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Abstract
Very little is known regarding whether structural hubs of human brain networks that enable effi-

cient information communication may be classified into different categories. Using three

multimodal neuroimaging data sets, we construct individual structural brain networks and further

identify hub regions based on eight widely used graph-nodal metrics, followed by comprehensive

characteristics and reproducibility analyses. We show the three categories of structural hubs in the

brain network, namely, aggregated, distributed, and connector hubs. Spatially, these distinct cate-

gories of hubs are primarily located in the default-mode system and additionally in the visual and

limbic systems for aggregated hubs, in the frontoparietal system for distributed hubs, and in the

sensorimotor and ventral attention systems for connector hubs. These categorized hubs exhibit

various distinct characteristics to support their differentiated roles, involving microstructural orga-

nization, wiring costs, topological vulnerability, functional modular integration, and cognitive

flexibility; moreover, these characteristics are better in the hubs than nonhubs. Finally, all three

categories of hubs display high across-session spatial similarities and act as structural fingerprints

with high predictive rates (100%, 100%, and 84.2%) for individual identification. Collectively, we

highlight three categories of brain hubs with differential microstructural, functional and, cognitive

associations, which shed light on topological mechanisms of the human connectome.
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1 | INTRODUCTION

The human brain works as a complex network to support various cog-

nitive processes through information communication and integration

between interconnected regions (Bullmore and Sporns, 2009; Petersen

and Sporns, 2015; Sporns, Tononi, & K€otter, 2005). Using noninvasive

diffusion magnetic resonance imaging tractography approaches,

researchers have reconstructed structural human brain networks at the

macroscale (Gong et al., 2009; Hagmann et al., 2008). With a graph-

theoretical network analysis framework, recent studies have suggested

that structural brain networks contain sets of centrally embedded and

topologically important hub nodes or regions, which are generally
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identified using various graph measures (van den Heuvel and Sporns,

2013b). These brain hubs provide the anatomical underpinnings for the

efficient transfer of information among regions (Gong et al., 2009; Hag-

mann et al., 2008; van den Heuvel and Sporns, 2011) and consume

high wiring cost and physiological energy (Bullmore and Sporns, 2012;

Collin, Sporns, Mandl, & van den Heuvel, 2014; van den Heuvel, Kahn,

Go~ni, & Sporns, 2012). Moreover, the abnormal topological properties

of these hubs have been associated with a variety of neurological and

psychiatric disorders, suggesting their vital roles to maintaining normal

brain function (Crossley et al., 2014; Fornito, Zalesky, & Breakspear,

2015; Gong and He, 2015; van den Heuvel and Sporns, 2013b).

Together, such recent progress has highlighted the significance of

structural hubs in understanding the biological mechanisms of the brain

under healthy and diseased conditions.

Notably, structural hubs in human brain networks are typically

identified as the nodes with high values of certain graph-based nodal

metrics (e.g., degree centrality, closeness centrality, betweenness cen-

trality, or participant coefficient) (Crossley et al., 2014; Gong et al.,

2009; He, Chen, & Evans, 2007; Li et al., 2013; Shu et al., 2011; Zale-

sky et al., 2010) or combinations of several metrics (Hagmann et al.,

2008; van den Heuvel et al., 2010). However, different nodal metrics

are likely to capture different topological roles of nodes in brain net-

works. For example, for a given network node, the nodal degree cen-

trality describes the number of connections that link to this node, the

nodal betweenness centrality specifies the importance of nodes on the

information flow path, and the nodal participant coefficient describes

the capability that links different network modules (Borgatti and Ever-

ett, 2006; Rubinov and Sporns, 2010). Based on empirical results,

although different nodal metrics detect certain common hubs (e.g., the

medial parietal cortex and the precuneus) (Gong et al., 2009; Hagmann

et al., 2008; van den Heuvel et al., 2010; van den Heuvel and Sporns,

2013b), there are discrepancies in spatial locations even when using

the same data set in one study: for example, the inferior parietal cortex

was identified as a hub using closeness centrality but not using betwe-

enness centrality, and the superior temporal gyrus was identified as a

hub using degree centrality but not closeness centrality (Hagmann

et al., 2008). These different definitions from graph-based network

theory and various experimental observations raise important ques-

tions regarding whether distinct categories of structural hubs in the

human brain networks exist, and if so, how these categorized hubs are

spatially distributed. Specifically, previous studies have demonstrated

high-level microstructural organization (Collin et al., 2014), large wiring

costs (van den Heuvel et al., 2012; Xia, Lin, Bi, & He, 2016), and func-

tional associations (Collin et al., 2014; van den Heuvel and Sporns,

2013a) in the structural hubs. Thus, the subsequent question would be

whether these distinct categorized hubs are significantly different in

the above-mentioned microstructural and functional characteristics.

Answering these questions will greatly improve our understanding of

the organizational principles and topological architecture of the human

structural connectome.

To address these issues, we utilized diffusion MRI data (Dataset 1)

to reconstruct individual structural brain networks and further esti-

mated eight frequently used graph nodal metrics to characterize

various aspects of the topological roles of each nodal region. These

nodal metrics were subsequently classified into different categories

based on their spatial similarity, and structural brain hubs and hub indi-

ces were identified for each category. We further investigated the

underlying microstructural organization, wiring cost, functional modular

integration, cognitive flexibility, and topological vulnerability of distinct

category hubs. Moreover, based on a repeated scanning imaging data-

set (Dataset 2), we compared the results of the classification of metrics

and the spatial distribution of the hub indices between two scanning

sessions to evaluate their reliability and performed an individual identi-

fication analysis to assess the individuality of the hub indices. Finally,

validation analyses were conducted using different network construc-

tions and analysis strategies as well as different diffusion imaging pro-

tocols (high angular resolution diffusion imaging, HARDI, Dataset 3).

2 | MATERIALS AND METHODS

2.1 | Data overview and participants

Three imaging data sets were included in this study (Table 1): a princi-

pal dataset of 146 participants with structural MRI, diffusion tensor

imaging (DTI), and resting-state functional MRI (R-fMRI) data (Dataset

1), a test–retest dataset of 57 participants with structural MRI and DTI

data (Dataset 2) and a validation dataset of 38 participants with struc-

tural MRI and HARDI data (Dataset 3). All participants were right-

handed and had no history of neurological or psychiatric disorders.

Written informed consent was obtained from each participant. The

study designs from Datasets 1 and 2 were approved by the Institu-

tional Review Board of the State Key Laboratory of Cognitive Neuro-

science and Learning at Beijing Normal University, and the study

design for Dataset 3 was approved by the Institutional Review Board

of the WU-Minn Human Connectome Project (HCP) (Van Essen,

Glasser, Dierker, Harwell, & Coalson, 2013). Table 1 shows the demo-

graphics of all participants and imaging modalities used in this study.

Notably, Dataset 1 was used for the principal network analyses in this

study, which involved constructing structural brain networks, identify-

ing structural hubs and exploring miscellaneous characteristics of struc-

tural hubs (e.g., microstructural organization, wiring cost, functional

associations, and topological vulnerability); Dataset 2 was used for the

reliability analysis for structural network hubs and individual identifica-

tion and Dataset 3 was used for the validation of the main results

obtained from Dataset 1.

