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Recent research on Alzheimer’s disease (AD) has shown that the decline of cognitive and memory functions is accompanied by a
disrupted neuronal connectivity characterized by white matter (WM) degeneration. However, changes in the topological organization of
WM structural network in AD remain largely unknown. Here, we used diffusion tensor image tractography to construct the human brain
WM networks of 25 AD patients and 30 age- and sex-matched healthy controls, followed by a graph theoretical analysis. We found that
both AD patients and controls had a small-world topology in WM network, suggesting an optimal balance between structurally segre-
gated and integrative organization. More important, the AD patients exhibited increased shortest path length and decreased global
efficiency in WM network compared with controls, implying abnormal topological organization. Furthermore, we showed that the WM
network contained highly connected hub regions that were predominately located in the precuneus, cingulate cortex, and dorsolateral
prefrontal cortex, which was consistent with the previous diffusion-MRI studies. Specifically, AD patients were found to have reduced
nodal efficiency predominantly located in the frontal regions. Finally, we showed that the alterations of various network properties were
significantly correlated with the behavior performances. Together, the present study demonstrated for the first time that the Alzheimer’s
brain was associated with disrupted topological organization in the large-scale WM structural networks, thus providing the structural
evidence for abnormalities of systematic integrity in this disease. This work could also have implications for understanding how the
abnormalities of structural connectivity in AD underlie behavioral deficits in the patients.

Introduction
Alzheimer’s disease (AD) is an irreversible neurodegenerative
disease characterized by progressive deterioration of cognitive
and memory functions. There is a growing body of evidence sug-
gesting that the cognitive decline may arise from integrative ab-
normalities between functionally and/or anatomically related
brain regions. The biological hypothesis of AD as a disconnection
syndrome involves progressive biochemical and structural
changes, which begin at the cellular and synaptic level, and ulti-
mately culminate in neuronal death and white matter (WM) de-

generation (Brun and Englund, 1986; Selkoe, 2002; Delbeuck et
al., 2003; Pievani et al., 2010).

Diffusion tensor imaging (DTI) is a noninvasive technique
that can be used to reflect the microstructural tissue status and
orientations. The orientations of WM pathways can also be in-
ferred by the principal eigenvector of the diffusion tensor (Basser
et al., 1994), which provides a new opportunity to investigate
WM pathways in living humans (for review, see Mori and van
Zijl, 2002). In AD patients, neural degenerations have been iden-
tified in a variety of WM tracts, including the corpus callosum
(Rose et al., 2000; Naggara et al., 2006; Ukmar et al., 2008) and
posterior cingulate fasciculus (Kiuchi et al., 2009). Despite these
advances for alterations of specific tracts, however, little is known
about the abnormalities of topological organization in WM net-
work in AD.

Recent studies have suggested that structural networks of the
human brain can be constructed from diffusion MRI tractogra-
phy and further characterized by using graph theoretical ap-
proaches [for review, see Bullmore and Sporns (2009) and He
and Evans (2010)]. Through these approaches, WM network of
human brain has been found to have a “small-world” topology
(Hagmann et al., 2007, 2008; Iturria-Medina et al., 2008; Gong et
al., 2009b), characterized by a high degree of local interconnec-
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tivity and small path lengths linking individual network nodes
(Watts and Strogatz, 1998). It is worthy to note that these
diffusion-MRI studies have consistently demonstrated that the
human WM network contains highly connected hub regions pre-
dominately located in the precuneus (PCUN), posterior cingu-
late gyrus (PCG), and medial prefrontal cortex (Hagmann et al.,
2008; Gong et al., 2009b; Yan et al., 2010). Relating to AD, several
studies have demonstrated small-world alterations in functional
(Stam et al., 2007, 2009; Supekar et al., 2008; de Haan et al., 2009)
and morphological (He et al., 2008) brain networks, but the re-
sults were substantially inconsistent (we will return to this issue in
the Discussion section). To our knowledge, no studies reported
AD-related changes in the topological properties in WM
network.

Here, we used DTI tractography and graph theoretical ap-
proaches to investigate changes in topological organization of
WM network in AD patients. As described above, AD is a neuro-
degenerative disease associated with the WM abnormalities that
might interrupt neuronal connections. In this study, we therefore
sought to determine whether AD patients would show (1) abnor-
mal small-world organization and reduced network efficiency in
WM network; (2) altered nodal efficiency in WM network; and
(3) significant correlations between network property changes
and behavioral/clinical variables.

Materials and Methods
Participants
The study includes 25 AD patients (female/male: 10/15; mean age: 79.4;
SD: 5.89) and 30 age- and sex-matched normal controls (NCs) (female/
male: 11/19; mean age 77.07; SD 6.37), which were recruited from the
Taipei Veterans General Hospital in Taiwan. All subjects and the guard-
ians of AD patients had given written informed consent before partici-
pating in the study. The diagnosis for AD is based on the criteria of
National Institute of Neurological and Communicative Disorders and
Stroke/Alzheimer’s Disease and Related Disorders Association (McKhann et
al., 1984) for probable AD. All AD patients underwent neurological ex-
aminations, laboratory tests, and neuroimaging evaluation to exclude
patients with secondary causes of dementia, such as vascular dementia,
Parkinson’s disease, hypothyroidism, vitamin B12 deficiency, and syphi-
lis. The severity of dementia was evaluated with Clinical Dementia Rating
(CDR) scale (Morris, 1993), and all AD patients were mild AD with a
CDR score of 1. All healthy controls were cognitively normal, free of
neurological disease, and had no cognitive complaints. Every participant
received a standard set of neuropsychological assessments including
Mini-Mental Screening Examination (MMSE) (Folstein et al., 1975),
Chinese version verbal learning test (Lin et al., 2006), and modified Rey–
Osterrieth Complex Figure Test (CFT) (Osterrieth, 1944). In detail,
memory-related performance tests of verbal learning include the Califor-
nia Verbal Learning Test (CVLT) of Total Correct (CVLT-TC), Short
Delay 30 s Free Recall (CVLT-SD), Long Delay 10 min Free Recall
(CVLT-LD), and those of CFT include the CFT-Delayed Recall (CFT-
Delay). The AD and NC groups had average MMSE scores of 20.92
(range, 14 –27) and 28.83 (range, 27–30), respectively. The detailed clin-
ical and demographic data for all subjects was shown in Table 1.

