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In this study we used functional magnetic resonance imaging to investigate age-related changes in large-
scale brain functional networks during memory encoding and recognition in 12 younger and 16 older adults.
For each participant, functional brain networks were constructed by computing temporal correlation
matrices of 90 brain regions and analyzed using graph theoretical approaches. We found the age-related
changes mainly in the long-range connections with widespread reductions associated with aging in the
fronto-temporal and temporo-parietal regions, and a few age-related increases in the posterior parietal
regions. Graph theoretical analysis revealed that the older adults had longer path lengths linking different
regions in the functional brain networks as compared to the younger adults. Further analysis indicated that
the increases in shortest path length in the networks were combined with the loss of long-range
connections. Finally, we showed that for older adults, frontal areas played reduced roles in the network
(reduced regional centrality), whereas several default-mode regions played increased roles relative to
younger subjects (increased regional centrality). Together, our results suggest that normal aging is
associated with disruption of large-scale brain systems during the performance of memory tasks, which
provides novel insights into the understanding of age-related decline in multiple cognitive functions.

Crown Copyright © 2010 Published by Elsevier Inc. All rights reserved.
Introduction

The decline of memory and other cognitive functions has
commonly been observed in normal aging (Park et al., 1996;
Salthouse and Ferrer-Caja, 2003). A large body of evidence from
functional neuroimaging studies has suggested that this decline is
accompanied by focal changes in neuronal activity in many brain
areas, such as the prefrontal cortex (Grady et al., 1995; Cabeza et al.,
1997b; Logan et al., 2002; Madden et al., 2004; Mitchell et al., 2006;
Nielson et al., 2006; Kukolja et al., 2009), medial temporal lobe (Grady
et al., 1995; Cabeza et al., 2004; Gutchess et al., 2005; Nielson et al.,
2006), parietal (Madden et al., 2004; Townsend et al., 2006; Persson et
al., 2007; Miller et al., 2008) and occipital regions (Cabeza et al., 2004;
Davis et al., 2008). There is also accumulating evidence that this
decline is associated with alterations in the relationship among
different brain regions (Grady et al., 1995; Cabeza et al., 1997a; Della-
Maggiore et al., 2000; Grady et al., 2003; Daselaar et al., 2006;
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Andrews-Hanna et al., 2007; Taniwaki et al., 2007; Damoiseaux et al.,
2008) in terms of functional or effective connectivity (Friston, 1994),
possibly due to subtle anatomical disconnections between brain
regions that ordinarily function in a coordinated fashion (O'Sullivan et
al., 2001; Davis et al., 2009). It has been suggested that the
performance of complex cognitive tasks, such as memory tasks,
require highly segregated and integrated processing in these
functionally linked, large-scale brain networks (Bressler and Kelso,
2001). However, it remains unclear to what extent the age-related
abnormalities of both regional brain activation and functional
connectivity affect these large-scale functional networks. To address
this issue, in this studywe sought to investigate changes in topological
patterns of large-scale functional brain networks in normal aging
during the performance of memory tasks.

Brain networks can be conceived of as neurocognitive entities that
incorporate both local and global processes (Sporns and Tononi, 2002).
Recently, there has been increasing interest in assessing cognitive brain
networks using multivariate identification of whole-brain patterns of
activity (Della-Maggiore et al., 2000; Grady et al., 2003, 2006). In recent
years, the development of graph theoretical approaches has brought a
fresh perspective to the investigation of complex brain networks (for
reviews, see Boccaletti et al., 2006; Bullmore and Sporns, 2009). Many
studies have consistently demonstrated that the normal brain is
organized according to a highly efficient neuronal architecture,
ghts reserved.
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generally referred to as a small-world structure (Stam, 2004; Achard
et al., 2006; He et al., 2007; Hagmann et al., 2008), which is
characterized by high local specification and high global integration
between brain regions. Moreover, this organization pattern is known
to be disrupted in brain diseases (for recent reviews, see Bassett and
Bullmore, 2009; He et al., 2009a). Recent findings indicate that
development and normal aging are also accompanied by alterations
in topology of functional brain networks (Achard and Bullmore,
2007; Fair et al., 2009; Meunier et al., 2009; Supekar et al., 2009). For
instance, Achard and Bullmore (2007) showed that, compared with
younger adults, older adults had decreased topological efficiency in
spontaneous functional brain networks derived from resting-state
functional magnetic resonance imaging (fMRI). Furthermore, they
found that the age-related changes were mainly located at the
connections between different functional clusters, such as fronto-
parietal clusters (Meunier et al., 2009). As a whole, these studies
have mainly investigated abnormal cognitive aging networks based
on the spontaneous activity in the resting human brain. However, it
has been found that specific cognitive tasks can provide novel
information about brain activity (Morcom and Fletcher, 2007)
compared to that obtained from resting-state data, and thus task-
related functional connectivity is a useful tool for investigating
interdependence among brain regions. In addition, previous studies
on cognitive changes in aging have indicated that a single underlying
mechanism may lead to age-related changes across multiple
cognitive domains (Grady et al., 2006). In the current study we
sought to investigate whether the effects of age on functional brain
networks were task specific, or whether they reflected the influence
of a common factor.

