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The human brain has been described as a large, sparse, complex network characterized by efficient small-world
properties, which assure that the brain generates and integrates informationwith high efficiency.Many previous
neuroimaging studies have provided consistent evidence of ‘dysfunctional connectivity’ among the brain regions
in schizophrenia; however, little is known about whether or not this dysfunctional connectivity causes disruption
of the topological properties of brain functional networks.To this end, we investigated the topological properties
of human brain functional networks derived from resting-state functional magnetic resonance imaging (fMRI).
Data was obtained from 31 schizophrenia patients and 31healthy subjects; then functional connectivity between
90 cortical and sub-cortical regions was estimated by partial correlation analysis and thresholded to construct a
set of undirected graphs. Our findings demonstrated that the brain functional networks had efficient small-
world properties in the healthy subjects; whereas these properties were disrupted in the patients with
schizophrenia. Brain functional networks have efficient small-world properties which support efficient parallel
information transfer at a relatively low cost. More importantly, in patients with schizophrenia the small-world
topological properties are significantly altered in many brain regions in the prefrontal, parietal and temporal
lobes. These findings are consistent with a hypothesis of dysfunctional integration of the brain in this illness.
Specifically, we found that these altered topologicalmeasurements correlate with illness duration in schizophre-
nia. Detection and estimation of these alterations could prove helpful for understanding the pathophysiological
mechanism as well as for evaluation of the severity of schizophrenia.
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Introduction
The human brain has evolved to support rapid real-time
integration of information across segregated sensory brain
regions (Sporns and Zwi, 2004), to confer resilience against
pathological attack (Achard et al., 2006), and to maximize
efficiency at a minimal cost for effective information pro-
cessing between different brain regions (Achard and
Bullmore, 2007). Small-world networks offer a structural
substrate for functional segregation and integration of the
brain (Sporns and Zwi, 2004) and facilitate rapid adaptive
reconfiguration of neuronal assemblies in support of
changing cognitive states (Bassett and Bullmore, 2006).

Efficiency provides a vital measure of how well information
is transformed over a network (Achard and Bullmore, 2007).
The combination of these factors makes efficient small-world
topology an attractive model for brain functional networks.

In terms of the pathophysiology of schizophrenia,
dysfunctional connectivity has been hypothesized to be the
pathophysiological mechanism of cognitive dysfunction.
Widely distributed dysfunctional connectivity, such as
frontal-frontal/fronto-temporal disconnections (Friston and
Frith, 1995; Andreasen et al., 1998; Tan et al., 2006), reduced
connectivity between the fronto-parietal (Paulus et al., 2002;
Kim et al., 2003), occipito-temporal (Kim et al., 2005) and
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dorsolateral prefrontal-anterior cingulate (Spence et al., 2000)
have been reported. Also disrupted interregional connectivity
within the cortico-cerebellar-thalamo-cortical circuit (Honey
et al., 2005) and aberrant connectivity within default mode
network (Bluhm et al., 2007; Garrity et al., 2007; Zhou et al.,
2007b) have been reported. The disruptions of interregional
brain connectivity may lead to the failure of functional
integration within the brain in schizophrenia. This failure
may partially account for the deficits in cognition and
behaviour of schizophrenia patients. So far, however, little is
known about changes in the global/local structure of the brain
functional network in schizophrenia except for the results of
two recent studies using fMRI (Liang et al., 2006a) and EEG
data (Micheloyannis et al., 2006a). Liang et al. (2006a)
suggested altered small-world properties in schizophrenia
based on resting-state fMRI data. However, a key problem
with that study is that only two networks (one for each group)
were constructed; thus the results were descriptive and no
statistical conclusion was able to be drawn. Micheloyannis
et al. (2006a) reported disrupted small-world properties of
brain networks in different bands of EEG signals in
schizophrenia. Although EEG supplies a high temporal
resolution, it cannot reveal information about the exact
activities of specific sub-cortical brain regions; thus EEGs
cannot be used to construct a complete brain network.
To investigate directly the hypothesis that the brain

network of schizophrenia is characterized by disruption of
efficient small-world topological properties based on resting-
state fMRI data, we divided the cerebrum into 90 brain
regions. Functional connectivities were then estimated by
calculating the partial correlation between the mean time
series of each pair of brain regions for each subject. The
resulting partial correlation matrices were thresholded to
generate a set of undirected binary graphs. Topological
parameters of brain networks were evaluated as a function of
connectivity threshold, T, and the degree of connectivity, K.
Statistical analyses were performed to explore the differences
between patients and healthy subjects. Pearson’s correla-
tion coefficients between these topological properties and
clinical variables were used to evaluate the relationship in
schizophrenia.

Materials and Methods
Subjects
The study included 31 patients with schizophrenia (mean age of
24 years) who were recruited from the Institute of Mental Health,
Second Xiangya Hospital, China. Confirmation of the diagnosis for
all patients was made by clinical psychiatrists, using the Structured
Clinical Interview for DSM-IV, Patient Version (First et al., 1995).
During the time of the experiments, trained and experienced
psychiatrists assessed the symptoms of these patients using the
Positive and Negative Syndrome Scale (PANSS). The mean
treatment was 442mg chlorpromazine-equivalent antipsychotic
(21 subjects were receiving atypical antipsychotic medications and
10 were not receiving any medical treatment at the time of
examination) (Table 1). Thirty-one age and gender-matched

healthy subjects were recruited from similar geographic and
demographic regions (Table 1).
All subjects were right-handed. The exclusion criteria for all the

subjects were as follows: no history of neurological or significant
physical disorders, no history of alcohol or drug dependence and

no history of receiving electroconvulsive therapy. All the healthy
subjects had no history of psychiatric illness. Some of these subjects
have been used in the previous studies (Liang et al., 2006a, b;
Zhou et al., 2007a, b). All subjects gave voluntary and informed
consent according to the standards set by the Ethics Committee of
the Second Xiangya Hospital, Central South University.

