degree centrality.

Effects of scan duration

Exploring the effects of scan duration on the reliability of graphmet-
rics is important when using R-fMRI scans to infer convincing results,
particularly in populations that show difficulty in keeping still during
the scans (e.g., Alzheimer's disease and schizophrenia). Using tradition-
al R-fMRI scans, several studies have explored the effects of different
scan durations (5−15 min) on the brain's functional connectivity
(Van Dijk et al., 2010; Whitlow et al., 2011). For example, Whitlow
et al. (2011) reported that functional correlations stabilized after
5 min of R-fMRI scan duration (TR = 2000 ms). In this study, we
showed similar results for the nodal degree centrality derived from tra-
ditional R-fMRI data (TR = 2500 ms), as shown by the fluctuation in-
creasing of TRT reliability with a scan duration ranging from 1 min to
5 min (Fig. S5). For the mR-fMRI scans with a higher sampling rate
(TR = 645 ms), a 6-minute scan duration was able to characterize the
brain's functional hub structure. The TRT reliability of degree increased
minimally by extending the scan duration beyond 6 min, which was
consistent with previous findings with typical sampling rates (Van
Dijk et al., 2010). This result could be attributable to the tradeoff of sev-
eral factors introduced by high sampling rates, such as the additional
temporal information regarding functional integrity among brain re-
gions (Smith et al., 2012; Zahneisen et al., 2011), increased degrees of
freedom and reduced signal-to-noise ratio (Feinberg et al., 2010). Our
finding of the short scan duration was crucial because it demonstrated
that multiband R-fMRI scans are feasible and efficient for reliable func-
tional hub analysis, and may provide some references for future studies
regarding the functional connections based on mR-fMRI data.

Effects of global signals

Using themR-fMRI data,we found that the regression strategy of the
global signals affected the spatial configuration of the functional hubs.
This finding might have resulted from the spatially non-homogeneous
changes of the degree, induced by different correlation distributions rel-
evant to the regression strategies used (Schwarz andMcGonigle, 2011).
As described in previous studies, network analysis without GSR reduced
the anti-correlations among the brain regions (Murphy et al., 2009;
Schwarz and McGonigle, 2011; Weissenbacher et al., 2009), which
resulted in the increase of degree values. These effects were most obvi-
ous in several primary cortical regions, such as the sensorimotor cortex
and cuneus. However, a previous study (Liang et al., 2012) reported ap-
proximately consistent functional hubs for data preprocessing with and
without GSR in brain networks derived from an anatomically defined
atlas. This discrepancy could be due to different spatial scales of node
definition (i.e., 90 nodes representing brain areas in Liang et al.
(2012), compared with 44,401 nodes representing voxels in our analy-
sis). The large number of nodes in our study may have made the
changes of degree values much more sensitive to the processing of
GSR. Furthermore, we observed that nuisance regression without GSR
resulted in a positive contribution on the TRT reliability of degree, and
this observation is in accordance with previous results using traditional
sampling rates (Guo et al., 2012; Liang et al., 2012). In addition, we
found that the positive contribution on TRT reliability was spatially
non-homogeneous. Because the physiological source of the global sig-
nals is still unclear (Fox et al., 2009; Murphy et al., 2009), the validity
of the global signal regression in fMRI studies still requires further
studies.
Effects of sampling rates

We showed consistent anatomically distance-dependent functional
hub configurations for the mR-fMRI and tR-fMRI data within the same
scan duration, indicating that the functional hubs actually reflect the in-
trinsic organization characteristics of the brain independent of the dif-
ferent sampling rates. Moreover, most of the regions displayed no
significant difference in the degree values between the data with differ-
ent sampling rates, except in some regions (e.g., left medial prefrontal
cortex) (Fig. 5). This discrepancy could be due to the experimental
noise, fluctuations of mental states and different types of subject
movement. Nevertheless, common significant regions emerged in
both sessions around oneweek apart and these regions exhibited a sim-
ilar trend after further headmotion correction with data scrubbing, im-
plying that these degree differences might mainly result from the
superiority of mR-fMRI in temporal resolution. On the one hand, subtle
fluctuations of BOLD signals can be acquired, and additional temporal
information regarding the underlying neuronal processes might be re-
vealed (Smith et al., 2012; Zahneisen et al., 2011). On the other hand,
the effects of undesirable high frequency noises, particularly the respi-
ration signals (~0.3 Hz), might be better reduced via the temporal
band-pass filter (0.01–0.1 Hz) for mR-fMRI (Cordes et al., 2001; Lowe
et al., 1998; van den Heuvel and Pol, 2010). Further TRT reliability
analysis revealed spatially dissimilar reliability maps for mR-fMRI and
tR-fMRI data, and the differences were clear in regions of the posterior
medial prefrontal cortex, lateral frontal gyrus, paracentral lobule and
anterior temporal lobe. This discrepancy between the reliability maps
could be associated with the functional connection differences between
mR-fMRI and tR-fMRI data in both sessions, and more evidence is re-
quired to elucidate the physiological mechanism underlying these
reliability differences. Besides, the experiment measurement errors of
R-fMRI scansmay also have a potential impact on the TRT reliability dif-
ference between different sampling rates. However, in the current study
we did not take into account these factors, as themeasurement errors of
both R-fMRI scans were not available. The potential impact of measure-
ment errors could be handled in future reliability analyses, when rele-
vant information is available.