In this study, participants were scanned during the encoding and
recognition portions of a memory task. Based on previous studies
reporting age-related changes in brain activity and functional
connectivity, we hypothesized that compared with younger adults,
older adults would demonstrate altered topological patterns in large-
scale functional brain networks during task performance. Addition-
ally, based on converging evidence for a common factor underlying
age-related changes (Grady et al., 2006) and for encoding–retrieval
overlap in brain activation patterns (Nyberg, 2002), we hypothesized
that each group would show a similar topological configuration in
both the encoding and the recognition tasks. To address these
hypotheses, we first measured functional connectivity among brain
regions during the tasks in a group of younger and older adults, and
then performed a weighted graph theoretical analysis to investigate
both global and local network properties.

Materials and methods

Participants

Data from 12 younger adults (5 males, 7 females; mean age: 23.2
years, range: 20–27) and 16 older adults (8 males, 8 females; mean
age: 74.4 years, range: 75–87) were obtained from the fMRI Data
Center (http://www.fmridc.org). All subjects were right-handed and
screened for neurological and psychiatric illnesses. These subjects
represented a subset of individuals whose data were previously
analyzed (Grady et al., 2006) using partial least squares (McIntosh et
al., 1996). The previous study also examined a group of middle aged
adults (4 males, 8 females; mean age: 41.3 years, range: 41–58)
whose data were not included in the present study because their
imaging parameters differed from those of the younger and older
adults. For detailed demographic data, see Grady et al. (2006).

Experimental tasks

Each participant completed functional scanning sessions compris-
ing four encoding runs of 3.2 min each and two recognition runs of 6.4
min each. The stimuli were presented using E-prime software
(Psychology Software Tools, Pittsburgh, PA) and projected from a
computer located outside of the scanner room onto amirror inside the
head coil or, for participants needing correctional lenses, through
Silent Vision Goggles (Avotec, Stuart, FL) placed over the participants'
eyes. The encoding tasks involved the presentation of pictures or
words in either perceptual or semantic conditions. In the perceptual
condition, participants were asked to determine whether the pictures
presented were large or small, or whether the words were displayed
in capital or lower case letters. In the semantic condition, participants
judged whether the pictures or words corresponded to living or
nonliving entities. The participants pressed one of two buttons with
either the right middle or right index finger to indicate their response.
The stimulus lists for each encoding condition were divided into
blocks of six words or pictures; each presented for 3 s with 1 s
between stimuli presentations. Following each 24 s stimulus block
was a baseline block of equal duration. After completion of the
encoding tasks, all subjects performed two recognition tasks. Each
recognition list contained 48 trials (32 old and 16 new) and was
divided into blocks of six words or pictures (4 old and 2 new); each
probe item was presented for 3 s with 1 s between stimuli. In each
recognition condition, participants similarly indicated via button
press whether each stimulus was old or new. For additional details
regarding the experimental design, see Grady et al. (2006).

Data acquisition and preprocessing

All MRI scans were performed using a 1.5-T MRI scanner with a
standard head coil (CV/i hardware, LX8.3 software; General Electric
Medical Systems, Waukesha, WI). Structural images were obtained
by using a 3-D T1-weighted pulse sequence [124 axial slices,
thickness=1.4 mm, repetition time (TR)=12.4 ms, echo time (TE)=
5.4 ms, flip angle (FA)=35°, field of view (FOV)=220×165 mm].
Functional images were obtained by using a single shot T2⁎-weighted
pulse sequence with spiral readout [26 axial slices, thickness=5 mm,
TR=2500 ms, TE=5.4 ms, FA=80°]. For the fMRI data, a total of 77
and 154 volumeswere acquired in each of four encoding runs and each
of two recognition runs, respectively.

Image preprocessing was carried out using SPM2 (http://www.fil.
ion.ucl.ac.uk/spm). All datasets were initially corrected for temporal
offsets using sinc interpolation and head movement-related effects
using a six-parameter (rigid body) spatial transformation (Friston et
al., 1995). To minimize movement artifacts, individuals with an
estimated maximum displacement in any direction of larger than
1 mm or head rotation of larger than 1° were discarded from the
study. No data were excluded under this criterion. The datasets were
further spatially normalized to the Montreal Neurological Institute
(MNI) stereotaxic space using an optimum 12-parameter affine
transformation and nonlinear deformations (Ashburner and Friston,
1999), and resampled to 3-mm isotropic voxels. The fMRI time series
data was subsequently filtered using a high-pass filter with a cut-off of
(1/100) Hz.

Construction of brain functional networks

The filtered fMRI data from each subject was further parcellated
into 90 cortical and subcortical regions (Table 1) by using an
automated anatomical labeling brain atlas (Tzourio-Mazoyer et al.,
2002). For each region, a representative time series of 77 (or 154) data
points was extracted by averaging the time series over all voxels in
each run of the encoding (or recognition) task. Subsequently,
interregional connectivity was measured by computing Pearson's
correlation coefficients (see supplementary materials for methods
and results for partial correlation analysis of the same dataset)
between all possible pairs of the representative time series without
using regression to remove the global signal (Bokde et al., 2006). Then

http://www.fmridc.org


Table 1
Regions of interest.

