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Background: Neuroimaging studies have shown that major depressive disorder (MDD) is accompanied by structural and functional
abnormalities in specific brain regions and connections; yet, little is known about alterations of the topological organization of whole-brain
networks in MDD patients.

Methods: Thirty drug-naive, first-episode MDD patients and 63 healthy control subjects underwent a resting-state functional magnetic
resonance imaging scan. The whole-brain functional networks were constructed by thresholding partial correlation matrices of 90 brain
regions, and their topological properties (e.g., small-world, efficiency, and nodal centrality) were analyzed using graph theory-based
approaches. Nonparametric permutation tests were further used for group comparisons of topological metrics.

Results: Both the MDD and control groups showed small-world architecture in brain functional networks, suggesting a balance between
functional segregation and integration. However, compared with control subjects, the MDD patients showed altered quantitative values in
the global properties, characterized by lower path length and higher global efficiency, implying a shift toward randomization in their brain
networks. The MDD patients exhibited increased nodal centralities, predominately in the caudate nucleus and default-mode regions,
including the hippocampus, inferior parietal, medial frontal, and parietal regions, and reduced nodal centralities in the occipital, frontal
(orbital part), and temporal regions. The altered nodal centralities in the left hippocampus and the left caudate nucleus were correlated with
disease duration and severity.

Conclusions: These results suggest that depressive disorder is associated with disruptions in the topological organization of functional

brain networks and that this disruption may contribute to disturbances in mood and cognition in MDD patients.
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M ajor depressive disorder (MDD) is a psychiatric disease
characterized by persistent, pervasive feelings of sadness,
guilt, and worthlessness, which results in a greater chance

of suicide (1). Major depressive disorder is the most common uni-
polar affective disorder, with a yearly increase in morbidity and a
high risk of mortality. Despite advances in the development of
treatment strategies, up to 60% of depression patients suffer at
least one recurrence, which causes increasing social and economic
burdens (2).

Functional neuroimaging studies have documented that MDD
is related to widespread local abnormalities in many brain regions,
such as the hippocampus (3), parahippocampal gyrus (4), posterior
cingulate gyrus (5), orbitofrontal cortex (4,6), prefrontal cortex (7,8),
caudate nucleus (9,10), and occipital regions (4). Moreover, changes
in functional connectivity have been found between specific region
pairs in MDD, such as decreased orbitofrontal cortex-precuneus
connectivity (7), pregenual anterior cingulate cortex-dorsomedial
thalamus connectivity (11), and bilateral amygdala connectivity
(12) and increased subgenual cingulate-thalamic connectivity (13).
Despite the increasing knowledge of MDD, however, very little is
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nown regarding whether MDD disrupts the global topological
rganization of whole-brain networks.

Recent research has suggested that graph theoretical analysis
rovides a powerful framework for characterizing topological prop-
rties of brain networks (for reviews, see [14 –19]). For instance, the
ormal brain is functionally organized in a small-world fashion

characterized by a high local specialization and a high global
ntegration between brain regions) (20 –24). Moreover, such an
rganization pattern is disrupted in various brain diseases, such
s Alzheimer’s disease (25–28) and schizophrenia (29 –33). To
ur knowledge, there is only one electroencephalogram study
howing the loss of small-world characteristics in the sleep func-
ional brain networks in MDD, suggesting a disruption of topo-
ogical organization caused by this disease (34). In the current
tudy, we utilized resting-state functional magnetic resonance
maging (R-fMRI) to investigate the topological organization of
ntrinsic brain networks in patients with MDD.

Resting-state functional magnetic resonance imaging is a non-
nvasive imaging technique to measure spontaneous brain activity
s low-frequency fluctuations in blood oxygen level– dependent
ignals (35). This technique has been extensively used to reveal the
ntrinsic typical and atypical functional architecture of the brain
16,36,37). More recently, several groups have applied R-fMRI to
nvestigate MDD-related changes in spontaneous brain activity
11,13,38). These studies mainly focused on functional connectivity,
ither within a specific brain system or between different systems.
he topological organization of whole-brain functional networks in
DD remains poorly understood.