2.2 | MRI acquisition procedures

Dataset 1: The principal data set was selected from the Connectivity-

based Brain Imaging Research Database (C-BIRD) at Beijing Normal

University. All MRI data (structural MRI, DTI and R-fMRI) were

acquired using a 3.0 T Siemens Trio Tim scanner (Siemens Medical Sys-

tems, Erlangen, Germany) with a 12-channel phased-array head coil in

the Imaging Center for Brain Research, Beijing Normal University. The

MR imaging procedures were as follows: (a) Structural MRI. T1-

weighted, sagittal 3D magnetization prepared rapid gradient echo (MP-
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RAGE) sequence, repetition time (TR)52,530 ms, echo time (TE)5

3.39 ms, inversion time (TI)51,100 ms, flip angle578, matrix5256 3

256, field of view (FOV)5256 mm 3 256 mm, slice

thickness51.33 mm, voxel size51 mm 3 1 mm 3 1.33 mm and 144

sagittal slices covering the whole brain. (b) DTI. Single-shot twice-refo-

cused spin-echo diffusion echo-planar imaging sequence, TR58,000

ms, TE589 ms, 30 non-linear diffusion directions with b51,000 s/

mm2 and an additional volume with b50 s/mm2, number of

excitation52, matrix5128 3 128, FOV5282 mm 3 282 mm, slice

thickness52.2 mm, voxel size52.2 mm 3 2.2 mm 3 2.2 mm,

bandwidth51,562 Hz/pixel, and 62 transverse slices without gap cov-

ering the whole brain. (c) R-fMRI. Echo-planar imaging sequence (EPI),

TR52,000 ms, TE530 ms, flip angle5908, matrix564 3 64,

FOV5200 mm 3 200 mm, slice thickness53.5 mm, voxel

size53.1 mm 3 3.1 mm 3 3.5 mm, 33 transverse slices with 0.7 mm

gap covering the whole brain, and volume number5200. This scan

lasted for 6 min and 40 s. During the scan, the participants were

instructed to rest and relax with their eyes closed and to refrain from

falling asleep.

Dataset 2: The test–retest data set, which included structural MRI

and DTI data, was also from the C-BIRD. Notably, the participants in

the Dataset 2 were scanned twice at an interval of approximately 6

weeks (40.9464.51 days) and had participated in the Consortium for

Reliability and Reproducibility (CoRR) dataset (http://fcon_1000.proj-

ects.nitrc.org/indi/CoRR/html/bnu_1.html) (Lin et al., 2015). The scan-

ning parameters were identical to those of Dataset 1.

Dataset 3: The validation data set, including structural MRI and

HARDI data, was selected from the WU-Minn HCP (https://db.human-

connectome.org, “unrelated 40 subjects”) (Van Essen et al., 2013). The

original data set included imaging data for 40 healthy participants (Q1

and Q2 release), but two participants (subject ID: 209733 and 528446)

were excluded because of structural brain abnormalities (https://www.

humanconnectome.org/documentation/S500). The MRI data were

acquired on an HCP’s custom 3.0 T Siemens Skyra scanner using a 32-

channel head coil at Washington University. The MR imaging proce-

dures were as follows: (a) Structural MRI. T1-weighted, sagittal 3D MP-

RAGE sequence, TR52,400 ms, TE52.14 ms, TI51,000 ms, flip

angle588, matrix5320 3 320, FOV5224 mm 3 224 mm, slice

thickness50.7 mm, voxel size50.7 mm 3 0.7 mm 3 0.7 mm and 256

sagittal slices in a single slab (Glasser et al., 2013). (b) HARDI. A single-

shot 2D spin-echo multiband EPI sequence, TR55,520 ms, TE589.5

ms, 270 diffusion directions with diffusion weighting 1,000, 2,000, or

3,000 s/mm2 and 18 additional volumes with b50 s/mm2,

matrix5144 3 168, FOV5210 mm 3 180 mm, 1.25 mm slice

thickness, voxel size51.25 mm 3 1.25 mm 3 1.25 mm, and 111

transverse slices without gap covering the whole brain (Sotiropoulos

et al., 2013).

2.3 | Construction of individual structural brain

networks

Nodes and edges are the two basic elements of a network. Here, the

structural and diffusion imaging data of Dataset 1 were used to con-

struct structural human brain networks. The relevant procedures of

network construction were introduced in our previous works (Bai et al.,

2012; Gong et al., 2009; Shu et al., 2011; Figure 1) and are briefly

described as follows.

2.3.1 | Definition of network nodes

The procedure for defining network nodes was implemented by using

the SPM8 package (https://www.fil.ion.ucl.ac.uk/spm/software/spm8/).

Briefly, for each individual, the T1-weighted image was initially co-

registered to the averaged b0 image in the native diffusion space using

a linear transformation. The co-registered T1-weighted image was sub-

sequently segmented into gray matter, white matter and cerebrospinal

fluid by using a unified segmentation algorithm. The resultant images

were further nonlinearly registered into the Montreal Neurological Insti-

tute space, and the transformation matrix was estimated. Finally, the

inversed transformation matrix was used to warp a predefined brain

parcellation with 1,024 regions of interest from the standard space to

the native diffusion space. Discrete labeling values in the parcellation

were preserved by the use of a nearest-neighbor interpolation method.

Notably, the brain parcellation was generated by randomly subdividing

the automated anatomical labeling atlas into 1,024 cortical and subcorti-

cal regions of equal size (Zalesky et al., 2010), which enabled the cap-

ture of both major tracts and forking U-fibers. Thus, for each individual,

we obtained 1,024 brain regions, each representing a network node.

2.3.2 | Definition of network edges

The procedures for defining network edges were mainly based on the

whole-brain fiber bundles, which were reconstructed using the deter-

ministic tractography method. Briefly, each individual diffusion

weighted image was first preprocessed (eddy current and motion arti-

fact correction) and aligned to an averaged b0 image by an affine trans-

formation using the FMRIB’s Diffusion Toolbox of FSL (Version 5.0;

https://www.fmrib.ox.ac.uk/fsl). The Fiber Assignment by Continuous

Tracking (FACT) algorithm (Mori, Crain, Chacko, & Van Zijl, 1999) was

subsequently performed to reconstruct all WM bundles in the brain

using the DTIstudio package (version 3.0.3). Here, fiber tracking was

TABLE 1 Datasets and demographics

Dataset 1 (n5 146) Dataset 2 (n557) Dataset 3 (n538)

Gender (male/female) 70/76 30/27 17/21

Age (years) 19–30 (22.6862.24) 19–30 (23.056 2.29) 22–35a

MRI modality T1, DTI, R-fMRI T1, DTI T1, HARDI

aFor each subject, accurate year of age was not provided in the HCP dataset.
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computed by seeding each voxel with a fractional anisotropy value

>0.2. This fiber-tracking procedure was terminated at voxels for which

the fractional anisotropy was <0.2 or if the turning angle between

adjacent steps was >458. Using this procedure, tens of thousands of

streamlines were generated to etch out all major WM tracts. Two

nodes were considered to be structurally connected if there were

streamlines with end points located in these two regions. To this end,

for each subject, we obtained a binary WM network, and subsequent

analyses were conducted at an individual level, unless specifically

noted.

2.4 | Identification of structural brain hub categories

To identify structural hubs from the brain networks and further ascer-

tain whether they could be classified into different categories, we uti-

lized eight widely used graph-based metrics to quantify nodal roles in

the brain networks and performed a further hierarchical clustering anal-

ysis. These analyses were performed using the GRETNA toolkit

(https://www.nitrc.org/projects/gretna/) (Wang et al., 2015), the Mat-

labBGL package (https://www.cs.purdue.edu/homes/dgleich/pack-

ages/matlab_bgl/), the brain connectivity toolbox (BCT, https://sites.

google.com/site/bctnet), and our in-house Matlab codes. The proce-

dures are described in detail as follows.

