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Abstract
Neuropsychiatric disorders are increasingly conceptualized as disconnection syndromes that are associated with abnormal
network integrity in the brain. However, whether different neuropsychiatric disorders show commonly dysfunctional
connectivity architectures in large-scale brain networks remains largely unknown. Here, we performed a meta-connectomic
study to identify disorder-related functional modules and brain regions by combining meta-analyses of 182 published
resting-state functional MRI studies in 11 neuropsychiatric disorders and graph-theoretical analyses of 3 independent
resting-state functional MRI datasets with healthy and diseased populations (Alzheimer’s disease and major depressive
disorder [MDD]). Three major functional modules, the default mode, frontoparietal, and sensorimotor networks were
commonly abnormal across disorders. Moreover, most of the disorders preferred to target the network connector nodes that
were primarily involved in intermodule communications and multiple cognitive components. Apart from these common
dysfunctions, different brain disorders were associated with specific alterations in network modules and connector regions.
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Finally, these meta-connectomic findings were confirmed by two empirical example cases of Alzheimer’s disease and MDD.
Collectively, our findings shed light on the shared biological mechanisms of network dysfunctions of diverse disorders and
have implications for clinical diagnosis and treatment from a network perspective.
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Introduction
The human brain is considered as a highly dynamic, complex
network that supports highly efficient information processing
across the regions and underlies cognition and behavior. In the
past decade, graph-theoretical analyses of healthy human brain
networks have identified nontrivial topological properties, such
as a highly modularized architecture (He et al. 2009; Meunier
et al. 2009; Bressler and Menon 2010; Power et al. 2011) and
densely connected hubs (Achard et al. 2006; Buckner et al. 2009;
Liang et al. 2013; van den Heuvel and Sporns 2013a). Modules,
which are presumably shaped by evolutionary constraints such
as the rules of economic trade-off between the wiring costs and
global efficiency (Newman and Girvan 2004; Bullmore and Sporns
2012), are crucial for ensuring efficient information propagation
across the whole network. Several studies have indicated that
brain modules such as the default mode network (DMN), fronto-
parietal network (FPN), and sensorimotor network (SMN) are
engaged in discrete cognitive functions (Bertolero et al. 2015) and
in adaptation to the rapidly changing outside environment
(Bassett and Gazzaniga 2011; Deco et al. 2011; Liang et al. 2016).
Relating to modules, network connectors are the nodes that
densely connect with distinct modules and serve critical roles in
coordinating network integrity (He et al. 2009; Power et al. 2013).
These connectors are primarily concentrated in the association
cortex and limbic/paralimbic regions that support multiple cogni-
tive processes (Cole et al. 2013; Warren et al. 2014; Bertolero et al.
2015; Liang et al. 2016). Studying networked modules and con-
nectors in the brain is deepening our understanding of the work-
ing mechanisms of cognitive processing in health and disease.

Neuropsychiatric disorders and their responses to clinical
treatments are typically associated with changes in cognitive
processing, which are usually accompanied by alterations in
both structural and functional brain networks. On the structural
side, for example, patients with Alzheimer’s disease (AD) and
major depressive disorder (MDD) exhibit gray matter loss in
regions of the DMN and FPN (Bozzali et al. 2006; Frodl et al. 2008;
He et al. 2008; Seeley et al. 2009; van Tol et al. 2010; Schmaal
et al. 2017); patients with MDD and Parkinson’s disease (PD)
manifest structural restorations in regions of the FPN, DMN and
SMN after exposure to drug treatment and stimulated interven-
tion (van Hartevelt et al. 2014; Yoon et al. 2016; Qin et al. 2017).
Intriguingly, Crossley et al. (2014) performed a meta-analysis
of structural MRI data in 26 brain disorders and showed that
gray matter atrophy in most disorders is mainly located in
the regions of the DMN, FPN, and SMN that are evident in
brain hubs. On the functional side, resting-state functional MRI
(R-fMRI), a noninvasive functional imaging technique that cap-
tures spontaneous or intrinsic brain activity based on the blood
oxygen level-dependent signal, provides unique opportunities to
explore functional network abnormalities in brain disorders
(Biswal et al. 1995; Fox et al. 2005; Wang et al. 2010). Particularly
for psychiatric disorders without obvious organic pathological
alterations (e.g., MDD and schizophrenia), subtle brain changes
could be sensitively detected by R-fMRI (Catani and ffytche 2005;
Filippi et al. 2013; Fornito et al. 2015; Gong and He 2015).

Recently, many R-fMRI studies have indicated disrupted func-
tional architectures in various brain disorders involving modules
and connectors (Menon 2011; Fornito et al. 2015; Gong and He
2015; Sporns and Betzel 2016). It needs to be emphasized that
functional brain networks are considered crucial to elucidating
the neurophysiological dynamics, which cannot be fully mir-
rored by structural features. Moreover, the therapeutic effects of
drug administration and brain stimulation represent shared
functional remodeling of the regions involving the DMN, FPN,
and SMN across diverse psychiatric and neurological disorders
(McIntyre and Hahn 2010; Fox et al. 2012, 2014), which suggests a
possible convergent disruptive pattern. To date, the existence of
commonly abnormal functional architectures in brain networks
across various neuropsychiatric disorders remains largely
unknown. In particular, there is an urgent push to investigate
whether selective dysfunctions of functional modules and node
types are partially shared across disorders, which will extend
our understanding of the biological mechanisms underlying
such disorders and will have implications for clinical treatments
that can provide therapeutic benefits.

To address these issues, we performed a meta-connectomic
study by combining meta-analyses involving 182 published
R-fMRI studies in 11 brain disorders and graph-theoretical net-
work analyses on 3 independent R-fMRI datasets with healthy
and diseased populations. Specifically, we searched R-fMRI
neuropsychiatric studies that assessed between-group differ-
ences with whole-brain functional analysis to understand the
shared and different patterns of functional abnormalities
across disorders, as well as their roles in global communication
in terms of network modules and connectors. In this study, we
aimed to (1) determine whether distinct brain disorders exhibit
common and specific network dysfunctions in modular architec-
tures, as reflected by spontaneous neuronal activity measured
from the R-fMRI meta-analysis; (2) if so, determine whether these
disorders selectively target the connectors with denser intermo-
dule connections that support multiple cognitive processes
(Bertolero et al. 2015); and (3) finally, validate the previously
described meta-analysis results based on brain network analysis
of two independent R-fMRI datasets (AD and MDD).