Here, we hypothesize that MDD disrupts the topological organi-
ation of intrinsic functional brain networks. To test our hypothesis,
e collected R-fMRI data from 30 drug-naive, first-episode MDD
atients and 63 healthy control subjects and analyzed their intrinsic
rain connectivity networks using graph theoretical approaches.
etween-group differences and relationships with clinical variables

ere investigated.
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Methods and Materials

Subjects
A total of 95 subjects were recruited, including 31 first-episode

drug-naive MDD patients and 64 age- and sex-matched healthy
control subjects (Table 1). The age of MDD patients ranged from 18
to 60 years and the age of control subjects ranged from 16 to 81
years. The age of onset of MDD ranged from 18 to 59 years. The data
of two subjects (one patient and one control subject) were removed
because of excessive head motion (see Data Preprocessing). All
patients reported herein were part of a large cohort study of major
depression in the Chinese population of Han nationality in the
Mental Health Center of West China Hospital. Patients were re-
cruited consecutively from the psychiatric outpatient or inpatient
department of the local hospital, and the diagnosis of first-episode
depression was made according to the Structured Clinical Interview
of the DSM-IV (39). All control subjects were carefully screened for a
current or lifetime diagnosis of any Axis I or II disorder using the
Structured Clinical Interview of the DSM-IV Non-Patient Edition and
Structured Clinical Interview for DSM-IV Axis II Personality Disor-
ders. Neurological or organic disorders were determined according
to personal histories and complete physical examinations. The se-
verity of depression was rated using the 17-item Hamilton Rating
Scale for Depression (HAMD) (40) and the Clinical Global Impression
of Severity scale (41). To be eligible for the study, each patient was
re-examined by a psychiatry specialist after an initial outpatient
assessment. Inclusion criteria were that all patients were 1) drug-
naive and were having their first episode of depression; 2) currently
experiencing an episode of depression with HAMD total score � 18

nd a Clinical Global Impression of Severity scale score � 4 on the
ay of the magnetic resonance imaging (MRI) examination; and 3) a
uration of depression � 2 weeks but � 60 weeks. Exclusion criteria

ncluded the presence of 1) other Axis I psychiatric disorders and
ymptoms; 2) a history of organic brain disorder, neurological dis-
rders, or cardiovascular diseases; 3) pregnancy or any physical

llness as assessed by personal history and laboratory analysis; and
) the inability to undergo an MRI. No patients were treated with
ny antipsychotic medicine. All participants were determined to
ave no abnormalities on conventional MRI by two experienced

adiologists. This study was approved by the local ethical commit-
ee, and written informed consent was obtained from all subjects.

mage Acquisition
All subjects underwent a resting-state functional MRI scan using

3T magnetic resonance system (GE EXCITE, Milwaukee, Wisconsin)
ith an 8-channel phased array head coil. During the scan, subjects

Table 1. Demographics and Clinical Characteristics of the Subjects

NC (n � 63) MDD (n � 30) p Value

Age (years) 16–81 (35.1 � 15.9) 18–60 (36.1 � 12.3) .765a

Gender (male/
female) 30/33 8/22 .055b

Handedness (R/L) 63/0 30/0 —
Course of Disease

(weeks) NA 2–60 (16.0 � 14.1) —
HAMD NA 18–34 (24.3 � 5.0) —
Onset Age (years) NA 18–59 (35.8 � 12.2) —

Data are presented as the range of minimum–maximum (mean � SD).
HAMD, Hamilton Depression Rating Scale; L, left; MDD, major depressive

disorder; NA, nonapplicable; NC, normal control subjects; R, right.
aThe p value was obtained by two-sample two-tailed t test.
bThe p value was obtained by two-tailed Pearson chi-square test.
ere instructed to relax with their eyes closed but not to fall asleep. r
he scan lasted for 400 seconds. For the details of scanning param-
ters, see Supplement 1.

ata Preprocessing
Image preprocessing was carried out using the SPM5 package

http://www. fil.ion.ucl.ac.uk/spm; Wellcome Trust Centre for Neu-
oimaging, University College London, United Kingdom). First, the
mages were corrected for intravolume acquisition time differences
etween slices using the sinc interpolation and were corrected for

he intervolume geometric displacement because of head move-
ent using a six-parameter (rigid-body) spatial transformation.
ata of one control subject and one patient were discarded be-

ause their heads moved more than 3 mm of translation or 3 de-
rees of rotation in any direction. After these corrections, the im-
ges were spatially normalized to the standard space of the
ontreal Neurological Institute using an optimum 12-parameter

ffine transformation and nonlinear deformations and resampled
o 3-mm cubic voxels. Finally, the resulting data were further tem-
orally bandpass filtered (.01–.1 Hz) to reduce the effects of low-

requency drift and high-frequency physiological noises.

