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Abstract: Recent imaging connectome studies demonstrated that the human functional brain network fol-
lows an efficient small-world topology with cohesive functional modules and highly connected hubs. How-
ever, the functional motif patterns that represent the underlying information flow remain largely unknown.
Here, we investigated motif patterns within directed human functional brain networks, which were derived
from resting-state functional magnetic resonance imaging data with controlled confounding hemodynamic
latencies. We found several significantly recurring motifs within the network, including the two-node recip-
rocal motif and five classes of three-node motifs. These recurring motifs were distributed in distinct patterns
to support intra- and inter-module functional connectivity, which also promoted integration and segrega-
tion in network organization. Moreover, the significant participation of several functional hubs in the recur-
ring motifs exhibited their critical role in global integration. Collectively, our findings highlight the basic
architecture governing brain network organization and provide insight into the information flow mecha-
nism underlying intrinsic brain activities. Hum Brain Mapp 38:2734–2750, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

The human functional brain connectome, a comprehen-
sive map comprising neural elements and functional con-
nectivity, has attracted considerable interests in recent
decades due to its advantage in dissecting the common
rule of brain functional configurations [Biswal et al., 2010].
With the implementation of noninvasive neuroimaging
techniques and graph-theory analytical approaches, the
large-scale functional brain connectome has been studied
as a network that exhibits a highly efficient small-world
architecture, functional modules and densely connected
hub regions [for review, see Bullmore and Sporns, 2012;
Bullmore et al., 2009; He and Evans, 2010]. Despite mas-
sive findings delineating the network topology, it is note-
worthy that most studies concentrate on the undirected
functional network that emerged from the interregional
synchronization of brain activities. The directed functional
network, which essentially characterizes the information
flow in intrinsic activities [Craddock et al., 2013; Friston,
2011], has been largely overlooked.

In contrast to the undirected functional network, taking
into account the direction facilitates our understanding of
the driven and driving architecture in the brain as well as
the ectopic foci leading to pathological conditions [Crad-
dock et al., 2013]. Using the Granger Causality analysis
(GCA) [Goebel et al., 2003; Granger, 1969], a handful of
studies have attempted to investigate the directed human
brain functional connectome. For instance, several func-
tional magnetic resonance imaging (fMRI) studies reported
the small-world structure, the modular division [Liao
et al., 2011; Yan and He, 2011], and more interestingly, the
divergence of driven and driving hub regions in the
directed human brain functional network [Wu et al., 2013;
Yan and He, 2011]. However, the findings of these studies
might be affected by several confounding factors. For
instance, the interregional hemodynamic latency confuses
the time lags caused by “real” information flow in intrinsic
activity [Bandettini and Wong, 1997], and the non-linearity
of brain functional systems [Friston, 2001] may go beyond
the scope of GCA. Moreover, a deeper understanding on
the underlying information flow patterns supporting the
driven and driving architecture, which is commonly
revealed by motif patterns, has yet to be elucidated.

The network motif patterns were investigated to unravel
the basic building blocks in a directed network [Milo
et al., 2002; Sporns and K€otter, 2004], in which a type of
motif was considered to be statistically significant if they
appear much more frequently than expected in random
networks. In the mammalian structural cortical networks
(e.g., macaques and cats) derived from tract-tracing data,
Sporns and K€otter [2004] observed a significant class of
three-node motif, a chain of two reciprocal connections in
which two nodes without direct communication are highly
integrated through a third node. Subsequently, Iturria-
Medina et al. [2008] identified a closed chain of three con-
nections as a significant motif in human brain structural

networks, but it was derived from diffusion MRI data in
which the directions of the connections were ignored.
Moreover, because the functional coordination is shaped
but not limited to the underlying structural connections
[Wang et al., 2015], exploring the functional motif patterns
may provide direct information about the brain’s function-
al repertoire. Recently, by simulating the neuronal dynam-
ical activity with the neural mass model, researchers
suggested that several chain-like motifs promoted the
functional synchronizations between brain regions. Mean-
while, some other loop-like motifs enriched the metastable
functional configurations [Gollo et al., 2014, 2015; Gollo
and Breakspear, 2014]. Nonetheless, the empirical evidence
on the functional motifs in the human brain and their con-
tribution for brain functional organization requires further
explorations.

This study aimed to investigate functional motifs in the
human brain network to unravel the underlying informa-
tion flow patterns. Two fMRI datasets of 10 healthy sub-
jects, including the breath-holding (BH) task-related fMRI
data (T-fMRI) and the resting-state fMRI (R-fMRI) data
were used. The BH T-fMRI data were used to estimate the
regional hemodynamic latencies of the vascular responses,
which were corrected during the preprocessing of R-fMRI
data [Chang et al., 2008; Cohen et al., 2004; Thomason
et al., 2005, 2007]. The R-fMRI data were used to recon-
struct the directed functional brain networks based on the
convergent cross mapping (CCM) approach that extends
the coverage of GCA [Sugihara et al., 2012]. With the
resultant network, the significantly recurred motifs were
identified and the motif distribution patterns were elabo-
rately analyzed in line with the modular architecture and
hubs. Through these analyses, we will address the follow-
ing questions: (i) which types of network motifs appear in
the directed functional networks of the human brain and
how are they distributed in the whole network, and (ii)
how these specific network motifs topologically contribute
to the brain’s intrinsic activity in modular (e.g., intra- and
inter-module connections) and nodal (e.g., network hubs)
architectures.

MATERIALS AND METHODS

Participants

The multiband functional imaging data used in this
study came from a publicly released dataset from INDI
(http://fcon_1000.projects.nitrc.org/indi/pro/eNKI_RS_
TRT/FrontPage.html). This dataset consists of multi-modal
imaging data from 24 participants (ages: 19–60 years,
34.4 6 12.9 years, 18 males) who underwent a deep pheno-
typing protocol. Recently, this dataset was used to exam-
ine the test-retest reliability of regional functional
homogeneity [Zuo et al., 2013] and functional brain hubs
[Liao et al., 2013]. Notably, in the present study, the data
of 14 participants were excluded from the analyses due to
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current/historical psychiatric disorders (n 5 7), a lack of
diagnostic information (n 5 4), obvious brain atrophy
(n 5 1), excessive unknown volume in the BH T-fMRI data
(n 5 1) and excessive head motion (n 5 1). The remaining
data from 10 participants (age: 19–48 years, 30.5 6 10.1
years, 6 males) were used for further analysis. The demo-
graphic information of participants was illustrated in Sup-
porting Information Table S1.