Materials and Methods
Meta-Analysis of R-fMRI Studies in Brain Disorders

Study Selection Criteria
To include as many brain disorders as possible, we selected the
disorders described in Chapters V and VI of the 10th Edition of
the International Classification of Disorders (ICD-10, 2010) and
performed searches in PubMed (PubMed Central), the BrainMap
database, ScienceDirect, Web of Science, and Neurosynth
(Supplementary Fig. S1). These included studies were restricted
to those with whole-brain R-fMRI analyses without a prior
selection in regions of interest using the amplitude of low-
frequency fluctuations (ALFF) (Zang et al. 2007), regional homo-
geneity (Zang et al. 2004), independent component analysis
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(Smith et al. 2009), or voxel-based functional network degree
(or strength) analysis (Buckner et al. 2009; Liang et al. 2013).
These metrics reflect the coordination of brain activities rang-
ing from a very short to long distance. ALFF reflects the fluctu-
ated amplitude of the synchronization among a population of
neurons within a voxel; regional homogeneity evaluates simi-
larities in activities between neighboring voxels; independent
component analysis reveals tight correlations between different
voxels in the same functional system; and finally, voxel-based
degree (strength) explores the integration between a given voxel
and all the others of the whole brain. Therefore, in our meta-
analysis, these metrics were combined together to explore abnor-
malities in functional coordination in brain disorders. To this end,
we selected 182 R-fMRI studies of 11 brain disorders, involving
6683 patients and 6692 normal controls in total (Supplementary
Fig. S2). The 11 brain disorders comprised AD, attention deficit
hyperactivity disorder (ADHD), autism spectrum disorder (ASD),
bipolar disorder (BD), depressive disorder (DPD), mild cognitive
impairment (MCI), multiple sclerosis (MS), obsessive-compulsive
disorder (OCD), PD, post-traumatic stress disorder (PTSD), and
schizophrenia (SCZ) (Table 1). For details regarding study selection
criteria, see the Supplementary Methods.

ALE Meta-Analysis
For each published R-fMRI study, we extracted the reported
coordinates for which between-group differences existed. The
coordinates in the Talairach space were converted to the
Montreal Neurological Institute (MNI) space using the tal2icbm
transformation (Lancaster et al. 2007). Notably, these coordi-
nates were divided into 2 categories based on the direction of
the effects (e.g., lower and higher activity in patients with brain
disorders compared with that in healthy controls) and were
used separately in subsequent activation likelihood estimation
(ALE) analyses.

To identify disorder-related regions across R-fMRI studies,
the ALE analysis was performed using GingerALE software
(www.brainmap.org/ale/, version 2.3.3). The ALE represents a
coordinate-based meta-analysis of neuroimaging studies, and
it treats reported foci as an uncertainty distribution (Eickhoff
et al. 2012). In the ALE, foci were modeled as a spatial 3D
Gaussian probability distribution. For each study, we generated
a modeled activation map by converting foci into probability
distributions. The convergence of all modeled activation maps
across studies was subsequently used to obtain voxel-wise ALE
scores by estimating the uncertain peaks, which reflect the
union of activation probabilities across experiments. The

significance threshold was set at P < 0.05 (FDR corrected) with a
cluster size of 200mm3.

Meta-Analytic Maps
Using the ALE maps from the previously described meta-
analysis, we generated three types of abnormal maps, includ-
ing disorder-specific maps, disorder-general maps, and
disorder-conjunction maps. Briefly, we obtained disorder-
specific maps (lower and higher activity, which represented
functional activity abnormalities) by performing an ALE meta-
analysis for the included studies of each disorder. Disorder-
general maps were subsequently created by performing an ALE
meta-analysis of the studies in which the same number of
R-fMRI studies were randomly extracted from each disorder and
further pooled together. Notably, 7 studies of lower activity and
6 studies of higher activity were randomly extracted because of
the lowest number of reports on these disorders. This random-
ized procedure was performed 100 times. To reduce the effects of
different sample sizes among studies, for each disorder, we used
the following equation (Crossley et al. 2014):

= × ( ) ( )Ns
Ncs

Ncs
Cs

min
1

where Cs indicates the corrected sample size, Ns indicates the
original number of patients reported in one specific study, Ncs
indicates all subjects in one disorder selected for analysis, and
min(Ncs) indicates the minimum number of subjects included in
randomly selected studies of one disorder. We defined disorder-
general maps (lower and higher activity) as the meanmaps of 100
meta-analytic results. The disorder-general maps characterized
the common abnormality across all brain disorders. Finally, to
validate our meta-analytic findings from the perspective of the
frequencies of abnormal brain regions across disorders, we gener-
ated disorder-conjunction maps (lower and higher activity). For
each disorder, the disorder-specific maps derived from the ALE
meta-analysis were binarized and subsequently overlapped
across disorders to calculate the abnormal frequencies in a voxel-
wise manner. The resultant images were spatially smoothed with
a 4-mm full-width at half-maximum Gaussian kernel using SPM8.

Graph-Theory Connectomic Analysis of Real R-fMRI
Data

Dataset Overview and Image Preprocessing
The following independent R-fMRI datasets were included in
our studies (Table 2): Dataset 1 with R-fMRI data of 146 healthy

Table 1. Number of studies, patients and controls included in the meta-analysis.

Brain disorders Abbr. Studies (N) Patients (N) Controls (N)

Alzheimer’s disease AD 17 472 520
Attention deficit hyperactivity disorder ADHD 9 485 473
Autism spectrum disorder ASD 8 412 476
Bipolar affective disorder BD 10 404 478
Depressive disorder DPD 32 817 806
Mild cognitive impairment MCI 23 630 570
Multiple sclerosis MS 10 387 274
Obsessive-compulsive disorder OCD 11 279 318
Parkinson’s disease PD 25 892 683
Post-traumatic stress disorder PTSD 8 214 232
Schizophrenia SCZ 29 1691 1862
Total 182 6683 6692
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subjects, Dataset 2 with R-fMRI data of 32 AD patients, and 38
healthy controls and Dataset 3 with R-fMRI data of 114 MDD
patients and 189 healthy controls. Written informed consent
was obtained from each participant. The study designs of
Datasets 1–3 were approved by the Institutional Review Board
of the State Key Laboratory of Cognitive Neuroscience and
Learning at the Beijing Normal University, the Medical
Research Ethics Committee of Xuanwu Hospital and the
Institutional Review Board of the China Medical University,
respectively. Notably, Dataset 1 was used to identify healthy
functional brain systems which that served as a normal tem-
plate to investigate the spatial distribution of disorder-related
regions from the meta-analysis. Datasets 2 and 3 were used to
confirm whether the AD and MDD-related functional abnormal-
ities identified via the meta-analysis were observed by using
brain network analysis in experimental data, respectively. All
R-fMRI data (Datasets 1, 2, and 3) were preprocessed using a
standardized procedure, and the resultant data were used for
network construction and analyses. Data of 3 subjects from
Dataset 1 and 12 subjects from Dataset 3 (6 MDD patients and 6
controls) were discarded due to large head motion. For details
regarding the participants, scanning parameters and preproces-
sing steps of these datasets, see the Supplementary Methods
and Supplementary Tables (Table S1 and S2).

