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Abstract: Recent studies have demonstrated small-world properties in both functional and structural
brain networks that are constructed based on different parcellation approaches. However, one funda-
mental but vital issue of the impact of different brain parcellation schemes on the network topological
architecture remains unclear. Here, we used resting-state functional MRI (fMRI) to investigate the influ-
ences of different brain parcellation atlases on the topological organization of brain functional net-
works. Whole-brain fMRI data were divided into ninety and seventy regions of interest according to
two predefined anatomical atlases, respectively. Brain functional networks were constructed by thresh-
olding the correlation matrices among the parcellated regions and further analyzed using graph theo-
retical approaches. Both atlas-based brain functional networks were found to show robust small-world
properties and truncated power-law connectivity degree distributions, which are consistent with previ-
ous brain functional and structural networks studies. However, more importantly, we found that there
were significant differences in multiple topological parameters (e.g., small-worldness and degree distri-
bution) between the two groups of brain functional networks derived from the two atlases. This study
provides quantitative evidence on how the topological organization of brain networks is affected by
the different parcellation strategies applied. Hum Brain Mapp 30:1511-1523, 2009.  ©2008 Wiley-Liss, Inc.
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INTRODUCTION

Many complex networks such as social, economical, and
biological networks have been found to exhibit small-
world attributes characterized by dense local interconnec-
tivity but short characteristic path lengths linking individ-
ual network nodes (Watts and Strogatz, 1998; for a review,
see Boccaletti et al., 2006). For the characterization of com-
plex brain networks, the small-world is also an attractive
model because the combination of high local clustering
and short paths supports the two fundamental organiza-
tional principles in the brain: functional segregation and
functional integration (for reviews, see Bassett and Bull-
more, 2006; Stam and Reijneveld, 2007). Previous studies
have demonstrated the small-world topology in both
human brain structural (Hagmann et al., 2007; He et al,,
2007; Itturia-Medina et al., 2007) and functional networks
(Achard and Bullmore, 2007; Achard et al., 2006; Bassett
et al., 2006; Stam 2004). Moreover, the small-world net-
work model has been employed to investigate the changes
in the coordinated patterns of large-scale brain functional
networks in patients with brain diseases (De Vico Fallani
et al.,, 2007; Liu et al.,, 2008; Ponten et al., 2007; Rubinov
et al., in press; Stam et al.,, 2007; Wang et al., in press).
These advances in complex brain networks research pro-
vide new insights into the relationship between network
organization and functional activities under normal and
pathological conditions.

Although the attractive small-world approach opens
new opportunities for the researches on brain networks,
there are some fundamental issues (for reviews, see Bassett
and Bullmore, 2006; Sporns et al., 2005) that need to be
elucidated. One of the main concerns is the differences in
the definition of network nodes in terms of the electrodes
in electroencephalograph (EEG), magnetic channels in
magnetoencephalograph (MEG), or brain regions derived
from the anatomical atlases in structural and functional
MRI (sMRI/fMRI). For example, researchers have con-
structed large-scale brain networks using 19 (Ferri et al.,
2007), 21 (Ponten et al., 2007, Stam et al., 2007), and 28
(Micheloyannis et al., 2006a,b) electrodes from EEG data;
126 (Stam, 2004) and 275 (Bassett et al., 2006) channels
from MEG data; 54 anatomical regions from sMRI (He
et al., 2007, 2008) and 90 anatomical regions from fMRI
(Achard et al., 2006; Achard and Bullmore, 2007; Liu et al.,
2008; Salvador et al.,, 2005; Wang et al., in press). Node
definition is vital during the brain network analysis, since
the node is the most essential element of a network
(Sporns et al. 2005). However, little is known about the
impact of different network node definitions on the topo-
logical architecture of the networks.

The present study aimed to investigate the effects of dif-
ferent brain parcellation schemes (different node character-
ization) on the topological architecture of human brain
functional networks. To address this issue, we analyzed
and compared two groups of parcellation-dependent brain
functional networks obtained from the same resting-state