Experimental Design

For each participant, two R-fMRI scans approximately
one week apart and a BH T-fMRI scan were acquired.
During the R-fMRI scans, participants were instructed to
look at the fixation cross, but not to stare or strain their
eyes. During the T-fMRI scan obtained one day after the
first R-fMRI scan, participants were asked to perform a
block-designed BH task with seven repetitions of the
blocks. In each block, participants were first instructed to
breath according to the text sequentially presented on the
screen, including “Rest” for 10 s, “Get ready” for 2 s,
“Breath in” for 2 s, “Breath out” for 2 s, and “Deep breath
and hold” for 2 s. Then participants held their breath for
18 s under the instruction of a circle decreasing in size on
the screen, which indicated the remaining time for BH
(Supporting Information Fig. S1). The task started at 8.4 s
(i.e., the 6th volume) during the scan and lasted for 259 s.

Data Acquisition

Functional imaging data were collected on a Siemens
Trio 3.0 T scanner using the multiband protocol with the
following parameters: repetition time (TR) 5 1,400 ms;
echo time (TE) 5 30 ms; flip angle 658; numbers of slices5

64; multi-band accelerate factor 5 4; matrix 5 112 3 112;
field of view 5 224 3 224 mm2; and voxel size 5 2 3 2 3

2 mm3. The scanning protocol was the same for the R-
fMRI scans and the BH T-fMRI scans, which lasted for
565.6 s (i.e., 404 volumes) and 260.4 s (i.e., 186 volumes),
respectively. Notably, the last volume (i.e., the 404th vol-
ume for the R-fMRI scan and the 186th volume for the T-
fMRI scan) was missing in three subjects due to malfunc-
tion in the temporary storage transfer protocol. We thus
removed the last volumes of the other subjects to ensure
the same scan lengths were used across all participants.
As a result, for each participant, the R-fMRI data included
403 volumes and the BH T-fMRI data included 185
volumes.

Data Preprocessing and Analysis

Estimating hemodynamic latency using BH T-fMRI

Previous studies have suggested that the BOLD signal
reflects both the neuronal activities and vascular responses
[Bandettini et al., 1992; Kwong et al., 1992; Logothetis
et al., 2001; Ogawa et al., 1992], and the latter could affect

the estimation of interregional neural causality [Chang
et al., 2008]. In this study, we utilized a BH T-fMRI data to
estimate the individual voxel-wise hemodynamic latency
according to the procedures suggested by Chang et al.
[2008]. These processes were performed using the Statisti-
cal Parametric Mapping (SPM8, http://www.fil.ion.ucl.ac.
uk/spm). Briefly, the first 31 volumes of the BH task,
including the 5 volumes for preparing and 26 volumes of
the first task block, were first discarded due to the MRI
signal equilibrium and the adaptation of subjects to the
task. The remaining T-fMRI data were preprocessed by
performing the correction for head motion using imaging
alignment, co-registering to corresponding mean R-fMRI
images using linear transformation and removing linear
trends using regression analysis. Second, a canonical BH
regressor was defined by convolving the binary waveform
of the BH task (which consisted of values of 1 during the
BH period and 0s elsewhere) with a sign-reversed canoni-
cal HRF [Chang et al., 2008; Glover, 1999]. This canonical
BH regressor was theoretically an inference of the BOLD
signals resulting from the BH task. We further defined a
relative reference time series y(t) by averaging the time
series across voxels that exhibited correlations of r> 0.25
with the canonical BH regressor [Chang et al., 2008]. This
subject-specific reference time series y(t) allowed us to
identify the relative latency across voxels and simulta-
neously take into account the individual variations of the
BH task response. Finally, the voxel-wise hemodynamic
latency was assessed in terms of time-lag s, which yielded
the maximum correlation, Rmax, between the time-shifted
time series xi(t 1 s) of voxel i and the reference time series
y(t) (i.e., latency 5 argmaxs (corr(xi(t 1 s), y(t))). The metric
of s was permitted at a range from 24.2 to 4.2 s at the
step of one TR (i.e., 1.4 s) to cover an appropriate range of
the realistic delay time [Chang et al., 2008]. We also vali-
dated our results with a different s range (e.g., 216.8 to
16.8 s), which represented the whole length of the block in
the experiment (see Validation analyses). As a result, we
obtained the individual latency s maps and the corre-
sponding Rmax maps in the whole brain for native spaces.
Those voxels, which had significant Rmax (q< 0.05, False
Discovery Rate [FDR] corrected) with a non-zero latency s,
were labeled for further hemodynamic latency correction
in corresponding R-fMRI data.

Data preprocessing of R-fMRI

The R-fMRI data were preprocessed using SPM8 and
the Data Processing Assistant for Resting-State fMRI [Yan
and Zang, 2010]. Briefly, the first 14 volumes were dis-
carded to allow for signal equilibrium and adaptation of
the participants to the circumstances. The remaining data
were realigned to the first volume to correct for head
motion and were then spatially smoothed with a Gaussian
kernel with a 4 mm full width at half-maximum followed
by removal of linear trends. Notably, data were excluded
from analysis if they reached the head motion exclusion
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criterion (displacement> 3 mm or rotation> 38). To correct
for hemodynamic latency, we shifted the time series of
those voxels with significant hemodynamic latency effects
along the time axis according to their latency values (s)
estimated from previous BH T-fMRI data for each partici-
pant. Notably, to ensure the same length of time series
across all voxels, we selected the common parts (i.e., the
13th–377th time points) on the time axis of all the shifted
time series for analysis. Finally, the resulting data were
normalized to the Montreal Neurological Institute (MNI)
space and were resampled to 3-mm isotropic voxels. Sev-
eral nuisance signals were regressed out, including six
head motion parameters, cerebrospinal fluid, white matter,
and global signals. The time series were not further tem-
porally filtered because the inter-regional causality infer-
ence uses the low-lag orders that operate on high-
frequency deflections [Hamilton et al., 2011].

Constructing Directed Functional Brain

Networks Using R-fMRI

To construct directed functional brain networks using R-
fMRI data, we first defined the networks nodes as 160
regions of interests (ROIs) with diameters of 10 mm over
the whole brain according to a functional template derived
from meta-analysis of T-fMRI paradigms [Dosenbach
et al., 2010]. Two regional parcellation templates were
additionally used for validation purposes, including the
anatomical automatic labeling (AAL) atlas template
[Tzourio-Mazoyer et al., 2002] and the functional 264 ROIs
template [Power et al., 2011] (see Validation analyses). The
mean time series of each ROI was then extracted by aver-
aging the time series of all the voxels within the ROI. The
directed functional connections among any pairs of ROIs
were estimated by computing the causations of the mean
time series using a novel CCM approach developed by
Sugihara et al. [2012].