Data acquisition and preprocessing
Imaging was performed on a 1.5 Tesla GE scanner in the Second
Xiangya Hospital. Blood oxygenation level dependent (BOLD)

images of the whole brain using an echo planar imaging (EPI)
sequence were acquired in 20 axial slices (TR= 2000ms, TE= 40ms,
flip angle = 90�, FOV=24 cm; 5mm thickness and 1mm gap). The
fMRI scanning was done in darkness. All the subjects were
instructed to keep their eyes closed, not to think about anything

in particular and to move as little as possible. For each subject, the
fMRI scanning lasted 6min. Structural sagittal images were
obtained using a magnetization prepared rapid acquisition gradient
echo three-dimensional T1-weighted sequence for each subject
(TR= 2045ms, TE= 9.6ms, flip angle = 90�, FOV=24 cm).
Unless specifically stated otherwise, all the preprocessing was

carried out using statistical parametric mapping (SPM2, http://
www.fil.ion.ucl.ac.uk/spm). To allow for magnetization equilib-
rium, the first 10 images were discarded. The remaining 170 images
were first corrected for the acquisition time delay among different
slices, and then the images were realigned to the first volume for

head-motion correction. The time course of head motions was
obtained by estimating the translations in each direction and the
rotations in angular motion about each axis for each of the 170
consecutive volumes. All the subjects included in this study
exhibited a maximum displacement of less than 1.5mm at each
axis and an angular motion of less than 1.5� for each axis. We also

evaluated the group differences in translation and rotation of head
motion according to the following formula:

HeadMotion=Rotation ¼

1

M� 1

XM
i¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxi � xi�1j

2 þ jyi � yi�1j
2 þ jzi � zi�1j

2

q

where M is the length of the time series (M=170) in this study,
xi, yi and zi are translations/rotations at the ith time point in

Table 1 Demographic and clinical details of the subjects

Controls
(n=31)

Schizophrenia
(n=31)

P-value

Gender (male) 16 17 0.8a

Age (years) 26� 4 24� 6 0.20b

Duration of illness (months) ^ 27� 24 ^
Medication dose (mg) ^ 442� 208c ^
PANSS ^ 83�20 ^

aThe P-value was obtained by Pearson Chi-square.
bThe P-value was obtained by two-sample two-tailed t-test.
cChlorpromazine equivalent excluding 10 non-medications.
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the x, y and z directions, respectively (Liang et al., 2006b). The results
showed that the two groups had no significant differences in head
motion (two sample two-tailed t-test, P= 0.59 for translational
motion and P= 0.55 for rotational motion). The fMRI images were
further spatially normalized to the Montreal Neurological Institute
(MNI) EPI template and resampled to a 3mm cubic voxel. Finally,
temporal band-pass filtering (0.015f50.08Hz) was performed in
order to reduce the effects of low-frequency drift and high-frequency
noise (Fox et al., 2005; Liang et al., 2006b; Liu et al., 2007).

Anatomical parcellation
The registered fMRI data were segmented into 90 regions (45 for each
hemisphere, Table 2) using the anatomically labelled template
reported by Tzourio-Mazoyer et al. (2002), which has been used in
several previous studies (Salvador et al., 2005a, b; Achard et al., 2006;
Achard and Bullmore, 2007; Liang et al., 2006a, b; Liu et al., 2007). For
each subject, the representative time series of each individual region
was then obtained by simply averaging the fMRI time series over all
voxels in this region. Each regional mean time-series was further
corrected for the effect of head movement on the partial correlation
coefficients by regression on the translations and rotations of the head
estimated in the procedure of image realignment. The residuals of
these regressions constituted the set of regional mean time-series used
for undirected graph analysis (Salvador et al., 2005b).

Estimation of the interregional partial
correlations
Functional connectivity examines interregional correlations in
neuronal variability (Friston et al., 1993). Partial correlation can
be used as a measure of the functional connectivity between a given

pair of regions by attenuating the contribution of other sources
of covariance (Whittaker, 1990; Hampson et al., 2002). In this case,
we used partial correlations to reduce indirect dependencies by
other brain areas and built undirected graphs. Given a set of N
random variables, the partial correlation matrix is a symmetric
matrix in which each off-diagonal element is the correlation
coefficient between a pair of variables after filtering out the
contributions of all other variables included in the dataset. In the
present study, therefore, the partial correlation between any pair of
regions filters out the effects of the other 88 brain regions (Salvador
et al., 2005a).
The first step is to estimate the sample covariance matrix S from

the data matrix Y= (xi)i=1,. . .,90 of observations for each individual.
Here xi is the mean time series of each brain region. If we introduce
X= (xj, xk) to denote the average over time of the observations in
the jth and kth regions, Z=Y\X denotes the other 88 mean time
series matrices. Each component of S contains the sample
covariance value between two regions (say j and k). If the
covariance matrix of [X,Z] is

S ¼
S11 S12

ST
12 S22

� �
,

in which S11 is the covariance matrix of X, S12 is the covariance
matrix of X and Z and S22 is the covariance matrix of Z, then the
partial correlation matrix of X, controlling for Z, can be defined
formally as a normalized version of the covariance matrix,

Sxy ¼ S11 � S12S
�1
22 S

T
12:

Finally, a Fisher’s r-to-z transformation is used on the partial
correlation matrix in order to improve the normality of the partial
correlation coefficients.

Table 2 Cortical and sub-cortical regions defined in Automated Anatomical Labeling template image in standard
stereotaxic space

Region name Abbreviation Region name Abbreviation

Superior frontal gyrus, dorsolateral SFGdor Superior parietal gyrus SPG
Superior frontal gyrus, orbital SFGorb Paracentral lobule PCL
Superior frontal gyrus, medial SFGmed Postcentral gyrus PoCG
Superior frontal gyrus, medial orbital SFGmorb Inferior parietal gyrus IPG
Middle frontal gyrus MFG Supramarginal gyrus SMG
Middle frontal gyrus, orbital MFGorb Angular gyrus ANG
Inferior frontal gyrus, opercular IFGoper Precuneus PCNU
Inferior frontal gyrus, triangular IFGtri Posterior cingulate gyrus PCC
Inferior frontal gyrus, orbital IFGorb
Gyrus rectus REG Insula INS
Anterior cingulate gyrus ACC Thalamus THA
Olfactory cortex OLF