2.4.1 | Graph nodal metrics

We investigated eight graph-based centrality metrics, including betwe-

enness centrality (Bc), closeness centrality (Cc), degree centrality (Dc),

eigenvector centrality (Ec), K-core centrality (Kc), participant coefficient

(Pc), page-rank centrality (Pr), and subgraph centrality (Sc) (Figure 1 and

Supporting Information, Table S1). These metrics capture different top-

ological roles of network nodes and have been widely adopted in previ-

ous brain network studies (Fagerholm, Hellyer, Scott, Leech, & Sharp,

2015; Gong et al., 2009; Hagmann et al., 2008; He et al., 2007; Honey,

K€otter, Breakspear, & Sporns, 2007; Power, Schlaggar, Lessov-

Schlaggar, & Petersen, 2013; van den Heuvel et al., 2010; Zuo et al.,

2012). Notably, we performed a modularity detection for each subject

and subsequently estimated the corresponding participant coefficient

based on the individual modular identification. A group-level modular

identification was also used to calculate the participant coefficient for

validation (for details, refer to Supporting Information, Table S1 and

Figures S14 and S15). Furthermore, these nodal metrics result in differ-

ent ranges of values while they are computed in a network. To

FIGURE 1 Flowchart of the network construction and graph nodal metric estimation for each participant. (a) After rigidly co-registering to
the averaged b0 image, the native space T1 image was nonlinearly transformed to the ICBM 152 T1 template in the MNI space, which
resulted in a transformation matrix. (b) The inversed transformation matrix was utilized to warp the parcellation from the MNI space to the
native space. (c) In terms of the parcellation and the results of the deterministic tractography in the native space, the WM network was
constructed. (d) Eight nodal metrics were estimated based on the individual WM networks. (e) The metrics were ultimately converted to
normalized ranking scores [Color figure can be viewed at wileyonlinelibrary.com]
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compare across metrics, we transferred the original values of each met-

ric into corresponding temporary ranking scores from 1 to 1,024. For a

given metric, regarding that some nodes have the same values, we

computed the mean value of their temporary ranking scores, which

resulted in the final nodal ranking scores; the nodes with higher ranking

scores correspond to nodes with higher topological importance in a

network.

2.4.2 | Spatial similarity among metrics

To investigate the similarity of spatial distributions among these eight

nodal metrics, for each subject we first computed the Spearman’s rank

correlation (q), between every pair of metrics across nodes, resulting in

an eight-by-eight correlation matrix. To further determine whether the

spatial similarity between any pairs of metrics in the brain networks

occur by chance, for each subject we compared the individual correla-

tion matrix with those derived from 100 individual-specific random

networks that were generated using Maslov’s wiring algorithm, retain-

ing the same number of nodes, number of edges and degree distribu-

tion as the real individual brain network (Maslov and Sneppen, 2002).

Then, the Z-scores were estimated to quantify the differences between

the q values of brain networks and random counterparts:

za;b5 qa;b2la;b
� �

=ra;b; (1)

where qa;b is the Spearman’s rank correlation coefficient between met-

ric a and metric b in the brain network, and la;b and ra;b are the mean

and standard deviation, respectively, of Spearman’s rank correlation

coefficients between the two metrics in the random networks. Finally,

for every pair of metrics we performed one-sample t-tests across indi-

viduals to determine whether these Z-score values were significantly

different from zero. Bonferroni-corrected p< .05 was considered sig-

nificant for multiple comparisons (i.e., uncorrected p< .05/28, here the

28 represents the number of comparisons among eight nodal metrics,

C2
8).

2.4.3 | Hierarchical clustering analysis and categories of

network hubs

To determine whether the eight nodal metrics can be classified into dif-

ferent categories, we performed the following hierarchical clustering

analysis. Briefly, for each individual the metric-by-metric Spearman’s

correlation matrix was first transformed to Fisher’s z matrix using Fish-

er’s q-to-z transformation to improve normality. The Fisher’s z matrices

were averaged across individuals and further inverse-Fisher’s z-to-q

transformed to generate a new group-based correlation matrix. Then,

we obtained a dissimilarity matrix by subtracting the correlation values

from 1 and generated an agglomerative hierarchical clustering tree

based on the single linkage algorithm using weighted average distance

metric. Thus, eight nodal metrics were classified to different categories.

To determine a proper category number, we employed a stability analy-

sis procedure (Lange, Roth, Braun, & Buhmann, 2004; Yeo et al., 2011)

in which a hierarchical clustering analysis was performed on the Spear-

man’s correlation matrices that were obtained by randomly selecting

5% of all subjects 1000 times. Based on this procedure, the eight nodal

metrics were classified into three categories (for details, refer to

Section 2.1, Results) in which the category number was significantly

stable and simultaneously ensured larger category-assigning differences

of nodal metrics than null models (for details, refer to Supporting Infor-

mation, Figure S1). Finally, for each category, we identified the brain

network hubs using a hub index, which was defined as the mean rank-

ing score of metrics in this category. The nodes with the top 20% of

hub index were identified as hubs, and the remaining nodes were con-

sidered nonhubs (note: two additional thresholds—15% and 25%—

were used for the validation analyses). To display the distribution of

each category of hubs, all hub and nonhub nodes were unfolded in the

topological space using “spring model” layouts based on the “fdp” algo-

rithm (https://www.graphviz.org).

To further clarify whether the topological profiles of each category

of hubs were different from those of each nodal metric, we compared

their spatial distributions. Briefly, for each subject, the top 20% nodes

were initially identified as hubs from each category and each nodal

metric, respectively. The overlapping percentages were subsequently

calculated between any pairs of the categorized hubs and single metric

defined hubs, and the percentages were averaged across individuals.

2.4.4 | Distributions of structural hubs in functional brain

systems

To examine whether and how different categorized structural hubs are

associated with the brain’s functional systems, we performed a func-

tional network modularity analysis and further calculated the propor-

tions of each category of structural hubs distributed in each functional

system. Briefly, we first built a group-based functional brain network at

a voxel-level using the R-fMRI data of 146 participants from Dataset 1

and then identified functionally connected modules using a graph-

based network modularity analysis (for details, refer to Supporting

Information, Methods). Seven major functional subdivisions were iden-

tified, including the default-mode, visual, frontoparietal, sensorimotor,

limbic, dorsal attention and ventral attention systems (Supporting Infor-

mation, Figure S2), and this subdivision was largely compatible with

previous functional brain network studies (He et al., 2009; Power et al.,

2011; Yeo et al., 2011). For each category of hub, we computed their

proportions that belonged to different functional systems. Finally,

paired nonparametric permutation tests (N520,000) were performed

to determine significant differences in the hub proportion among sys-

tems for each category of hubs, and among these categories of hubs

for each system. Bonferroni-corrected p< .05 was considered signifi-

cant for multiple comparisons (i.e., uncorrected p< .05/84, here the 84

was the sum of the number of comparisons among systems for each

category of hubs and the number of comparisons among three catego-

ries of hubs for each system, 33C2
7173C2

3).