Comparing to the traditional causality algorithms (e.g.,
Granger causality approach), CCM has better applicability
in the non-separable dynamic system in which the infor-
mation about a causative variable cannot be removed sim-
ply by eliminating that variable from the system. This
approach better identifies weak to moderate coupling
between variables [Sugihara et al., 2012]. Briefly, CCM
assesses the causation by measuring the extent to which
one variable could estimate the state of the other from his-
torical records. The larger the extent is, the stronger the
causality is. To measure whether the variable X (i.e., [x(t)])
is causally influencing variable Y (i.e., [y(t)]), the phase-
shifted space MX and MY were reconstructed by taking the
time-lagged X and Y values as coordinates in the recon-
structed space (E dimensions in total, i.e., reconstructed
variables x(t) 5 [x(t-T), x(t-2T), . . ., x(t-(E-1)T)] in MX, and
y(t) 5 [y(t-T), y(t-2T), . . ., y(t-(E-1)T)] in MY, here T is the
unit of lags). If causality exists, the value of X could be
estimated from MY by projecting the nearest E 1 1

neighbors (defined by the shortest Euclidean distances) of
each point y(t) in MY to x(t) in MX. In other words, there
will be a convergence between X|MY and the real X. The
dimension E of reconstruction space was preset as E 5 3
here because the ratio of false neighbors [Kennel et al.,
1992] was decreased to a minimum for most of the ROIs
at this dimension size, and the time unit of T was chosen
as one TR for the best time resolution. We also used larger
E (e.g., E 5 5, 7, 9, and 11) to examine whether E 5 3 was
sufficient to reliably provide causality measurements (see
Supporting Information). Then the causality coefficient
from X to Y was assessed using the correlation coefficient
between the estimated time series and the real time series
(i.e., X|MY and X), which quantified the extent of conver-
gence. Finally, for each participant we obtained the indi-
vidual causality coefficient matrix by identifying causality
coefficients between any pairs of ROIs. Notably, the appli-
cability of CCM is associated with the length of time
series, as a higher predictability could be achieved by a
longer time series length [Sugihara et al., 2012]. Thus, we
conducted reliability analyses for CCM on different
lengths of time series, using both the simulated data and
the real fMRI data (see Supporting Information).

In the current study, we constructed directed functional
brain networks at both the individual- and group-level. To
obtain the individual-level networks, the causality coeffi-
cient matrix for each subject was transformed into a binary
matrix by thresholding the coefficients with a corrected
significance level q< 0.01 (FDR correction). For the group-
level analysis, the individual causality coefficient matrices
were first transformed by Fisher’s r-to-z transformation
and further averaged across subjects. The averaged coeffi-
cient matrix was further thresholded into a binary matrix
at a density of 18.5%, which corresponded to the average
density of individual binary networks. The resultant bina-
ry causality matrix was considered to be the group-level
network. We also assessed the effects of different thresh-
olds on our main findings (see Validation analyses). We per-
formed all of the following network analyses on the
group-level networks and validated the main results in
each of the individual-level networks.

Network Topology Analysis

Before investigating the basic motif patterns, several net-
work metrics were estimated to assess the topological
organization of the directed functional brain networks,
including the small-world architecture, modular structure,
and hubs. First, the small-world attributes include the
clustering coefficient (Cp) and the characteristic path
length (Lp) [Fagiolo, 2007; Newman, 2003; Watts and Stro-
gatz, 1998]. Their normalized versions obtained by com-
paring to 100 random networks that preserve the same
nodes, edges, and in-degree and out-degree distributions
as the real network [Maslov and Sneppen, 2002] (i.e.,
c 5 Cp/Crand

p and k 5 Lp/Lrand
p , respectively), were used to
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determine the small-worldness (r 5 c/k). Typically, a net-
work will be considered small-world only if c � 1, k � 1,
and r � 1. Second, the modular structure was identified
by optimizing the modularity, Q, for different partitions of
the network using the algorithm derived from Leicht and
Newman [2008]. The partition that corresponds to the
maximum Q was regarded as the optimal modular struc-
ture. Third, hub regions of the brain network were defined
according to the total-degree (i.e., the total number of in-
coming edges and out-going edges). Those nodes with
total-degree values of at least one standard deviation (SD)
greater than the average total-degree of the network (i.e.,
ktotal

i >mean(ktotal
i ) 1 std(ktotal

i )) were identified as brain
hubs. The detected modules and hubs were further used
to investigate the participation of motif in the sub-network
and local scales. Most of the calculations were performed
using the Brain Connectivity Toolbox [Rubinov and
Sporns, 2010] (https://sites.google.com/site/bctnet/
Home) and the visualization was performed using the
BrainNet Viewer (http://www.nitrc.org/projects/bnv/)
[Xia et al., 2013].

Identification and Analysis of Network Motifs

Within a network, a motif is a small local graph consist-
ing of M nodes and a set of edges linking them [Milo
et al., 2002; Sporns and K€otter, 2004]. Given a specific
motif size M, the amount of motif classes was constant.
For instance, when M 5 2, 3, 4, and 5, there are 2, 13, 196,
and 9,364 classes of motifs, respectively. In the present
study, we considered the motifs for M 5 2, including the
unidirectional motif and the reciprocal motifs, and M 5 3,
including 13 classes labeled as ID 1 to 13 that were identi-
cal to the network motifs detected in the mammalian
brains [Sporns and K€otter, 2004] (Fig. 1).

Network motif patterns at the overall level

Initially, we obtained the motif frequency spectrum by
counting the occurrence frequency for each class of two-
node motifs and three-node motifs within the network.
Then, we compared the resulting frequency spectrum to
those in 100 surrogate random networks, which conserved
the same number of nodes and edges, and the same in-
degree and out-degree distributions [Maslov and Sneppen,
2002]. Considering the class i motif, its statistical occur-
rence was presented by Z scores:

Zi5
Nreal

i 2 < Nrand
i >

std Nrand
i

� �

where Nreal
i is the occurrence frequency of motif i in real

network, and <Nrand
i > and std() denote the average value

and the SD of its occurrence frequencies in the 100 surro-
gate random networks. In the present study, the motif i
was defined as statistically significant only if Zi> 1.96
(P< 0.05). Those significant motifs represented the most

basic building blocks within the directed functional brain
networks. Moreover, to strictly control the effects of net-
work density on unidirectional and reciprocal edges, strin-
gent random surrogates were additionally used for
calculating the profile of three-node motifs. The stringent
random surrogates conserved the same number of nodes
and edges, and the same in-degree and out-degree distri-
butions, as well as the number of unidirectional and recip-
rocal edges. Z scores were recalculated and motif classes
with Z scores> 1.96 were considered to be statistically
significant.