functional MRI (fMRI) dataset. The spontaneous low-fre-
quency fluctuations measured by resting-state fMRI are
highly synchronized between multiple brain regions,
which can be used to investigate the coordinated patterns
of large-scale brain functional networks (for a review, see
Fox et al., 2007). Two popular predefined parcellation
atlases applied in the study are the Automated Anatomical
Labelling (AAL) (Tzourio-Mazoyer et al., 2002) and Auto-
matic Nonlinear Imaging Matching and Anatomical Label-
ling (ANIMAL) (Collins et al., 1995; Kabani et al., 1998),
both of which have been widely used in large-scale human
brain networks studies (for AAL-atlas: Achard et al., 2006;
Achard and Bullmore, 2007, Liu et al., 2008; Salvador
et al.,, 2005; Wang et al., in press; for ANIMAL-atlas: Chen
et al., in press; He et al, 2007, 2008) (for the detailed
description of the two atlases, see “Discussion”). Notably,
it is crucial to apply different atlases to a single dataset
and compare the resulting network topology attributes to
control variations caused by different subjects, scanner pa-
rameters, and data preprocessing. In this study, we first
measured functional connectivity (Friston et al., 1993)
between any pair of brain regions (defined by the two dif-
ferent brain atlases) by calculating Pearson correlations
between the time series of the regions. For each subject,
two inter-regional correlation matrices were then obtained
and further thresholded into a set of binarized matrices
underlying the topological organization of brain functional
networks. Finally, small-world properties and degree dis-
tribution of the two atlases-based brain functional net-
works were quantified and the differences between the
corresponding topological parameters were further statisti-
cally evaluated.

MATERIALS AND METHODS

Subjects

Eighteen right-handed healthy volunteers (nine males
and nine females, 21-25 years) were recruited from
Sichuan University. All subjects had no history of neuro-
logical or psychiatric disorders. Written informed consent
was obtained from each participant and this study was
approved by the Ethics Committee of Huaxi Hospital,
Sichuan University.

Data Acquisitions

All subjects were scanned on a 3.0 Tesla GE MR scanner
(EXCITE, Milwaukee, USA) in Huaxi MR Research Center
(HMRRC) at the West China Hospital of Sichuan University.
Foam pads and headphones were used to reduce head
motion and scanner noise. Functional images were obtained
using an echo-planar imaging (EPI) sequence: 30 axial slices,
thickness/gap = 4.5/0 mm, matrix = 64 X 64, repetition
time = 2,000 ms, echo time = 30 ms, flip angle = 90°, field
of view = 220 X 220 mm? Subjects were instructed to keep
their eyes closed, relax their minds, and remain motionless
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TABLE I. Regions of interest included in AAL-atlas

Regions Abbreviations Regions Abbreviations
Precentral gyrus PreCG Lingual gyrus LING
Superior frontal gyrus (dorsal) SFGdor Superior occipital gyrus SOG
Orbitofrontal cortex (superior) ORBsup Middle occipital gyrus MOG
Middle frontal gyrus MFG Inferior occipital gyrus 10G
Orbitofrontal cortex (middle) ORBmid Fusiform gyrus FFG
Inferior frontal gyrus (opercular) IFGoperc Postcentral gyrus PoCG
Inferior frontal gyrus (triangular) IFGtriang Superior parietal gyrus SPG
Orbitofrontal cortex (inferior) ORBIinf Inferior parietal lobule IPL
Rolandic operculum ROL Supramarginal gyrus SMG
Supplementary motor area SMA Angular gyrus ANG
Olfactory OLF Precuneus PCUN
Superior frontal gyrus (medial) SFGmed Paracentral lobule PCL
Orbitofrontal cortex (medial) ORBmed Caudate CAU
Rectus gyrus REC Putamen PUT
Insula INS Pallidum PAL
Anterior cingulate gyrus ACG Thalamus THA
Middler cingulate gyrus MCG Heschl gyrus HES
Posterior cingulate gyrus PCG Superior temporal gyrus STG
Hippocampus HIP Temporal pole (superior) TPOsup
Parahippocampal gyrus PHG Middle temporal gyrus MTG
Amygdala AMYG Temporal pole (middle) TPOmid
Calcarine cortex CAL Inferior temporal gyrus ITG
Cuneus CUN

as much as possible during the EPI data acquisition. The
scan lasted for 400 s. For each subject, the first ten volumes
were discarded to allow for T1 equilibration effects and the
adaptation of the subjects to the circumstances, leaving 190
volumes for further analysis.

Data Preprocessing

Image preprocessing was carried out using the SPM5
package (http://www.filion.ucl.ac.uk/spm). First, all func-
tional images were corrected for the acquisition time delay
between slices of each volume using the sinc interpolation
and for the geometrical displacement due to head move-
ment using a six-parameter (rigid body) spatial transforma-
tion (Friston et al., 1995). No dataset was excluded according
to the criteria that head motion was less than 1 mm of dis-
placement or 1 degree of rotation in any direction. After the
correction, the images were normalized into the stereotaxic
space (Talairach and Tournoux, 1988) using an optimum 12-
parameter affine transformation and nonlinear deformations
(Ashburner and Friston, 1999), and then resampled to 3-mm
isotropic voxels. Given that the spontaneous synchrony of
the bold oxygen level-dependent (BOLD) signal of fMRI is
predominantly subtended by very low frequency signal
components (Biswal et al., 1995; Kiviniemi et al., 2000; Lowe
et al., 1998), the resulting data were further temporally
band-pass filtered (0.01-0.1 Hz) to reduce the effects of low-
frequency drift and high-frequency physiological noises.