2.5 | Characterization of microstructural, functional,

and cognitive associations of structural hubs

To determine whether different category structural hubs exhibited

common and distinct properties, we systematically explored their

microstructural organization, wiring cost, functional modular integra-

tion, cognitive flexibility, and topological vulnerability.
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2.5.1 | Microstructural organization and wiring cost of

structural hubs

We explored the underlying microstructural organization and wiring

cost of different category hubs using the four WM diffusion indices

and two WM wiring cost indices, respectively. For a given network

edge, we initially computed the four diffusion indices: fractional anisot-

ropy, which reflects the degree of anisotropy of a diffusion process;

axial diffusivity, which estimates the level of diffusion in the direction

of the first eigenvector used to describe the level of local fiber orienta-

tion; radial diffusivity, which reflects the amount of diffusion perpen-

dicular to the first eigenvector and specifies the level of myelination of

the WM; and mean diffusivity, which assesses the total level of diffu-

sion (Basser, 1995; Song et al., 2002). These diffusion indices were esti-

mated by averaging the values across the WM voxels that the

streamlines passed through, and they reflect the different aspects of

the diffusion properties of WM tissues. Research has suggested that

the diffusion indices are approximately associated with the microstruc-

tural organization of WM tracts, such as axonal membrane or myelin

(Beaulieu, 2002). Then, we computed the two WM wiring cost indices:

the streamline length, which captures the average length of all recon-

structed streamlines in the network edge; and the streamline cost,

which represents the total streamline length in the network edge (Bull-

more and Sporns, 2012; Kaiser and Hilgetag, 2006; van den Heuvel

et al., 2012). For a given network node, we obtained its diffusion and

cost indices by computing the mean value of the edges that this node

links. The diffusion and wiring cost indices were subsequently averaged

across hub and nonhub nodes, respectively. Notably, for isolated

nodes, we cannot estimate their WM indices; therefore, when calculat-

ing the averaged diffusion and wiring cost indices across hub and non-

hub nodes, the isolated nodes were ignored. Finally, paired

nonparametric permutation tests (N520,000) with Bonferroni-

corrected p< .05 for multiple comparisons were used to determine the

significances of the statistical differences in the diffusion and wiring

cost indices between hubs and non-hubs (i.e., uncorrected p< .05/18,

here the 18 was the number of the comparisons for six WM indices of

three categories, 633) or among different category hubs (i.e., uncor-

rected p< .05/18, here, the 18 was the number of the comparisons for

six WM indices among three categories of hubs, 63C2
3).

2.5.2 | Functional modular integration and cognitive

flexibility of structural hubs

We further investigated whether different category structural hubs

play distinct roles in the functional modular integration and whether

they contribute to different cognitive flexibility underlying multiple cog-

nitive functions. Thus, we initially computed the functional participant

coefficient (the participant coefficient of R-fMRI functional network) at

each voxel according to the modular architecture derived from the pre-

viously described group-based functional brain network (for details,

refer to Supporting Information, Methods). For a given type of node

(i.e., hub or nonhub nodes) in the structural brain network, we com-

puted its functional participant coefficients by averaging the participant

coefficients across all voxels belonging to the corresponding nodal

type. We subsequently obtained the brain map of the cognitive flexibil-

ity (Yeo et al., 2014) (https://surfer.nmr.mgh.harvard.edu/fswiki/Brain-

mapOntology_Yeo2015), which is defined as the number of cognitive

components that activate a voxel with a probability of at least 1 3

1025. Similarly, for a given nodal type in the structural network, we cal-

culated its functional flexibility by averaging the cognitive component

numbers of all voxels that belonged to the corresponding nodal type.

Finally, we performed paired nonparametric permutation tests

(N520,000) with Bonferroni-corrected p< .05 to evaluate the signifi-

cance levels of the differences in the functional participant coefficient

or the cognitive component number between hubs and nonhubs (i.e.,

uncorrected p< .05/6, here the 6 was the number of the comparisons

for two functional indices for three categories, 233) or among catego-

ries of hubs (i.e., uncorrected p< .05/6, here the 6 was the number of

the comparisons for two functional indices among three categories of

hubs, 23C2
3).

2.5.3 | Topological vulnerability of structural hubs

We estimated the topological vulnerability of different categories of

structural hubs using the nodal “lesion” simulation procedure as follows

(Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; He et al.,

2007). Briefly, for each category of hubs, we first performed targeted

attacks on individual structural networks by removing the nodes one-

by-one according to the descending order of hub indices and then

measured the changes in the global efficiency and the size of the larg-

est connected component of the networks. We also performed a ran-

dom failure procedure in which brain nodes were continuously and

randomly removed from individual networks 100 times and recom-

puted the averaged two measures of the resultant networks. Notably,

to ensure that the curves from different individual networks were com-

parable, for each curve, we divided all the values of this curve by the

value of its first point to yield the normalized curve. Then, for each indi-

vidual network, we calculated the area under the top 20% curves

(AUC) of both the largest component size and the global network effi-

ciency under targeted attacks and random failures. A smaller AUC rep-

resents a faster decrease in global network performance in response to

nodal removal. Finally, we evaluated the differences in the AUC of the

largest component size or the global network efficiency between when

under targeted attacks and when under random failure. Paired non-

parametric permutation tests (N520,000) with Bonferroni-corrected

p< .05 was used to determine the significance of the statistical differ-

ences (i.e., uncorrected p< .05/6, here the 6 was the number of the

comparisons for two topological indices of three categories, 233) or

among the three categories of hubs under targeted attacks (i.e., uncor-

rected p< .05/6, here the 6 was the number of the comparisons for

two topological indices among three categories of hubs, 23C2
3).

To determine whether the previously described miscellaneous

characterizations in these categories of structural hubs were unique in

the human brain networks or obtained by chance, we generated all

possible combinations of nodal classifications, computed the resultant

surrogated hub indices, and subsequently compared the characteristics

between real categorized hub indices and surrogate ones. For details,

refer to Supporting Information, Methods.
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2.6 | Reliability of structural brain hubs and individual

identification analyses

To determine whether the classification of nodal metrics and the spatial

distribution of structural brain hub indices are reliable and whether

each category hub index can contribute to individual identification dur-

ing repeated scans, we performed the following analyses using the

imaging data of Dataset 2.

2.6.1 | Reliability analysis

For each subject, we constructed two structural brain networks corre-

sponding to two scanning sessions to classify their eight metrics into

three categories and to then compute their hub indices for each cate-

gory. The network construction and analysis procedures were identical

to those used for Dataset 1. To evaluate the reliability of the classifica-

tion of metrics and the redefinition of hubs, we determined whether

the results of the classification between two scanning sessions were

consistent. We further calculated the intra- and intersubject Spear-

man’s correlation coefficients for each category of hub index across

nodes between two scanning sessions and estimated group-averaged

hub index correlations between two sessions, to assess the reliability of

the spatial distribution of hub indices at both the individual and group

levels. Furthermore, we evaluated the reliability of each nodal metric

by computing across-node Spearman’s correlation between two ses-

sions. Paired t tests with Bonferroni-corrected p< .05 were used to

determine the significances of reliability differences between the cate-

gorized hub-index and relevant nodal metrics.