Image acquisition
MR data were acquired at 1.5T MR system (Excite II; GE Medical Sys-
tems) with an eight-channel head coil. To avoid motion artifact gener-
ated during the scan, the subject’s head was immobilized with cushions
inside the coil after the alignment. One hundred twenty-four contiguous
axial T1-weighted (T1W) images (slice thickness � 1.5 mm) were acquired,
which was parallel to the anterior–posterior commissure (AC–PC)
through the whole head by applying a three-dimensional fluid-
attenuated inversion-recovery fast spoiled-gradient recalled echo
(FLAIR-FSPGR) acquisition sequence (TR � 8.548 ms, TE � 1.836 ms,
TI � 400 ms, flip angle � 15°, field of view � 26 cm � 26 cm, matrix
size � 256 � 256) to aid the image registration. Fourteen diffusion tensor
imaging volumes were obtained for each subject, including 13 volumes
with diffusion gradients applied along 13 non-collinear directions (b �
900 s/mm 2) and one volume without diffusion weighting (b � 0). With
the consideration of total brain coverage, each volume consisted of 70
contiguous axial slices (slice thickness � 2.2 mm) acquired, which was
parallel to the AC–PC by using a single shot spin-echo echo planar im-
aging (EPI) sequence (TR � 17,000 ms, TE � 67 ms, number of excita-
tion � 6, field of view � 26 cm � 26 cm, matrix size � 128 � 128). The
total scanning time to collect the entire T1W and diffusion-weighted
images was about 32 min for each subject.

Network construction
Nodes and edges are two basic elements of a network. To determine the
nodes and edges of the brain networks, we undertook the following steps,
which were similar to the procedure used in a previous study (Gong et al.,
2009b).

Cortical parcellation. To determine the nodes of brain networks, we
used the automated anatomical labeling (AAL) template (Tzourio-
Mazoyer et al., 2002) to parcellate the whole cerebral cortex into 78 areas
(39 regions in each hemisphere) (supplemental Table 1, available at
www.jneurosci.org as supplemental material). Briefly, a specific custom-
ized group T1 template was first created to reduce the error term result-
ing from image registration and bias in template selection. This involved
spatially normalizing each structural MR image to the ICBM 152 tem-
plate in Montreal Neurological Institute (MNI) space. The optimum
12-parameter affine transformation was used in this step. All the normal-
ized T1W images were then averaged and smoothed with an isotropic 8
mm full-width at half-maximum (FWHM) Gaussian kernel, and the
customized template was created. Second, the T1W images of individual
subjects were coregistered to their non-diffusion-weighted (b � 0) im-
ages based on normalized mutual information as the cost function. The
coregistered T1W images were transformed to the same stereotactic
space as the customized template image by applying an affine transfor-
mation with 12 degrees of freedom together with a series of nonlinear
warps characterized by a set of 7 � 8 � 7 basis functions. The derived
transformation parameters were then inverted and used to warp the AAL
labels from MNI space to diffusion image native space with nearest-
neighbor interpolation (Fig. 1). All the image processes, including
image registration, spatial normalization, and customized template
creation, were manipulated using Statistical Parametric Mapping 2
(SPM2) (Wellcome Department of Cognitive Neurology) in
MATLAB6.5 (MathWorks).

Diffusion MRI tractography. To determine the edges of brain networks,
we used diffusion MRI tractography methods. Briefly, the diffusion-
weighted images were first registered to the non-diffusion-weighted (ref-
erence) images by using affine transformations to minimize distortions
due to the eddy currents (Smith, 2002). Then, the diffusion tensor model
was calculated by using an in-house program to get three eigenvectors
and three eigenvalues. The whole-brain fiber tracking was performed via
Fiber Assignment by Continuous Tracking (FACT) algorithm (Mori et
al., 1999) from the center of each voxel as the seed point, with the frac-
tional anisotropy (FA) threshold of 0.2 and tracking turning angular
threshold of 60° between two connections. The corticocortical connec-
tions were established if any fiber bundle pass through or end in the
corresponding cortical regions. With this tracking algorithm, there is the
possibility of returning pseudoconnections because FACT streamline al-
gorithm is sensitive to image resolution and noise. The possible

Table 1. Demographic and clinical characteristics of participants

Characteristic Patients Controls p value

Age 79.40 (5.89) 77.07 (6.37) 0.169
Female/male 10/15 11/19 0.800
MMSE 20.92 (2.36) 28.83 (0.99) �1.0 � 10 �22