Region Abbreviation Region Abbreviation

Precentral gyrus PreCG Lingual gyrus LING
Superior frontal gyrus (dorsal) SFGdor Superior occipital gyrus SOG
Orbitofrontal cortex (superior) ORBsup Middle occipital gyrus MOG
Middle frontal gyrus MFG Inferior occipital gyrus IOG
Orbitofrontal cortex (middle) ORBmid Fusiform gyrus FFG
Inferior frontal gyrus (opercular) IFGoperc Postcentral gyrus PoCG
Inferior frontal gyrus (triangular) IFGtriang Superior parietal gyrus SPG
Orbitofrontal cortex (inferior) ORBinf Inferior parietal lobule IPL
Rolandic operculum ROL Supramarginal gyrus SMG
Supplementary motor area SMA Angular gyrus ANG
Olfactory OLF Precuneus PCUN
Superior frontal gyrus (medial) SFGmed Paracentral lobule PCL
Orbitofrontal cortex (medial) ORBmed Caudate CAU
Rectus gyrus REC Putamen PUT
Insula INS Pallidum PAL
Anterior cingulate gyrus ACG Thalamus THA
Middler cingulate gyrus MCG Heschl gyrus HES
Posterior cingulate gyrus PCG Superior temporal gyrus STG
Hippocampus HIP Temporal pole (superior) TPOsup
Parahippocampal gyrus PHG Middle temporal gyrus MTG
Amygdala AMYG Temporal pole (middle) TPOmid
Calcarine cortex CAL Inferior temporal gyrus ITG
Cuneus CUN

Cortical and subcortical regions (45 in each cerebral hemisphere) are defined by a standard brain atlas (Tzourio-Mazoyer et al., 2002).
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task-specific correlation matrices were obtained by averaging the
connectivity matrices over all four runs of the encoding task, and over
both runs of the recognition task.

Graph theoretical approaches

Threshold selection
To date, many brain network studies have investigated the brain's

topological properties by way of binarized graphs in which every
“edge” (i.e., correlation that passes a threshold) has an equal weight of
1 (Bullmore and Sporns, 2009), thereby neglecting the weights of
edges. In this study, we used weighted brain networks to characterize
the age-related changes in coordinated patterns of activity during
memory tasks. A same sparsity threshold (defined as the existing
number of edges divided by the all possible number of edges in a
graph) was employed to convert connectivity matrices into a graph,
ensuring that the graphs of both groups in each condition have
identical numbers of edges (Achard and Bullmore, 2007; Wang et al.,
2009). The absolute value of the correlation coefficients surviving the
sparsity threshold was preserved as the weights of the edges. As
expected, any single threshold may influence the topological
properties in the resulting graphs. However, since there is currently
no definitive way to select a single threshold, we thresholded each
correlation matrix repeatedly over a wide range of possible sparsity
values from 0.06 to 0.4 using increments of 0.02 and then estimated
the network properties at each threshold value. This enabled us to
compare the small-world parameters between the two groups in each
condition as a function of sparsity, independently of the precise
selection of threshold. The range of sparsity was chosen to allow
small-world network properties to be properly estimated and the
number of spurious edges in each network minimized (Achard and
Bullmore, 2007; He et al., 2008; Wang et al., 2009). The network
parameters used in this study were defined as follows.

Weighted clustering coefficient
For a weighted graph, the weighted clustering coefficient, Ciw, of a

node i is defined as (Barrat et al., 2004)

Cw
i =

1
si ki − 1ð Þ

X

j;mð Þ

wij + wim

2
aijaimajm
where the normalizing factor si(ki − 1) [si is the strength of the vertex
defined as the sum of the weights wij (absolute value of correlation
coefficient) of the connected edges: si =

P
j wij] assures that

0≤Ci
w≤1; ki is the number of the edges connected to the node i; aij

is an element of the adjacency matrix, which is equal to 1 if there is an
edge connecting the node i and node j, otherwise it is equal to 0. The
manipulation was applicable to both aim and ajm (j≠m). Thus, the
weighted clustering coefficient of a weighted network with N nodes,
which quantifies the extent of local cliquishness of a network, is
defined as:

Cw =
1
N

X

i

Cw
i

Weighted shortest path length
For an unweighted graph, the shortest path length Lp is the

average length of the shortest path between any two nodes of a
network (Watts and Strogatz, 1998). However, this original definition
is uninformative in graphs that include more than one component
(i.e., a subgraph in which all nodes are reachable from every other)
because the path length between disconnected nodes will be infinite
(Latora andMarchiori, 2001). To avoid this situation, Lp wasmeasured
here by using an inverse of the harmonic mean of the minimum path
length as proposed by Newman (2003). Lp quantifies the ability of
parallel information propagation over a network. For a weighted
graph, the weighted shortest path length is defined as:

Lw =
1

1
N N − 1ð Þ

P
i≠j

1
lwij

where lwij = min
ifj

sum dij
� �� �

and dij=1/wij. Here, the shortest weight-
ed path length lij

w between any pair of nodes i and j in the graph
indicates the minimum value of the sum of transformed weights dij
(i.e. functional distance) over all possible paths.