etwork Construction
Node Definition. A network is composed of nodes and edges

etween nodes. Herein, nodes represent brain regions and edges
epresent the statistical interdependence in blood oxygen level–
ependent signals between different regions. To define the brain
odes, a prior atlas of Automated Anatomical Labeling (42) was
mployed to divide the whole brain into 90 (45 for each hemi-
phere) cortical and subcortical regions of interest, with each rep-
esenting a node of the network (Table S1 in Supplement 1).

Edge Definition. To define the network edges, we calculated
he partial correlation coefficients between the regional mean time
eries of all possible pairs of brain regions. The partial correlation
oefficient between any two regions represents their conditional
ependences by excluding the effects of the other 88 regions de-
ned in the Automated Anatomical Labeling atlas. This metric has
een used in previous brain network studies (22,25,33,43– 45). Be-

ore the correlation analysis, the representative mean time series of
ach region was acquired by averaging the time series of all voxels
ithin that region, followed by a correction of head motion effects
y regressing out the head motion profiles estimated in the image

ealignment from the mean time course. The residuals of the re-
ression analyses were used to compute the partial correlation in

his study, resulting in a 90 � 90 partial correlation matrix for each
ubject (Figure S1 in Supplement 1). Finally, individual partial cor-
elation matrices were converted into binarized matrices (i.e., adja-
ency matrices) Aij�[aij] according to a predefined threshold (see
elow for the threshold selection), where the entry aij was 1 if the
bsolute value of the partial correlation between regions i and j was

arger than the threshold and was 0 otherwise.

etwork Analysis
Threshold Selection. We applied a sparsity threshold S to all

orrelation matrices. S was defined as the ratio of the number of
xisting edges divided by the maximum possible number of edges

n a network. This approach normalized all resultant networks to
ave the same number of nodes and edges by applying a subject-
pecific correlation coefficient threshold and minimized the effects
f possible discrepancies in the overall correlation strength be-

ween groups, thereby enabling us to explore the between-group
ifferences in relative network organization (46,47). Instead of se-

ecting a single threshold, we thresholded each correlation matrix

epeatedly over a wide range of sparsity levels according to the
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following criteria: 1) the average degree (the degree of a node is the
number of connections linked to the node) over all nodes of each
thresholded network was larger than 2 � log(N) with N � 90 here,
denoting the number of nodes; and 2) the small-worldness scalar �
(see below for definition) of the thresholded networks was larger
than 1.1 for all participants (Figure S2 in Supplement 1). The gener-
ated threshold range of .10 � S � .34 determined by this procedure
guaranteed that the thresholded networks were estimable for
small-worldness (48) and had sparse properties with as few spuri-
ous edges as possible (25,46,49). The largest component sizes of
individual networks were from 88 to 90 over the sparsity range
(Figure S3 in Supplement 1). The subsequent network analyses
were repeatedly performed in the accurately defined small-world
regime of .10 � S � .34 with an interval of .01.

Network Metrics. For brain networks at each sparsity thresh-
old, we calculated both global and regional network measures. The
global measures included 1) small-world parameters (48) involving
clustering coefficient C

p, characteristic path length L
p, normalized

lustering coefficient �, normalized characteristic path length �,
nd small-worldness �; and 2) network efficiency (50) involving

ocal efficiency E
loc and global efficiency E

glob. The regional mea-
ures included three nodal centrality metrics: the degree	, effi-
iency e, and betweenness b (46,51) (for a recent review on uses and

interpretations of these network measures, see [18] and Supple-
ment 1). Furthermore, we calculated the area under the curve (AUC)
for each network metric (for the illustration of AUC, see Figure S4 in
Supplement 1), which provides a summarized scalar for topological
characterization of brain networks independent of single threshold
selection. The integrated AUC metric has been used in previous
brain network studies and is sensitive at detecting topological al-
terations of brain disorders (46,47,52).