2.6.2 | Individual identification using structural hub indices

To explore whether the spatial patterns of different categories of hub

indices contribute to individuality, we performed the following individ-

ual identification analysis. This procedure was originally proposed to

identify individuals based on the brain’s functional connectivity matrix

(Finn et al., 2015); however, it was modified here by incorporating

nodal hub indices of brain networks. Briefly, for each category of hub

indices, we first selected an individual from Session 1 as a reference

and then calculated the Spearman’s correlation coefficient across nodes

between this reference and every subject in Session 2. Then, we deter-

mined whether the reference itself retained the maximum correlation

value among all individuals in Session 2; if so, we defined that the pre-

diction succeeded, and otherwise it did not succeed. Using this proce-

dure, we repeated this analysis for each individual from Session 1 and

calculated the predictive rate for each category of hub indices. We also

performed the predictive analysis from Session 2 to Session 1. Further-

more, we performed permutation tests (N520,000) with Bonferroni

correction for multiple comparison (i.e., uncorrected p< .05/3, across

three hub indices) to assess whether the intra- and intersubject similar-

ities of hub indices were different.

2.7 | Validation analysis

To determine whether our findings were influenced by different image

preprocessing and data analysis strategies, we performed the following

validation analyses. First, to estimate the effects of diffusion imaging

protocols and reconstructing algorithms of fiber pathways, we con-

structed individual structural brain networks using HARDI data from

HCP (Dataset 3) and reperformed the same analyses as Dataset 1. Sec-

ond, previous studies have shown that different node definitions may

affect network topological properties (Wang et al., 2009; Zalesky et al.,

2010); thus, we further constructed the structural brain network using

two additional parcellations: the 625-node random parcellation, which

was obtained by subdividing the anatomical transcendental boundaries

of automated anatomical labeling (Tzourio-Mazoyer et al., 2002), and a

coarser 360-node multimodal parcellation, which was parceled based

on the anatomical and functional gradient information over the cortex

(Glasser et al., 2016). Third, to determine whether our findings regard-

ing the hub characteristics are independent of the hub selection thresh-

old (top 20% in the hub indices), we added two additional thresholds,

the top 15% and the top 25%, to define brain hubs. Fourth, to examine

whether hub identifications were sensitive to the existence of isolated

nodes in brain networks, we explored the spatial distribution of the iso-

lated nodes by calculating the probability of isolation for each node

across individuals. The nodal metrics were recalculated in the individual

networks with the removal of isolated nodes and the hierarchical clus-

tering analysis was reperformed to identify categorized hubs. Finally, to

validate whether the modular identification would affect the calculation

of the participant coefficient and therefore affect our main findings, we

repeated our analyses performed on Dataset 1 with the participant

coefficients calculated based on a group-level modular organization.

For additional details regarding the validation analyses, refer to Sup-

porting Information, Methods.

3 | RESULTS

3.1 | Three categories of structural hubs in the human

brain networks

3.1.1 | Similarity of spatial distribution of network nodal

metrics

For each subject, we constructed individual structural brain networks

and generated eight nodal centrality maps (Figure 1). Visual examina-

tion indicated that several regions exhibited higher nodal centrality

values (e.g., ranked in top 20%) in most of these centrality maps,

which included the medial and lateral frontal and parietal regions

and several subcortical regions, such as the putamen, the caudate

and the thalamus (Figure 2a). Furthermore, Spearman’s rank correla-

tion analyses indicated a wide range of correlation values among

these centrality maps (range: 0.38–0.93, Figure 2b), which suggests

remarkably similar or different spatial distributions between specific

network nodal metrics. Notably, all spatial correlations among these

nodal centrality maps in the brain network were significantly (p val-

ues< .001, Bonferroni corrected) lower than those in the random-

ized counterparts, with the exception of the correlation between the

K-core centrality and subgraph centrality (p value5 .012, uncor-

rected) (Figure 2c), suggesting a unique organizational architecture of

brain networks.
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3.1.2 | Three categories of structural brain hubs

Using the agglomerative hierarchical clustering analysis on the group-

averaged metric-by-metric correlation matrix, we classified the eight

nodal metric maps into three categories (Figure 3a and Supporting

Information, Figure S1): (a) subgraph centrality, K-core centrality, eigen-

vector centrality and closeness centrality; (b) page-rank centrality,

betweenness centrality and degree centrality; and (c) participant coeffi-

cient. Within each category, the brain hubs were identified according

to a hub index, and their topological and spatial positions were

described (Figures 3b and 4). By visual inspection and prior knowledge

from graph theory, we determined that the three categories of brain

hubs showed distinct features: closely aggregated hubs, widely

FIGURE 2 The spatial distributions of eight graph-nodal metrics and their spatial similarities. (a) The group-level centrality map for each
graph-nodal metric was obtained by averaging the rank maps across individuals. The color of the surface represents the top percentage for
a given node in descending order of rank values. Notably, after obtaining the top percent maps, all results were smoothed for better visual-
ization with full-width half-maximum (FWHM)52 mm. All eight smoothed group-level top percentage of metrics were mapped to the
ICBM152 brain surface template in the MNI space using BrainNet Viewer (Xia et al., 2013). (b) The Spearman’s rank correlations across
nodes were estimated to represent the spatial similarities among the nodal metrics. The order of metrics was arranged according to the fol-
lowing hierarchical clustering analysis to display the spatial similarities and dissimilarities among metrics. (c) The spatial similarities among
nodal metrics were compared to a null model. The lower triangular matrix shows the t values that represent the difference in the spatial
similarities among nodal metrics between those in the brain network and 100 random networks. The upper triangular matrix represents the
significant level of t values [Color figure can be viewed at wileyonlinelibrary.com]
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distributed hubs and dispersed hubs that linked structural modules,

which were thus defined as aggregated hubs (A-Hub), distributed hubs

(D-Hub), and connector hubs (C-Hub), respectively (Figure 3b). Notably,

the three categorized hubs partly overlapped with the hubs defined by

single nodal metrics (the nodes with top 20% single nodal metric val-

ues). For the aggregated hub index and its relevant node metrics (sub-

graph centrality, K-core centrality, eigenvector centrality, and closeness

centrality), the overlapping ratios between hubs defined by single nodal

metrics and hubs defined by the corresponding categorized hub indices

(overlapped hub ratios) were 77.2%, 55.3%, 74.1%, and 60.2%. For the

distributed hub index and its relevant node metrics (page-rank central-

ity, betweenness centrality, and degree centrality), the overlapped hub

ratios were 66.9%, 66.7%, and 73.9% (Table 2). Thus, the single nodal

metrics cannot fully represent the properties of these categorized

hubs, which suggests the necessity of hub categorization.

Using a functionally defined brain parcellation (Supporting Informa-

tion, Figure S2), we showed convergent and divergent spatial distribu-

tions in functional systems among the three categories of structural

hubs (Figure 4); commonly identified hub nodes in all three categories

were primarily located at the default-mode system (p values< .005,

Bonferroni corrected), and hub nodes were additionally identified in

the visual and limbic systems for aggregated hubs, in the frontoparietal

systems for distributed hubs and in the sensorimotor and ventral atten-

tion systems for connector hubs (p values< .01, Bonferroni corrected).