Superior temporal gyrus STG
Precentral gyrus PreCG Superior temporal gyrus, temporal pole STGp
Supplementary motor area SMA Middle temporal gyrus MTG
Rolandic operculum ROL Middle temporal gyrus, temporal pole MTGp
Median- and para-cingulate gyrus MCC Inferior temporal gyrus ITG

Heschl gyrus HES
Calcarine fissure and surrounding cortex CAL Hippocampus HIP
Cuneus CUN Parahippocampal gyrus PHIP
Lingual gyrus LING Amygdala AMYG
Superior occipital gyrus SOG
Middle occipital gyrus MOG Caudate nucleus CAU
Inferior occipital gyrus IOG Lenticular nucleus, putamen PUT
Fusiform gyrus FG Lenticular nucleus, pallidum PAL
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Graph theoretical analysis
Topological properties of the brain functional networks
An N�N (N=90 in the present study) binary graph, G, consisting
of nodes (brain regions) and undirected edges (functional
connectivity) between nodes, can be constructed by applying a
correlation threshold T (Fisher’s r-to-z) to the partial correlation
coefficients:

eij ¼
1 if jzði, jÞj � T
0 otherwise

�

That is, if the absolute z(i, j) (Fisher r-to-z of the partial correlation
coefficient) of a pair of brain regions, i and j, exceeds a given
threshold T, an edge is said to exist; otherwise it does not exist.
We define the subgraph Gi as the set of nodes that are the direct
neighbours of the ith node, i.e. directly connected to the ith
node with an edge. The degree of each node, Ki,i=1,2,. . .,90, is defined
as the number of nodes in the subgraph Gi. The degree of
connectivity, Kp, of a graph is the average of the degrees of all the
nodes in the graph:

Kp ¼
1

N

X
i2G

Ki,

which is a measure to evaluate the degree of sparsity of a network.
The total number of edges in a graph, divided by the maximum
possible number of edges N(N � 1)/2:

Kcost ¼
1

NðN� 1Þ

X
i2G

Ki,

is called the cost of the network, which measures how expensive it
is to build the network (Latora and Marchiori, 2003). The con-
nectivity strength of the ith node is:

Ei corr ¼
1

Ki

X
j2Gi

jzði, jÞj � eij:

Ei_corr is a measure of the strength of the functional connectivity
between the ith node and the nodes in the subgraph Gi. The
strength of the functional connectivity of a graph is:

Ecorr ¼
1

N

X
i2G

Ei corr:

The larger the Ei_corr, the stronger the functional connectivity of the
brain functional network.
The absolute clustering coefficient of a node is the ratio of the

number of existing connections to the number of all possible
connections in the subgraph Gi:

Ci ¼
Ei

KiðKi � 1Þ=2
,

where Ei is the number of edges in the subgraph Gi (Watts and
Strogatz, 1998; Strogatz, 2001). The absolute clustering coefficient
of a network is the average of the absolute clustering coefficients of
all nodes:

Cp ¼
1

N

X
i2G

Ci:

Cp is a measure of the extent of the local density or cliquishness of
the network.

The mean shortest absolute path length of a node is:

Li ¼
1

N� 1

X
i 6¼j2G

minfLi, jg,

in which min {Li, j} is the shortest absolute path length between the
ith node and the jth node, and the absolute path length is the
number of edges included in the path connecting two nodes.
The mean shortest absolute path length of a network is the average
of the shortest absolute path lengths between the nodes:

Lp ¼
1

N

X
i2G

Li

Lp is a measure of the extent of average connectivity or overall
routing efficiency of the network.
Compared with random networks, small-world networks have

similar absolute path lengths but higher absolute clustering coeffi-
cients, that is � ¼ Creal

p =Crand
p > 1, � ¼ Lreal

p =Lrand
p � 1 (Watts and

Strogatz, 1998). These two conditions can also be summarized into a
scalar quantitative measurement, small-worldness, � = �/�, which is
typically 41 for small-world networks (Achard et al., 2006;
Humphries et al., 2006; He et al., 2007). To examine the small-
world properties, the values of Creal

p and Lreal
p of the functional brain

network need to be compared with those of random networks. The
theoretical values of these two measures for random networks are
Crand

p ¼ K=N, and Lrand
p � lnðNÞ=lnðKÞ (Achard et al., 2006; Bassett

and Bullmore, 2006; Stam et al., 2007). However, as suggested by
Stam et al. (2007), statistical comparisons should generally be
performed between networks that have equal (or at least similar)
degree sequences; however, theoretical random networks have
Gaussian degree distributions that may differ from the degree
distribution of the brain networks that we discovered in this study.
To obtain a better control for the functional brain networks,
we generated 100 random networks for each K and threshold T
of each individual network by a Markov-chain algorithm (Maslov
and Sneppen, 2002; Milo et al., 2002; Sporns and Zwi, 2004).
In the original matrix, if i1 was connected to j1 and i2 was con-
nected to j2, for random matrices, we removed the edge between
i1 and j1 but added an edge between i1 and j2. That means that
a pair of vertices (i1, j1) and (i2, j2) was selected for
which, ei1j1 ¼ 1, ei2j2 ¼ 1, ei1 j2 ¼ 0, and ei2 j1 ¼ 0. Then
ei1j1 ¼ 0, ei2j2 ¼ 1, ei1 j2 ¼ 1 and ei2j1 ¼ 0. Then we randomly
permuted the matrix which assured that the random matrix had
the same degree distribution as the original matrix. This procedure
was repeated until the topological structure of the original matrix
was randomized (Achard et al., 2006). Then we averaged across all
100 generated random networks to obtain a mean Crand

p and a mean
Lrand
p for each degree K and threshold T.