To further localize specific pairs of brain regions in which func-
tional connectivity was altered in patients, we used a network-
based statistic (NBS) approach (53). Briefly, we identified region
pairs showing between-group differences in functional connectiv-
ity and utilized the NBS method to localize those connected net-
works showing significant changes in the MDD patients (Supple-
ment 1).

Statistical Analysis
Differences in Network Metrics. To determine whether there

existed significant group differences in the network properties,
nonparametric permutation tests (54) were performed on the AUC
of each network metric (small-world, network efficiency and re-
gional centrality measures). Briefly, we first calculated the between-
group difference in the mean value of each network metric. To test
the null hypothesis that the observed group differences could oc-
cur by chance, for each network metric we then randomly reallo-
cated all the values into two groups and recomputed the mean
differences between the two randomized groups. This randomiza-
tion procedure was repeated 10,000 times, and the 95th percentile
points of each distribution were used as the critical values for a
one-tailed test of the null hypothesis with a probability of type I
error of .05. Of note, before the permutation tests, multiple linear
regression analyses were applied to remove the confounding ef-
fects of age and gender for each network metric (independent
variable: the AUC of each network metric; dependent variables: age
and gender). Likewise, permutation tests were used to determine
the significance levels of altered connectivity networks in the NBS
analysis (Supplement 1).

Relationships Between Network Measures and Clinical
Variables. Once significant between-group differences were ob-

served in any network metrics, we further assessed the relation- w

ww.sobp.org/journal
hips between these metrics and the HAMD score and the course of
isease in the MDD group, performed by multiple linear regression
nalyses with age and gender as unconcerned confounding factors
independent variables: network metrics showing between-group
ifferences; dependent variables: clinical characteristics of the
AMD score or course of disease).

esults

fficient Small-World Functional Brain Networks
The topological properties of brain networks depend on the

hoices of thresholds. In the current study, we determined a data-
pecific small-world regime at a sparsity range of .10 � S � .34.
artial correlation thresholds ranged from .42 to .47 (mean � SD �

44 � .01) at S � .10 and from .25 to .28 (mean � SD � .26 � .01) at
� .34 across all subjects. In the precisely defined threshold range,

unctional brain networks of both the MDD and control groups had
igher clustering coefficients (i.e., � � 1) but almost identical char-
cteristic path lengths (i.e., � 
 1), compared with comparable
andom networks (Figure 1A and Figure S5A in Supplement 1),
hich are typical features of small-worldness. Moreover, using
ore biologically relevant network efficiency measurements, all

rain networks also demonstrated an economic small-world topol-
gy of approximately equivalent parallel information processing of
lobal efficiency but a higher fault tolerance of local efficiency
ompared with matched random networks (Figure 1B and Figure
5B in Supplement 1). These results are compatible with previous
tudies of small-world brain networks (for reviews, see [15,17,55]).

DD-Related Alterations in Small-World Properties
Despite common small-world architecture, statistical analyses

evealed significant differences in both small-world parameters
nd network efficiency between MDD patients and control subjects
Figure 2). The MDD group showed significantly lower values in
oth the characteristic path length L

p (p � .020) and normalized
haracteristic path length � (p � .020) compared with normal con-
rol subjects. No significant (p � .05) differences were found in local
lustering of C

p and �. As to network efficiency, the comparisons
evealed a significantly increased global efficiency E

glob (p � .020)
ut unchanged local efficiency E

loc (p � .05) in the functional brain
etworks of MDD patients as compared with normal control sub-

ects.

DD-Related Alterations in Regional Nodal Characteristics
We identified the brain regions showing significant between-

roup differences in at least one nodal metric (p � .05, uncor-
ected). Compared with normal control subjects, MDD patients
howed increased nodal centralities in many brain regions, includ-
ng the bilateral hippocampus, the bilateral caudate nucleus, the
eft inferior parietal lobe, the left precuneus, the left parahippocam-
al gyrus, the left postcentral gyrus, the left putamen, the right
upramarginal gyrus, and the right superior frontal gyrus (medial
rbital) (Figure 3A, Table 2). Most of these regions were the compo-
ents of the default-mode network (DMN) (56 –58). Decreased
odal centralities in MDD patients were predominantly located in
everal regions of the occipital (the bilateral lingual gyrus, the right
alcarine fissure and surrounding cortex, and the left cuneus), fron-
al (the orbital part of left superior and middle frontal gyrus and the
ight middle frontal gyrus), and temporal (the right middle tempo-
al gyrus) lobes (Figure 3A, Table 2).