Construction of Voxel-Wise Functional Brain Network
For the three datasets (Datasets 1, 2, and 3), we used identical
methods to construct the voxel-wise brain functional networks.
Briefly, we initially defined network nodes as 45 381 gray matter
voxels that were derived from the automated anatomical label-
ing atlas (Tzourio-Mazoyer et al. 2002). For each subject, we
subsequently generated an individual functional connectivity
matrix by computing Pearson correlations between the prepro-
cessed time courses of every pair of voxels, which resulted in a
symmetric 45 381 × 45 381 correlation matrix for each individ-
ual. We restricted the following analyses to positive edges and
set negative edges to 0 due to their biologically ambiguous
interpretations (Schwarz and McGonigle 2011).

Meta-Connectomic Analysis: Modules
i) Modular identification in healthy brain networks (Dataset 1).
A well-known 7-system parcellation was provided by Yeo et al.
(Yeo et al. 2011); however, the system division did not include
subcortical regions. Given the potential importance of subcorti-
cal regions in neuropsychiatric disorders, we identified the
functional modules in healthy brain networks based on an
independent dataset. Briefly, we constructed a group-level
brain network by thresholding the averaged correlation matrix
that was obtained from a set of correlation matrices in the
group of healthy subjects (N = 143). A network density

threshold of 5% was selected to ensure the sparsity nature of
the brain network and simultaneously remove weak correla-
tions. Here, we adopted the Newman algorithm for modular
detection (Newman and Girvan 2004). The modularity Q(p) for a
specific partition p was defined as follows:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∑( ) = − ( )

=
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l
L

d
L2

2
s

N
s s

1

2m

where Nm is the number of modules, L is the number of connec-
tions in the network, ls is the number of connections between
nodes in module s, and ds is the sum of the degrees of the
nodes in module s. The largest value of Q with the optimal
number of modules was selected for further investigation.
Notably, after automatically detecting functional modules, we
manually combined some smaller modules into a larger one
(e.g., combining the anterior and posterior DMN modules into a
single DMN module) according to the functional parcellations
of Yeo et al.

ii) Spatial distribution of disorder-related regions with meta-
analysis in healthy brain network modules. Briefly, for each
disorder-specific ALE map (lower and higher activity), we ini-
tially computed the number of disorder-affected voxels within
each of the previously identified 7 modules. We subsequently
determined the ratio between the number of affected voxels
within each module and the number of all affected voxels
within the disorder-specific map. Thus, we obtained the pro-
portions of disorder-related regions within modules.

Meta-Connectomic Analysis: Connectors
i) Different roles of brain nodes in healthy brain networks
(Dataset 1). To investigate the nodal roles in intra- and inter-
modular communications, we measured the within-module
degree (WMD) and the participant coefficient (PC) in the healthy
brain network as follows. The following WMD z-score measures
how well nodes are connected within modules:

σ
= − ( )z

k k
3i

i s

s

where ki is the number of intra-modular connections of a node
i within module s, ks is the average number of intra-modular
connections of all nodes in module s, and σs is the SD of the
number of intra-modular connection of all nodes in module s
(Guimera and Nunes Amaral 2005). The PC measures the level
of intra-modular connectivity versus inter-modular connectiv-
ity of a node as follows:
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Table 2. R-fMRI Datasets and Demographics included in this study.

Meta-Dataset Dataset 1 Dataset 2 Dataset 3

Patients Controls Healthy AD Controls MDD Controls

Subjects (N) 6683 6692 143 32 38 108 183
Gender (N, male/female) 3356/2777a 3162/2978a 69/74 14/18 13/25 35/73 73/110
Age (years, mean ± std) 39.45 ± 19.43b 38.76 ± 19.00b 22.89 ± 2.27 71.25 ± 8.63 68.39 ± 7.78 25.75 ± 8.51 26.62 ± 8.00

AD, Alzheimer’s disease; MDD, major depressive disorder; std, standard deviation.
aGender information was extracted from available 173 studies by summing up the exact numbers in each study.
bAge information was extracted by averaging the mean and standard deviation values across 179 studies.
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where Nm is the number of modules, ki is the degree of node i,
and kim is the number of connections from node i to module m
(Guimera and Nunes Amaral 2005).

All nodes were divided into the following types according to
their WMD z-score and PC values, which reflected their differ-
ent roles in inter- and intra-modular communication: “connec-
tor hubs”, higher WMD z-scores (z > 0) and higher PC values
(PC ≥ 0.3); “satellite connectors”, lower WMD z-scores (z < 0)
and higher PC values (PC ≥ 0.3); “provincial hubs”, higher WMD
z-scores (z > 0) and lower PC values (PC < 0.3); and “peripheral
nodes”, lower WMD z-scores (z < 0) and lower PC values (PC <
0.3). The former 2 types of nodes play critical roles in the coor-
dination of integrated and segregated information communica-
tion between modules (He et al. 2009; Power et al. 2011; Cole
et al. 2013), whereas the latter two support specialized func-
tions within modules (Guimera and Nunes Amaral 2005;
Guimera et al. 2007).

ii) Distribution of disorder-related regions with meta-analysis
in the categorized brain network nodes. Two strategies were
used. First, we compared the mean nodal properties (PC values
or WMD z-scores) between disorder-affected and -unaffected
regions. Briefly, for a specific disorder, we first assigned the
whole-brain voxels into affected and unaffected regions accord-
ing to a disorder-specific ALE map (lower and higher activity).
We subsequently computed the mean property values (PC val-
ues or WMD z-scores) of the two categorized regions in the
healthy brain networks. An empirical distribution was obtained
by randomly reallocating the whole-brain PC values (or WMD
z-scores) into 2 randomized groups and calculating the mean
values of the two groups 10 000 times. The 95th percentile point
of the empirical distribution was used as the value to determine
whether the observed group differences could occur by chance.
Second, we examined the spatial distribution of disorder-
affected regions (lower and higher activity) in terms of the node
types. Briefly, for each disorder-specific ALE map (lower and
higher activity), we first computed the number of disorder-
affected voxels within each of the four nodal types previously
identified. We subsequently determined the ratio between the
number of affected voxels within each node type and the num-
ber of all affected voxels within the disorder-specific map. Thus,
we obtained the proportions of disorder-affected regions within
4 node types. Finally, we compared the differences in the pro-
portions among different node types using permutation test
(N = 10 000), and post hoc comparisons were also conducted by
nonparametric permutation test (N = 10 000) between each pair
of the node types. Significance was determined at P < 0.05.
Details are described in the Supplementary Methods.