In this study, to correct for potential differences in mean
connection weights across subjects, we also computed the normalized
Cw(Cw/Crandw ) and Lw(Lw/Lrandw ) by comparing real Cw and Lw values
with the corresponding index obtained by averaging over 50 degree-
matched surrogate networks (Maslov and Sneppen, 2002), where
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each edge was randomly rewired to up to two times the number of
edges in a graph.

Betweenness centrality
In this study, we also analyzed nodal (regional) characteristics of

the brain network, which were measured by using betweenness
centrality (Freeman, 1977)

Bi =
X

s≠i≠t

Pst ið Þ
Pst

where Bi is the betweenness of a node i in the network; Pst(i)
indicates the number of shortest paths between any two nodes (s and
Fig. 1. Schematic of the procedure used to construct large-scale brain functional networks.
further parcellated by a prior brain atlas (B) into 90 brain regions. Then the regional repres
subject for each session of the experimental task. The correlations between all possible pair
session for each subject. An averaged correlation matrix over all subjects is shown for each
software (http://www.sph.sc.edu/comd/rorden/mricron/).
t) that pass through node i; Pst denotes the total number of shortest
paths between the two nodes (s and t). Further, we calculated the
normalized betweenness centrality BCi=Bi/bBN (He et al., 2008),
where bBN was the averaged betweenness across all the nodes. In
general, network hubs exhibit high betweenness centrality. In this
study a hub of the task-specific functional networks was the region
with averaged nodal centrality greater than 1 standard deviation
away from the averaged BC per group.

Statistical analysis

Correlation coefficients were first converted into z values using
Fisher's r-to-z transformation to correct for non-normality. To test
Raw functional MR images are preprocessed to produce normalized data (A) that are
entative time course was extracted by averaging the time series over all voxels in each
s of 90 time courses for each specific task is computed and averaged for the same task
task (C). The axial three-dimensional image of the template is shown using MRIcroN

http://www.sph.sc.edu/comd/rorden/mricron/
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for the significance of the effect of interest (the main effect of both
group and condition as well as the interaction of group×condi-
tion), a two-way repeated-measures analysis of variance (ANOVA)
was carried out on each transformed z value; group (young, old)
as a between-subject factor and condition (encoding, recognition)
as a repeated measure factor. A false discovery rate (FDR)
procedure (Genovese et al., 2002) was performed to adjust for
multiple comparisons (corrected statistical threshold α=0.05). The
ANOVA analysis was performed separately on each network param-
eter (Cw, Lw, Cw/Crandw , Lw/Lrandw and BC).

Results

Age-related changes in functional connectivity during memory tasks

We found that bilateral homogenous regions demonstrated
strongly synchronized fluctuations in both groups and both condi-
tions (Fig. 1), which was consistent with previous studies (Salvador et
al., 2005; Achard et al., 2006). Visual inspection revealed that there
were similar connectivity patterns in encoding and recognition tasks
(left vs. right of Fig. 1C) but differences between the younger and
older adults (top vs. bottom of Fig. 1C). Mean functional connectivity
obtained from each subject in either the encoding or recognition task
showed no significant main effect of group [F(1, 26)=1.77,
nonsignificant (NS)], no effect of condition [F(1, 26)=0.73, NS] and
no interaction between two factors [F(1, 26)=0.25, NS]. Individual
Fig. 2. Age-related changes in functional connectivity. Only the connections with a signific
short-range connections. Both left- and right-hemisphere regions are shown in a sagittal vie
network was visualized suing the PAJEK program (Batagelj and Mrvar, 1998). The locations o
are seen in Supplementary Table 1. See Table 1 for abbreviations.
functional connectivity showed a total of 202 pairs of significantly
altered connections between the two groups (Pb0.05, FDR corrected)
as depicted in Fig. 2 and Supplementary Table 1. Specifically, 67 long-
range connections (defined as the Euclidian distance between the
central positions of brain areas greater than 75 cm) showed
significant decreases in older adults, predominantly involving
fronto-parietal, fronto-temporal, fronto-occipital and temporal–pari-
etal cortex (blue lines, Fig. 2), whereas 42 long-range connections
showed increases, mainly involving the precuneus and orbitofrontal
regions (red lines, Fig. 2). Additionally, 50 short-range connections
showed significant decreases in older adults, predominantly involving
fronto-frontal and fronto-temporal cortex (cyan lines, Fig. 2), whereas
43 short-range connections showed increases, mainly involving the
occipital–occipital, parietal–parietal and parietal–subcortical regions
(magenta lines, Fig. 2). There was no significant main effect of
condition, and no group×condition interaction (PN0.05, corrected),
which is consistent with the idea that there is a common factor
underlying age-related changes across multiple cognitive domains
(Grady et al., 2006).