Functional hubs in a high frequency band

Most previous studies on resting-state functional networks focused
on the spontaneous fluctuations of BOLD signals in a low frequency
band (0.01–0.1 Hz) (Biswal et al., 2010; Fox and Raichle, 2007; van
denHeuvel and Pol, 2010), whichmay reflect the endogenous coordina-
tion of neural activities in the brain (Biswal et al., 1995; Cordes et al.,
2000; Lowe et al., 1998). However, less attention has been given to
the functional connections in the high frequency band (Achard et al.,
2006; Salvador et al., 2005b; Wu et al., 2008), whose physiological
mechanism is still unclear. Using mR-fMRI, we were able to construct
voxel-wise functional networks in a high frequency band (0.2–0.3 Hz)
and to identify some hub regions that were mainly in several default-
mode regions (e.g., medial prefrontal cortex and inferior parietal cor-
tex). These delicate spatial patterns of functional hubs suggested that
these hubsmaynot solely originate from thermal (spatially uncorrelated)
noises, and therefore,might actually reflect the functional organization of
the human brain in the high frequency band. Given that these default-
mode regions have been linked to multiple internally-generated mental
activity (e.g., mind wandering) (Buckner et al., 2008; Raichle and
Snyder, 2007), thesefindings suggest that the integration ofmultiple per-
ceptive and cognitive processes might involve functional coordination
across a wide frequency band.

Methodological considerations

Several issues need to be further considered when interpreting
our findings. First of all, to exclude the potential effects of confounding
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healthy issues, we employed the data of 11 healthy subjects in
this study. To increase the statistical power of TRT reliability analysis
(e.g., scan duration effects), future studies need to be conducted on a
large number of healthy subjects. Second, the effect of head motion on
functional connectivity has gained increasing attention, and several
methods have been proposed for head motion correction on voxel
time courses (Power et al., 2012; Satterthwaite et al., 2013; Van Dijk
et al., 2012). In the present study, only the method of data scrubbing
(Power et al., 2012) was used to further reduce the effects of head mo-
tion on functional connectivity after the nuisance regression with six
head motion parameters. The effect of other methods (e.g., regression
with high-order head motion related changes) on functional hubs and
their TRT reliabilitywill be explored in further work. Third,we observed
the discrepancies in the short-range degreemaps between themR-fMRI
and tR-fMRI data. These discrepancies might be associated with the dif-
ferent sampling rates that were used between the datasets. However,
these results may have also been affected by the order effects of the
scan sequences. In the current study, we assess the scanning order ef-
fects by dividing a single mR-fMRI scan into two sections with approx-
imately equal scan duration. Nevertheless, to effectively reduce the
order effects on the network analysis, it will be important to perform
a counter-balance design in future studies. Fourth, we only explored
the brain's functional hubs and their TRT reliability in the voxel-based
brain networks. Further studies are needed to explore other global net-
work metrics, such as characteristic path length, small-world parame-
ters, and modularity, which provides additional information on the
functional network organization (Bullmore and Sporns, 2009; Rubinov
and Sporns, 2010). Finally, when monitoring longitudinal changes, it is
important to consider the tradeoff between reliability and sensibility
of network metrics (Bassett et al., 2011; Deuker et al., 2009; Guo et al.,
2012). In future studies, several measures (e.g., the coefficient of varia-
tion) can be further developed to comprehensively characterize the
sensibility of functional network metrics over scanning sessions.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.07.058.
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