Moreover, for the two-node motifs, we examined their
frequency and occurrence significance at different Euclide-
an distance ranges to explore the wiring cost of motifs. For
the three-node motifs, to study the linkage of motif pat-
terns between human brain and macaque cortex, we fur-
ther evaluated the significant profile (SP) scores that
enabled us to compare the motif frequency spectrum
across networks with different sizes [Milo et al., 2004]. For
each class of motifs, the SP was calculated by normalizing
the Z scores as follows,

SPi5
ZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
i51 Z2

i
2

q

where K is the total class number of three-node motifs.
Then, we calculated the Pearson correlation coefficient of
SP profiles between the present network and two other
prior cortical networks of the macaque cortex and

Figure 1.

Schematic of the two-node and three-node motifs. The two-

node motifs include the unidirectional motif and the reciprocal

motif. The three-node motifs include 13 classes motifs labeled ID

1 to 13. [Color figure can be viewed at wileyonlinelibrary.com]
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macaque visual cortex, which were downloaded from
https://sites.google.com/site/bctnet/datasets.

Motif analysis at the modular scale

To unravel the intra- and inter-module information flow
patterns, we investigated the distributions of the two-node
and three-node motifs on the basis of previous detected
modular structure. Similar to the above analyses, we first
calculated the frequency spectrum of the motifs within
each module as well as between each pairs of modules.
Notably, for between-module three-node motifs, we only
considered instances in which two nodes belonged to one
module and the other node belonged to a different mod-
ule. Then, to capture the characteristics of within- and
between-module frequency spectrum profile, each frequen-
cy spectrum was transformed to a probability spectrum by
dividing the occurrence frequency of each motif class by
the total number of all motifs’ occurrences. For each motif
class, the occurrence probability of within-/between- mod-
ule cases were compared to the probability at overall level
through the one-sample t-test. The motif class demonstrat-
ed an increase significantly higher than the overall level
(P< 0.05) was considered to contribute more to within- or
between- module information coordination. Moreover, to
identify significant motif class for each within- and
between-module case, we also estimated the Z score value
for the occurrence probability of each motif class by com-
paring to 100 surrogate random networks, which were
assigned the same modular partition as the real network.
A motif class was defined as significant if the correspond-
ing Z> 1.96 (P< 0.05).

Motif analysis at the nodal scale

We further explored how nodes participated in different
classes of motifs to illustrate the major information flow
patterns they were involved in. Similar to the motif fre-
quency spectrum, we obtained the motif fingerprint of
each node defined as the participation number of the node
in each class of two-node and three-node motifs [Sporns
and K€otter, 2004]. The motif fingerprint for each node was
also transferred to Z scores by a comparison with 100 sur-
rogate random networks. For each node, the motif class
with Z> 1.96 (P< 0.05) was considered to be statistically
significant. Moreover, we investigated if brain hubs pos-
sess the central role in network motifs. For those mostly
identifying significant chain-like motifs (ID 5 4, 6, and 9),
we computed the Pearson correlation coefficient between
the total-degree and the apex ratio, which was a fraction
of the medium apex locations out of all instances of the
motif that node participated in. A higher correlation coeffi-
cient indicated that the hub regions located in the medium
apex acted as an “information transfer station.”

Validation Analyses

To examine the reproducibility of our main findings, we
performed the validations following three procedures. We
first validated whether the topological properties (e.g.,
small-worldness) and the significantly recurring motif clas-
ses, were consistently observed in each individual net-
work. Second, we also repeated the analysis of the group-
level whole-brain motif patterns in the R-fMRI data of the
second session scanned approximately one week apart.
Third, we assessed the effects of different preprocessing/
analysis strategies. Briefly, we analyzed the small-world
architecture and identified the recurring network motifs
within the whole brain in the group-level network consid-
ering the following cases: (i) Head motion. Previous stud-
ies suggest that head motion may introduce systematic
artificial differences in the R-fMRI measurements, the
influence of which cannot be eliminated by regressing out
six head motion parameters [Yan et al., 2013]. Thus, prior
to the step of shifting the hemodynamic latencies, we per-
formed data scrubbing in the preprocessing steps by
replacing the “bad” volumes with FD> 0.2 mm and their
1 back and 2 forward neighbors by linear interpolation
[Power et al., 2014; Yan et al., 2013]. (ii) Hemodynamic
latency ranges. In the main analysis, the permitted hemo-
dynamic latency range used in the BH data analysis was
set as 6 4.2 s, which might not cover the actual range for
all voxels. Therefore, we alternatively chose a hemody-
namic latency range of 616.8 s that covered the whole
block period in the BH task. (iii) Network density. Differ-
ent densities of the network can lead to different numbers
of edges and can thus affect the topological properties. We
therefore constructed the group-level network using addi-
tional density thresholds, including 10% and 25%. (iv)
Node definition. Previous studies have demonstrated that
different node definitions could influence the topological
metrics of the functional brain networks [Fornito et al.,
2010; Wang et al., 2010]. In this study, we re-performed
the motif analysis in group networks constructed from
two additional parcellation templates, including the AAL
atlas template of 90 cerebral ROIs [Tzourio-Mazoyer et al.,
2002] and the functional template of 264 ROIs [Power
et al., 2011].

RESULTS

To unravel the network motif patterns, we first con-
structed the directed functional brain network based on
the hemodynamic latency corrected R-fMRI images. Then,
we demonstrated the motif distributions of the resultant
directed networks and the motifs’ relation to the modular-
and nodal-scale architecture. Notably, given the compati-
ble results between the individual- and group-level net-
works, we mainly reported the findings from the group-
level network, with key results from the individual-level
networks included in Validation results.
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Construction of Directed Functional Brain

Networks

Spatial maps of hemodynamic response latency

To correct the potential latencies of vascular responses
in the R-fMRI data, the voxel-based latency was first esti-
mated using the BH T-fMRI data. Under the block-
designed BH task (Supporting Information Fig. S1), we
observed that the s-shifted BOLD signals of a large portion
of brain voxels (77.3% 6 4.3%, mean 6 SD across subjects)
exhibited significant correlation (Rmax) with the individual
BH task reference time series y(t) (q< 0.05, FDR correc-
tion), which indicate that the BH task significantly modu-
lated the cerebral blood flow in widespread brain areas
during the scan. For each significant voxel, the shifted s
that corresponded to the significant Rmax was regarded as
the relative vascular response latency in the voxel (see Fig.
2A for the latency map of a representative subject). Nota-
bly, for each subject, we found that a large number of vox-
els in the whole brain exhibited non-zero latencies (i.e.,
50.7% 6 5.9%) (Fig. 2B), suggesting the necessity of hemo-
dynamic latency correction for these voxels, which were
mainly located in the precuneus, the angular gyrus, the
precentral gyrus, the occipital lobe, and the cerebellum
(Fig. 2C).