CVLT-TC 16.40 (3.62) 29.77 (3.60) �1.0 � 10 �18

CVLT-SD 3.40 (1.71) 8.40 (0.77) �1.0 � 10 �19

CVLT-LD 1.08 (1.53) 8.30 (0.75) �1.0 � 10 �28

CFT-delay 0.68 (1.28) 10.90 (3.79) �1.0 � 10 �17

Scores are shown with mean (SD).
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pseudoconnections may occur if there are only a few fiber bundles con-
nected to a pair of cortical regions. To reduce influence from pseudocon-
nections, a threshold of three fibers was set to ensure the major
connections among cortical regions (Li et al., 2009; Shu et al., 2009), i.e.,
the edge would be built up between a pair of nodes if at least three fibers
were connected. In this study, the weighted WM networks were con-
structed with considering the fiber number (FN) and FA as the weight of
each edge. The number of connections performed with streamline track-
ing may reflect the WM structure (Houenou et al., 2007), and has been
used as a weight of network edges (Hagmann et al., 2007; Li et al., 2009).
On the other hand, the FA value is an important index to evaluate fiber
integrity (Basser and Pierpaoli, 1996; Beaulieu, 2002) and has a high
correlation with conductivity (Tuch et al., 2001). To reveal the situations
of WM structure, the value of multiplying FN by the mean FA along the
fiber bundles connected a pair of cortical regions (node i and node j) was
used to weight the edge, wij. In this way, if there are two pairs of cortical
regions connecting with the same fiber number, the weights of the edges
would be different while the FA values are considered here.

Network analysis
Small-world properties. Small-world network parameters (clustering co-
efficient, Cp, and shortest path length, Lp) were originally proposed by
Watts and Strogatz (1998). In this study, we investigated the small-world
properties of the weighted brain networks. The weighted clustering co-
efficient of a node i, Cw(i), which was defined as the likelihood whether
the neighborhoods were connected with each other or not (Onnela et al.,
2005), is expressed as follows:

Cw�i� �
2

ki�ki � 1��
j,k

�w
�

ijw
�

jkw
�

ki�
1/3,

where ki is the degree of node i, and w̃ is the weight, which is scaled by the
mean of all weights to control each participant’s cost at the same level.
The clustering coefficient is zero, Cw(i) � 0, if the nodes are isolated or
with just one connection, i.e., ki � 0 or ki � 1. The weighted clustering
coefficient, Cp

w, of a network is the average of the clustering coefficient
over all nodes, which indicates the extent of local interconnectivity or
cliquishness in a network (Watts and Strogatz, 1998). The path length
between any pair of nodes (e.g., node i and node j) is defined as the sum
of the edge lengths along this path. For weighted networks, the length of
each weighted edge was assigned by computing the reciprocal of the edge
weight, 1/w̃. The weighted shortest path length, Lw(i,j), is defined as the
length of the path for node i and node j with the shortest length. We used
the weighted characteristic shortest path length, Lw, of a network by using
a “harmonic mean” length between pairs (Newman, 2003), that is, the
reciprocal of the average of the reciprocals for all nodes in the network.
The weighted characteristic shortest path length of a network is com-
puted as follows:

Lp
w �

1

N�N � 1��
i�1

N �
j�i

N
1

Lw�i, j�
,

where N is the number of nodes in the network. The Lp
w of a network

quantifies the ability for information propagation in parallel. To examine
the small-world properties, the weighted clustering coefficient, Cp

w, and
weighted characteristic shortest path length, Lp

w, of the brain networks
were compared with those of random networks. In this study, we gener-
ated 100 matched random networks, which had the same number of
nodes, edges, and degree distribution as the real networks (Maslov and
Sneppen, 2002). Of note, we retained the weight of each edge during the
randomization procedure such that the weight distribution of the net-

Figure 1. A flowchart of WM network construction. (1) Individual T1-weighted image were registered to the corresponding non-diffusion-weighted (b � 0) images using a 12 degrees of
freedom affine transformation. (2) To obtain the transformation matrix (T ), the coregistered T1-weighted images were registered to the customized group T1 template, which was in MNI space, by
applying a nonlinear spatial normalization. (3) The inverse transformation matrix (T �1) was applied to the AAL atlas to generate corresponding AAL volumes in each individual’s diffusion-weighted
image native space. (4) The construction of DTI from diffusion-weighted images. The color-coded map represents the directions of first eigenvectors: red, left–right; green, anterior–posterior; blue,
inferior–superior. (5) Fiber pathways were performed using fiber assignment by continuous tracking (FACT) algorithm to reconstruct whole-brain tractography. (6) Network constructions by
determining the white matter connections for each pair of AAL volumes.
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work was preserved. Furthermore, we computed the normalized
weighted clustering coefficient, � � Cp

w/Cp
w-rand, and the normalized

weighted characteristic shortest path length, � � Lp
w/Lp

w-rand, where Cp
w-rand

and Lp
w-rand are the mean weighted clustering coefficient and the mean

weighted characteristic shortest path length of 100 matched random net-
works. Of note, the two parameters (i.e., � and �) correct the differences
in the edge number and degree distribution of the networks across indi-
viduals. A real network would be considered small-world if � �� 1 and
� 	 1 (Watts and Strogatz, 1998). In other words, a small-world network
has not only the higher local interconnectivity but also the approximately
equivalent characteristic shortest path length compared with the random
networks. These two measurements can be summarized into a simple
quantitative metric, small-worldness, � � �/� � 1 (Humphries et al.,
2006).