3.2 | Miscellaneous characteristics of three categories

of structural brain hubs

3.2.1 | Microstructural organization and wiring cost of

structural hubs

Compared with the non-hubs, all three categories of brain hubs had

significantly (p values< .001, Bonferroni corrected) larger fractional ani-

sotropy, mean diffusivity and axial diffusivity values, smaller radial dif-

fusivity values, longer streamline lengths and higher streamline costs,

with the exception of the radial diffusivity of the connector hubs (p val-

ue5 .0038, uncorrected) (Figure 5a). Among the three categories of

FIGURE 3 Three categories of hubs. (a) The group-averaged map of the Spearman’s correlations among the eight nodal metrics and the
agglomerative hierarchical clustering tree generated from the map. The red, blue, and green solid lines show the classification results, which
indicate the three categories of metrics used to identify the following aggregated hubs, distributed hubs, and connector hubs. (b) The distri-
butions of hubs from a representative subject in the topological space. Notably, the network layouts were generated using the “fdp”
algorithm in NetworkX [Color figure can be viewed at wileyonlinelibrary.com]
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hubs, the aggregated hubs exhibited the largest fractional anisotropy

and axial diffusivity values and the longest streamline length, the dis-

tributed hubs exhibited the highest streamline cost, and the connector

hubs exhibited the smallest fractional anisotropy, the smallest axial dif-

fusivity, the largest radial diffusivity, the shortest streamline length and

the lowest streamline cost (p values< .005, Bonferroni corrected, Fig-

ure 5b). These results together imply that all three categories of struc-

tural brain hubs tended to retain high-level microstructural organization

and expensive wiring costs compared to the nonhubs; however, there

were significant differences in these features among the categories of

hubs.

3.2.2 | Functional modular integration and cognitive

flexibility of structural hubs

Both the distributed hubs and the connector hubs had significantly (p

values< .001, Bonferroni corrected) higher functionally defined partici-

pant coefficients and more number of cognitive components than the

nonhubs; in contrast, the aggregated hubs did not have a significantly

different functional participation coefficient or number of cognitive

components with the nonhubs (Figure 5a). Furthermore, sorted in

descending order for both the functional participant coefficient and the

number of cognitive components, the hubs followed connector

hubs>distributed hubs> aggregated hubs (p values< .001, Bonferroni

FIGURE 4 The distributions of three categories of hubs in seven functional systems. (a) The spatial distributions of group-level hub indices
mapped on a brain surface (FWHM52 mm). (b) The left panel describes the proportions of the three categories of hubs in seven functional
systems defined by our combined R-fMRI data. The red, blue, and green solid lines indicate aggregated, distributed and connector hubs,
respectively. Each color around the radar map specifies a functional system. The right panel indicates functional systems over the brain sur-
face, which were identified based on the group-averaged functional network at voxel-wise. The color index of each functional system corre-
sponds to the color for each system of the radar map in the left panel [Color figure can be viewed at wileyonlinelibrary.com]
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corrected, Figure 5b). These results indicate that both distributed and

connector hubs play more crucial roles in functional modular integra-

tion and contribute to greater cognitive flexibility than aggregated

hubs.

3.2.3 | Topological vulnerability of structural hubs

To assess the topological vulnerability of the three categories of hubs

in brain networks, we performed simulation analyses in which network

nodes were continuously removed in a manner of random failure or

targeted attacks. As expected, the continuous attacks on all three cate-

gories of hubs had more damage on the brain network efficiency and

brain network integrality than on the random failure of nodes, as indi-

cated by the significantly lower AUC of the largest component size and

global efficiency (p values< .001, Bonferroni corrected, Figures 5a and

6). Of note, targeted attacks on distributed, aggregated and connector

hubs resulted in reduced network performances in a descending order

when the top 20% of nodes were removed (p values< .001, Bonferroni

corrected, Figures 5b and 6). Together, our results suggest that all three

categories of structural hubs are critical for maintaining global commu-

nication and the topological stability of the brain networks, whereas

connector hubs are the most resilient to targeted attacks compared to

the other categories.

TABLE 2 Detailed description of the overlapping percentages between each pair of three categorized of hubs and the hubs defined by single
nodal metrics

Sc-Hub (%) Kc-Hub (%) Ec-Hub (%) Cc-Hub (%) Pr-Hub (%) Bc-Hub (%) Dc-Hub (%) Pc-Hub (%)

A-Hub 77.2 55.3 74.1 60.2 30.4 40.0 52.4 22.2

D-Hub 42.0 37.7 34.8 47.6 66.9 66.7 73.9 22.3

C-Hub 18.7 22.7 19.9 29.7 17.7 28.4 21.2 100

FIGURE 5 The miscellaneous characteristics of the three categories of hubs. (a) Comparisons of miscellaneous characteristics (e.g.,
microstructural organization, wiring cost, functional association, cognitive flexibility, and topological vulnerability) between hubs and
nonhubs for each category of hubs. Bonferroni corrections were performed for each block. (b) Comparisons of these characteristics among
the three categories of hubs. The radar map shows the differences in the mean characteristic indices among the three categories of hubs;
for each characteristic, the mean indices of the three categories of hubs were normalized from 0 to 1, in which the minimal mean index was
assigned as 0, and the maximal mean index was specified as 1. For each box plot, the bottoms and tops of the boxes indicate the first and
third quartiles of the corresponding indices across individuals, the band inside the box represents the median, and the whiskers specify the
1.5 interquartile range (IQR) of the lower and upper quartiles [Color figure can be viewed at wileyonlinelibrary.com]
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3.2.4 | Unique characteristics of three categories of hubs

We found that only a limited number of characteristics in specific sur-

rogate combinations of nodal metrics were similar to those in the real

categories of hubs (e.g., 0.71% surrogate combinations had 9 character-

istics, 0.36% had 8 characteristics, 0.36% had 7 characteristics, and

2.86% had 6 characteristics). Importantly, none of the surrogate combi-

nations of nodal metrics can produce the same characteristics results

as the real categories of hubs (Supporting Information, Figure S3),

which indicates the characteristics uniqueness in the three categories

of structural hubs in the brain networks.

3.3 | Highly reliable brain hub indices and their

contributions to individual identification

3.3.1 | High reliability of classification of nodal metrics and

spatial distribution of hub indices

We classified eight metrics into three categories using Dataset 2 and

found that the results of the metric classification from two scanning

sessions were identical, suggesting that the classification of metrics and

hub redefinition are highly reliable. Furthermore, the spatial distribu-

tions were similar between scanning sessions for all three category hub

indices (Table 3 and Supporting Information, Figure S4), which suggests

the high reliability of the spatial distribution for all three category hub

indices. For each nodal metric, the spatial distributions were also highly

similar between repeated scanning sessions at both individual and

group levels (Table 3). Interestingly, we noticed that the aggregated

hub indices defined here had significantly higher between-session spa-

tial similarities than the closeness centrality or K-core centrality (p val-

ues< .001, Bonferroni corrected); moreover, the distributed hub

indices had significantly higher spatial similarities than either between-

ness centrality or page-rank centrality (p values< .001, Bonferroni cor-

rected) and lower than degree centrality (p value< .001, Bonferroni

corrected).

3.3.2 | Hub index contributions to individual identification

We implemented individual identification for each category of hub indi-

ces. From Session 1 to Session 2, the predictive rates of subject iden-

tity reached 100%, 100%, and 89.5% for aggregated hubs, distributed

hubs, and connector hubs, respectively. The similar predictive rates

from Session 2 to Session 1 were 100%, 100%, and 84.2%, respec-

tively. Notably, the intra-subject hub index correlation coefficients

were 0.76760.025 for the aggregated hub index, 0.73260.021 for

the distributed hub index and 0.34760.046 for the connector hub

index, respectively, which were significantly greater than the intersub-

ject values (0.49760.048, 0.46660.027, and 0.21760.040, respec-

tively, all p values< .001, Bonferroni corrected, Table 3 and Supporting

Information, Figure S5). These findings suggest that the spatial patterns

of all three category hub indices are unique across individuals and may

serve as a structural fingerprint for individual identification.