Meta-Connectomic Analysis: Cognitive Function
We further investigated whether brain regions that are
involved in various disorders play crucial roles in multiple cog-
nitive functions. We initially obtained the cognitive flexibility
map from Yeo et al. (2016) (https://surfer.nmr.mgh.harvard.
edu/fswiki/BrainmapOntology_Yeo2015) in which each voxel
represents the number of cognitive components. For a specific
cognitive component, we identified all corresponding voxels in
the flexibility map and subsequently averaged the frequencies
of the abnormality values within the corresponding voxels in
the disorder-conjunction maps. Then, we performed a Spearman
correlation analysis to investigate the relationship between the
regions with frequencies of abnormalities and the cognitive com-
ponent number. These analyses were independently performed
for lower and higher activity.

Meta-Connectomic Analysis: Meta-analysis Versus Connectomic
Analysis from Real Data in Disorders
To confirm whether our meta-analytic findings are compatible
with real brain network analyses, we performed the following
process using real R-fMRI data (Datasets 2 and 3) of 2 brain dis-
orders (AD and MDD) as examples. Briefly, we initially con-
structed voxel-based functional network matrices for each
subject using the same approach as Dataset 1. We subse-
quently used formulas (2)–(4) to identify functional modules
and compute nodal properties (PC values and WMD z-score).
Individual PC and WMD maps were spatially smoothed with
full-width half-maximum (FWHM) = 4mm. Voxel-wise differ-
ences in PC or WMD values between patients (AD or MDD) and
normal controls were evaluated using two sample t-tests, con-
trolling for age and genders. The T-values in the between-group
difference maps (PC and WMD) were converted to Z-values and
subsequently added together to validate our meta-analysis
results. The statistical significance threshold was set at the
voxel-level of P < 0.05 and cluster level of P < 0.05 with
Gaussian Random Fields correction.

Meta-Connectomic Analysis: Validation
To validate our major results, we examined the influences of
functional metrics selection in meta-analysis and different
image preprocessing and data analysis strategies in empirical
data. First, to evaluate whether different functional metrics
included in the meta-analysis have influences on the general
spatial patterns of brain abnormalities, we conducted the fol-
lowing procedures. Briefly, each of the four functional metrics
(i.e., ALFF, regional homogeneity, independent component
analysis, and voxel-based functional network degree/strength)
was excluded in turn from the meta-analysis; thus, four
disorder-general maps were obtained. We evaluated the simi-
larities of the spatial pattern between each pair of maps by
using Pearson correlation analysis. This analysis was per-
formed for both lower and higher activity. Second, to assess
whether studies with global signal regression (GSR) have an
impact on our meta-analytic findings, we re-performed the
meta-analysis with studies without GSR in data preprocessing.
Third, to examine the effects of the threshold for connector
definition, we further validated our results utilizing another
commonly used PC threshold (i.e., the mean PC value)
(Hagmann et al. 2008; He et al. 2009). Fourth, we validated
whether our main findings were influenced by selecting differ-
ent connectivity density (3 and 7%) during brain network con-
struction and by correcting head motion using a “scrubbing”
procedure (Power et al. 2012). Finally, considering that a large
number of studies enrolled in the current meta-analysis were
related to ALFF analysis, we further assessed the consistency
between the results of the meta-analysis and empirical data on
ALFF in the AD and MDD datasets. For details, see the
Supplementary Methods.

Results
Disorder-Related Functional Abnormality Mainly in the
DMN, FPN, and SMN Modules

Based on the disorder-general maps, we first identified regions
that were commonly affected across 11 brain disorders.
Disorder-associated lower activities were primarily located in
the posterior cingulate cortex (PCC)/precuneus (posterior DMN),
dorsomedial prefrontal cortex (dmPFC), ventrolateral PFC
(vlPFC), premotor cortex and striatum (lentiform and caudate
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nucleus) (Fig. 1A). Disorder-associated higher activities were
primarily located in the ventral anterior cingulate cortex (ACC)
(anterior DMN), anterior insula, medial temporal cortex, supple-
mentary motor area (SMA), and subcortical regions (e.g., the
thalamus and striatum) (Fig. 1A). Moreover, the disorder-
conjunction maps (Fig. 1B, Supplementary Tables S3 and S4)
that were generated by calculating the frequency of abnormali-
ties at each voxel across disorder-specific meta-analytic maps
were highly similar to the disorder-general maps, indicating
the high robustness of these findings. For the ALE map of each
disorder, see Supplementary Figures S3 and S4.

We subsequently examined the spatial distribution of these
disorder-related regions in the functional modules identified in
a group of normal subjects (N = 143, Dataset 1). Using Dataset 1,
we identified a 7-module parcellation, including the DMN,
SMN, FPN, ventral attention network (VAN), dorsal attention
network, visual network (VN), and limbic network (Fig. 2A).
Although the proportion of the disorder-related regions varied
across modules, the DMN, SMN, and FPN were commonly and
highly affected across disorders (lower activity: DMN: 28.40 ±
12.11%, SMN: 17.92 ± 7.95%, FPN: 16.84 ± 4.46%; higher activity:
DMN: 26.27 ± 10.05%, FPN: 18.45 ± 6.18%, SMN: 15.46 ± 9.78%)
(Fig. 3A). Specifically, within the DMN, lower activity was primar-
ily distributed in the posterior DMN (PCC/precuneus), dmPFC and
ventromedial prefrontal cortex (vmPFC), but higher activity was
primarily distributed in the anterior DMN (ventral ACC) and the
lateral and medial temporal cortices (Supplementary Fig. S5).

Within the SMN, lower activity was mainly located in the inferior
premotor cortex, inferior primary somatosensory cortex, and
SMA, but higher activity was located in the primary somatosen-
sory cortex (Supplementary Fig. S5). Within the FPN, lower activ-
ity was primarily distributed in the dmPFC, temporo-parietal
junction and inferior temporal cortex, but higher activity was
located in the bilateral dorsolateral prefrontal cortex (dlPFC)
(Supplementary Fig. S5). In addition to these common across-
disorder dysfunctions in the DMN, SMN, and FPN, several other
modules were targeted by specific disorders, such as lower activ-
ity in VN (18.88%) in SCZ and higher activity in the VAN (10.91%)
and the VN (32.95%) in ADHD. The correspondences between
each disorder and dysfunctional systems are illustrated in the
circle representations (Fig. 3B).