Topological properties of the directed functional

brain network

The directed functional brain networks were constructed
from R-fMRI data after hemodynamic latency correction.
A template comprising 160 ROIs derived from prior meta-
analyses of T-fMRI paradigms [Dosenbach et al., 2010] was
used to define nodes and the causality coefficient between
any pairs of nodes were identified as functional connectiv-
ities using a novel CCM approach [Sugihara et al., 2012].
The resulting group-level directed network exhibited
small-world architecture (r 5 1.56) with higher local clus-
tering (c 5 1.61) and similar characteristic path lengths
(k 5 1.03) compared to surrogate random networks. Mean-
while, four modules, including the sensory-motor network
(SM), visual network and cerebellum, as well as a large
module containing 76 brain regions were identified in the
brain network (Q 5 0.34). Considering the inappropriate
size, the large module was further divided into three sub-
modules, including the anterior default mode network
(aDMN), the posterior default mode network (pDMN),
and frontal-parietal network (FP) by performing module
detection within the module (Q 5 0.19) (Fig. 3A).

Several regions were identified as hubs with high total-
degree, which were mainly located in the parietal and pre-
frontal lobes (Fig. 3B and Supporting Information Table
S2). Notably, some of these hubs participated in an imbal-
anced number of in-coming and out-going connections.
For instance, hubs in the prefrontal cortex, angular gyrus,
occipital lobe, and cerebellum had more in-coming

connections, whereas those in the anterior cingulate cortex
and inferior parietal lobe had more out-going connections.

Two-Node Motif Patterns in the Brain Functional

Network

Within the whole-brain

Two classes of two-node motifs, including the unidirec-
tional motif and the reciprocal motif (Fig. 1), were first
investigated within the whole brain. The group-level
directed network had a similar number of the two classes
of two-node motifs (i.e., 1,573 unidirectional and 1,568
reciprocal motifs). However, the reciprocal motifs
appeared much more compared to motifs in the surrogate
random networks (Z 5 61.8), which suggested there is a
significant reciprocal information transformation in the
human brain. Considering the effects of spatial distance,
we found distinct distributions for these two motifs. The
distribution profile of the unidirectional motifs seemed to
be an inverse “U,” with a large number of instances
around a moderate distance (40 mm< d< 120 mm, Fig.
4A). In contrast, the number of reciprocal motifs decreased
with increasing distance and was significantly larger in
most ranges (10–140 mm, Z> 1.96), especially for the short
distance ranges (10–40 mm, Z> 20) compared to the ran-
dom networks. The proportion of unidirectional motifs
obviously increased with the increasing distance. These
results indicated that the brain regions typically communi-
cate more via the reciprocal motif, especially between
regions within a short distance.

Modular scale

Regarding the two-node motif within the functional
module, we found that the reciprocal motifs appeared
much more often than the unidirectional motifs within
each module (T(df 5 5) 5 5.66, P< 0.01, paired t-test across
all 6 modules). Meanwhile, for each module, the number
of reciprocal motifs was significantly larger than the motifs
in the surrogate random networks (all Z> 1.96, P< 0.05)
(Fig. 4B). In contrast, there were more unidirectional
motifs than reciprocal motifs between the modules (T(df 5

14) 5 4.57, P< 0.01, paired t-test across all 15 possible mod-
ule pairs). However, when compared to surrogate random
networks, the unidirectional motif did not occur signifi-
cantly, whereas a larger number of reciprocal motifs sig-
nificantly occurred between the SM and the cerebellum,
the visual network and the cerebellum, and among
aDMN, pDMN and FP. Together, these results suggested
there was a distinct contribution made by the unidirection-
al and reciprocal motifs in the within-module and
between-modules communication of the human brain.
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Figure 2.

Voxel-wise hemodynamic latency maps. (A) Voxel-wise hemody-

namic latency map of a representative participant

(ID 5 2475376). (B) Histograms of voxel-wise latency values

across the brain for each participant. (C) Brain regions with sig-

nificant hemodynamic latency. The statistical map of latencies

was obtained by performing the one-sample t-test on s maps

across subjects. The statistical threshold was set at P< 0.05,

cluster size> 13,662 mm3, corresponding to a corrected

P< 0.05 using Gaussian random field (GRF) correction. The

numbers above the brain images in (A) and (C) indicate Z coor-

dinates in the MNI space. [Color figure can be viewed at

wileyonlinelibrary.com]
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Nodal scale

We found that the network node had an unbiased ten-
dency to involve in either the unidirectional motif or the
reciprocal motif (T(df 5 159) 5 20.10. P 5 0.92, paired two-
sample t-test across all 160 nodes). However, when com-
pared to the surrogate random networks, all nodes were
significantly more likely to participate in the reciprocal
motif (all Zs> 1.96, Ps< 0.05), which indicated there was a
significant occurrence of the reciprocal motif at the nodal
scale.

Three-Node Motif Patterns in the Brain

Functional Network

Within the whole-brain

We further examined distribution patterns of 13 classes
of three-node motifs, which were identical to network
motifs detected in mammalian brains [Sporns and K€otter,
2004] (Fig. 1). The frequency spectrum of three-node motifs
in the directed functional brain network is shown in Figure
5A. Compared with the matched random networks (Fig.
5B), five classes of motifs were identified with significantly
greater frequencies (Z> 1.96, P< 0.05), including motifs
with ID 5 4, 6, 9, 12, and 13 (Fig. 5C). Furthermore, differ-
ent from the simple random surrogates, chain-like motifs
with bidirectional edges (ID 5 4, 6, and 9) occurred more
frequently in the stringent random surrogates (Fig. 5D).

The loop-like motifs with bidirectional edges (ID 5 8, 10,
11, 12, and 13) were significantly more in the human brain
networks as compared to these stringent random surro-
gates (Fig. 5E). For both random surrogates, the SP profile
of the human brain functional network was significantly
correlated with those of the visual cortex network (r 5 0.97
and 0.90, P< 0.001) and the cerebral cortex network
(r 5 0.94 and 0.85, P< 0.001) in macaques, implying a simi-
lar constructive rule for the organization of the brain net-
work during evolution (Fig. 5D,E).

Modular scale

We observed that the occurrence probability spectrums of
three-node motifs within each module exhibited similar
profiles, with motifs ID 5 4, 6, 9, 12, and 13 appearing more
often than other classes of motifs on visual inspection (Fig.
6A, left). Compared to the overall occurrence probability,
the probabilities of motifs ID 5 9, 12, and 13 within the mod-
ules were significantly higher (all Ts(df 5 5)> 2.99, Ps< 0.02).
For all six modules, the five classes of motifs ID 5 4, 6, 9, 12,
and 13 also appeared significantly more frequently than
those in random networks (all Zs> 1.96, Ps< 0.05), in which
the motif ID 5 9, 12, and 13 were the most significant (all
Zs> 20) (Fig. 6A, right). The results suggested there were
dominant bidirectional or looping communication patterns
within the functional modules. In addition, although the
between-module occurrence probability spectrums of the
three-node motifs also exhibited similar profiles by visual

Figure 3.