Age-related changes in network topology during memory tasks

The weighted clustering coefficients Cw and Cw/Crandw showed no
significant effect of group, condition or group-by-condition interac-
tion (Figs. 3A and C). The weighted shortest path length Lw showed a
significant effect (Pb0.05, FDR corrected) of group in the threshold
ant effect of group are shown, highlighted by different color-coded lines for long- and
w of the brain by locating their y and z centroid coordinates in the standard space. The
f regions have been slightly changed for illustrative purposes. Detailed connections also



Fig. 3.Measures for brain networks topological organization. Weighted clustering coefficient (Cw) (A) and Cw/Crand
w (C) show no significant changes, whereas significant decreases in

weighted shortest path length (Lw) (B) and Lw/Lrandw (D) are observed in both groups in the range of sparsity thresholds covered by the gray area (pb0.05, FDR corrected). The
abbreviations denote the initial capital letters of each combination in Fig. 1. For example, YE denotes Young (Encoding). The sparsity threshold of 0.16, shown by the arrow, is the
most highly significant among all the thresholds with a between-group difference. There was no significant main effect of condition or group×condition interaction using measures
of shortest path length. Error bars indicate standard deviation.

Table 2
The hubs of brain networks in each group during performance of memory tasks.

Region Side Classification BC Region Side Classification BC

Young (encoding) Young (recognition)
THA L Subcortical 3.08 MOG L Occipital 4.26
MOG L Occipital 2.72 PCUN L Parietal 2.71
SFGdor R Frontal 2.64 STG L Temporal 2.57
LING R Occipital 2.49 THA L Subcortical 2.52
PreCG L Frontal 2.43 SPG L Parietal 2.44
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range between 0.10 and 0.22 (a gray area in Fig. 3B) but no significant
effect of condition or a significant interaction. The detrimental effect
of age on the Lw/Lrandw was significant (Pb0.05, FDR corrected) in the
threshold range from 0.14 to 0.4 (a gray area in Fig. 3D) but there was
no significant effect of condition and no significant group-by-
condition interaction. The most significant between-group difference
in Lw and Lw/Lrandw appeared at the threshold of 0.16, as shown by an
arrow in the figure. Furthermore, we found that decreases in long-
range connections shown previously in the older group were able to
predict the changes in Lw/Lrandw (Fig. 4). Achard and Bullmore (2007)
have demonstrated that normal aging affected the spontaneously
coordinated patterns of brain network activity and led to reduced
efficiency of the network, which were in agreement with our findings.
Fig. 4. The relationship between average correlation of long-distance connections and
Lw/Lrandw . The values (x-axis) were obtained by averaging the correlation coefficients of
the 67 pairs of decreased long-range connections in the older adults. The values (y-axis)
correspond to the normalized shortest path length at the sparsity threshold of 0.16.
A recent fMRI study indicated that subject's head motion had a
profound influence on functional connectivity between brain regions
(Salvador et al., 2008); we addressed this issue by correlating the
network parameters with head motion measurements. This analysis
PCUN L Parietal 2.27 PreCG L Frontal 2.30
INS L Temporal 2.23 MFG L Frontal 2.21
STG R Temporal 2.11 SMA R Frontal 2.08
MTG R Temporal 2.02 MFG R Frontal 2.05
SFGmed L Frontal 1.99 ORBinf L Frontal 2.05
PCUN R Parietal 1.95 MTG R Temporal 2.00
MFG R Frontal 1.85 SFGdor R Frontal 1.97
PreCG R Frontal 1.83 MTG L Temporal 1.94
DCG R Frontal 1.82 CUN L Occipital 1.89
MFG L Frontal 1.80
TPOsup L Occipital 1.79
SMA R Frontal 1.73

Old (encoding) Old (recognition)
PCUN L Parietal 5.15 PCUN L Parietal 4.58
PCUN R Parietal 3.71 MOG L Occipital 3.20
MOG L Occipital 3.19 PCUN R Parietal 2.68
LING L Occipital 2.59 MTG L Temporal 2.35
DCG L Frontal 2.36 THA L Subcortical 2.33
MTG L Temporal 2.18 HIP L Temporal 2.16
STG R Temporal 2.16 DCG L Frontal 2.06
THA L Subcortical 2.15 HIP R Temporal 1.81
HIP R Temporal 1.99 INS L Temporal 1.73
THA R Subcortical 1.96
CUN R Occipital 1.85

Side: L, left hemisphere; R, right hemisphere. See Table 1 for abbreviations.
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revealed no significant correlation between the Lw (and Lw/Lrandw ) and
head motion (measured by either average absolute values or the first
order differences in three translations), suggesting that the observed
differencedidnot result from the influence of headmotion. In addition,
a lack of alteration in the network topological configuration between
encoding and recognition tasks further supported the view that a
common factor underlies age-related changes, independent of
differences in cognitive functions performed in this experiment
(Grady et al., 2006). In general, computing correlations between Lw

and behavioral performance (e.g. response times) could contribute to
understanding of the relationship betweenbehavior andbrain activity.
However, in these data there was a significant group difference in
average response times for the recognition task (p=0.02), indicating
that the correspondence between Lw and response times may be due
to aging. When this group difference was removed using a linear
partial correlation model, the correlation between path length and
averaged response times was non-significant (r=0.27, p=0.17).
These findings suggest that the older adults showed reduced global
information transfer and preserved local communication across brain
regions, but that individual differences in task performance did not
correspond with individual differences in path length.
Fig. 5. Significant changes in betweenness centrality. The color-coded nodes show the
(between-subject); squares for themain effect of condition (within-subject); diamonds for th
of statistical significance. Regionswith overlapping effects of interest are only coded by a singl
regions with unchanged centrality. The connections shownwere obtained from thresholding
PAJEK program (Batagelj andMrvar, 1998). The locations of regions have been slightly change
for abbreviations.
Age-related changes in regional centrality during memory tasks