Disorder-Related Brain Regions Concentrated in
Network Connectors

To examine whether these disorder-related regions play critical
roles in inter- and intra-modular communication, we computed
2 network metrics, the PC and WMD z-scores, in healthy brain
functional networks (Dataset 1). Both the PC values and WMD
z-scores of disorder-associated lower activity regions in the ALE
map were significantly higher (both P-values < 0.001, permuta-
tion tests) than those of the other regions. For disorder-
associated higher activity regions in the ALE map, the averaged
PC values were significantly higher (P < 0.001, permutation

Figure 1. Distribution of disorder-related regions obtained from numerous studies of 11 brain disorders across the whole brain. (A) Disorder-general maps created by

performing a meta-analysis across disorders. The left indicates the lower activity map (Disorders < Controls), and the right indicates the higher activity map

(Disorders > Controls). (B) Disorder-conjunction maps obtained by overlapping disorder-specific maps. The left indicates the lower activity map, and the right indi-

cates the higher activity map.
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test); however, there were nonsignificant differences in the
WMD z-scores (P = 0.48). Similar findings were obtained for
most disorder-specific ALE maps (Supplementary Fig. S6).

Subsequently, we classified all nodes into the 4 types, that
is, connector hubs, satellite connectors, provincial hubs, and
peripheral nodes (Fig. 2B). We determined that most of the
putative connector nodes in the healthy brain networks were
mainly located in the junctions between functionally segre-
gated systems, which was highly similar to the conclusions of
previous studies (He et al. 2009; Power et al. 2013). Importantly,
disorder-related lower and higher activity regions exhibited sig-
nificant differences in proportion among these 4 categories
(both P-values < 0.001, Fig. 4A) as follows: lower activity:
connector hubs (34.56 ± 9.10%), satellite connectors (28.14 ±
3.40%), provincial hubs (21.60 ± 6.80%), and peripheral nodes
(15.71 ± 5.23%); higher activity: connector hubs (27.89 ± 7.18%),
satellite connectors (32.70 ± 6.28%), provincial hubs (17.57 ±
5.88%) and peripheral nodes (21.83 ± 5.01%). We further used an

additional threshold of the mean PC value to define connectors
(mean PC value = 0.35) for validation purposes and found iden-
tical results (Supplementary Fig. S7). Together, the results indi-
cated that brain disorders appear to mainly target connectors
with denser intermodule connections, regardless of lower or
higher activity.

To compare functionally damaged patterns across disorders,
we established the PC-WMD coordinate space by mapping the
averaged PC values and WMD z-scores in the lower or higher
activity regions of every disorder (Fig. 4B). We clearly determined
that nearly all brain disorders (with the exception of SCZ in lower
activity and ASD and ADHD in higher activity) were associated
with disrupted network connectors (connector hubs and satellite
connectors), regardless of lower and higher activity regions. This
result provided further support for the previously described find-
ings. Intriguingly, each disorder occupied a specific position in
the PC-WMD space. For example, AD and MCI exhibited substan-
tially similar lower activity patterns but differed in higher activ-
ity; both ADHD and ASD shared similar lower and higher activity
patterns. There were also different patterns between neurological
and psychiatric disorders: the former (e.g., MCI, MS, and PD)
exhibited higher PC values and WMD z-scores in lower and high-
er activity regions, whereas the latter (e.g., SCZ, BD, and PTSD)
exhibited lower WMD z-scores in regions with higher activity.

Disorder-Related Regions were Mainly Involved in
Multiple Cognitive Functions

We identified a significantly positive correlation between the
probabilities of regions involving brain disorders and the num-
ber of cognitive components engaged in the tasks (lower activ-
ity: Spearman’s ρ = 0.56, P < 0.001; higher activity: Spearman’s
ρ = 0.79, P < 0.001) (Fig. 5). This result indicated that the regions
with disorder-general abnormalities tend to be involved in mul-
tiple cognitive functions.

Abnormal Functional Network Patterns using Real R-
fMRI Data in AD and MDD

Voxel-based network modularity analyses in two R-fMRI data
examples (AD and MDD) revealed abnormal connectivity pat-
terns. At the modular level, we observed AD-related lower
activity mainly in the DMN and SMN, MDD-related lower activ-
ity in the DMN and FPN, and AD- or MDD-related higher activity
in the DMN, SMN and FPN (Supplementary Fig. S8), indicating
that the three functional systems were mainly affected by AD
or MDD. Additionally, we also noticed specific lower activity in
the visual system in MDD.

At the nodal level, the AD patients exhibited lower activity
primarily in the PCC, vmPFC/ventral ACC, supramarginal gyrus,
central opercular cortex and anterior insula and higher activity
mainly in the dlPFC, lateral temporal cortex, medial temporal
lobe (including the hippocampus and amygdala) and primary
motor cortex (Fig. 6 and Supplementary Table S5). Interestingly,
several lower and higher activity regions (e.g., the vmPFC, cen-
tral opercular cortex, supramarginal gyrus and frontal pole in
lower activity and the medial temporal lobe, dlPFC and lateral
temporal cortex in higher activity) in AD were largely compati-
ble with our AD-specific meta-analysis findings with an over-
lapping percentage of 96.41% for lower activity and 90.02% for
higher activity (Fig. 6). Additionally, validation analysis also
revealed high consistency between the results of AD-specific
meta-analysis and the abnormality identified with ALFF analysis
in empirical data, with a high overlap of 94.92 and 97.10% for

Figure 2. Spatial pattern of 7 brain systems and four node types. (A) Seven-

network parcellation identified based on voxel-wise functional brain networks

of healthy participants. Each color indicates one of the identified systems. (B)

Illustrations of modules and four node types. Modules are represented by three

colors (top). Spatial distribution of the four node types in the brain. The indexes

of the nodes indicate node types corresponding to the right labels (bottom).

Connector hubs in blue with PC values > 0.3 and WMD z-scores > 0; satellite

connectors in green with PC values > 0.3 and WMD z-scores < 0; provincial

hubs in yellow with PC values < 0.3 and WMD z-scores > 0; and the peripheral

nodes in red with PC values < 0.3 and WMD z-scores < 0. The modular and

node type categorization were mapped on the cortical surface using BrainNet

Viewer (Xia et al. 2013).
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lower and higher activity, respectively (Fig. 6 and Supplementary
Table S6).