3.4 | Validation results

Our results were evaluated from five different aspects, which included

diffusion imaging protocols and fiber reconstructing algorithms, defini-

tion of network nodes, selection of hub thresholds, consideration of

isolated nodes and the modular organization for participant coefficient

calculations. We determined that the results under different situations

were mostly identical to the main analyses, which suggests the robust-

ness of our findings. For more detailed results, refer to Supporting

Information, Results and Figures S6–S15.

4 | DISCUSSION

We defined three categories of structural brain hubs, namely aggre-

gated, distributed, and connector hubs, with anatomically convergent

and divergent spatial distributions in brain systems. Moreover, these

distinct category brain hubs showed differential microstructural,

FIGURE 6 Targeted attacks on the three categories of hubs and random failure. The descending curves of the largest component size (left
plot) and global efficiency (right plot) for targeted attacks of the top 25% hub indices and random failure. The red, blue, and green solid
lines represent the mean curves for the targeted attacks on the aggregated, distributed, and connect hubs across individuals, respectively;
the gray line represents the mean curve of random failure. The dashed areas represent the corresponding 695% confidence intervals [Color
figure can be viewed at wileyonlinelibrary.com]
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functional, and cognitive associations and topological vulnerabilities.

Importantly, all three categories of structural hubs retained high reliabil-

ity in spatial locations and microstructural and functional characteristics

across long-term repeated scans and may act as a structural fingerprint

with high predictive rates for individual identification. To our knowl-

edge, we demonstrated for the first time three categories of structural

brain hubs with different topological roles and functional significance,

which highlight the organizational principles of human brain structural

networks.

4.1 | The classification of graph-nodal metrics

By performing hierarchical clustering analysis, the eight commonly used

nodal metrics were classified into three categories according to their

spatial distributions. The first category included the subgraph centrality,

K-core centrality, eigenvector centrality and closeness centrality. Math-

ematically, these four metrics were designed to assess the ability of

information spreading for a given node in networks: for example, the

subgraph centrality of a given node captures the number of subgraphs

associated with a node (Estrada and Rodriguez-Velazquez, 2005), and it

characterizes the capacity of information spreading circuits which begin

from a given node and return to this node; the closeness centrality of a

given node specifies the reciprocal of the averaged shortest path from

this node to any other nodes in the network (Freeman, 1978), and it

describes the comprehensive efficiency of information spreading from

a given node to other nodes. These hubs may correspond to the “sour-

ces” or “sinks” structure that work as an input or relay station for the

entire networks (Alvarez-Hamelin, Dall’asta, Barrat, & Vespignani,

2006; Bonacich, 1972; Estrada and Rodriguez-Velazquez, 2005; Free-

man, 1978). In contrast, the second category included page-rank cen-

trality, betweenness centrality and degree centrality, which capture the

capacities of the global and local connection integration or the position

in the communication path of the networks: for example, betweenness

centrality of a given node represents the number of times that this

node is on the shortest path between any other two nodes in the net-

work (Freeman, 1980), and it acts as a “bridge” between local interac-

tion and global integration (Bullmore and Sporns, 2012). As expected,

hubs of this category were evenly distributed in the networks, and

work as the “router” to support information transfer at both the global

and local levels (Boldi, Santini, & Vigna, 2009; Freeman, 1978; Free-

man, 1980; Page, Brin, Motwani, & Winograd, 1999). Moreover, the

participant coefficient quantifies the level of a node to connect with

different anatomical modules, and these hubs were naturally located at

the adjacent borders of the anatomical lobes, which act as a “connec-

tor” to facilitate the communication among anatomical modules under-

lying the functional parcellations (Guimera, Sales-Pardo, & Amaral,

2007). Notably, the participant coefficient indicated a remarkably dif-

ferent spatial distribution from other seven nodal metrics, which may

be because of two main reasons. First, the calculation of the participant

coefficient is largely dependent on the modular organization of the net-

work, whereas the estimations of other metrics were largely based on

their connectivity patterns. Thus, the participant coefficient could be

considered as a sub-network-level nodal metrics, which is relatively dif-

ferent from other nodal metrics. Second, the participant coefficient has

been demonstrated to be closely associated with cognitive flexibility

(Bertolero, Yeo, & D’esposito, 2015). Therefore, compared with other

nodal metrics, the participant coefficient tends to be more involved in

cognitive behaviors than other nodal metrics, particularly for the con-

nector hubs. Together, each of the three categories of hub indices we

identified emphasized the specifically topological centrality for a given

node in the brain network.

4.2 | The spatial distribution of three categories of
structural hubs

The three categories of structural hubs shared common spatial distribu-

tions primarily in the default-mode system, including the posterior cin-

gulate cortex/precuneus, the medial prefrontal cortices and the middle

TABLE 3 Spatial similarities of three categories of hub indices and eight single nodal metrics between two repeated scanning sessions

Nodal metric name Individual level (mean6 STD) Group level
Intrasubject Intersubject

Aggregated hub index 0.7676 0.025 0.49760.048 0.990

Distributed hub index 0.7326 0.021 0.46660.027 0.988

Connector hub index 0.3476 0.046 0.21760.040 0.944

Subgraph centrality 0.7666 0.028 0.48460.054 0.990

K-core centrality 0.6936 0.027 0.42060.042 0.985

Eigenvector centrality 0.7746 0.055 0.53760.084 0.992

Closeness centrality 0.7306 0.022 0.46960.036 0.987

Page-rank centrality 0.6776 0.024 0.42960.028 0.984

Betweenness centrality 0.6796 0.023 0.43360.027 0.984

Degree centrality 0.7636 0.019 0.47760.030 0.989

Participant coefficient 0.3476 0.046 0.21760.040 0.944

Note. STD, standard deviation.
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temporal cortices, which is consistent with previous structural hub

studies (Crossley et al., 2014; Gong et al., 2009; Hagmann et al., 2008;

van den Heuvel et al., 2010, 2012; van den Heuvel and Sporns,

2013b). The default-mode system has been proven to be a core system

of the human brain network with a high cost of energy consumption

(Raichle et al., 2001; Tomasi, Wang, & Volkow, 2013) and heavy

regional cerebral blood flow (Liang, Zou, He, & Yang, 2013) to support

highly efficient information transfer (van den Heuvel et al., 2012; Xia

et al., 2016) and various cognitive processes (Buckner, Andrews-

Hanna, & Schacter, 2008; Cavanna and Trimble, 2006). Here, our

results provided further evidence that the default-mode system is the

central system of structural brain networks from different topological

perspectives. Intriguingly, we determined that different categories of

hubs also exhibited unique distributions in several specific brain sys-

tems. For example, aggregated hubs were more located in the visual

and limbic systems. The visual system is a fundamental system for cap-

turing information from the outside environment, which lies near the

bottom of the visual processing hierarchy. It provides the original signal

for further processing by other functional systems, which indicates it

function as a “source” structure in brain networks (Felleman and Van

Essen, 1991; Maunsell and Van Essen, 1983; Yeo et al., 2011). The lim-

bic system supports various functions, including emotion, motivation,

and behavior, and by its complex anatomical connections with both the

association cortex and basal ganglia, it acts as a “relay station”

(Alexander, Crutcher, & DeLong, 1991; Mogenson, Jones, & Yim, 1980;

Morecraft and Van Hoesen, 1998). Distributed hubs tended to be

more evenly distributed in all functional systems. This even distribution

characteristic may suggest their crucial roles in segregating and inte-

grating information from separate parts of the whole-brain networks at

both the global and local levels (Bullmore and Sporns, 2009, 2012;

van den Heuvel and Sporns, 2013b). Connector hubs were more sig-

nificantly located in the sensorimotor and ventral attention systems

than the other categories of hubs. Although the sensorimotor and

ventral attention systems have their own independent functions,

their anatomical locations are precisely settled on the boundaries of

brain lobes (e.g., the sensorimotor system at the central sulcus and

the ventral attention system in the parieto-occipital sulcus and

boundary of the cingulate/frontal cortices). Notably, the locations of

the connector hubs reported in our study are consistent with a pre-

vious study (Hagmann et al., 2008). Collectively, our results demon-

strated the convergence and divergence of the anatomical

distributions of the three categories of hubs, which may suggest a

potential topological architecture of structural networks that underlie

brain functional systems.