Efficiency of small-world brain networks
It has been shown that brain functional networks have efficient
small-world properties which support the efficient transfer of
parallel information at a relatively low cost (Achard and Bullmore,
2007). Eglobal, a measure of the global efficiency of parallel infor-
mation transfer in the network, is defined by the inverse of the
harmonic mean of the minimum absolute path length between each
pair of nodes (Latora and Marchiori, 2001, 2003; Achard and
Bullmore, 2007):

Eglobal ¼
1

NðN� 1Þ

X
i 6¼j2G

1

Li, j
:
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We can calculate the local efficiency of the ith node:

Ei local ¼
1

NGi
ðNGi

� 1Þ

X
j, k2Gi

1

Lj, k
:

In fact, since the ith node is not an element of the subgraph Gi, the
local efficiency can also be understood as a measure of the fault
tolerance of the network, indicating how well each subgraph
exchanges information when the index node is eliminated (Achard
and Bullmore, 2007). In addition, based on its definition, it is a
measure of the global efficiency of the subgraph Gi. The mean local
efficiency of a graph, Elocal ¼ ð1=NÞ

P
i2G Ei local, is the mean of all

the local efficiencies of the nodes in the graph. We can also calculate
the global efficiency (Eglobal) and local efficiency (Elocal) as a function
of Kcost.
Table 3 presents the measurements we have introduced and

illustrates their meaning in human brain functional networks.

Statistical analysis
Statistical comparisons of Ecorr, C

real
p , Lreal

p , �, �, �, Eglobal and Elocal
between the two groups were performed by using a two-sample
two-tailed t-test for each value over a wide range of T or K (Kcost).
For each selected threshold value, we also computed the mean
degree of each subject and used a two-sample two-tailed t-test to
determine if the degree of connectivity was significantly different
between the two groups. If any change in the topological properties
was found between the two groups, we investigated the distribution
of the regions which showed significant differences in these
topological properties.

Relationship between topological measures
and clinical variables
We used Pearson’s correlation coefficient to evaluate the relation-
ship between the topological properties (Ecorr, C

real
p , Lreal

p , Eglobal

and Elocal) of the brain functional networks and various clinical
variables (illness duration, PANSS scores and medication doses) for
each T or K in the schizophrenia group. Because these analyses were
exploratory in nature, we used a statistical significance level of
P50.05 (uncorrected).

Results
Direct comparisons between schizophrenia
and healthy subjects
The mean functional connectivity matrix of each group was
calculated by averaging the N�N (N= 90 in the present
study) absolute connection matrix of all the subjects within
the group. In the normal group, most of the strong
functional connectivities (large z-scores) were between
inter-hemispheric homogenous regions, within a lobe, and
between anatomically adjacent brain areas (Fig. 1). This
functional connectivity pattern was consistent with many
previous studies of whole brain functional connectivity in the
resting-state (Salvador et al., 2005a; Achard et al., 2006). The
schizophrenia group showed a similar functional connectiv-
ity pattern to that of the healthy group; however, the strength
of the functional connectivity was lower in the schizophrenia
group [F (1,60) = 10.76, P= 0.002].

Direct comparisons of all possible connections between the
two groups were also performed to test the between-group
differences. We found that the altered functional connectiv-
ities are distributed throughout the entire brain, which is
consistent with a previous study by Liang et al. (2006b).
Extended details about the methods and results can be found
in part I of the supplemental material.

Efficient small-world properties of
the two groups

Efficient small-world regime of brain functional networks
Following the studies by Stam and colleagues (2007), we
investigated the topological properties of brain functional
networks as a function of T or K (Kcost). Clearly the choice of
a threshold value will have a major effect on the topological
properties of the resulting networks: conservative thresholds,
T! 1, will generate sparsely connected graphs (with small
Kp, more lenient thresholds, T! 0, will generate more
densely connected graphs (with large Kp, for T= 0, Kp= 90,
Creal

p ¼ Lreal
p ¼ 1), inevitably including a number of edges

representing spurious or statistically non-significant correla-
tions between regions. In the present study, we adopted the
following complementary approaches to choose the
thresholds:

(1) We thresholded all matrices using a single, conserva-
tive threshold chosen to construct a sparse graph with
mean degree Kp5 2log N� 9 (total number of edges
K5 405). In addition, the maximum threshold (T)
must also assure that each network is fully connected
with N= 90 nodes. This allowed us to compare the

Table 3 Introduction of measurements and their meaning
in the brain functional network

Character Meaning

z(i, j) z score of Fisher r-to-z transform of partial
correlation coefficients

Gi the set of nodes that are nearest neighbors of the
ith node

Kp degree of connectivity which evaluates the level of
sparseness of a network

Kcost cost of network
Ecorr mean z score of a brain functional network
Cp clustering coefficient which measures the extent of

a local cluster of the network
Lp path length which measures of the extent of

average connectivity of the network
� � ¼ Creal

p =Crand
p , the ratio of the clustering

coefficients between real and random network
� � ¼ Lreal

p =Lrand
p the ratio of the path length between

real and random network
� � =�/�, scalar quantitative measurement of the

small-wordness of a network
Eglobal a measure of the global efficiency of parallel

information transfer in the network
Elocal a measure of the fault tolerance of the network
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topological properties between the two groups in a
way that was relatively independent of the size of the
network.

(2) The minimum threshold must ensure that the brain
networks have a lower global efficiency and a larger local
efficiency compared to random networks with relatively
the same distribution of the degrees of connectivity, as
suggested by Achard and Bullmore (2007).

We selected the threshold range, Tmin4T4Tmax by
intersecting the upper criteria. Then we repeated the full
analysis for each value of T in the range Tmin4T4Tmax,
with increments of 0.002. However, if the topological indices
of the brain functional networks are only computed as a
function of threshold T, the results could be influenced by
differences in the number of edges between the two groups
(Stam et al., 2007). To control this effect, we repeated the
analysis by computing the topological indices of each brain
functional network as a function of the degree of
connectivity, Kmin4K4Kmax with steps of 0.22 (edge
step/node = 20/90), where the range was determined in a
manner similar to that described earlier. As shown in Fig. S5,
brain networks were accepted as fully in both groups
if the threshold T4 0.316 (Fig. S5); brain networks
were accepted as fully connected if the total connected
edge 5490 (that is Kcost5ð490=4005Þ � 0:122) (Fig. S6).
Consequently, we selected the small-world interval as
0.1224Kcost4 0.267 (the corresponding degree of connec-
tivity threshold is 10.94K4 23.8 and the corresponding

connectivity threshold is 0.2684T4 0.316) (Fig. 2B). Such
a range is similar to that used in Achard and Bullmore’s
study (2007).