Correlation Matrix and Graph Construction

To define the brain regions, each brain was first parcel-
lated into 90 regions of interest (ROIs) using the AAL-atlas

(45 for each hemisphere, see Table I) and 70 ROIs (35 for
each hemisphere, see Table II) using the ANIMAL-atlas,
respectively. The mean time series of each region was then
acquired by averaging the time series of all voxels within
that region. Several sources of spurious variances arising
from estimated head-motion profiles and global signal ac-
tivity (Fox et al., 2005, Wang et al., in press) were further
removed by multiple linear regression analysis. The resid-
ual of this regression was then used to substitute for the
raw mean time series of the corresponding regions. To
measure the functional connectivity among regions, we
calculated the Pearson correlation coefficients between any
possible pair of regional residual time series, and then
obtained two correlation matrices (90 X 90 for AAL-atlas
and 70 X 70 for ANIMAL-atlas) for each subject. Finally,
each correlation matrix was thresholded by a pre-selected
threshold value (see below for details) to obtain a undir-
ected binarized graph (network), in which nodes represent
brain regions and edges represent links between regions.
The networks were further analyzed by using graph theo-
retical approaches. All topological parameters of the brain
networks calculated in this study and their implications
were presented in Table IIL

Small-World Properties
Conventional small-world measurements

Small-world parameters of a network (clustering coeffi-
cient, Cp,, and characteristic path length, L) were originally
proposed by Watts and Strogatz (1998). The C, of a net-
work is the average of the clustering coefficients over all
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TABLE Il. Regions of interest included in ANIMAL-atlas

Regions Abbreviations Regions Abbreviations
Superior frontal gyrus SFG Lateral occipitotemporal gyrus LOTG
Middle frontal gyrus MFG Parahippocampal gyrus PHG
Inferior frontal gyrus IFG Insula INS
Medial frontal gyrus MdAFG Occipital pole OP
Precentral gyrus PrCG Superior occipital gyrus SOG
Lateral fronto-orbital gyrus LOFG Middle occipital gyrus MOG
Medial front-orbital gyrus MOFG Inferior occipital gyrus 10G
Cingulate region CING Cuneus CUN
Superior parietal lobule SPL Lingual gyrus LING
Supramarginal gyrus SMG Caudate nucleus CAU
Angular gyrus ANG Putamen PUT
Precuneus PCU Globus palladus GP
Postcentral gyrus PoCG Thalamus THA
Superior temporal gyrus STG Amygdala AMYG
Middle temporal gyrus MTG Hippocampal formation HIP
Inferior temporal gyrus ITG Nucleus accumbens NA
Uncus UNC Subthalamic nucleus SUBT
Medial occipitotemporal gyrus MOTG

nodes, where the clustering coefficient of a node (Cp-nodal)
is defined as the ratio of the number of existing connec-
tions among the node’s neighbors and all their possible
connections. C, quantifies the local interconnectivity of a
graph. The L, of a graph is the minimal number of edges
required to link one node to another, averaged overall all
pair of nodes. L, is an indicator of overall routing effi-
ciency of a graph. In this study, we calculated L, as the
“harmonic mean” distance between all possible pairs of
regions (Newman, 2003) to deal with the disconnected

graphs dilemma. To estimate the small-world properties,
we generated 100 degree-matched random networks
(Maslov and Sneppen, 2002; Sporns and Zwi, 2004) and
scaled the C, and L, of the real networks with the mean
Cp-s and L, of all the random networks (i.e., C,/Cps and
Ly/Lps). Typically, a small-world network should fulfill
the following conditions: C,/Cps > 1 and Ly/Lps =~ 1
(Watts and Strogatz, 1998). These conventional measures
have been recently applied to many structural and func-
tional brain networks studies (Achard et al., 2006; Achard

TABLE lll. Topological parameters of brain functional networks used in this study

Network properties Characters Descriptions

Small-world properties G The clustering coefficient of a network that is the average of the
clustering coefficient, Cy_-nodar, OVer all nodes. It measures the extent of
local cluster or cliquishness of the network.

L, The characteristic path length of a network that is the average minimum
number of connections linking any two nodes of the network. It
measures the extent of overall routing efficiency of the network.