Modular architecture and functional brain hubs. (A) Six modules

were identified totally, including aDMN (red), pDMN (blue), FP

(yellow), SM (cyan), visual (green), and cerebellum (black). (B)

Twenty-eight functional hubs detected through the total-degree.

According to degree of in-coming or out-going connections,

these hubs were further classified into driven hubs (red; in-

degree>out-degree), driving hubs (green; in-degree> out-

degree), and hubs with no tendency (blue; in-degree 5 out-

degree). aDMN, anterior default mode network; pDMN, poste-

rior default mode network; FP, frontal-parietal network; SM, sen-

sory motor network. [Color figure can be viewed at

wileyonlinelibrary.com]
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inspection, motifs ID 5 4, 6, and 9 exhibited higher proba-
bilities (all Ts(df 5 14)> 1.95, Ps< 0.04) compared to the over-
all level (Fig. 6B, left). In contrast to random networks, the
five classes of motifs ID 5 4, 6, 9, 12, and 13 also significant-
ly occurred in most between-module cases (Z> 1.96,
P< 0.05), with motif ID 5 9 occurring at a significantly
highest frequency (all Zs> 10) (Fig. 6B, right). Most of these
within- and between-motifs patterns remained significant
occurrence when comparing to the stringent random net-
works, especially for ID 5 9, 12, and 13 (Supporting Infor-
mation Fig. S2). These results indicated the prevailing
chain-like communication configurations between func-
tional modules.

Nodal scale

To investigate the pattern of three-node motifs at the
nodal-scale, we derived motif fingerprint (i.e., the partici-
pation number to each motif class for a node) for each of
the 160 nodes within the network. We found all motif fin-
gerprints showed similar profiles as the frequency spec-
trum of three-node motifs that were observed in the
whole-brain (all correlation coefficients rs> 0.60, Ps< 0.01).
Compared to random networks, a large number of nodes
had significantly higher participation numbers for motifs
ID 5 4, 6, 9, 12, and 13 (Z> 1.96 for 43.8%, 35.6%, 97.5%,
98.8%, and 98.8% of the nodes, respectively) (Fig. 7A).

Figure 4.

Pattern of two-node motifs within the directed functional brain

network. (A) Frequency distribution of the unidirectional motif

and the reciprocal motif in different distance bins (left) and the

corresponding Z score values (right). The z-score values were

obtained by a comparison with 100 random networks (right).

(B) Significance for the occurrence of the two classes of two-

node motifs within each module (left) and between each pair of

modules (right). The Z score values were obtained by comparing

to 100 surrogate networks with the same modules. [Color

figure can be viewed at wileyonlinelibrary.com]
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Intriguingly, we found several brain hubs in DMN, includ-
ing the ventromedial prefrontal cortex (vmPFC) and the
posterior cingulate cortex (PCC) as well as hubs in the
visual network and cerebellum, participate in more

instances of motifs ID 5 4 or 6 (Fig. 7B). Given that these
two chain-like motifs contributed more to between-module
communication, it was suggested that these hubs were sig-
nificantly involved in global integration. When comparing

Figure 5.

Patterns of three-node motifs within the whole brain. (A) Fre-

quency spectrum of 13 classes of three-node motifs in the

whole human brain. (B) Frequency spectrum of three-node

motifs in surrogate random networks conserving the same in/

out degree distribution. (C) Significance of the occurrence for

three-node motifs comparing to random networks (left Y axis)

and SP curves in networks from human brain (red), macaque

visual cortex (blue), and macaque cortex (yellow) (right Y axis).

(D) Frequency spectrum of three-node motifs in stringent sur-

rogate random networks conserving the same number of unidi-

rectional/reciprocal edges. (E) Significance of the occurrence of

motifs comparing to stringent surrogate random networks (left

Y axis) and the corresponding SP curves for three brain net-

works (right Y axis). The macaque cortex networks were down-

loaded from https://sites.google.com/site/bctnet/datasets. [Color

figure can be viewed at wileyonlinelibrary.com]
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with the stringent random surrogates, motifs ID 5 12 and 13
consistently remained significance, which was similar to the
overall level (Supporting Information Fig. S3). Moreover, we
also noticed a significantly positive correlation between the
total-degree and the medium apex ratio of chain-like motifs
ID 5 4, 6, and 9 (Fig. 7C), which further indicated these hubs
function as “information transfer station.”

Validation Results

We evaluated the reproducibility of our main findings
in several ways, including individual-level network analy-
ses, fMRI data of the same subjects from another session,
and different preprocessing/analysis strategies for

network construction. As shown in Supporting Informa-
tion Table S3, the directed functional brain networks con-
structed in all cases exhibited small-world architectures,
although their network densities differed. When compared
to surrogate random networks, significantly large numbers
were observed for the two-node reciprocal motif in all
cases (all Zs> 2, Ps< 0.05) and five types of three-node
motifs (i.e., ID 5 4, 6, 9, 12, and 13) in most cases, except
for motifs in two individual-level networks (not significant
for three-node motifs ID 5 4 or 6, Z< 0.58) and in the
group-level network constructed using the AAL template
(not significant for three-node motifs ID 5 4, 6 and 12,
Zs<20.18). We also observed similar SP profiles of
three-node motifs across different cases, as shown in

Figure 6.

Patterns of three-node motifs at a modular scale. (A) Occur-

rence probability for three-node motifs within each module

(left), and the corresponding significance of the occurrence com-

pared to random networks (right). (B) Motif probability for

three-node motifs between each pair of modules (left), and the

corresponding significance of the occurrence compared to ran-

dom networks (right). In left panel of A, the box plots represent

the motif probabilities across all within-module cases, and in left

panel of B, the box plots represent the motif probabilities across

all between-module cases. The central mark of each box is the

median, the edges of the box are the 25th and 75th percentiles,

and the whiskers extend to the most extreme data points not

considered outliers. The dashed line indicates the specific pro-

files of the motif probability at the overall level. [Color figure

can be viewed at wileyonlinelibrary.com]
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(Supporting Information Fig. S2). Taken together, either
the two-node motif or the three-node motif patterns within
the whole brain can be replicated in most of the validation
cases (Supporting Information Table S3).