Altered topological properties of brain functional
networks in schizophrenia
The distributions of the degree of connectivity and the
strength of the functional connectivity of the brain network
as a function of threshold within each group are shown in
Fig. 3. With an increase in the threshold, the degree of
connectivity decreases; whereas the strength of the functional
connectivity starts to increase because more and more edges
with lower strength of the functional connectivities are being
lost (providing a corresponding value of z-score4T). Over
the whole range of threshold values (0.268–0.316), the degree
(Fig. 3A) and strength of functional connectivity (Fig. 3B)
were significantly lower in the schizophrenia group com-
pared with the healthy group. The schizophrenia group also
showed a significantly lower strength of functional con-
nectivity than the healthy group over the whole range of K
(Fig. 3C).

As shown in Fig. 4, the higher threshold resulted in a lower
mean absolute clustering coefficient and a longer mean shortest
absolute path length for both groups, as expected. Over the
whole range of threshold values investigated (0.268–0.316), the
absolute clustering coefficients of the healthy subjects were
slightly higher than those of the schizophrenia group (Fig. 4A).
For all values of T, the absolute path length was significantly
longer in the schizophrenia group compared with the healthy

Fig. 1 Mean absolute z-score matrices for normal and schizophrenia group. Each figure shows a 90� 90 square matrix, where the
x and y axes correspond to the regions listed inTable 2, and where each entry indicates the mean strength of the functional connectivity
between each pair of brain regions. The diagonal running from the lower left to the upper right is intentionally set to zero.The z score
of the functional connectivity is indicated with a coloured bar.
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subjects (Fig. 4B). When looking at the absolute clustering
coefficients and the absolute path length as a function of K, we
found the absolute clustering coefficient increased and the
shortest absolute path length decreased with an increase in the

degree K, and only the absolute clustering coefficient showed a
significant difference between the two groups (Fig. 4C).

The small-world attribute is evident in the brain networks
of both groups: � is significantly greater than 1 while � is near

Fig. 3 (A) Mean degree of connectivity, Kreal
p , and (B) strength of functional connectivity, Ecorr, for schizophrenic (blue squares) and

healthy (red dots) subjects as a function of threshold T. (C) strength of functional connectivity, Ecorr, for schizophrenic (blue squares)
and healthy (red dots) subjects as a function of degree K. Error bars correspond to standard error of the mean. Black triangles indicate
where the difference between the two groups is significant (t-test, P50.05).

Fig. 2 Economic small-world human brain functional networks. (A) Global and (B) local efficiency for a random graph and brain
networks as a function of cost.On average, over all subjects in each group, normal (blue line) and schizophrenia (red line) brain networks
have lower efficiency than the limiting cases of random networks (black dashed line). The small-world regime is conservatively defined as
the range of costs 0.1224Kcost4 0.267 for which the global efficiency curve for the normal networks is less than the global efficiency
curve for the random networks.
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the value of 1 over the whole range of T or K. Due to the large
variance, there were no statistically significant differences in
the values of �, � or � between the two groups when the same
threshold was used (Fig. 5A–C). � and � were significantly
decreased in the patients with schizophrenia when using
the same K for both groups (Fig. 5D and F). Only at a small
number of connectivity values was � found to show
statistically significant differences between the two groups
(Fig. 5E). The fact that we found significant differences
between the two groups indicates that small-world properties
are disrupted in patients with schizophrenia.
Global efficiency is a measure of the transfer speed of

parallel information in the brain; whereas local efficiency is
a measure of the information exchange of each subgraph
(Achard and Bullmore, 2007). Global efficiency of brain
functional networks were compared with the parameters
estimated in a random graph with the same degree dis-
tribution over a range of network costs. As expected,
efficiency monotonically increased as a function of cost in
all networks; the random graph had higher global
efficiency and lower local efficiency than the healthy subjects’
(Fig. 2A and B) which is consistent with the previous study
(Achard and Bullmore, 2007). The global and local
efficiencies of the brain functional networks in the patients

with schizophrenia were disrupted as a function of
threshold (Fig. 6A and B). And the local efficiencies of
the brain functional networks in the patients with schizo-
phrenia were disrupted as a function of degree of con-
nectivity (Fig. 6D). However, there was no significant
difference in global and local efficiency between the two
groups (Fig. 6C).

Distribution of the altered regions in the brain
We used a two-sample two-tailed t-test to detect statistical
differences in the small-world topological properties between
schizophrenic patients and the healthy subjects for each brain
region at each selected threshold (or degree of connectivity).
We found the pattern of small-world topological properties
to be significantly altered in many brain regions in the
prefrontal, parietal and temporal lobes (Figs. S7 and S8).
Since all thresholds were similar in their trends with respect
to the differences in their small-world properties between the
schizophrenic patients and the healthy subjects, we have
chosen to report only one typical threshold (T= 0.316,
the top of the threshold range) (Fig. 7) and degree of
connectivity (K= 10.9, the smallest degree in this study)
(Fig. 8) in the main text. Details can be found in part III of
the Supplementary Material.

Fig. 4 (A) Mean absolute clustering coefficient, Creal
p , and (B) absolute path length, Lreal

p , for schizophrenic (blue squares) and healthy
(red dots) subjects as a function forT. (C) Mean absolute clustering coefficient, C real

p , and (D) absolute path length, Lreal
p , for schizophrenic

(blue squares) and healthy (red dots) subjects as a function of K. Error bars correspond to standard error of the mean. Black triangles
indicate where the difference between the two groups is significant (t-test, P50.05).
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Relationship between the altered topological
measurements and the clinical variables
We found that the degree of connectivity, Ecorr, Kp, C

real
p ,

Eglobal and Elocal were negatively correlated; however, L
real
p was

positively correlated with illness duration when these
measurements were computed as a function of each threshold
(Fig. S9). We show this pattern at a typical threshold T= 0.316
in Fig. 9. A similar pattern was found when the relationship
between these topological measurements and the clinical
variables was investigated as a function of the degrees of
connectivity (Figs. 10 and S10). (For further detail, please see
Figs. S9 and S10 of part IV in the Supplementary Material.)