Eioc The local efficiency of a network that is the average of the local
efficiency, Ejocnodal, OVer all nodes. It measures the mean local
efficiency of the network.

Eglob The global efficiency of a network that is the inverse of the harmonic
mean of the minimum path length between any two nodes. It
measures the extent of information propagation through the whole
network.

S, K The sparsity or the cost to build a network.

Degree distribution a A scalar parameter, which reflects the extent that the node degree spans
within a network.

ke A cutoff value, which evaluates the extent of an exponential decay.

Nodal properties Knodal The number of edges linking a single node.

Cp-nodal The nodal clustering coefficient that measures the extent of
interconnectivity among the neighbors of the node.

Eloc-nodal The nodal local efficiency that measures the extent of information
transmission among the neighbors of the node.

Erodal The nodal global efficiency that measures the extent of information

transmission of the node with all other nodes in the network.
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and Bullmore 2007; He et al.,, 2007; Ponten et al., 2007;
Stam et al., 2007).

Small-world efficiency measurements

In addition to the conventional small-world parameters
(Cp and L) abovementioned, a more biologically sensible
property of brain networks is the network efficiency that
can be described in terms of global efficiency (Ego,) and
local efficiency (Ej.) (Latora and Marchiori, 2001). For a
graph G with N nodes,

1 .
Eglob(G) = ]T/' Z Enodal(l)
ieG

where

. 1 1
Enodal(l) =37 41

N - 1j7£ieGLi=f
with L;; denoting the minimal number of edges required
to go from node i to node j;

1 .
Eloc(G) = N Z Eloc—nodal(l)
ieG

where
Elocfnodal(i) = Eglob (Gl)

with G; denoting the subgraph composed of the nearest
neighbors of node i. Global efficiency (Eg.b) and local effi-
ciency (Ejo) of a network measure the ability of informa-
tion transmission of the network at the global and local
level, respectively. The efficiency metric has a number of
technical and conceptual advantages over conventional C
and L, measures, since it can (i) represent how efficiently
a network exchanges local and global information by a sin-
gle measure, and (ii) deal with either the disconnected or
nonsparse graphs or both (Bassett and Bullmore, 2006;
Latora and Marchiori, 2001). Very recently, this metric has
been applied to human brain functional (Achard and Bull-
more, 2007; De Vico Fallani et al.,, 2007, Wang et al., in
press) and structural (Iturria-Medina et al., 2008) network
studies. In this study, we also investigated the ratios of
local efficiency (Ejoc/Eioc-s) and global efficiency (Egon/
Eg1ob-s) between the real brain functional networks and 100
degree-matched random networks to assess small-world
properties of brain functional networks. Typically, a small-
world network has a higher local efficiency than its ran-
dom counterparts (Ejoc/Ejocs > 1) and an approximately
equivalent global efficiency (Egiob/ Egiob-s = 1)-

Degree Distribution

Recent studies have found that small-world brain net-
works follow different connectivity degree distribution

such as power law (Eguiluz et al., 2005), exponential (Hag-
mann et al., 2007), and exponentially truncated power law
distribution (Achard et al., 2006; He et al., 2007; Iturria-
Medina et al., 2008; Wang et al., in press), where degree of
a node (knoda) is the number of edges linking the node.
The networks with different categories of degree distribu-
tion exhibited specific behaviors such as the robustness
against hub attacks (Albert et al., 2000; Amaral et al., 2000;
Achard et al.,, 2006). Given the fact that these brain net-
works were constructed at different spatial scales (e.g.
voxel- or region-based level), thus we hypothesized that
the different pacellation schemes used in this study could
be associated with different degree distributions.

Statistical Analysis
Threshold selection

The selection of threshold is critical to make the topolog-
ical measures between the two groups of networks with
different size (90 vs. 70) comparable. In this study, we
chose the sparsity, S, and wiring cost, K, of the brain net-
works (number of existing edges over the maximum possi-
ble number of edges) as threshold measurements for the
between-group comparisons of the small-world parame-
ters. By assigning both groups of brain networks with the
same S or K, we excluded the effects of low-level correla-
tion discrepancies on topological architecture. Given the
fact that the selection of different threshold values could
cause the changes in small-world network parameters, we
therefore examined the between-group differences in topo-
logical parameters of functional brain networks over a
wide range of threshold level, 0.05 < S, K < 0.5, where the
small-world attributes are estimable (Watts and Strogatz,
1998), and the resulting matrices have sparse properties
(Achard et al., 2006; Achard and Bullmore, 2007; He et al.,
2007; Wang et al., in press).