In this study, we found that many network hubs were found in the
association cortices regions in the younger adults [e.g., middle
temporal gyrus (MTG), superior temporal gyrus (STG), dorsal
superior frontal gyrus (SFGdor), middle frontal gyrus (MFG),
supplementary motor area (SMA), precuneus (PCUN), middle
occipital gyrus (MOG) and lingual gyrus (LING)] thalamus (THA), as
well as limbic/paralimbic regions [e.g. insula, superior temporal pole
and inferior orbitofrontal cortex] (Table 2), which is in accordance
with previous findings on functional brain networks constructed
using resting-state fMRI (Achard et al., 2006; He et al., 2009b). This
result reflects a stable property of cortical network architecture
across both task-free and goal-oriented states. In the older adults,
several network hubs still overlapped with those of the younger
participants (e.g., PCUN, MOG, MTG and STG), however the overall
number of hubs decreased in the older participants (Table 2). In
particular, the hubs that were predominantly located in frontal and
temporal regions in younger adults were clearly reduced in the older
sample. In contrast, the medial parietal regions (e.g. PCUN) showed
increased importance in the functional brain networks of the older
significant effect of aging and condition; circles denote the main effect of group
e interaction of group and condition. The size of colored nodes is proportional to the level
e color and shape, such as right anterior cingulate gyrus. The rest (smaller gray nodes) are
the correlationmatrix in Fig. 1A at a sparsity of 0.16. The network is visualized using the
d for illustrative purposes. The results of statistical tests are shown in Table 3. See Table 1



Table 3
Effects of interest on regional betweenness centrality.

Effect of interest Side Classification F(1, 26) Effect Hub

Main effect of group
SMA R Frontal 13.62 YNO Yes
SPG R Parietal 10.29 YNO No
ORBinf L Frontal 7.32 YNO Yes
SFGdor L Frontal 5.99 YNO No
ORBsup L Frontal 5.93 YNO No
OLF R Frontal 5.90 YNO No
SFGmed L Frontal 4.78 YNO Yes
SFGdor R Frontal 4.40 YNO Yes
PreCG R Frontal 4.23 YNO Yes
PUT R Subcortical 8.49 ONY No
PAL L Subcortical 7.05 ONY No
ROL L Frontal 6.64 ONY No
IFGoperc L Frontal 6.26 ONY No
ORBmid R Frontal 6.13 ONY No
PCUN R Parietal 5.38 ONY Yes
ACG R Frontal 5.15 ONY No
PCUN L Parietal 4.40 ONY Yes

Main effect of condition
SFGmed L Frontal 5.45 ENR Yes
LING L Occipital 4.98 ENR Yes
CUN R Occipital 4.92 ENR Yes
PCUN R Parietal 4.48 ENR Yes

Interaction of two factors
ACG R Frontal 4.53 Y (ENR)NO (ENR) No
LING R Occipital 4.42 Y (ENR)NO (ENR) Yes
ORBsup L Frontal 9.10 O (ENR)NY (ENR) No
INS R Temporal 6.81 O (ENR)NY (ENR) No
STG L Temporal 5.12 O (ENR)NY (ENR) Yes
ROL L Frontal 4.78 O (ENR)NY (ENR) No

Side: L, left hemisphere; R, right hemisphere. The directions of the effect of interest were
determined by post-hoc t-tests: Y, young; O, old; E, encoding; R, recognition. In the
rightmost column, “Yes” indicates the brain regions identified as network hubs in the
brain networks and “No” for the non-hubs (see Table 2). See Table 1 for abbreviations.
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adults, which might suggest that an alternate recruitment of neural
connectivity was needed to carry out the required tasks. Interestingly,
in each of the groups, the hub distribution was similar among both
tasks (see Supplementary Fig. 1 for BC values of each region in each
task), which further supported the functional connectivity findings
described above.

Additionally, two-way repeated-measures ANOVAs on regional
centrality revealed age-related effects in various brain regions. The
decreased centrality in the older adults was foundmainly in SMA, SFG
and ORB, LING and SPG (blue circles in Fig. 5, and Table 3). Notably,
most of these regions had been identified as network hubs in the
younger sample, which suggests that the age-related effects were
brought about by a preferential impairment of important regions,
rather than a non-specific degradation of the entire network.
Increased centrality in the older adults was observed in PCUN and
ACC (red circles in Fig. 5, and Table 3), which are key components
implicated in the “default-mode” network proposed by Raichle et al.
(2001). Previous functional imaging studies have suggested that these
regions showed altered neuronal activity during memory-related
tasks in advanced aging (Lustig et al., 2003; Grady et al., 2006; Miller
et al., 2008). In addition, we also observed increased centrality in
several subcortical regions (putamen and pallidum) in the older
group. Note that most of these areas did not serve as network hubs,
indicating that increased centrality may have little influence on the
network configuration. In addition, we observed effects of condition
or group-by-condition interactions in LING, STG and INS (squares and
diamonds in Fig. 5, and Table 3).