Discussion
In the present study, resting-state fMRI data were used to
construct functional brain networks in schizophrenic and
healthy subjects. We thresholded the partial correlation
matrices to construct a set of undirected binary graphs for
each subject and compared the topological properties of
brain functional networks between the two groups. The
brain functional networks of the healthy subjects showed
efficient small-world structure, which is consistent with
several previous studies (Stam, 2004; Achard et al.,
2006; Bassett and Bullmore, 2006; Bassett et al., 2006;
Achard and Bullmore, 2007). Nevertheless, the patients with

Fig. 5 (A) �, (B) � and (C) � for schizophrenic (blue squares) and healthy (red dots) subjects as a function of threshold. (D) �, (E) � and
(F) � for schizophrenic (blue squares) and healthy (red dots) subjects as a function of K. Error bars correspond to standard error of the
mean. Black triangles indicate where the difference between the two groups is significant (t-test, P50.05).
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schizophrenia showed disturbed topological properties, such
as a lower degree of connectivity, a lower strength of con-
nectivity, a lower absolute clustering coefficient, and a longer
absolute path length compared with those of healthy
subjects. All these findings support the hypothesis that
schizophrenia is a disorder of dysfunctional integration
among large, distant brain regions (Bullmore et al., 1997,
1998; Friston, 2005). These results are consistent with a
previous EEG study, in which disrupted small-world proper-
ties were found in the alpha, beta and gamma bands during
resting-state and working memory tasks in patients with
schizophrenia (Micheloyannis et al., 2006a). More impor-
tantly, we found that the topological measurements of
efficient small-world brain functional networks were corre-
lated with illness duration in schizophrenia.

Disrupted efficient small-world properties
in schizophrenia

Efficient small-world brain network
The human brain is a large, dynamic functional network with
an economical, small-world architecture and is characterized
by high local clustering of connections between neighbouring

nodes but with short path lengths between any pair of nodes
(Sporns and Honey, 2006; Achard and Bullmore, 2007).
Functional segregation and integration are two major
organizational principles of the human brain. In other
words, an optimal brain requires a suitable balance between
local specialization and global integration of brain functional
activity (Tononi et al., 1998). This is supported by higher
absolute clustering coefficients (an index of functional
segregation) and shorter absolute path length (an index of
functional integration) in the functional brain networks
of healthy subjects.

The small-world attributes reflect the need of the
functional brain network to satisfy the opposing demands
of local and global processing (Kaiser and Hilgetag, 2006).
This issue is supported by many previous studies based on
MEG (Stam, 2004), EEG (Micheloyannis et al., 2006b) and
fMRI (Eguiluz et al., 2005; Salvador et al., 2005a; Achard
et al., 2006). In the present study, we found that the resting
brain functional network of the healthy subjects had salient
small-world properties (Figs 5 and 6). Our results are in line
with those of several previous brain network studies (Hilgetag
et al., 2000; Stam, 2004; Salvador et al., 2005a; Achard et al.,
2006; Micheloyannis et al., 2006a; Stam et al., 2007) (Table 4).

Fig. 6 (A) Mean global efficiency, Eglobal, and (B) local efficiency, Elocal, for schizophrenic (blue squares) and healthy (red dots) subjects as
a function of T. (C) Mean global efficiency, Eglobal, and (D) local efficiency, Elocal, for schizophrenic (blue squares) and healthy (red dots)
subjects as a function of degree. Error bars correspond to standard error of the mean. Black triangles indicate where the difference
between the two groups is significant (t-test, P50.05).

954 Brain (2008), 131, 945^961 Y. Liu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article-abstract/131/4/945/357118 by N

ational Science and Technology Library -R
oot user on 10 N

ovem
ber 2019



Disrupted efficient small-world characters in
schizophrenia
More importantly, over a wide range of thresholds and the

degree of connectivity, K, the absolute clustering coefficients,

Creal
p , showed significantly smaller values in schizophrenia,

implying relatively sparse local connectedness of the brain

functional networks in schizophrenia (Micheloyannis et al.,

2006a). In addition, the strength of functional connectivity

showed significantly lower values in patients with schizo-

phrenia. This means that the extent of local connectedness

decreased in the schizophrenia group. Information interac-

tions between interconnected brain regions are believed to be a

basis of human cognitive processes (Pastor et al., 2000;

Horwitz, 2003; Stam et al., 2007). Short absolute path lengths

have been demonstrated to promote effective interactions

between and across different cortical regions (Bassett and

Bullmore, 2006; Achard and Bullmore, 2007). The longer

absolute path lengths may indicate that information interac-

tions between interconnected brain regions are slower and

less efficient in schizophrenia. Thus, the lower degree of

Table 4 Small-world properties of brain networks shown
in the present study and previous studies

� �

Present studya Healthy subjects 1.57 1.02
Schizophrenia patients 1.51 1.02

Hilgetag et al. (2000) Healthy subjects 1.58 1.07
Cat whole cortex 1.99 1.07

Stam (2004)b Healthy subjects 1.89 1.19
Salvador et al. (2005a) Healthy subjects 2.08 1.09
Archard et al. (2006)c Healthy subjects 2.38 1.08
Stam et al. (2007)d AD patients 1.6 1.12

Healthy subjects 1.58 1.07
Micheloyannis et al. (2006a)e Healthy subjects 1.95 1.19

Schizophrenia patients 1.82 1.13

aData are shown for the same K=10.9 (N=90).
bData are shown for the gamma band of EEG signals and K=20.
cThe mean cluster coefficients and the minimum path length were
computed from the 0.03^0.06Hz resting state fMRI signals.
dData are shown for the beta band of EEG signals and N=21, K=3.
eData are shown for the theta band of EEG signals in a working
memory task at K=5 (N=28).