Likely, at the nodal level, the MDD patients exhibited lower
activity mainly in the visual cortex and frontal orbital cortex
and higher activity in the dlPFC; central, frontal opercular;
anterior insular cortices and putamen (Fig. 7 and
Supplementary Table S7). Specifically, the lower activity in the
visual cortex and the higher activity in the dlPFC, vlPFC,

anterior insular, and frontal operculum cortices were highly
consistent with our meta-analytic findings in MDD. The over-
lapping ratio between the empirical abnormal regions and
MDD-related meta-analytic maps reached 98.13% for lower
activity and 92.53% for higher activity (Fig. 7). Additionally, we
found similar patterns between the results from MDD-specific
meta-analysis and from the abnormal regions identified with
ALFF analysis in empirical data regardless of lower (e.g., visual

Figure 3. Distribution of disorder-related regions in the brain modules. (A) Plots indicate the percentages of disorder-related regions in 7 functional modules. The

x-axis represents the modules in a decreasing order of average proportion across disorders, and the y-axis indicates the proportion of the disrupted regions in each

module. The bar map shows the mean proportion of disrupted regions across 11 disorders in each module. The error bar represents the SD. Each color indicates one

of the included disorders. (B) Circular representations indicate that different disorders share common and unique severely disrupted modules. Regions that exhibited

lower activity (Disorders < Controls) distributed in the 7 modules are shown on the left, and regions with higher activity (Disorders > Controls) are shown on the right.

The inner circular diagram indicates the relative abundance of functionally disrupted regions across disorders in the various brain modules. Each color indicates one

of the modules or disorders: the modules are shown on the right side, and the 11 disorders are shown in the remaining segments of the circles. Each ribbon linked

one disorder with one module. The ribbon size indicates the proportion of the abnormal regions in each individual module. The outer circles depict the relative row

and column frequencies for each related segment. All information regarding the circle generation is available at http://mkweb.bcgsc.ca/tableviewer/.
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cortex) and higher activity (e.g., anterior insula, medial tempo-
ral lobe, and putamen) (Fig. 7 and Supplementary Table S8).
The overlapping proportions between regions with ALFF differ-
ences and MDD-related meta-analytic patterns in lower and
higher activity reached 99.03 and 99.53%, respectively. Finally,
validation analysis in both datasets based on different network
density and head motion correction generally indicated similar
findings (Supplementary Figs S9 and S10).

Discussion
Using a novel meta-connectomic analysis, we showed that
most brain disorders were commonly affected in several major
modules, including the DMN, FPN, and SMN. Moreover, the
disorder-related regions primarily concentrated in the connec-
tors that serve as a group of nexuses that maintain inter-
modular communications and support multiple cognitive func-
tions; however, different sets of connectors existed across

Figure 4. Distribution of disorder-related regions in four types of nodes. (A) Average distribution of regions with lower and higher activity in various node types

across all brain disorders. The bar map indicates the mean proportion of disrupted node types across 11 disorders. The error bar represents the SD. *P < 0.05, **P <

0.01, and ***P < 0.001. The asterisks indicate significant differences between two node types. Each color indicates one of the included brain disorders. (B) The finger-

print maps with PC and WMD z-scores across various brain disorders. Each dot represents the average PC values and WMD z-scores of the disorder-related regions of

a specific disorder. Abbreviations: AD, Alzheimer’s disease; ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; BD, bipolar affective disor-

der; DPD, depressive disorder; MCI, mild cognitive impairment; MS, multiple sclerosis; OCD, obsessive-compulsive disorder; PTSD, post-traumatic stress disorder;

SCZ, schizophrenia; n.s., nonsignificant.
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disorders. Using network analysis of R-fMRI data in AD and
MDD as empirical examples, we confirmed these meta-analytic
findings. To the best of our knowledge, this meta-connectomic
study is the first to demonstrate that different brain disorders
are associated with shared alterations in the modules and con-
nectors of functional brain networks, and the findings extend
our understanding of the neural mechanisms that underlie var-
ious disorders.

Relationship Between Brain Disorders and Functional
Modules

That the DMN, FPN, and SMN were commonly affected by most
brain disorders. Why do these functional abnormalities often
concentrate in these 3 modules? We first discussed potential
explanations related to DMN and FPN dysfunctions. Abnormal
cognitive functions (including memory and cognitive control)
and emotional processing often appear in neuropsychiatric dis-
orders, such as AD, MDD, and SCZ. The DMN is mainly com-
posed of the medial prefrontal cortex, PCC and hippocampus
and is involved in internal emotional processing, self-
referential directed thought and memory function (Buckner
et al. 2008; Anticevic et al. 2012). The FPN is mainly composed
of the lateral prefrontal and parietal regions and is typically
involved in cognitive control. Thus, it is not surprising to see
that numerous R-fMRI studies have documented that both the
DMN and FPN are associated with most mental illnesses,
including AD, MDD, ASD, and SCZ (Broyd et al. 2009; Menon
2011; Agosta et al. 2012; Anticevic et al. 2012; Lynch et al. 2013;
Wang et al. 2013; Baker et al. 2014). Moreover, from the perspec-
tive of energy consumption, spontaneous neuronal activity is
the major factor that contributes to the cost of brain function,
which may consume 20% of the body’s energy budget (Raichle
and Gusnard 2002; Raichle and Mintun 2006). DMN and FPN, as
2 core neurocognitive networks (Menon 2011), act as the main
energy utilizer during rest (Raichle et al. 2001) and consume
heavier regional cerebral blood flow and metabolisms (Liang
et al. 2013; Tomasi et al. 2013). Empirical and computational
modeling studies have proposed that high cost regions are fre-
quently targeted by various disorders (de Haan et al. 2012;

Crossley et al. 2014; Stam 2014). Finally, neuroimaging studies
have demonstrated that the DMN and FPN modules are not
only structurally connected to constitute a rich-club core brain
system (Hagmann et al. 2008; van den Heuvel and Sporns 2011)
but also functionally coupled to each other in task perfor-
mances or the resting-state (Fox et al. 2005; Seeley et al. 2007).
Thus, these works provide crucial support for commonly
detected network dysfunction in the DMN and FPN across dis-
tinct disorders.