Network efficiency. The global efficiency of a network, Eglob, is defined
by the inverse of the harmonic mean of the shortest path length between
each pair of nodes within the network (Latora and Marchiori, 2003), i.e.,
Eglob � 1/Lp

w. The local efficiency of a network, Eloc, is defined as the
average of the local efficiencies of each node (Latora and Marchiori,
2003), that is,

E loc�G� �
1

N�
i�G

Eglob�Gi�,

where Eglob(Gi) is the global efficiency of the
neighborhood subgraph Gi of the node i, is ex-
pressed as follows:

Eglob�Gi� �
1

NGi
�NGi

� 1� �
j,k�Gi

1

LW� j, k�
.

The local efficiency reflects how much the net-
work is fault tolerant and how well the infor-
mation is transferred within the neighbors of a
given node. In brain network analysis, the effi-
ciency measurement has many conceptual and
technical advantages over the conventional
small-world metrics (i.e., Cp

w and Lp
w), since it

provides a single measure to deal with the local
and global organization of the network (Latora
and Marchiori, 2003; Achard and Bullmore,
2007; He et al., 2009).

Nodal characteristics. To determine the
nodal (regional) characteristics of structural
cortical networks, we computed the nodal effi-
ciency (Enodal) for examining the regional con-
nections. The nodal efficiency for a given node
i (Enodal(i)) was defined as the inverse of the
harmonic mean of the shortest path length be-
tween this node and all other nodes in the net-
work (Achard and Bullmore, 2007), which is as
follows:

Enodal�i� �
1

N � 1 �
i�j�G

1

Lw�i, j�
,

where the Lw(i,j) is the weighted shortest path
length between node i and node j in G. Enodal

quantifies the importance of the nodes for the
communication within the network. More-
over, the nodes with high Enodal values can be
categorized as hubs in a network (Achard and
Bullmore, 2007).

Statistical analysis
To determine the between-group differences in
the small-world properties (the weighted clus-
tering coefficient, Cp

w, the weighted character-
istic shortest path length, Lp

w, the normalized
weighted clustering coefficient, �, and the nor-

malized weighted characteristic shortest path length, �) and network
efficiency (the local efficiency, Eloc, and the global efficiency, Eglob), a
linear regression analysis was separately performed on each network
metric. Age and sex were taken as covariates in this model. Likewise, such
an analysis was also applied to nodal efficiency, Enodal, of all 78 cortical
regions. A false discovery rate (FDR) procedure was further performed at
a q value of 0.05 to correct for multiple comparisons (Genovese et al.,
2002). Finally, we examined the relationship between the network met-
rics and the cognitive and memory performances in both groups sepa-
rately with controlling the age and sex as the confounding variables.
Here, the tests of the cognitive and memory performances include
MMSE, CVLT-TC, CVLT-SD, CVLT-LD, and CFT-Delay.

Results
Demographics
There were no significant differences in age ( p � 0.169) and
gender ( p � 0.8) between AD patients and controls. For the
neuropsychological tests, there were significant between-
group differences in MMSE scores ( p � 1.0 � 10 �22),
CVLT-TC ( p � 1.0 � 10 �18), CVLT-SD ( p � 1.0 � 10 �19),
CVLT-LD ( p � 1.0 � 10 �28), and CFT-Delay ( p � 1.0 �
10 �17) (Table 1).

Figure 2. The global network hubs with high nodal efficiency in AD patients and NCs. A hub region, for node i, was identified if
the mean of Enodal(i) was larger than the sum of the mean and SD of all Enodal(i). A, The normalized nodal efficiency (divided by mean
of all nodes, E�nodal) for all 78 cortical regions sorted by the mean in a descending order; the dashed line indicates the threshold
(mean 
 SD) for hub identification. Hub and nonhub regions of NC networks (B) and AD networks (C) with node sizes indicating
their node efficiency values are mapped onto the cortical surfaces at the lateral and medial views, respectively, by using the
Visualization Toolkit (VTK, www.vtk.org) library. Notably, the regions are located according to their centroid stereotaxic coordi-
nates. For the abbreviations, see supplemental Table 1 (available at www.jneurosci.org as supplemental material).
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Small-world properties of human
WM networks
Small-world model
In a small-world network, the nodes usu-
ally have a great local interconnectivity
compared with a random network (� ��
1), and the shortest path length between
any pair of nodes is approximately equiv-
alent to a comparable random network
(� 	 1) (Watts and Strogatz, 1998). To
clarify the small-world characteristics of
WM network, we calculated the weighted
clustering coefficient, Cp

w, and the
weighted characteristic shortest path
length, Lp

w, of the brain network and com-
pared it with those of the corresponding
random networks. Our results showed
that the weighted clustering coefficients of
brain structural network were about four
times larger than the random network
(�AD � 4.18 � 0.56, �NC � 4.03 � 0.43),
and the weighted characteristic shortest path lengths were ap-
proximately equivalent to the random network (�AD � 1.48 �
0.10, �NC � 1.42 � 0.09) for each group. The small-worldness
(� � �/�) calculated from these indices was also larger than 1
(�AD � 2.83 � 0.33, �NC � 2.85 � 0.34). These results suggest
that both AD patients and controls had prominent small-world
properties in WM networks, which were consistent with previous
diffusion-MRI studies in healthy subjects (Hagmann et al., 2007;
Gong et al., 2009a,b; Li et al., 2009; Shu et al., 2009).