DISCUSSION

We investigated the motif patterns in the human directed
functional brain networks to identify the significant function-
al motifs and reveal how these basic building blocks make
contributions to the brain’s intrinsic functional organization.
The directed functional networks were constructed from the
R-fMRI data with the vascular response latency corrected.
Within the network, several functional motifs were identified
to be statistically significant, including the two-node

reciprocal motif and five classes of three-node motifs labeled
as ID 5 4, 6, 9, 12, and 13. The SP profile of three-node
motifs suggested a high consistency in the design principle
between the human brain functional networks and the large-
scale mammalian cortical networks [Milo et al., 2002; Sporns
and K€otter, 2004]. Moreover, those recurring motifs were
topologically distributed in distinct patterns to support not
only the functional coordination at modular architecture but
also the functional role of brain hubs.

Construction of Directed Functional Networks

for Motif Identification

In present study, we performed motif analyses on the
directed functional brain networks that were constructed

Figure 7.

Patterns of three-node motif at a nodal scale. (A) Significance of

participation number for each node to 13 classes of three-node

motifs. The hot color indicates a higher significance. (B) Signifi-

cance of participation number of hubs regions to five classes of

recurring motifs within the whole brain. Red nodes: hubs that

significantly participated in motifs ID 5 9, 12, and 13; Green

nodes: hubs that significantly participated in motifs ID 5 4, 9, 12,

and 13; Cyan nodes: hubs that significantly participated in motifs

ID 5 6, 9, 12, and 13; Blue nodes: hubs that significantly partici-

pated in motifs ID 5 4, 6, 9, 12, and 13. (C) Across node rela-

tion between total-degree and apex ratio locating in the

medium of three-node motifs ID 5 4 (r 5 0.54), 6 (r 5 0.71), and

9 (r 5 0.94). Blue nodes: non-hubs. Red nodes: hubs. [Color fig-

ure can be viewed at wileyonlinelibrary.com]
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from a R-fMRI data that had the latency of vascular response
corrected during data preprocessing. As addressed in prior
studies, the BOLD signal is a mixture reflecting both neuro-
nal activities and vascular responses [Bandettini et al., 1992;
Kwong et al., 1992; Logothetis et al., 2001; Ogawa et al.,
1992]; thus, the relative timing of neural activities reflected in
BOLD signals could be influenced by the latency of the vas-
cular response. Studies have demonstrated that large vessel
effects could lead to a latency of up to 4 s compared to capil-
lary effects, and adjacent brain areas could exhibit latency
differences of up to 2 s [Miezin et al., 2000]. Consequently,
the hemodynamic latency may confound the inference of
interregional neural interactions, especially the causalities
[Chang et al., 2008], leading to the necessity of correcting
these latencies before constructing directed functional net-
works. To correct the latency of vascular response in R-fMRI
data, we used a BH T-fMRI data to estimate these latencies.
By modulating the cerebral blood without changes of cere-
bral metabolic rate of oxygen (CMRO2) [Kastrup et al., 1999],
the BH task was suggested to be a robust method for assess-
ing the latency of vascular responses uncoupled from neural
activation in all vascularized brain regions [Bandettini and
Wong, 1997; Cohen et al., 2004; Thomason et al., 2005, 2007].
Notably, our findings indicated that large numbers of voxels
in the brain were significantly modulated by the BH task
(shown by significant Rmax), and a considerable proportion
of these voxels had non-zero latency values. They also sug-
gested the effectiveness of BH task and the necessity of laten-
cy correction before constructing brain functional networks.

After correcting the hemodynamic latency, we obtained
the functional directed network using the CCM approach.
Unlike the traditional Granger causality, the CCM is suitable
for identifying causations in non-separable systems, in which
the information of a causative factor is embedded in the sys-
tem and cannot be removed by simply eliminating that vari-
able from the computational model [Sugihara et al., 2012].
As the brain is the most complex system in nature and the
inter-regional functional coupling might be “non-separable,”
we used CCM in the current study to obtain a more realistic
evaluation of the causal effects between brain regions. In the
current study, the CCM-derived directed network exhibited
a topology with small-world architecture, well-organized
functional modules (including aDMN, pDMN, FP, SM, the
visual area, and the cerebellum), and highly connected hubs,
which is highly consistent with previous observations [Bull-
more and Sporns, 2012; Yan and He, 2011]. These findings
indicated that the CCM-derived brain network retains typical
topological properties observed in prior brain networks,
meanwhile contains more intriguing information of the inter-
regional neural causality.

Recurring Network Motifs in Human Brain

In the directed functional brain networks, the reciprocal
motif is a significantly recurred two-node motif, in which
two nodes are linked by a bi-directional connection.

In functional terms, the two brain regions linked by the
reciprocal motif are mutually coupled, thus they could
directly regulate each other. It might be similar to its func-
tion in genes developmental transcription networks, in
which the two nodes activate each other to the active
“ON” state and retain stable [Alon, 2007]. Compared to
the unidirectional motif, the reciprocal motif also functions
more efficiently because the information can be transferred
between two nodes in any direction without passing
through a third one. The occurrence of this motif might be
supported by the underlying white matter connectivity as
this type of motif also occurs more often in mammalian
cortical networks compared to corresponding random net-
works [Sporns and K€otter, 2004]. Notably, we also found
that the reciprocal motif distributed dependent on the ana-
tomical distance between the two regions, with a signifi-
cantly large amount occurred at short-range, compared to
a small amount occurred at long-range. This might be
attributed to the large amount of low-cost short fibers con-
stituting the local circuitry and few high-cost long axonal
projections ensuring short mean path lengths of the whole
network [Markov et al., 2011]. Thus, this distance-
dependent pattern of the reciprocal motif fully reflected
the “cost-efficiency” rule in the human brain that informa-
tion is transferred efficiently at a relatively low cost
[Achard and Bullmore, 2007].