DD-Related Alterations in Functional Connectivity
We utilized the NBS method to identify a single connected net-
ork with 12 nodes and 12 connections, which was significantly
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altered in the patients (p � .002, corrected) (Figure 4, Table S2 in
upplement 1). The nodes included several default-mode regions
e.g., precuneus, lateral temporal, and parietal regions) and the

Figure 1. The small-world parameters and network efficiency of functiona
showed a higher clustering coefficient (C

p) and approximately equal charac
resulting in normalized C

p (i.e.,�) � 1 and normalized L
p (i.e., �) 
 1 (bottom pa

ut approximately identical global efficiency (E
glob) of parallel information t

ormalized E
loc � 1 and normalized E

glob 
 1 (bottom panel). Thus, both sm
functional brain networks of all participants. Of note, the results are represen
For the results at other threshold levels, see Figure S5 in Supplement 1. MD

Figure 2. Differences in topological properties of functional brain networks be-
ween MDD patients and NC. aSignificant differences were found in characteristic
ath length L

p (p � .020), normalized characteristic path length � (p � .020), and
E

i
lobal efficiency glob (p � .020) between MDD patients and NC. Error bars denote
tandard deviations. MDD, major depressive disorder; NC, normal control subjects.
onnections were mainly involved in the long-distance connec-
ions linking different lobes. Within this network, all connections
xhibited increased values in the MDD patients as compared with
he control subjects. The mean connectivity value showed margin-
lly significant correlations with the three global network metrics

L
p: p � .059; �: p � .056; E

glob: p � .051) (Figure 4).

elationships Between Network Measures and Clinical
ariables

There were no significant (p � .05) correlations between global
etwork metrics (C

p, L
p, �, �, E

loc, andE
glob) and clinical variables

HAMD scores or the duration of illness). There were also no signif-
cant (p � .05) correlations between mean connectivity values

ithin the NBS-based network and clinical characteristics. The left
ippocampus was negatively (p � .05) correlated with both HAMD
cores and the duration of illness. The left caudate nucleus was
ositively (p � .05) correlated with HAMD scores in at least one
odal measure (Figure 3B). The left precuneus showed marginally
ignificant (.05 � p � .10) correlation with HAMD scores (Figure 3B).

iscussion

The present study examined the topological organization of
unctional brain networks in MDD patients. The results reveal that

DD had decreased path length and increased global efficiency,

n networks. (A) Functional brain networks of both MDD patients and NC
ic path length (L

p) compared with matched random networks (top panel),
(B) Functional brain networks exhibited higher local network efficiency (E

loc)
ission compared with matched random networks (top panel), resulting in
rld parameters and network efficiency suggest a small-world topology for

nly for functional brain networks constructed at a threshold level of S � .15.
jor depressive disorder; NC, normal control subjects.
l brai
terist
nel).

ransm
all-wo
ted o
mplying a disturbance of the normal global integration of whole-

www.sobp.org/journal
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brain networks. Moreover, many local brain regions were profoundly
affected by MDD: both caudate nucleus and default-mode regions

Figure 3. Brain regions showing abnormal nodal centralities in brain functi
Regions with abnormal nodal centralities in MDD patients were rendered on
on structural MRI volumes from 12 normal subjects (PALS-B12) in Compu
wustl.edu). See Table 2 for the detailed information. (B) Scatter plots of nod
lenticular nucleus, putamen) showed group differences in nodal centrality b
nucleus; CUN, cuneus; HAMD, Hamilton Depression Rating Scale; HIP, hi
hemisphere; LING, lingual gyrus; MDD, major depressive disorder; MFG, m
ORBmid, middle frontal gyrus, orbital part; ORBsup, superior frontal gyrus, o
PHG, parahippocampal gyrus; PoCG, postcentral gyrus; R, right hemisphere
showed increased nodal centralities, while several regions in the occip- o

ww.sobp.org/journal
tal, frontal, and temporal lobes showed decreased centralities. These
esults provide insights into our understanding of altered topological

etworks and their relationships with clinical variables in MDD patients. (A)
rface of the Population-Average, Landmark- and Surface-based atlas based
d Anatomical Reconstruction and Editing Toolkit (CARET; http://brainvis.
trics against disease duration and HAMD scores. A subcortical region (the

ot shown here. CAL, calcarine fissure and surrounding cortex; CAU, caudate
ampus; IPL, inferior parietal, but supramarginal and angular gyri; L, left
frontal gyrus; MTG, middle temporal gyrus; NC, normal control subjects;
part; ORBsupmed, superior frontal gyrus, medial orbital; PCUN, precuneus;
, supramarginal gyrus.
onal n
the su
terize
al me

ut is n
ppoc
iddle
rganization in functional brain networks of MDD.