AD-related alterations
Using linear regression analysis with the age and sex as the covari-
ates, we found that the weighted clustering coefficient, Cp

w, the
normalized weighted clustering coefficient, �, and the small-
worldness, �, had no significant differences between the AD and
NC groups (all p � 0.25). However, we observed that AD net-
works had increased weighted characteristic shortest path length,
Lp

w (t(51) � 2.685, p � 0.010, Cohen’s d � 0.724), and the normal-
ized weighted characteristic shortest path length, � (t(51) � 2.302,
p � 0.025, Cohen’s d � 0.610), in WM networks as compared to
the controls. For efficiency measurements, the local efficiency
and global efficiency of brain networks were computed. Com-
pared with the controls, WM networks of AD patients showed no
significant changes in the local efficiency, Eloc (t(51) � �1.515,
p � 0.136), but showed significantly reduced global efficiency,
Eglob (t(51) � �2.770, p � 0.008, Cohen’s d � 0.759). These
results imply that the small-world architecture and network effi-
ciency were significantly altered in WM networks of AD patients.

Regional nodal characteristics
Hub regions
In this study, the nodal efficiency, Enodal, was computed to exam-
ine the nodal characteristics of each cortical region in WM ana-
tomical network. Figure 2 shows the normalized nodal efficiency
(divided by the mean of all nodes, E�nodal) for all 78 cortical regions
sorted by the mean in a descending order (Fig. 2A), and the nodes
with size of E�nodal on the cortical surfaces (Fig. 2B,C). The regions
with high Enodal imply pivotal roles for the communication be-
tween any pair of nodes of the brain network (Albert and Bara-
basi, 2002; Achard and Bullmore, 2007; Gong et al., 2009b).
Specifically, in the present study, the regions were defined as
network hubs if their nodal efficiency, Enodal, was 1 SD greater

than the average of the network [i.e., E�nodal(i) � (mean 
 SD)
(Fig. 2A, dashed line)].

In the NC group, 13 hub regions were identified, including 5
association cortex regions, 6 paralimbic cortex regions, and 2
primary cortex regions (Fig. 2A,B; supplemental Table 2, avail-
able at www.jneurosci.org as supplemental material). In the AD
group, 12 hub regions were identified, including 5 association
cortex regions, 5 paralimbic cortex regions, and 2 primary cortex
regions (Fig. 2A,C; supplemental Table 3, available at www.
jneurosci.org as supplemental material). In both groups, 11 brain
regions (bilateral PCG, PCUN, median cingulate and paracingu-
late gyri, calcarine fissure and surrounding cortex, left cuneus,
anterior cingulate and paracingulate gyri, and middle occipital
gyrus) were identified as hubs in common (Fig. 2). It was worthy
to note that both PCUN and PCG were identified as the most
important regions in WM networks of AD and controls, which
was consistent with the previous diffusion-MRI tractography
network analysis in healthy adults (Hagmann et al., 2007; Gong et
al., 2009a,b; Shu et al., 2009).

AD-related alterations
We further compared the nodal efficiency of cortical regions in
WM networks between the two groups. We found that AD net-
works showed decreased nodal efficiency ( p � 0.05, FDR-
corrected) predominantly located in the frontal regions,
including four frontal association regions [bilateral medial part
the superior frontal gyrus (SFGmed), right dorsolateral part of
the superior frontal gyrus (SFGdor), and middle frontal gyrus
(MFG)] and four frontal paralimbic regions [right orbital part of

Figure 3. Regions with significant differences in nodal efficiency between AD patients and NCs. The brain regions showing
significant group difference in nodal efficiency are mapped onto the cortical surfaces at the lateral view, by using the Visualization
Toolkit (VTK, www.vtk.org) library. Notably, the network shown here was constructed by averaging the anatomical connection
matrices of all subjects. The nodal regions are located according to their centroid stereotaxic coordinates. The edge widths repre-
sent the strengths of the connections between nodes. The statistical criterion for between-group differences was set at p � 0.05
(FDR-corrected). The color bar represents t values of group comparison after removing the effects of age and sex. For the abbrevi-
ations of nodes, see supplemental Table 1 (available at www.jneurosci.org as supplemental material).

Table 2. Regions with AD-related changes in nodal efficiency

Region Category t statistic

Right inferior frontal gyrus, orbital part Paralimbic �4.05
Right superior frontal gyrus, medial orbital Paralimbic �3.30
Right superior frontal gyrus, medial Association �3.26
Left superior frontal gyrus, medial Association �3.18
Right middle frontal gyrus, orbital part Paralimbic �3.06
Right temporal pole: middle temporal gyrus Paralimbic �3.03
Right superior frontal gyrus, orbital part Paralimbic �3.01
Right superior frontal gyrus, dorsolateral Association �2.98
Right middle frontal gyrus Association �2.93

The regions with significant decreased nodal efficiency ( p � 0.05, FDR-corrected) are listed in ascending order by
t scores. The cortical regions were classified as primary, association, and paralimbic (Mesulam, 1998).
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the inferior frontal gyrus (ORBinf), orbital, medial orbital part of
the superior frontal gyrus (ORBsup, ORBsupmed), and orbital
part of the middle frontal gyrus (ORBmid)]. Additionally, we
also found decreased nodal efficiency in one temporal lobe region
[the temporal pole of the middle temporal gyrus (TPOmid)] (Fig.
3, Table 2). The findings indicated that the reduced nodal effi-
ciency in AD patients was mainly located in the frontal cortical
regions, which was compatible with the previous DTI studies
showing abnormal WM integrity in these areas (Bozzali et al.,
2002; Choi et al., 2005; Naggara et al., 2006; Xie et al., 2006).