Discussion

The current study investigated age-related changes in the
coordinated patterns of activity and topology in functional brain
networks during performance of encoding and recognition phases of
memory tasks. We found that the older adults showed impairments in
long-range connections that were associated with decreased topo-
logical efficiency of information processing throughout the entire
network. Additionally, normal aging was accompanied by reduced
nodal centrality in several frontal and parietal areas, and increased
nodal centrality in several default-mode and subcortical regions. In
contrast, similar network properties were observed in both tasks,
indicating that a common network of regions was required for both
encoding and recognition. The age-related alteration of the topolog-
ical organization of functional networks suggests that brain systems
underlying cognitive functions can adaptively reorganize during the
aging process.

Altered functional connectivity with aging

It is widely believed that most cognitive functions require the
active participation of multiple cortical areas, although elementary
cognitive operations may be performed by individual brain regions
(Bressler and Kelso, 2001). Several studies have suggested that
cognitive deficits in normal aging arise from alterations in the
functional integration of these coordinated brain systems (Cabeza et
al., 1997a; Della-Maggiore et al., 2000; Grady et al., 2003). In this
study, we showed an alteration in patterns of functional connectivity
during memory tasks in older adults. Notably, many long-range
connections between fronto-temporal, fronto-occipital, fronto-parie-
tal and temporal–parietal regions were found to be impaired. These
results are consistent with many functional imaging studies showing
age-related alterations in fronto-temporal connectivity during resting
state (Wink et al., 2006) and task states such as memory encoding
(Grady et al., 1995; Grady et al., 2003) and memory for negative
stimuli (St Jacques et al., 2008, 2009). Altered fronto-occipital
connectivity has also been observed with increasing age (Moeller et
al., 1996), and fronto-parietal connectivity has been identified as
important in memory function (Buckner, 2004), which has been
shown to be impaired in aging using both structural (O'Sullivan et al.,
2001; Davis et al., 2009) and functional (Meunier et al., 2009) imaging
measures. Several other studies have also shown age-related changes
in temporal–parietal connectivity during memory encoding (Dennis
et al., 2008) and recognition (Daselaar et al., 2006). Notably,
disruptions in long-range functional connectivity combined with
impaired short-range connections were found predominantly in
frontal-related circuits, which is consistent with previous findings of
abnormal frontal functions in older individuals (Buckner, 2004).
Similarly, Meunier et al. (2009) found a loss of connectivity between
anterior frontal clusters and posterior temporal and parietal clusters
in older adults. In contrast, age-related increases in interregional
interactions were predominantly observed in several posterior
parietal regions, such as angular gyrus and precuneus. These areas
have been considered key regions in the default-mode network in
younger individuals (Raichle et al., 2001; Greicius et al., 2003) and
have been found to show altered activity with aging during task
performance (Lustig et al., 2003; Sambataro et al., 2008) and resting
state (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008). Our
findings of age-related impairments in long-range functional connec-
tivity provide further support for the “disconnection” hypothesis
proposed by O'Sullivan et al. (2001).

Altered network topology with aging

In the current study, we showed that the normalized shortest path
length of the brain networks exhibited significant increases in the
elderly during both encoding and recognition, which provides
evidence of less efficient neural processing with normal aging
(Grady, 2008). In addition, these increases in normalized shortest
path length correlated with the connection weights in the reduced
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long-range connections. This finding may reflect a reduction in speed
of memory processing in older populations (Grady et al., 1995). This
study also provided indications that, compared with young subjects,
elderly subjects recruit different functional networks when carrying
out the same cognitive task, presumably to compensate for reduced
efficiency in brain areas typically recruited in the performance of
these tasks (Grady, 2000; Cabeza, 2001). This findingmay support the
hypothesis that abnormalities in coordinated brain networks drive
functional reorganization through changes in processing strategies
during advanced aging (Greenwood, 2007). Recently, Achard and
Bullmore (2007) examined the efficiency of human brain functional
networks in younger and older adults scanned during the resting
state. They found that the older adults showed reduced global and
local efficiency in these networks. This reduction in global efficiency in
aging is compatible with the finding of increased shortest path length
in older adults in our study. However, in this study we did not observe
between-group differences in local clustering coefficients. The dif-
ference between the previous study and our own could be attributable
to different experimental designs used: memory encoding and
recognition tasks were used in our study but Achard and Bullmore's
study used data collected during the resting state. Notably, Meunier et
al. (2009) directly compared the community structure of the large-
scale functional networks of younger adults to that of older healthy
adults to characterize age-related changes in brain modularity and
observed marked differences in the composition and topological roles
of modules. Even during task performance, network organization
depended on whether visual stimuli were remembered or forgotten
(De Vico Fallani et al., 2008).