Fig. 7 Distribution of brain regions in which small-world properties [(A) Kreal
p , (B) Ecorr, (C) Creal

p , (D) Lreal
p , (E) Eglobal and (F) Elocal] altered

significantly in healthy subjects (black) and schizophrenia patients (white) at a selected threshold T (T=0.316). Bars indicate that the area
shows significant altered in the relative measurement, and the length of the bar indicates the mean value of the relative measurement
between the two groups.
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connectivity, the lesser strength of connectivity, the lower
absolute clustering coefficients and the longer absolute path
length as a function of T or K indicate a dysfunctional
organization of the brain functional network in schizophrenia.
We found that the � values did not show significant

differences between groups when the same thresholds were
applied to both groups, and at some thresholds the � even
showed lower values in healthy subjects, which may be due to
the higher degree of the corresponding random networks for
healthy subjects (Stam et al., 2007). To control this effect, we
compared the � values between the two groups as a function of
K, i.e. each subject has the same number of edges for both
groups. The results showed that schizophrenia patients had a
significantly lower �’s compared with healthy subjects at the
same degree. Our findings are consistent with the previous
findings of the presence of a small-world brain functional
network in healthy subjects; however, these topological
structures of the brain functional network are disrupted in
schizophrenia (Liang et al., 2006b; Micheloyannis et al., 2006a).

Our results (Figs 3 and 4) are in line with a previous
EEG study in which schizophrenic patients showed smaller
absolute clustering coefficients but relatively longer absolute
path lengths during the resting-state. Moreover, it should be
noted that the reduction of the absolute clustering coefficient
for schizophrenia patients in the earlier EEG study is larger
than in our study (Micheloyannis et al., 2006a). The most
likely explanation for this difference is a longer duration of
the illness of the patients in the study by Micheloyannis et al.
(2006a). The mean illness duration was 120 months in that
study; whereas the mean illness duration of our patients
was 27 months (Table 1). This was also consistent with our
finding that there was a significant correlation between the
absolute clustering coefficient and the duration of the illness;
a longer duration of the illness induced a smaller absolute
clustering coefficient (Figs 7 and 8). Another possible reason
is that differences in data acquisition techniques or network
size could cause changes in the topological properties of the
network.

Fig. 8 Distribution of brain regions in which small-world properties [(A) Kreal
p , (B) Ecorr, (C) Creal

p , (D) Lreal
p , (E) Eglobal and (F) Elocal] altered

significantly in healthy subjects (black) and schizophrenia patients (white) at a selected degree of connectivity K (K=10.9). Bars indicate
that the area shows significant altered in the relative measurement, and the length of the bar indicates the mean value of the relative
measurement between the two groups.
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Networks with small-world attributes confer resilience
against pathological attack and support parallel, segregated
and distributed information processing at a relatively high
efficiency (Achard and Bullmore, 2007). The efficiency
measure provides us with a precise quantitative analysis
of the information transfer among brain regions; it also
indicates that in the neural cortex each region is intermingled
with others allowing a perfect balance between local neces-
sities and a wide scope of interactions (Latora and Marchiori,
2001). Our results not only demonstrate that interregional
relationships in brain activity are indeed disrupted in
schizophrenia, but also show for the first time that patients
with schizophrenia have lower efficiency in parallel informa-
tion transfer in the brain network (Fig. 6). This is consistent
with the increasing evidence that schizophrenia can be
considered as a disorder of dysfunctional integration among
different brain regions.
In the current study, we found that in many brain regions

in the frontal, parietal and temporal lobes the small-world

properties were significantly altered (Figs 7 and 8 and
Figs. S7 and S8). For example, we found that the degree of
connectivity is smaller in many brain areas in the frontal lobe
in the patient group (Fig. 7), which indicates a lower
connectivity between the regions in this lobe with other brain
regions. This might lead to longer absolute path lengths in
many regions of the frontal lobes in patients with schizo-
phrenia. This is consistent with many previous studies in
which the functional connectivity of the frontal (Fletcher
et al., 1999a; Meyer-Lindenberg et al., 2001; Tan et al., 2006),
parietal (Danckert et al., 2004) and temporal lobes (Fletcher
et al., 1999b; Garrity et al., 2007) were disturbed in this
disorder.

Relationship between topological measurements and
duration of illness
Importantly, we found that the topological measurements of
the small-world brain functional networks were correlated
with illness duration. A longer duration of the illness induced

Fig. 9 Scatter plots with trend line showing the topological properties (Kreal
p , Creal

p , Lreal
p , Eglobal, Elocal) of the brain functional networks

(open blue squares) as a function of illness duration for a selected T (T=0.316) in patients with schizophrenia. Pearson correlation
coefficient for Kreal

p (R=�0.399, P=0.026) (A), Creal
p (R=�0.443, P=0.013) (B), Lreal

p (R=0.426, P=0.017) (C), Eglobal (R=�0.418, P=0.020)
(D) and Elocal (R=�0.446, P=0.012) (E) were significant.
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a smaller absolute clustering coefficient, a lower degree of
connectivity, a lower global and local efficiency, and a
longer absolute path length of brain functional networks
(Figs 9 and 10 and Figs S9 and S10). These findings
appear to demonstrate that the severity of the disruption
of the efficient small-world structure of the brain is related
to the duration of the illness. In addition, the significant
negative correlation between the strength of the functional
connectivity and the chlorpromazine-equivalent medi-
cation dosage (Figs. 10A and S10) may indicate that in
patients with schizophrenia the more severe the illness, the
weaker the functional connectivity between the regions of
the brain.
The findings in the present study provide further evidence

for schizophrenia as a disconnection syndrome (Friston and
Frith, 1995; Bullmore et al., 1997; Friston, 2002, 2005).
Detection and estimation of the small-world topological
measurements could help us better understand the patho-
physiological mechanism of schizophrenia.