Network properties correlation with cognition
We next examined the relationships of the network metrics
(small-world and efficiency metrics) and the cognitive and mem-
ory performances. For nodal characteristics, we examined only
the nodes with significant between-group differences (i.e., corti-
cal regions listed in Table 2). To determine the relationships,
partial correlation analysis with age and sex as confounding co-
variates were separately performed for the AD and NC groups.
The results of the correlational analysis for network metrics are
listed in Table 3 for global properties and in Table 4 for nodal
characteristics. In the NC group, all of the cognitive and memory
performances showed no significant correlation with the net-

work metrics. The following descriptions focus on the results in
the AD group. Figure 4 shows the significant correlations be-
tween small-world and efficiency metrics and cognitive perfor-
mances, and Figure 5 shows the significant correlations between
regional nodal efficiency and cognitive performances in AD
patients.

MMSE
There were no significant correlations between the small-world
and network efficiency parameters and MMSE scores. In nodal
characteristics, we observed that there was a significant positive
correlation between MMSE scores and nodal efficiency (r �
0.439, p � 0.036) of the right ORBmid.

CVLT
The verbal memory tests, including CVLT-TC, CVLT-SD, and
CVLT-LD, were selected as the memory performance of partici-
pants. First, we found that CVLT-TC was significantly negatively
correlated with weighted shortest path length (r � �0.509, p �
0.011) and normalized weighted shortest path length (r �
�0.470, p � 0.024), and significantly positively correlated with
the global efficiency (r � 0.537, p � 0.008). This score was also
significantly positively correlated with the nodal efficiency of the

Table 3. Partial correlation coefficient between small-world and efficiency metrics and cognitive performances

Network metric Group

Partial correlation coefficient

MMSE CVLT-TC CVLT-SD CVLT-LD CFT-delay

Cp AD 0.271 0.116 0.110 �0.032 0.057
NC 0.172 �0.225 �0.211 �0.169 0.253

Lp AD �0.131 �0.519* �0.552** �0.169 �0.039
NC �0.105 0.004 0.017 0.040 �0.229

g AD 0.147 �0.276 �0.493* �0.271 0.031
NC �0.048 �0.103 �0.041 �0.075 �0.208

� AD 0.039 �0.470* �0.392 0.134 0.015
NC 0.105 0.296 0.295 0.282 �0.030

� AD 0.135 0.026 �0.242 �0.363 0.016
NC �0.109 �0.257 �0.188 �0.220 �0.179

Eloc AD �0.197 0.307 0.464* 0.068 0.034
NC 0.075 �0.111 �0.081 �0.031 0.274

Eglob AD 0.075 0.537** 0.561** 0.178 �0.024
NC 0.140 �0.023 �0.032 �0.022 0.221

The partial correlations were computed with age and sex as the confounding covariates. *p � 0.05, **p � 0.01.

Table 4. Partial correlation coefficient between regional nodal efficiency and cognitive performances

Network metric Group

Partial correlation coefficient

MMSE CVLT-TC CVLT-SD CVLT-LD CFT-delay

Enodal of SFGmed.L AD 0.074 0.208 0.105 0.226 �0.007
NC 0.100 0.094 0.086 0.224 0.265

Enodal of SFGdor.R AD 0.103 0.505* 0.318 0.111 �0.128
NC 0.114 0.125 0.184 0.157 0.108

Enodal of ORBsup.R AD 0.092 0.078 0.144 0.229 �0.035
NC 0.202 0.058 �0.087 �0.087 0.149

Enodal of MFG.R AD 0.087 0.522* 0.360 �0.003 �0.023
NC 0.036 0.055 0.175 0.104 0.103

Enodal of ORBmid.R AD 0.439* �0.015 0.177 0.152 0.161
NC 0.134 �0.101 �0.154 �0.108 �0.060

Enodal of ORBinf.R AD 0.329 0.118 0.094 0.289 �0.094
NC 0.299 �0.072 �0.159 �0.143 �0.168

Enodal of SFGmed.R AD 0.219 0.354 0.183 0.175 �0.094
NC 0.241 0.110 0.166 0.174 0.129

Enodal of ORBsupmed.R AD 0.037 0.238 0.171 0.054 �0.105
NC 0.161 0.050 0.083 0.160 0.155

Enodal of TPOmid.R AD �0.138 0.450* 0.441* �0.018 �0.035
NC 0.289 0.227 0.020 0.232 0.308

The partial correlations were computed with age and sex as the confounding covariates. *p � 0.05. For the abbreviations, see supplemental Table 1 (available at www.jneurosci.org as supplemental material).
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right SFGdor (r � 0.505, p � 0.014), MFG
(r � 0.522, p � 0.011), and TPOmid (r �
0.45, p � 0.031). Second, CVLT-SD was
significantly negatively correlated with
the weighted shortest path length (r �
�0.552, p � 0.006) and normalized
weighted clustering coefficient (r �
�0.493, p � 0.017), and significantly pos-
itively correlated with the local efficiency
(r � 0.464, p � 0.026) and the global effi-
ciency (r � 0.561, p � 0.005). Also, we
found that CVLT-SD was significantly
negatively correlated with the nodal effi-
ciency of right TPOmid (r � 0.441, p �
0.035). Finally, there were no significant
correlations between CVLT-LD and any
network metrics.

CFT-Delay
For this visual memory performance, we
did not find any significant correlations
between CFT-Delay and any network
metrics.