We also identified disorder-related disruption in the SMN.
Many disorders were characterized by deficits in motor control,
such as tremor and slowness of movement, and deficits in
receiving external stimuli. The SMN was defined as the areas
linked with the primary somato-motor cortex and SMA, which
are used for motor skill learning and sensory perception
(Biswal et al. 1995; Rioult-Pedotti et al. 1998; Butefisch et al.
2000). Thus, clinical dysfunction of sensory and motor expres-
sion would be progressively represented in the neuroimaging
results. An aberrant SMN is associated with clinical symptoms
and has been reported in several neuropsychiatric disorders,
such as AD (Wang et al. 2007), SCZ (Keedy et al. 2009; Damaraju
et al. 2014), MS (Lowe et al. 2008; Faivre et al. 2012), and PD (Wu
et al. 2009). Thus, it is reasonable to observe shared disruptions
in the SMN across several disorders in this study.

Recently, Fox and colleagues (Fox et al. 2014) proposed the
“target-response” network to describe the close connection
among stimulation sites and their target effective brain regions
across diverse psychiatric and neurological disorders.
Interestingly, the localization of the “target-response” network
is most prominent in the DMN, SMN, and FPN, which is highly
consistent with our disorder-shared functional modules. Here,
we highlighted these 3 core networks identified by our meta-
connectomic analysis and collectively called them the “treat-
ment-response network”. Thus, the identification of these core
networks not only helps to extend the understanding of the
common neurological mechanism across disorders but also
provides clinical treatment guidance for therapeutic benefits at
a network level.

Apart from these shared dysfunctions, some disorders also
exhibited abnormal patterns in specific functional modules. For

Figure 5: Relationship between the disorder-related regions and multiple cognitive functions and network robustness. Relationship between disorder-related regions

and cognitive roles in tasks. The x-axis indicates the cognitive components engaged by a specific task in the functional flexibility map obtained from (Yeo et al. 2011).

The y-axis indicates the averaged frequencies of abnormality across disorders of the voxels within the region. The error bar represents the SD.
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example, PD was observed with lower activity located partially
in the VN (17.05%). Clinically, a majority of patients with PD
reported visual deficits, such as misjudging objects and dis-
tances, double vision and visual perception, which was consis-
tent with the neuroimaging results (Weil et al. 2016). These
results indicated the degree to which disrupted functional sys-
tems varied across brain disorders with the exception of uni-
versally abnormal modules.

Relationship Between Brain Disorders and Network
Connectors

As previously discussed, abnormal cognitive function and emo-
tional processing are the cardinal characteristics of most neu-
ropsychiatric disorders. Network connectors play crucial roles
in coordinating inter-modular information transfer and support

multiple cognitive processes (Bertolero et al. 2015; Yeo et al.
2016). To date, several R-fMRI studies have shown lower and
higher connectivity in brain disorders, which are related to the
connector nodes in the brain networks. For example, disrupted
modular and connector communications occur in AD, and
these disruptions are closely related to cognitive decline (de
Haan et al. 2012; Dai et al. 2015). In stroke, focal damages to
brain areas are linked to functional connectors (Gratton et al.
2012). Moreover, focal lesions in “target” connector hubs pro-
duce more severe and widespread cognitive deficits than do
lesions in peripheral nodes (Warren et al. 2014). Specifically, we
showed that regions that were more affected by disorders
tended to be network connectors with multiple cognitive com-
ponents. A recent meta-analysis study involving task-related
fMRI on cognitive control revealed abnormal task-related acti-
vation in regions of the frontoparietal and salience networks,

Figure 6. Comparison of AD-related abnormal regions between real data and meta-analysis data. (A) Whole-brain group-wise statistical maps of regions with lower

activity in AD compared with the corresponding meta-analytic results. (B) Similar comparisons of patterns with higher activity in AD real data and the corresponding

meta-analytic results are shown. Between-group difference maps for PC values and WMD z-scores were merged together for presentation. The PCC with lower activity

in AD modularity analysis reached the height threshold but did not survive the cluster correction. All findings were smoothed for better visualization with FWHM =

6mm. The color bar in the meta-analytic results represents the ALE value, whereas the Z value is presented in the real data differences among comparisons.
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such as the dlPFC, dorsal ACC, and anterior insula, across dif-
ferent psychiatric disorders (McTeague et al. 2017). Many previ-
ous R-fMRI studies have suggested that these regions tend to
be connectors in the functional brain networks (He et al. 2009;
Power et al. 2013; Bertolero et al. 2015) and are highly in line
with our results. Dysfunctions of these regions suggest a com-
mon network substrate underlying declines in cognitive proces-
sing in different brain disorders. Together, our study extended
previous findings by indicating a general rule of abnormal net-
work connectors across various neuropsychiatric disorders.

Connectors predominately lie in the association and limbic
cortices that typically receive and integrate information from
other sensory modalities (Mesulam 1998). The fiber tracts of
neurons in the association cortex contain several million miles
of axons that connect one cortex to another. In gray matter,

information inputted to layer IV, in which input cells are
located, was subsequently transferred to the superior (layer III)
and deeper (layer V) layers, followed by integration by output
cells in these two layers, where messages were integrated for
output to other cerebral cortex areas (Purves et al. 2001).
Moreover, research suggests that the projection neurons in
adjacent cortex areas have longer and more complex dendrites
and spines than those of pyramidal neurons within the pri-
mary and unimodal cortex of monkeys and humans, indicating
their role in integrating more complex information in different
modules (Jacobs et al. 2001; Duan et al. 2002). Thus, disruptive
connectors may heavily impact the coordination of information
flow across functional modules.

Notably, it was not only regions with lower activity that con-
centrated in the connectors, but the areas showing higher

Figure 7. Comparison of MDD-related abnormal regions between real data and meta-analysis data. (A) Whole-brain group-wise statistical maps of regions with lower

activity in MDD compared with the corresponding meta-analytic results. (B) Similar comparisons of patterns with higher activity in MDD real data and the corre-

sponding meta-analytic results are shown. Between-group difference maps for PC values and WMD z-scores were merged together for presentation. All findings were

smoothed for better visualization with FWHM = 6mm. The color bar in the meta-analytic results represents the ALE value, whereas the Z value is presented in the

real data differences among comparisons.
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activity did as well. We proposed two hypotheses to explain
our findings, including the “radar-like” cortico-subcortical dys-
function model and compensation effects. First, previous stud-
ies have identified a cortical-basal ganglia-thalamic circuit
linking cortical connectors, such as the associative cortex, lim-
bic cortex and motor cortex, with subcortical connectors that
communicates in a “radar-like” interactive manner (Bell and
Shine 2016). These regions are also abnormal regardless of
lower and higher activity patterns, which implicates disruption
within cortical-subcortical crosstalk among brain disorders. In
detail, if disorders target cortical connectors to lower activity,
then subcortical connectors serve as the receptor of the “radar”,
representing higher activity in response to the above signals.
Second, a compensation mechanism was considered in topo-
logical space. Specifically, as attacked connectors result in the
decreased efficiency of inter-modular information transfer, the
recruitment of the remaining connectors may be used to com-
pensate for lower activity. Our study has plotted the “nodal fin-
gerprint” across disorders. For example, AD and MCI exhibited
severe disruptions of connector hubs in regions with lower
activity and separated patterns with higher activity. These find-
ings suggest that local compensation effects counteracted the
decreased activity in other regions in the earlier stage of the
progression to accomplish normal cognitive functions.
However, in the later stage, the compensatory mechanism
would breakdown and result in clinical behavior deficits.
Finally, some of the disorders, such as PD, MCI, AD, and MS,
were clustered to implicate similar abnormal patterns and pro-
vided suggestions for mechanistic understanding.