We observed that five classes of three-node motifs (i.e.,
ID 5 4, 6, 9, 12, and 13) were significantly more likely to
be embedded in human brain network compared with ran-
dom networks. These five classes of motifs could be divid-
ed into two sub-types: the chain-like motifs (i.e., ID 5 4, 6,
and 9) and the loop-like motifs (i.e., 12 and 13). Regarding
the chain-like motifs, the two ends, which are not linked
directly, are integrated through the medium node. The
motif ID 5 9 has been first reported in studies of macaque
cortex network and suggested to reflect the integration
and segregation principle of the network organization
[Sporns and K€otter, 2004]. Recently, the integration func-
tion has also been revealed in studies of neural mass mod-
els, where the two disconnected ends in three-node motifs
ID 5 6 and 9 stably dynamically synchronized with each
other [Gollo et al., 2014; Gollo and Breakspear, 2014]. Fur-
thermore, these chain-like motifs were also revealed to
occur in a large number among the communication
between functional modules, both in the current study and
in the previously reported cortex network of macaques
[Gollo and Breakspear, 2014; Shen et al., 2012]. The hubs
regions, which play an important role in global integra-
tion, were found to more locate in the medium apex of
these chain-like motifs functioning as the “information
integration center” [Harriger et al., 2012]. Densely inter-
connected hubs, the rich club, were suggested to form a
stable synchronized core through these chain-like motifs
[Gollo et al., 2015]. All these evidences suggest that chain-
like motifs largely contribute to the information integration
within the whole-brain network.
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The loop-like motifs (i.e., ID 5 12 and 13) can be derived
by connecting the two ends of chain-like motifs ID 5 4, 6,
and 9. Within these motifs, any two nodes within the
motif can communicate directly without a third node,
forming a tight loop for information processing. According
to the prior study in neural mass models, the motif
ID 5 13 enabled metastable configurations of coexisting
synchrony between each two nodes, enriching the dynam-
ic patterns of synchronized cortical states and enhancing
functional complexity [Gollo and Breakspear, 2014]. Of
note, these two loop-like motifs are largely present within
each module. This finding demonstrates the high integra-
tion among functional related areas, in analogy to those in
the World Wide Web hyperlink networks, in which related
pages were linked by these loop-like motifs [Milo et al.,
2002, 2004]. Taking together, the loop-like motifs may
function as the key information-processing pattern
enabling local integration among functional related
regions, to achieve functional specification and enrich
functional states. In addition, it is noteworthy that motifs
ID 5 9 also largely appeared between modules, further
suggesting its role in balancing the integration and segre-
gation of the network [Sporns and K€otter, 2004].

The deploying of stringent random surrogates conserv-
ing the number of unidirectional and reciprocal connec-
tions could reduce the significance of the occurrence of the
chain-like three-node motifs ID 5 4, 6, and 9, and simulta-
neously increase the significance of the loop-like three-
node motifs (e.g., ID 5 8, 10, and 11). Comparing to simple
random surrogates, the rewiring with controlling of the
number of unidirectional/reciprocal edges tends to keep
the number of chain-like motifs and reduces the chance to
close a chain-like motif to form a loop-like motif, because
the reciprocal connections were not allowed to be disas-
sembled into two unidirectional connections. This
explained why loop-like motifs, but not chain-like motifs,
appeared in much more amount in the human brain net-
works comparing to the stringent random surrogates.
Moreover, these two random surrogates reflected distinct
“significance”: the usage of stringent random surrogates
corrects for the “carry-over” significance from motif size
M 5 2, ensuring the significance was not caused by the
pattern of two-node reciprocal motifs [Milo et al., 2002]. In
contrast, the usage of simple random surrogates enabled
us compare the motif pattern in the human brain network
to the randomly rewiring topology independent of the
motif size M [Sporns and K€otter, 2004]. Nonetheless, the
loop-motif with more reciprocal connections (ID 5 12 and
13) were significantly more occurred in the brain network
comparing either the simple or the stringent random sur-
rogates, suggesting their uniqueness in the architecture of
the brain networks. More interestingly, different random
surrogates did not alter the consistency of motif patterns
among human brain and macaque brain, suggesting a sta-
ble organizational principle of brain networks during
evolution.

Participation of Hubs in Functional Motifs

When considering the nodes’ participation in the chain-
like motifs (i.e., ID 5 4, 6, and 9), we found that hubs are
more likely to occupy the medium apex location, which is
consistent with the findings of previous studies in the
macaque cortex network [Sporns et al., 2007], further indi-
cating that hubs tend to act as the “transfer station.” When
compared with random networks, all hubs significantly
participated in motifs ID 5 9, 12, and 13. Given that motifs
ID 5 9, 12, and 13 were largely involved in within-module
information coordination; it implied that all hubs partici-
pated in functional specification. Moreover, only hubs in
vmPFC, PCC and the occipital lobe also participated in
more instances of motifs ID 5 6 and 4, separately. This dis-
crepancy may reflect the specific functional roles of these
brain hubs. Because the DMN appears to be more active
when individuals engage in internal tasks [Buckner et al.,
2008], the large participation of motif ID 5 6 in the PCC
and vmPFC might be related to its effect in regulating spa-
tially distributed regions in resting state. Meanwhile, the
large participation of motif ID 5 4 in hubs of the visual
system might indicate that regions in the primary cortex
are more likely to be regulated by “higher” areas such as
those in attention networks [Park and Friston, 2013].
Therefore, we suggest that the variation in participation of
hubs to these motifs might support the diverse roles of
functional integration within the brain.

FURTHER CONSIDERATION

First, in the current study, we used the BH task to eval-
uate regional hemodynamic latency to better capture cau-
sality between regions. However, executing a BH task scan
in every experiment is not feasible in actual operation.
Thus, it is important to develop more efficient and
operation-friendly measurement of hemodynamic
responses in future studies. Second, we used CCM to esti-
mate the directions of functional network connections.
Theoretically, CCM is more suitable for estimating the
causal relationship in the complex nonlinear system than
other linear methods, such as Granger Causality, especially
for identifying weak-to-moderate coupling [Sugihara et al.,
2012]. However, the exact neurophysiological and bio-
chemical substrates of the BOLD signals remain unclear.
Thus, the ground truth for determining which method has
better identification power is lacking. Future studies com-
bining simultaneously electrophysiological and fMRI
recording might provide essential opportunities to evalu-
ate these causality estimation methods. Third, studies ana-
lyzing dynamics from the structural motifs in the brain
provided a valuable perspective to improve the under-
standing of the mechanism of brain activities [Gollo et al.,
2014, 2015; Gollo and Breakspear, 2014]. Findings from
dynamical modeling in macaque structural networks sup-
port our results by demonstrating that chain-like motifs
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boost synchronization, while loop-like motifs enrich com-
plexity [Gollo et al., 2014; Gollo and Breakspear, 2014].
Future modeling studies based on structural brain net-
works, especially the emergence of directed structural net-
works of the human brain, would further our
understanding of the whole-brain dynamics at the motifs
level. Finally, numerous studies have demonstrated the
abnormal topological properties of both the structural and
functional brain networks in neuropsychiatric diseases.
Probing the directed brain networks and corresponding
motif alterations in the brain may provide new insights
into the disease-related changes in information-processing
modes and thus further benefit the development of poten-
tial neuroimaging biomarkers.

CONCLUSIONS

Using R-fMRI data with the hemodynamic latency con-
trolled, we constructed directed human functional brain
networks and demonstrated two-node and three-node net-
work motif patterns. Several significant motif types were
identified to characterize the basic information flow modes
within the network and were found to be organized in dis-
tinct patterns to support the modular and nodal network
architecture underlying brain intrinsic activity. These find-
ings provide insight into the basic information flow mech-
anism within the large-scale brain functional connectome.
Future studies assessing alterations of motifs patterns that
corresponds to functional impairments in brain disorders
would be of great interest.
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