Discussion
The present study used diffusion MRI tractography to demon-
strate alterations in the topological organization of WM networks
in AD patients. Our main findings are as follows: (1) the global
topological organization of WM corticocortical connection net-
work in AD patients was significantly disrupted as indicated by
abnormal small-world properties and topological efficiency; (2)
the regional characteristics (nodal efficiency) were altered in AD
patients predominantly in the frontal cortical regions; and (3)
changes in various network properties in AD patients were asso-
ciated with the performance of behavior functions. These find-
ings support the hypothesis that WM degeneration changes the
structural connectivity pattern of WM network in AD.

Small-world structure in anatomical brain networks in AD
Our results showed that structural brain networks of both AD
patients and NCs have a small-world topology, which is consis-

tent with the previous WM network studies by diffusion MRI
(Hagmann et al., 2007, 2008; Gong et al., 2009a,b; Li et al., 2009;
Shu et al., 2009). We found that, although WM networks of AD
patients showed prominent small-world attributes, several net-
work parameters (Lp

w,�, and Eglob) were found to be significantly
altered. The increased Lp

w and � were consistent with the AD-
related brain network studies using structural MRI (sMRI) (He et
al., 2008), EEG (Stam et al., 2007), and MEG (Stam et al., 2009)
(Table 5). Short path length ensures inter-regional effective in-
tegrity or prompt transfers of information in brain networks that
is believed to constitute the basis of cognitive processes (Sporns
and Zwi, 2004). Compared with the small-world properties of
matched random networks, � also showed an increased ratio of
characteristic shortest path length predominantly in the AD
group. The AD-related increases in the shortest path length could
be attributable to the degeneration of fiber bundles for informa-
tion transmission. These phenomena suggest that the connec-

Figure 4. Scatter plots of small-world and efficiency metrics and memory performances in AD patients. A, The significant correlations between CVLT-TC and Lp, �, and Eglob. B, The significant
correlations between CVLT-SD and Lp, �, Eloc, and Eglob.

Figure 5. Scatter plots of regional nodal efficiency and memory performances in AD patients. A, The significant correlations
between CVLT-TC and nodal efficiency of right SFGdor, MFG, and TPOmid. B, The significant correlation between CVLT-SD and right
TPOmid. C, The significant correlation between MMSE and right ORBmid. For the abbreviations of nodes, see supplemental Table 1
(available at www.jneurosci.org as supplemental material).
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tions between cortical areas have been changed with less strength
(reduced WM integrity) or longer pathway (disconnection).
Given that the small-world topology is an optimal balance be-
tween local specialization and global integration when networks
evolved for high complexity of dynamic behavior (Sporns et al.,
2000), our findings of increased path length in AD networks
indicate an imbalanced structure with reduced global efficiency
for signal propagation among distant regions with more regular
configuration in WM networks.

Previous studies of graph theoretical analysis using different
modalities have demonstrated alterations of small-world topo-
logical parameters in AD (Table 5). Overall, the most consistent
alteration in these studies was the increased characteristic path
length in AD-related networks. For example, the structural net-
work study using sMRI reported by He et al. (2008) showed that
the clustering coefficient and characteristic shortest path length
were significantly increased in the AD patients as compared to the
controls. In an EEG study, Stam et al. (2007) observed that the
brain functional networks of AD patients had increased both
characteristic shortest path length and normalized characteristic
shortest path length. These results are consistent with our find-
ings. In contrast, it has been found to exhibit decreased normal-
ized clustering coefficient and/or normalized characteristic path
length in brain functional networks of AD patients with fMRI
(Supekar et al., 2008), EEG (de Haan et al., 2009), and MEG
(Stam et al., 2009). Notably, there were still some conflicts with
the same modality like EEG (Stam et al., 2007; de Haan et al.,
2009). These discrepancies in brain network analysis could be
due to the different populations, network construction methods
(e.g., EEG, MEG, fMRI, sMRI, and DTI) and network analytic
tools (unweighted or weighted). Here, we emphasized that the
present study for the first time used the diffusion MRI tractogra-
phy to show small-world alteration in WM network in AD.

Regional characteristics in anatomical brain networks in AD
The regional alterations in AD networks were also found to have
significantly decreased nodal characteristics (i.e., Enodal) in corti-
cal regions (Table 2), which were predominately located in the
frontal lobe (e.g., ORBinf, SFGmed, and MFG) and temporal
lobe (e.g., TPOmid). The frontal regions are thought to be in-
volved in the emotional, memory, and executive functions (Stuss
and Alexander, 2000; Baddeley, 2003). Many previous studies
have demonstrated that these frontal regions exhibited AD-
related abnormalities in the WM integrity (Bozzali et al., 2002;
Choi et al., 2005), gray matter morphology (Honea et al., 2010),
and functional interactions (Horwitz et al., 1987; Grady et al.,
2001, 2003; Wang et al., 2007). The temporal pole, which involves
linguistic integration, emotion, and semantic memory (Dupont,
2002; Olson et al., 2007), has been also indicated in that there was
the atrophy and neuronal loss (Arnold et al., 1994; Galton et al.,
2001) in AD patients. Using graph theoretical analysis, our results

show that the frontal and temporal cortices have decreased nodal
efficiency in WM networks, which reflected the WM abnormality
of the connections in these cortical regions. Notably, decreased
efficiency in the frontal regions was mainly located in the right
hemisphere. Previous studies have shown that the decreased ac-
tivity of right prefrontal regions are associated with the worse
memory performance in AD patients (Grady et al., 2001; Lekeu et
al., 2003), implying that the structural decline in the right hemi-
sphere likely links with the memory loss. Together, our results
suggest that the WM degenerated alterations in these frontal re-
gions might influence information transmission and functional
integration for AD patients.