Statistical comparisons

To determine whether there existed significant differen-
ces in topological properties of brain functional networks
between the two groups, in this study, paired t tests were
performed on all small-world parameters (Cp, Ly, Cp/Cps,
Lp/Lp—S/ Elocr Eglobr Eloc/Eloc—s and Eglob/Eglob—s) at each
threshold (S and K) level. P values less than 0.05 (corrected
by Bonferroni method for multiple comparisons) were con-
sidered significantly different between the two groups.
Energies of the network parameters [i.e. the areas under
the curves of all small-world parameters (Achard and Bull-
more, 2007)] were also evaluated as the summarized meas-
ures of the networks over a preselected range of S and K
followed by paired f tests. In addition, the fitting parame-
ters of degree distribution were also compared between
the two groups at several threshold values.
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Figure 1.

Small-world measurements of brain functional networks using
the AAL-atlas and ANIMAL-atlas as a function of threshold.
Error bars correspond to standard error of the mean over sub-
jects. A: conventional small-world parameters as a function of
sparsity threshold, S (from left to right, clustering coefficient, C,,
characteristic path length, L, scaled clustering coefficient, C,/C,.,
and scaled path length, L /L, by 100 degree-matched random

RESULTS
Small-World Brain Functional Networks
Small-world properties

Conventional network analysis showed both AAL-atlas-
and ANIMAL-atlas-based functional brain networks had a
small-world topology (C,/Cps > 1 and L,/Lys = 1, Fig.
1A) over a wide range of sparsity (0.05 < S < 0.5). The
network efficiency analysis also demonstrated the small-
world configurations (Ejoc/Ejoc-s > 1 and Ejoc/Ejoes = 1,
Fig. 1B) over a wide range of cost (0.05 < K < 0.5). Both
results are consistent with previous functional brain net-
work studies (Achard et al., 2006; Achard and Bullmore,
2007; Salvador et al., 2005; Wang et al., in press). To fur-
ther assess whether the small-world attributes shown here
also exist at brain networks with other sizes (i.e. the num-
ber of nodes), in the present study, we recalculated the
small-world parameters of simulated brain networks with
50, 30, and 20 regions, respectively, which were obtained

networks); B: small-world efficiency parameters as a function of
cost threshold, K (from left to right, local efficiency, E,., global ef-
ficiency, Egop, scaled local efficiency, Ejoc/Ejoc.s, and scaled global ef-
ficiency, Egob/Egob-ss Dy 100 degree-matched random networks).
The black triangles indicate that there are significant between-atlas
differences in the topological parameters of functional brain net-
works (P < 0.05, corrected).

by a randomized merging algorithm (for details, see the
legend of Fig. 2). The results indicated that all of the simu-
lated networks had small-world topology as those real
brain networks, ie., C,/Cps > 1 and L,/L,s ~ 1, and
Eioc/Etocs > 1 and Egiop/ Egiob-s ~ 1 (see Fig. 2). Taken to-
gether, human brain functional networks exhibit robust
small-world properties at a regional level, regardless of the
selection of brain atlases or network size applied.

Parcellation-related small-world differences
between groups

Statistical analysis revealed significant differences in C,
within a wide range of sparisty (0.2 < S < 0.46) between
the two groups of real brain networks (Fig. 1A). However,
when scaled to degree-matched random networks (C,/Cy.),
these differences disappeared. Furthermore, we found that
there were significant differences in both L, (0.05 < S <
0.32) and L,/L,. (0.17 < § < 0.32) between the two groups
(Fig. 1A). Figure 1B showed the comparisons of network
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Small-world properties of simulated brain networks with differ-
ent sizes. The networks were obtained by a randomized merging
algorithm in which multiple different brain regions were merged
into one single region. The process was briefly described as fol-
lows. First, one region was randomly chosen from a prior brain
atlas. This region was then merged with one of its neighbors
into a new one. This procedure was repeatedly performed until
the resulting network had a size of 50, 30, and 20 regions,
respectively. Finally, small-world properties of the resulting net-
works were analyzed by using graph theoretical approaches. It
was noted that, at a certain network size, the small-world pa-
rameters were calculated by averaging 20 merged networks with
the same size. Our results indicated that all of the simulated net-
works at S = 0.15 met the conditions, CP/CP_S > |, LP/LP_S ~ |
and Eio/Eioes > |, Egiob/Egiobs = | for the AAl-atlas (A) and
ANIMAL-atlas (B), which suggests that large-scale brain func-
tional networks had robust small-world architecture at different
spatial scales. The similar results were also found at S = 0.10
and 0.20 (data not shown).

efficiency between the two groups and significant parcella-
tion-related differences were observed in Ej,. (0.36 < K <
0.46), Egiop (0.05 < K < 0.32) and Egop/ Egiob-s (0.17 < K <
0.34) (Fig. 1B). The results of network efficiency were
largely compatible with the conventional small-world
results. Finally, the “energy” comparisons of functional
networks revealed significant between-group differences
(P < 0.05) in the area under the Cp, Ly, Lp/Lp.s, Egiob and
Egiob/ Egiob-s curves or trend (P = 0.07) in the area under
the Ej. curve, whereas area under the C,/Cp and Ejo/

Ejoes curves did not show significant differences (see
Fig. 3).