http://brainvis.wustl.edu
http://brainvis.wustl.edu
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The human brain is a complex, interconnected system and has
various important topological attributes, such as small-worldness,
high efficiency at a low wiring cost, and highly connected hubs
(15–17,55,59). In a small-world network, nodes are locally clustered
in favor of modular information processing on the one hand and are
efficient in overall routing with the addition of few long-range
connections or shortcuts on the other hand (48). More recently,
Latora and Marchiori (50) expanded the theory of small-worldness
in terms of the two measures of efficiency and cost. Networks that
are cheap to build but still efficient in propagating information are
said to be economic small-world networks. Small-worldness is an
attractive model to characterize brain networks because the com-
bination of high local clustering and short path length supports the
two fundamental organizational principles in the brain: functional
segregation and functional integration. Here, using both the con-
ventional small-world model and novel efficiency measures, we
found that both MDD patients and control subjects showed effi-
cient small-world topology in whole-brain functional networks.

Despite the common small-world topology, there were signifi-
cant group differences in small-world metrics and network effi-
ciency. The MDD patients showed a decreased path length in their
brain networks as compared with control subjects, whereas there
were no significant differences in local clustering. Likewise, network
efficiency analysis revealed abnormal small-world organization in
the MDD group, as characterized by increased global efficiency. The
changes in these global network metrics could be attributable to
increased long-distance functional connections in patients, involv-
ing a specific connected network mainly comprising default-mode
regions (Figure 4, Table S2 in Supplement 1). Notably, a previous
electroencephalogram study reported that depressed patients
showed a significantly lower path length in the theta and delta
frequency bands but no significant changes in clustering coeffi-

Table 2. Regions Showing Abnormal Nodal Centralities

Brain Regions N

MDD � Control Subjects
Right hippocampus
Right caudate nucleus
Left hippocampus
Left caudate nucleus
Left inferior parietal, but supramarginal and

angular gyri
Left putamen
Left precuneus
Right supramarginal gyrus
Left parahippocampal gyrus
Right superior frontal gyrus, medial orbital
Left postcentral gyrus

MDD � Control Subjects
Left lingual gyrus
Right calcarine fissure and surrounding cortex
Left middle frontal gyrus, orbital part
Left cuneus
Right middle frontal gyrus
Right lingual gyrus
Left superior frontal gyrus, orbital part
Right middle temporal gyrus

Regions were considered abnormal in MDD patients
.05, uncorrected) in at least one of the three nodal centr

MDD, major depressive disorder.
cient (34), providing further support for our findings. Given that the c
mall-world model reflects an optimal balance between local spe-
ialization and global integration, these results thus indicate a dis-
urbance of the normal balance in functional brain networks of

DD patients. Specifically, the findings of increased global integra-
ion and maintained local specialization in the patients suggest that
unctional brain networks in MDD are closer to a randomized con-
guration. This randomization process has been observed in brain

unctional networks in other neuropsychiatry diseases, such as Alz-
eimer’s disease (27) and schizophrenia (30). Random networks
ave less modularized information processing or fault tolerance
ompared with small-world networks (50). Therefore, our findings
f loss of small-world characteristics in MDD reflect a less optimal

opological organization in brain networks, thus providing further
vidence that MDD is a disorder with disrupted neuronal network
rganization and deficient cognitive and mood processing.