Methodological considerations

Effect of morphometric changes on functional connectivity
analysis
Changes in the volume of the frontal lobe, temporal lobe and
their sub-regions over the course of illness have been well
studied in patients with schizophrenia (Giedd et al., 1999;
Bachmann et al., 2004; Molina et al., 2004, 2006; Premkumar

et al., 2006). A recent meta-analysis indicated that the left
superior temporal gyrus and the left medial temporal lobe
are the key regions of structural alteration in patients with
schizophrenia (Honea et al., 2005). To assess whether the
structural alterations have an influence on altered small-
world properties in patients with schizophrenia, we analysed
our data for structural differences between the two groups.
We divided the grey matter of the entire brain according to
an anatomically labelled template, and then investigated the
difference at each brain region. There were no significant
differences found in brain regions between the two groups
(P50.05, FDR corrected). Although other studies have
reported such differences (Giedd et al., 1999; Bachmann
et al., 2004; Molina et al., 2004, 2006; Premkumar et al.,
2006), our failure to detect them does not mean that they do
not exist. Our analyses and methodologies may have
disguised such changes. For example, our use of an
anatomically labelled template may have caused atrophied
areas to be separated into different, but adjacent, brain
regions, making them difficult to detect. To further reduce
the effects of grey matter atrophy on our results, we regressed
out the confounding factor of grey matter atrophy, and then
constructed a set of functional brain networks using a wide
range of thresholds (or degrees of connectivity). The results
obtained after eliminating the possible influence of grey
matter atrophy were similar to those obtained without
eliminating this influence. Extended details can be found in
the part V of the supplemental material.

Fig. 10 Scatter plots with trend line showing the topological properties (Ecorr, Creal
p , Elocal) of the brain functional networks (open blue

squares) as a function of illness duration for a selected K in patients with schizophrenia. Pearson correlation coefficient between Ecorr
and medication dosed (R=�0.470, P=0.032) (A) were significant in the medication patients. Pearson correlation coefficient for Ecorr
(R=�0.407, P=0.023) (B), and Creal

p (R=�0.528, P=0.002) (C) and Elocal (R=�0.436, P=0.014) (D) were significant.
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Low-frequency fluctuations of resting-state fMRI
Low frequency (50.1Hz) fluctuations of resting-state fMRI
signals have been strongly suggested to be neurobiologically
interesting and related to spontaneous neural activity (Biswal
et al., 1995) and endogenous/background neurophysiologic
process of the human brain (Raichle and Gusnard, 2005;
Raichle and Mintun, 2006). Furthermore, resting-state fMRI
has practical advantages for clinical applications because no
stimulation and response are required, thus it can be
performed easily by subjects, especially patients. Because of
this, although resting-state fMRI is a relatively young
technique, many exciting findings have been reported in
the past several years. Functional correlation may reflect
endogenously coordinated, dynamic activity in large-scale
neuronal populations in healthy subjects. In addition, the
altered patterns of functional connectivity based on resting-
state fMRI have been suggested to be pathophysiologically
meaningful in some diseases (Fox and Raichle, 2007). For
these reasons, we believe that it is significant to investigate
the topological properties of the brain functional network of
patients with schizophrenia based on resting-state fMRI data.

Effect of the length of the time series
It should also be noted that we used relatively shorter time
series (170 volumes per subject) compared to several
previous resting-state fMRI studies (e.g. 2048 volumes in
Bullmore and colleagues’ previous studies) (Salvador et al.,
2005a; Achard et al., 2006). However, our results on healthy
subjects are compatible with these previous studies (extended
details can be found in the part VI in the supplemental
material). In addition, we compared many earlier resting-
state fMRI studies that used either short or long time series
(80–2048 volumes of resting-state fMRI signals) and found
that they produced replicable results in normal people
(Greicius et al., 2003; Fox et al., 2005; Salvador et al., 2005a;
Achard and Bullmore, 2007) and in some cognitive
disorders, such as in Alzheimer’s disease (Greicius et al.,
2004; Sorg et al., 2007; Wang et al., 2007), major depression
(Greicius et al., 2007) and schizophrenia (Liang et al., 2006b;
Zhou et al., 2007a, b). Consequently, this suggests that a
relatively small number of volumes may be sufficient to get
enough information during rest. Nonetheless, determining
the appropriate number of volumes remains an interesting
topic for future resting-state fMRI studies.

Some limitations
It should be noted that there are some additional limitations
in methodology and materials in the present study. Like most
functional connectivity studies based on resting-state fMRI,
we cannot eliminate the effects of physiologic noise because
we used a relatively low sampling rate (TR= 2 s) for multi-
slice acquisitions. Under this sampling rate, respiratory and
cardiac fluctuations may be present in the fMRI time
series; although a band-pass filtering of 0.01�0.08Hz was
used to reduce physiological noise. These respiratory and

cardiac fluctuations may reduce the specificity of low
frequency fluctuations to functional connected regions
(Lowe et al., 1998).

Another limitation is that, from the perspective of
materials, we cannot eliminate the effects of heterogeneity
with respect to clinical symptoms, duration of illness,
severity of symptoms and medication among the patients.
Many of these factors, such as clinical symptoms (Strous
et al., 2004; Hazlett et al., 2007), duration of non-treatment
(Perkins et al., 2005) and medication (Strous et al., 2004;
Davis et al., 2005; Lieberman et al., 2005), have been shown
to be related to brain functioning in patients. A large sample
of first episode schizophrenic patients is needed in future
research to support the findings of the present study.

Conclusion
Our results support the concept that the brain functional
network is a large complex of networks with optimal
economical small-world topological properties. Specifically,
the present study shows that the spatial topological pattern of
the brain functional network is altered in the frontal, parietal
and temporal lobes in patients with schizophrenia, which
lends itself to an interpretation of disorganization of neural
networks in this illness. The smaller degree of connectivity
and the lower strength of the functional connectivity not
only demonstrate the sparse connectedness but also indicate
a decreased synchronization of functionally related brain
regions in schizophrenia. A longer absolute path length with
a smaller absolute clustering coefficient suggests a loss of
complexity and a less than optimal organization of the brain
functional network. This disruption may partially account
for the reduced global/local efficiency of information
processing within the brain, which may lead to the deficits
of cognition and behaviour of patients with schizophrenia.
The current study has identified deficits in the spatial
organization of the human brain functional network in
patients with schizophrenia. These findings are comparable
with contemporary dysfunctional integration theories
regarding the pathophysiological basis of schizophrenia.
The correlation between the topological measures of the
efficient small-world attributes and illness duration in
schizophrenia leads us to believe that this method could be
helpful for understanding the dysfunction syndrome in
schizophrenia. This approach may also be able to be used in
other disorders such as Alzheimer’s disease, which can also
be taken as a disconnection syndrome and in which
abnormal functional connectivity plays a role.

Supplementary material
Supplementary material is available at Brain online.
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