Parcellation-Related Degree Distribution
Differences Between Groups

Degree distribution of both AAL-atlas- and ANIMAL-
atlas-based brain functional networks followed an expo-
nentially truncated power law model, P(k) ~ k* ‘e */*¢ (a
is an estimated exponent and k. is a cutoff degree) as
opposed to a scale-free regime (see Fig. 4). The results are
consistent with previous structural and functional brain
networks studies using the AAL-atlas (Achard et al., 2006;
Iturria-Medina et al., 2008; Wang et al., in press) and the
ANIMAL-atlas (He et al., 2007). Figure 4 also showed the
fitting results of one representative subject at S = 0.1, 0.15
and 0.2, respectively. Further statistical evaluation revealed
significant differences (P < 0.05) or trends (0.05 < P < 0.1)
in both a and k. between the two groups (see Fig. 5), sug-
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Figure 3.

Small-world energy of brain functional networks using the AAL-
atlas and ANIMAL-atlas. Here, “energy” means the areas under
the curves of corresponding parameters. A: “energy” of conven-
tional small-world parameters; B: “energy” of small-world effi-
ciency parameters. Error bars correspond to standard deviation
of the mean across participants, and P values are the significance
of the statistical comparison using paired t tests. Note that the
asterisk indicates P < 0.05, and the five-pointed star indicates
0.05 < P < 0.01.
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Figure 4.

Degree distribution of human brain functional networks. The net-
works were derived from a representative participant at a sparsity
threshold of 0.10, 0.15, and 0.20. Plot of the In of the cumulative proba-

gesting parcellation-related between-group differences in
degree distribution parameters.

The Relation Between Nodal Properties and
Regional Size

In the present study, we also examined the relationship
between the size of brain regions and their network indices
(degree knodal, nodal cluster coefficient Cp.nodal, Nodal local
efficiency Ejocnoda, and nodal efficiency E,oqa, see Table III
for the details of the nodal indices) at S = 0.10, 0.15, and
0.20, respectively. For the AAL atlas, both knoqa (at S =
0.20) and E,oga1 (at S = 0.15 and 0.20) were found to be pos-
itively correlated with the regional size. However, we found
that both Ejpcnodar (at S = 0.10) and Cp.nogar (at S = 0.10,
0.15, and 0.20) had negative correlations with the regional
size. For the ANIMAL atlas, all measures (knodar Cp-nodals
Eiocnodal, and Epoga1) had significantly negative correlations
with the regional size at each selected threshold (see Fig. 6).

DISCUSSION

In this study, we investigated the important issue of the
influences of different atlas-based parcellation schemes on
topological properties of human brain functional networks
using resting-state fMRI. Our results showed that brain
functional networks had robust small-world properties and
truncated power-law degree distribution regardless of the
selection of different atlases. However, significant between-
group differences were observed in both local (C;, and Ej,.)
and global (L,, Lp/Lp-s, Egiob, and Egion/Egiob-s) features of
the networks. These results provided, for the first time,
quantitative evidences of the parcellation-dependent topo-
logical parameters in the human brain functional networks.

bility of degree, In (P(k)), versus log of degree, In (k). The open squares
signs indicate the observed data from the AAL atlas, and black solid
circles show the observed data from the ANIMAL atlas.