Recently, Crossley et al. (2014) proposed the hub vulnerabil-
ity hypothesis in the structural connectome in most brain dis-
orders. In the present study, we highlighted the functional
connector disruption concentrated in most neuropsychiatric
disorders. van den Heuvel and Sporns (2013b) determined that
86% of functional connector hubs are primarily distributed in
rich-club nodes in the structural brain network, which thus
indicates substantial overlap between disorder-associated
functional and structural maps. However, how to explain the
convergent and divergent nodes between functional and struc-
tural disruptions across different disorders remains an open
question. For the shared areas, the structural networks partially
shape functional connections through white matter fibers, and
alterations in spontaneous brain activity, in turn, are likely to
affect the structural architecture (Honey et al. 2009, 2010; Park
and Friston 2013; Wang et al. 2015). Here, our results provided
evidence for commonly disrupted functional patterns across
disorders. Functional brain networks were considered a tool to
help elucidate neurophysiological dynamics, which were not
fully mirrored by structural features. Specifically, we identified
higher activity patterns in the functional networks to provide a
better understanding of brain dynamics across disorders, which
were not shown in previous structural network studies
(Crossley et al. 2014).

Consensus Findings to Validate our General Hypothesis
using Network Analyses of Real R-fMRI Data

Using R-fMRI brain network analysis, we identified AD-related
lower activity primarily in the vmPFC, PCC, central opercular
cortex and supramarginal gyrus and higher activity primarily
in the dlPFC and the medial and lateral temporal cortices.
Importantly, these regions were mainly distributed in the core
networks and topological connectors, which was in accor-
dance with our meta-analytic findings. Specifically, most brain

regions with lower activity correspond to cortical hubs and are
spatially similar to the pattern of amyloid-β deposition revealed
using positron emission tomography amyloid imaging in AD
(Buckner et al. 2009). Moreover, the dlPFC, inferior temporal
gyrus, parahippocampal gyrus, and lingual gyrus exhibit
decreased neuronal responses during memory and semantic
processing, execution function and emotional retrieval, as
demonstrated by a meta-analysis (Li et al. 2015), which is com-
patible with our findings. The decreased nodal properties of
these areas suggested their weakened roles of coordination
across functional modules that corresponded to the pathologi-
cal features of AD.

We implemented the R-fMRI brain network analysis to show
MDD-related lower activity in the visual cortex and higher
activity in the lateral PFC, anterior insula cortex and frontal
operculum cortex. These findings were similar to our meta-
analytic findings. The lower activity of the VN was consistent
with the findings of MDD-related decreases in nodal centralities
(Zhang et al. 2011). Most regions with higher activity are the
main components of the FPN and DMN that have crucial roles
in cognitive control, the maintenance of information in work-
ing memory and problem solving. Moreover, increased activa-
tion of these two networks has been reported during emotional
control processing and working memory, implicating the dis-
rupted communication of these networks in the brain activity
of patients with DPD (Hamilton et al. 2012; Kerestes et al. 2012;
Groenewold et al. 2013).

Limitations and Future Work

There are several methodological issues in the present study.
First, we strove to make our search of the R-fMRI data with
regard to various brain disorders as wide as possible; however,
only 11 disorders were ultimately included because few R-fMRI
studies met our research criteria for other disorders. In the
future, additional disorders and studies must be included to
further assess the robustness of our findings. Second, in our
meta-analysis, we did not consider the effects of subject demo-
graphics (e.g., age, gender, and education) or clinical status
(e.g., illness duration and history of drug-taking) or image pre-
processing (e.g., head motion correction and removal of the
global signal). Specifically, GSR is supposed to reduce global
artifacts, but it can also introduce spurious anti-correlation
between regions (Power et al. 2012, 2014; Murphy and Fox 2017);
however, the biological mechanism for the global signal
remains largely unknown. Notably, most of the studies
included in our meta-analysis did not take the impact of GSR
into consideration, with the exception of twelve studies that
precisely reported GSR in preprocessing. Our additional meta-
analysis with the remaining 170 studies without GSR revealed
almost identical spatial patterns of disorder-general maps to
those of our main findings (lower activity: r = 0.92; higher activ-
ity: r = 0.90; both P-values < 0.001. Supplementary Fig. S13).
Thus, our findings could be mainly considered results without
GSR. Given the limited number of studies with GSR, we could
not assess the effects of GSR on our meta-analytic findings in
the current work. Future studies involving a balanced number
of processing strategies might provide valuable insights into
the understanding of global signal effects. Third, in the present
study, meta-analyses were separately performed with studies
showing lower activity and higher activity in different brain
disorders, and some of the regions exhibited both lower and
higher activities. This finding was a possible outcome of the
current ALE model, which can only estimate the effect in a
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single direction. Some newly developed models, such as the
effect-size signed differential mapping approach, provide abili-
ties in combining both positive and negative coordinates
together to obtain a unique statistic map (Radua et al. 2012,
2014). Future work adopting these models might reduce the
controversy in revealing the regions with both higher and lower
activities detected in ALE-based meta-analysis. Fourth, it
should be noted that the disorder-related patterns identified in
our meta-analysis were not exactly the same as those identi-
fied in our real dataset. One confounding factor was the sample
heterogeneity in our meta-analysis created by the various sub-
types of depressive disorder (e.g., recurrent, early onset, adult-
onset, and medication status). Finally, we used a meta-analysis
to demonstrate network dysfunctions across neuropsychiatric
disorders. It would be desirable to use a real R-fMRI dataset
with the same scanning and analysis procedures to compare
convergent and divergent functional abnormalities across vari-
ous disorders. This research would be important to identify
shared and different biological mechanisms across disorders
and provide novel insights into diagnostic biomarkers and
treatment strategies based on across-disorder studies.

Supplementary Material
Supplementary data is available at Cerebral Cortex online.
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