In addition to the age-related changes in network parameters, in
this study we also found that functional connectivity, (normalized)
clustering coefficient and (normalized) shortest path length overall
showed no significant differences between both tasks, providing
support of the hypothesis for non-specific task-related brain net-
works in aging. Several recent studies have examined the relation
between brain activity during encoding and subsequently during
retrieval phase and demonstrated converging evidence for overlap in
brain activation patterns, regardless of type of information (for a
review, see Nyberg et al., 2000; Persson and Nyberg, 2000; Nyberg,
2002). Similarly, a recent study indicated a common factor under-
lying age-related changes in whole-brain patterns of activity by a
multivariate analytic technique, independent of specific task tests
(Grady et al., 2006). Collectively, our findings were consistent with
the evidence and further provided support of the notion that the
activation of a memory trace during subsequent retrieval may
involve reactivation of processes that were engaged during initial
encoding phase (Craik and Lockhart, 1972).

Altered regional centrality with aging

Many studies have suggested that normal aging is accompanied
by either decreased (less efficient processing), or increased
(functional compensation) neuronal activity in specific brain
regions (Grady, 2008). In the present study, we showed that several
brain regions exhibited age-related changes in nodal centrality in
the functional brain networks. The regions showing reduced
centrality with age were mainly located in frontal (e.g., SMA and
SFG) and parietal (e.g., SPG) cortices, which are consistent with a
recent fMRI study (Achard and Bullmore, 2007) which found a
similar pattern of results. Interestingly, these regions were found to
be hubs of brain networks in the younger adults, which suggest that
the deleterious effects on network structure in older adults are
restricted to critically important regions serving as areas of
information exchange between different parts of the brain net-
works. Findings of reduced functional connectivity may account for
alterations in relative centrality of these areas (Fig. 2). Many
functional neuroimaging studies have also found altered neuronal
activity in the frontal and parietal regions in older adults (Grady
et al., 1995; Nielson et al., 2006; Kukolja et al., 2009). This
dysfunction may lead to cognitive decline and impaired, controlled
processing (e.g., strategy formation) during encoding and recogni-
tion (West, 1996; Buckner, 2004).

In addition to the age-related decreases in nodal betweenness, we
also observed increased centrality with age in several brain regions,
such as the precuneus and anterior cingulate gyrus. These brain areas
have been described as being part of the default-mode network
(Raichle et al., 2001). Default-mode activity is thought to reflect the
monitoring and evaluating of external environment and internal
milieu as well as self-reference (Gusnard and Raichle, 2001), and is
suspended when participants are engaged in goal-directed tasks.
Thus, more activity in default-mode regions could reflect a reduced
ability to ignore distracting or irrelevant information from the
environment (Milham et al., 2002; Gazzaley et al., 2005). This finding
of altered default-mode activity in normal aging is compatible with
previous studies in aging (Lustig et al., 2003; Grady et al., 2006; Miller
et al., 2008), which reported less deactivation in default-mode regions
in older adults. In the present study, we also observed age-related
changes in nodal centrality in subcortical regions (e.g., putamen and
pallidum), which agrees with the findings of a previous study where
changes in task-related centrality were detected in the putamen
(Beason-Held et al., 2005).

However, this study also contains some methodological limita-
tions. First, we used two cohorts to characterize the age-related
alterations in brain functional networks during the performance of
memory tasks. However, it is unclear whether such a network
topology continuously alters between the younger to older stages
used in our study. To address this issue, in future studies it would be
beneficial to recruit a large sample of healthy participants over a wide
range of ages. Second, a large body of literature has shown that
humans show memory losses with age, but that not all types of
memory are affected equally (Grady and Craik, 2000). Therefore, it
would be worthwhile to utilize other varieties of memory task (e.g.
autobiographical memory, working memory), in order to examine
whether they display similar age-related impairments. Third, the
sample size employed in this study was relatively small, which may
have partially contributed to the non-significant correlation between
network parameter and performance mentioned above. In future
studies, a larger sample would be vital to provide the statistical power
necessary to validate these findings. Fourth, we investigated only age-
related changes in functional brain networks. However, brain function
is always closely associated with its structure (van den Heuvel et al.,
2008; Damoiseaux and Greicius, 2009; Honey et al., 2009) and this
association has been found to hold during the aging process as well.
For instance, Brassen et al. (2009) showed that brain activity
alterations correlated with changes in gray matter between younger
and older subjects. A recent study has also indicated that, in advanced
aging, reduced functional connectivity correlated with a decrease in
white matter integrity (Andrews-Hanna et al., 2007). In future
studies, it will be vital to investigate how the alterations of functional
topology shown here are associated with co-occurring structural
changes.

Conclusion

In this study, we provided evidence that changes in cognitive
functions in aging are associated with changes in coordination
between individual brain regions and their attendant network
properties, which was demonstrated as a common factor to underlie
the cognitive deficits. The results highlighted age-related alterations
in the organization of functional brain networks relevant to goal-
oriented tasks, thus potentially contributing, at the systems level, to
our understanding how the brain adaptively reorganizes to respond to
external stimuli during normal aging.
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