Conventional Small-World Parameters and
Network Efficiency

We found robust small-world attributes in both brain
functional networks constructed from the two different
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Figure 5.
Barplot showing the mean and standard deviation of fitting con-
stant components o and k. across subjects at a sparsity thresh-
old of 0.10, 0.15, and 0.20. These threshold values correspond
to those of Figure 3. P values show significant differences (aster-
isk) or trends (five-pointed star) between the two groups, which
are obtained by using paired t tests.
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rameters, see Table Ill). It was noted that, for the two atlases
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(AAL and ANIMAL), the brain networks were constructed at S
= 0.10 (A), 0.15 (B), and 0.20 (C), respectively. The solid lines
were obtained by a linear regression of nodal indices on regional
size. r and P values represent correlation coefficients and the
corresponding significant levels (uncorrected), respectively.
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parcellation atlases (AAL-atlas and ANIMAL-atlas). Our
findings are in accordance with several recent studies
showing small-world properties in functional brain net-
works based on the AAL-atlas (Achard et al., 2006; Achard
and Bullmore, 2007; Salvador et al., 2005, Wang et al., in
press). It is worthwhile to note that although the ANIMAL
atlas was previously implemented in the structural brain
networks analysis (He et al. 2007), it has never been
applied in any functional brain networks analysis prior to
this study. Here, we demonstrated for the first time that
functional brain networks based on the ANIMAL-atlas
also displayed robust small-world attributes. Using com-
putation simulation approaches, Sporns et al. (2000) found
that small-world topology emerges when networks are
evolved into an optimal balance between local specializa-
tion and global integration. Thus, our results provide fur-
ther support the hypothesis that the human brain has
evolved into an optimal fashion to maximize the efficiency
of information processing and minimize required wiring
costs (for a review, see Bassett and Bullmore, 2006). Addi-
tionally, we also noted (although grossly) that there were
the trends in the small-world parameters as a function of
network size, e.g., L,/Lps increases as the number of the
network nodes decreases (see Fig. 2). In future, it would
be interesting to further explore the relation between the
topological parameters and network size.

Despite the common small-world topology, in the pres-
ent study, we found significant differences in both local
(Cp and Ejo) and global (Lp, Ly/Lps, Egiob, and Egion/ Egiob-s)
topological attributes between the two groups of brain
functional networks (see Fig. 1). The results strongly indi-
cate that most small-world parameters are sensitive to the
selection of the parcellation atlases. The observed differen-
ces might be attributed to several potential sources: (1) dif-
ferent processes applied in generating the atlases.
Although both AAL and ANIMAL atlases were completely
depicted in terms of macroscopic surface features (i.e., sul-
cal pattern), the detailed processes are different: sulcal pat-
terns of AAL-atlas were obtained automatically via soft-
ware, while boundaries of brain structures from ANIMAL-
atlas were all manually chosen with reference to various
atlases introduced by Ono et al. (1990) and Talairach and
Tournoux (1988). This methodological diversity might
result in the differences of precision and accuracy in the
segmentation process, e.g., the size and shape of brain
regions; (2) different network sizes (AAL: 90; ANIMAL:
70). From a network aspect, the characterization of its
properties (e.g., small-worldness) is associated with the
network size and connections. A change in the network
size and connections might result in the alterations of top-
ological architecture of the graphs and inevitably cause the
changes in the network properties. Together, all these pre-
sumptions may account for, to a certain extent, the
observed between-group differences in certain network
attributes. Interestingly, despite the parcellation-related
differences in C, and Ej, the ratios of C,/Cp.s and Ejoc/
Eloe.s Were not affected, which could be attributed to the

similar changes in network properties of the corresponding
degree-matched random networks.

Degree Distribution

The small-world brain functional networks have been
found to have different connectivity degree distribution.
For example, Eguiluz et al. (2005) found that human brain
functional networks derived from experimentally activated
fMRI data at a mesoscale (voxel level) had a scale-free (i.e.,
power law) degree distribution, while studies from Achard
et al. (2006) and Wang et al. (in press) showed that func-
tional networks of the human brain derived from resting-
state fMRI data at a macroscale (regional level) followed
an exponentially truncated power law distribution. This
discrepancy of degree distribution may be associated with
the spatial scale at which the functional networks were
constructed. Here, at macroscale, we also demonstrated an
exponentially truncated power law distribution for the two
groups of brain functional networks that are in accordance
with previous functional brain network studies (Achard
and Bullmore, 2007; Wang et al., in press). The exponen-
tially truncated power law degree distribution implied that
the functional brain networks permitted the existence of
some core regions but prevented the emergence of huge
hubs with a large number of edges. Compared with a
scale-free network, an exponentially truncated power law
distribution network conferred distinctive advantages in
the light of robustness to both random elimination of
nodes (brain regions) and selective attack on hubs (Achard
et al.,, 2006; Albert et al., 2000). Hence, we inferred that
this robustness facilitated the ability of brain to withstand
the regional lesions of network functionality in the face of
developmental aberration or disease (Achard et al., 2006).
The appearance of such network structure may be attrib-
uted to the physical constraints on the brain network
growing process such as aging of the brain regions and
cost of adding connections to the regions (Albert and Bara-
basi, 2002; Amaral et al., 2000). However, we did observed
significant differences or trends in the fitting components
a and k. (see Fig. 4) between the two groups. The compo-
nent o reflects the extent of node degrees distribution
within a network and k. is a critical value. The differences
in the degree fitting parameters suggest that brain parcella-
tion schemes have wide influences on the network topol-
ogy, such as the distribution of core nodes.