4.3 | The characteristics of the three categories of

structural hubs

As expected, all three categories of hubs showed higher level of

microstructural organization than non-hubs, as indicated by the

larger fractional anisotropy, mean diffusivity, and axial diffusivity val-

ues, suggesting that these hubs are associated with regular fiber

architecture, greater axonal diameter, larger packing densities and

higher proportions of myelinated axons in white matter (WM) tracts

(Basser, 1995; Beaulieu, 2002; Collin et al., 2014). These hubs also

connected with distant fiber streamlines and required greater wiring

costs to build these topologically centralized hubs that facilitate

communication with distant brain regions. (Collin et al., 2014; van

den Heuvel et al., 2012; Xia et al., 2016). Specifically, the aggre-

gated hubs had the highest level of microstructural organization and

the longest transmission distance, which may enable them to trans-

fer information efficiently within whole-brain networks. The distrib-

uted hubs consumed the greatest wiring cost, which may be a

result of their dispersed involvement in the integration of both

global and local communication. Nevertheless, these WM traits

empower all three categories of hubs to maintain fast and long-

distance communication with shorter transmission delays and larger

physical consumption, which consequently facilitate synchronous

information processing and increased signal transfer robustness dur-

ing communication (Collin et al., 2014; Kaiser and Hilgetag, 2006;

Xia et al., 2016). This phenomenon provides further experimental

support for the existence of the cost-efficient trade-off of neural

systems (Bullmore and Sporns, 2012) and suggests that the three

categories of hubs are all important components in this neural cir-

cuitry formation. Moreover, all three categories of hubs, particularly

the distributed hubs, had pronounced topological vulnerability as

assessed by the “lesion” simulation, which suggests the core posi-

tions of all three categories of hubs in supporting the architectural

organization and efficient information communication of brain struc-

tural networks (Crossley et al., 2014). Additionally, both distributed

hubs and connector hubs exhibited significantly higher functionally

defined participant coefficients and larger cognitive flexibility than

peripheral nodes, suggesting that these two categories of structural

hubs are more involved in information integration among functional

modules that underlie multiple cognitive functions than aggregate

hubs (Bertolero et al., 2015; He et al., 2009; Power et al., 2013;

Yeo et al., 2014).

4.4 | The robustness and individually uniqueness of
the three categories of structural hubs

We demonstrated that the spatial distributions were significantly

similar between scanning sessions for all three categories of hub

indices, indicating that the existence of three categories of hubs

was not induced by “artifacts” and the three categories of hub indi-

ces are useful in reflecting the organizational characteristics of struc-

tural human brain networks. More importantly, our results showed

that the intrasubject individual variability of all three categories of

hub indices are relatively smaller than the intersubject variability,

and they may serve as the connectome fingerprints for accurate

subject identification from one another (Finn et al., 2015). This find-

ing suggests that the pattern of the three categories of hubs in the

structural network is unique for each individual, which may be a

crucial connectome basis for exploring the variance in individual

behavior and implementing personalized medicine for neuropsychiat-

ric illnesses (Finn et al., 2015; Li et al., 2009; van den Heuvel, Stam,

Kahn, & Hulshoff Pol, 2009).
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5 | L IMITATIONS AND FURTHER
CONSIDERATIONS

There are several issues that warrant further considerations. First, we

demonstrated that our main findings are reliable under different meth-

odological choices, including imaging protocols, fiber reconstructing

algorithms, and hub selective thresholds. Nevertheless, with the growth

of neuroimaging techniques, newly developed methods, such as diffu-

sion spectrum imaging (Wedeen et al., 2008), may be taken into

account in the future. Second, previous studies have suggested that

finer parcellations enable the capture of both major tracts and forking

U-fibers in a structural brain network, which may thus better reflect

accurate network topologies than coarser ones (Zalesky et al., 2010). In

this study, we found that the anatomical overlap across different hub

definitions are reproducible regardless of the resolution or generating

methods of the brain parcellations (Glasser et al., 2016; Zalesky et al.,

2010), which implies the stable multiple roles in contributing to the net-

work topologies of these overlapped regions. Future studies that

employ brain parcellation generated with multiple biological or cogni-

tive information may further elucidate and clarify the roles of different

brain hubs. Third, our analyses were performed based on structural

brain networks constructed from diffusion MRI data, which disabled

exploration in the directions of the fiber tracks, thus resulting in the

inability to map information flow in the structural brain networks.

Future studies that are established using more advanced imaging tech-

niques or data from postmortem brains (Amunts et al., 2013) may pro-

vide opportunities to deepen our understanding of the directed

topologies of the three categories of hubs. Fourth, we adopted WM

diffusion indices to estimate the microstructural organization of the

structural hubs in the current study; however, the accurate biophysical

interpretation of these indices remains to be further clarified (Jones,

Kn€osche, & Turner, 2013). Future studies that combine biophysical

data from microscale cytoarchitectonics (Scholtens, Schmidt, de Reus,

& van den Heuvel, 2014), myeloarchitectonics (Van Essen et al., 2012),

chemoarchitectonics (Turk, Scholtens, & van den Heuvel, 2016), and

the metabolic level (Collin et al., 2014; Liang et al., 2013) may better

explain the association between the structural connectome and its

material substrates. Moreover, in this study we used the cognitive flexi-

bility (Yeo et al., 2014) derived from reported task activation peaks in

BrainMap (Fox and Lancaster, 2002) to investigate the functional roles

of hubs at the task-involved level. As a complementary, we also

adopted the functional modular integration (He et al., 2009; Power

et al., 2013) based on the resting-state data we collected to examine

the functional roles of structural hubs at the resting-state level. Both

measures may be considered as general reflections of the functional

importance, thus providing evidence of the functional roles of the

hubs. Future studies that combine task fMRI and dMRI data are valua-

ble to investigate the roles of different structure hubs under specific

functional status. Finally, previous studies have suggested a strong

nexus between brain hubs and neuropsychiatric disorders (Crossley

et al., 2014), and our “lesion” simulation also demonstrated a relatively

different effect on attacking different categories of structural hubs.

Future studies using data that correspond to disease states are

desirable to ascertain the specific associations among distinct catego-

ries of hubs and brain disorders, which would extend our insight into

the pathologies of neuropsychiatric disorders, and in turn, enable a bet-

ter understanding of the biological meaning of the diverse topology of

different brain hubs.
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