Relationship between network properties and the cognitive
and memory performances
By examining the correlation between network metrics and cog-
nitive performances, our results indicated that the AD-related
alterations of network properties were associated with the decline
of cognitive functions. We found that AD patients with longer
shortest path length and decreased global efficiency in WM net-
work had lower verbal memory performance (e.g., CVLT-TC and
CVLT-SD). Also, AD patients with reduced regional efficiency of
several cortical regions (e.g., SFGdor, MFG, and ORBmid) in
WM network had lower cognitive/memory functions (e.g.,
MMSE scores, CVLT-TC, and CVLT-SD). High correlations be-
tween network properties and the behavioral scores indicate that
the network properties are highly associated with the disrupted
cognitive/memory functions. Previous studies have demon-
strated that human structural connectivity is closely related to
functional connectivity (Hagmann et al., 2008) (for review, see
Damoiseaux and Greicius, 2009) and underlies high-order cog-
nitive activities (for review, see Minati et al., 2007) (Li et al.,
2009). Thus our results of disrupted WM connectivity likely re-
flect the breakdown of function connections that influences cog-
nitive performances of the patients.

Methodological issues
There are some methodological issues to be considered. First, the
connection between each pair of cortical areas was set at a thresh-
old of three fibers to construct the brain networks. To test the
influences by threshold selection, we examined the results by
choosing a range from one to five for threshold, and the results
were very stable in this range. Second, we constructed brain
weighted anatomical networks with assigning a weight index
(FN � FA) to each edge. In this study, we also constructed the FN
weighted network and FA weighted network to explore the dif-
ferences between two groups, and the results were similar to our
main findings (supplemental Tables 4, 5 and supplemental Text
1, available at www.jneurosci.org as supplemental material).
Third, we used the AAL atlas to parcellate the brain cortical re-
gions for large-scale network construction. Recent studies have

Table 5. AD-related alterations of topological properties in the brain networks in the current study and previous studies

Study Modality Connectivity methods Network type Matrix size

Main findings

Cp Lp � � Eloc Eglob

Current study DTI Tractography Weighted 78 NS Œ NS Œ NS �
He et al. (2008) sMRI Partial correlation Binary 54 Œ Œ — — — —
Stam et al. (2007) EEG Synchronization likelihood Binary 21 NS Œ NS Œ — —
de Haan et al. (2009) EEG Synchronization likelihood Weighted 21 — — � � — —
Stam et al. (2009) MEG Phase lag index Weighted 149 � Œ � � — —
Supekar et al. (2008) fMRI Wavelet correlation Binary 90 — — � NS — —

NS, Nonsignificant; Œ, AD � NC; �, AD � NC.
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suggested that the node definition by different parcellation
schemes would produce different properties of brain networks
(Hagmann et al., 2008; Wang et al., 2009; Hayasaka and Lauri-
enti, 2010; Zalesky et al., 2010); these might provide different
information for the alterations of AD networks. Fourth, stream-
line tractography was used to construct WM networks in the
present study. Subcortical regions such as the hippocampus and
the thalamus were not studied, because the complex tissue struc-
ture with the uncertainty of the principal eigenvector would
increase the errors of streamline tractography. Recently, proba-
bilistic tractography has been used to identify the connections for
subcortical and cortical regions (Behrens et al., 2003), and to
construct the human brain anatomical networks (Iturria-Medina
et al., 2008; Gong et al., 2009a). These might provide distinct
information for anatomical connectivity patterns of brain net-
works. Fifth, we examined changes in the anatomical networks in
AD. It has been suggested that anatomical networks of the human
brain share similar topological features (e.g., network hubs) with
functional networks constructed from fMRI (Damoiseaux and
Greicius, 2009; Honey et al., 2009), implying a close association
between brain structure and function. The integration of differ-
ent modalities (e.g., DTI and fMRI) could allow us to look into
how the alterations of anatomical networks are associated with
changes in functional networks. Sixth, the topological changes of
WM network were demonstrated in AD, but the relationship
between network properties and disease progression or other de-
mentia types is currently unclear. Further studies on mild cogni-
tive impairment (the transit state between healthy elderly and
AD) and other dementia types such as frontotemporal dementia
and dementia with Lewy bodies will be helpful to clarify this issue.
Finally, we used a cross-sectional design to show AD-related al-
terations in topological structure of WM networks. A longitudi-
nal study would be vital to demonstrate progressive alterations of
brain networks in AD.

Conclusion
In this study, we used diffusion MRI tractography to construct
WM networks of AD patients and NCs, and demonstrated that
the anatomical networks of both AD and NC groups exhibited
small-world topology. More importantly, we showed that AD
patients had significantly increased characteristic shortest path
length and decreased global efficiency in WM networks, implying
the WM dysconnectivity and topological disorganization in the
AD networks. Specifically, we found that the AD patients had
reduced nodal efficiency of cortical regions predominantly lo-
cated in the frontal lobe. Finally, we showed that the alterations of
AD patients were highly associated with the cognitive and mem-
ory performances. Our findings support the WM degeneration
hypothesis of altered anatomical networks in AD, and suggest
that the alterations affect the cognitive functions of the patients.
This topology-based analysis of the human brain WM networks
provides a novel way to reveal the patterns of structural dyscon-
nectivity in neurodegenerative diseases. The present study also
has important implications for the understanding of human
brain connectome in neuropsychiatric diseases (Sporns et al.,
2005).
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