The Relation Between Nodal Properties
and Regional Size

Recently, Salvador et al. (2008) showed that regional vol-
ume had a positive correlation with its mutual information
(MI) that measured the functional connectivity between
the region and the rest brain regions. In the present study,
we noted that, for the AAL atlas, knoga and E,oqa were
positively correlated with the regional size at several
threshold levels, which is in accordance with the previous
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study (Salvador et al., 2008). However, we also noted
inconsistent results. For instance, all nodal measures in the
ANIMAL atlas showed negative correlations with the re-
gional size (see Fig. 6). The discrepancies among these
results could be attributed to (1) different nodal attributes
used in the studies [multiple nodal parameters in this
study (Table III) vs. MI in the Salvador’s study], and (2)
different regional parcellation strategies applied in the two
brain atlases as described previously. Despite the discrep-
ancies in the results, our study pointed to a clear effect of
regional size on the small-world analysis. It implies that,
while performing topological analyses on the brain net-
works that are constructed from the anatomical atlases, the
effects of regional size need to be taken into account in the
future.

Further Considerations

Our results have important implications in characteriz-
ing parcellation-related topological alterations of large-
scale brain networks. Many previous studies using neuro-
physiological and neuroimaging data have demonstrated
small-world alterations in development (Micheloyannis
et al.,, in press), normal aging (Achard and Bullmore, 2007)
and brain disorders (Bartolomei et al., 2006; He et al., 2008;
Liu et al., 2008; Micheloyannis et al., 2006b; Ponten et al.,
2007; Rubinov et al., in press; Stam et al., 2007; Wang
et al., in press). However, some of these studies did not
find significant differences in several specific small-world
parameters, such as the clustering coefficient (Stam et al.,
2007), path length (Ferri et al.,, 2007), or global efficiency
(De Vico Fallani et al., 2007; Wang et al., in press). Accord-
ing to our results, one could therefore suspect that the
nonsignificant results shown in the previous studies could
be due to the different regional parcellation methods they
used. Our study thus provides implications for the choice
of parcellation strategies in the future researches.

Several issues remain to be addressed. First, in this
study, the two adopted atlases were obtained according to
sulcal patterns from only one subject; so it was unsuitable
to apply them to a group-level analysis due to interindi-
vidual variability of anatomical structures. Given the varia-
tions in sulcal pattern are associated with the location and
geometry between individuals (Thompson et al., 1996), it
would be interesting to apply a probabilistic atlas of
human brain to regional parcellation or define individual
brain regions through a combination of diffusion tensor
imaging with fMRI (Sporns et al., 2005). Second, the head
motion of subjects might have confounding effects on the
final results of network analysis. Recently, Salvador et al.
(2008) found that the residual effects of head motion were
associated with the functional connectivity of many brain
regions at high frequencies (0.17-0.25 Hz), but there were
no strong linear correlations with that at middle (0.08-
0.17 Hz) and low (<0.08 Hz) frequencies. To examine
whether the results of our network analysis were affected

by the head motion, in the present study, we also calcu-
lated the correlation between the average values of head
movement (absolute translations in x, y, and z separately)
and small-world parameters of brain networks by using a
multivariate model (Salvador et al, 2008). Our results
showed no significant correlations (P > 0.05) between the
head motion and the parameters (C,, C,/Cps, Ly, Lp/Lps,
EIOC/ Eloc/E]oc-S/ Eglob/ and Eg]ob/Eg]ob-s) of brain networks
that were derived from low-frequency (0.01-0.10 Hz) fMRI
signals, which was consistent with Salvador et al.’s study
(2008). Third, all of the network measurements used in
this study were on the basis of binarized graphs that were
constructed by thresholding the functional connectivity
matrices. Though the use of binarized graphs reduced the
complexity of network analysis, it also removed some
detailed information. Further work could be conducted by
using continuous weighted correlation values in the con-
struction of brain networks (Achard et al., 2006; Jiang et al.
2004; Latora and Marchiori, 2003).

CONCLUSION

In this study, we quantitatively analyzed the influences
of anatomical atlases on topological attributes of human
brain functional networks acquired from resting-state
fMRI. Our results indicated that, although the brain net-
works had robust small-world configuration and followed
an exponentially truncated power law distribution under
different atlases parcellation strategies, there were signifi-
cantly between-atlas differences in both local and global
topological parameters. These findings provide direct evi-
dences on how functional topological properties of brain
networks are associated with network node definition. The
present study might have important implications in large-
scale structural and functional brain networks studies
under normal and pathological conditions.
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