The MDD-related increases in nodal centralities were mainly
ound in the hippocampus, parahippocampal gyrus, medial frontal
nd parietal regions, and inferior parietal lobe, most of which are
omponents of the DMN (56 –58). Several DMN regions have shown
epression-related increases in regional cerebral blood flow to the
ippocampus (3) and cerebral metabolism in the parahippocampal
yrus (2,5), precuneus (2), and posterior cingulate cortex (5). More-
ver, DMN-related increases of functional connectivity have also
een observed in depressed patients, such as between the sub-
enual cingulate and thalamus (13) and within the DMN regions

38). In this study, we also found MDD-related increases in nodal
entralities in the caudate nucleus, a key brain structure involved in
he regulation of cognition and mood (60). Major depressive disor-
er patients exhibited reduced gray matter volume in the caudate
ucleus (61– 63) and abnormal brain activities during specific tasks
r in a resting state (9,64,65). Particularly, a recent fMRI study
howed that MDD patients had increased neuronal responses in the

DD Patients as Compared with Control Subjects

p Values

Degree Nodal Efficiency Nodal Betweenness

08 .010 .048
21 .033 .047
25 .012 .172
27 .033 .036

31 .025 .009
36 .034 .088
36 .035 .015
0 .027 .064
7 .040 .159
6 .044 .220
1 .049 .045

09 .015 .047
12 .016 .052
23 .048 .005
24 .025 .020
34 .038 .071
40 .037 .157
41 .060 .165
41 .026 .076

y exhibited significant between-group differences (p �
(shown in bold font).
in M

odal
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audate nucleus to emotional faces in a facial expression matching
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task (10). Thus, our findings are compatible with these previous
studies. Increased nodal centralities of these regions suggest their
strengthened roles of coordinating whole-brain networks, presum-
ably in response to the pathological disorder of MDD.

Specifically, we found that nodal centralities of the left hip-
pocampus were negatively related to the duration of the disease,
indicating the longer the illness, the lower the nodal centralities of
the left hippocampus. Hippocampal volume is believed to decrease
in depression patients (66 – 68), and this shrinkage is positively cor-
related with depressive duration (69 –71). In our sample, the left
hippocampus was negatively related to depression severity (HAMD
scores). de Asis et al. (72) reported that hippocampal hypoactiva-
ion might constitute neural substrates of geriatric depression. The
epressive state can be predicted by hippocampus-related mor-
hological changes (70) or resting-state functional connectivity

73). Thus, our finding in the hippocampus is consistent with previ-
us studies and suggests its role in predicting the depressive state.
f note, recent research on first-episode, drug-naive MDD patients
as indicated that hippocampal volume is positively correlated
ith symptom severity (74), whereas it is negatively correlated with
isease duration in MDD (75,76). These results suggest the opposite
echanism of depressive symptom severity and duration on the

Figure 4. The connected network showing increased functional connection
region pairs showing increased functional connections in MDD patients.
connections, which was significantly (p � .002, corrected) abnormal in the
different lobes. The nodes and connections were mapped onto the cortical
Supplement 1. (B-D) Scatter plots of mean functional connectivity of th
significant correlations with the three metrics (L

p: p � .059; �: p � .056; E
glob: p

global efficiency; FFG, fusiform gyrus; IFGoperc, inferior frontal gyrus (oper
lobe; L, left hemisphere; Lp, characteristic path length; MDD, major depr

ormalized characteristic path length; PCUN, precuneus; R, right hemisphe
emporal gyrus (temporal pole).
olume of the hippocampus. Given the increased nodal centrality a

ww.sobp.org/journal
f the hippocampus in MDD patients, we speculate that disease
everity and duration also have competitive effects on the intrinsic
ctivity of the left hippocampus.

The MDD-related decreases in nodal centralities were mainly
bserved in occipital cortex regions, including the calcarine fissure,
uneus, and lingual gyrus. Depression has been associated with
oth structural and functional abnormalities in occipital regions,
uch as decreased gray matter volume in the cuneus (77) and de-
reased cerebral blood flow in the lingual gyrus (78). Moreover,
vidence from first-episode, treatment-naive MDD patients has
hown decreased white matter integrity related to occipital regions
79). Our findings are consistent with these. In addition, fewer nodal
entralities were found in the middle frontal gyrus (orbital part),
hich is also compatible with a previous study showing frontal
hite matter lesions (79).

Several issues need to be further addressed. First, the head
otions of subjects might have confounded our results. Further

nalyses revealed no significant group differences in the head mo-
ion profiles and no significant correlations between head motions
nd the network metrics. Second, in the current study, functional
rain networks were constructed at a regional level by parcellating

he whole brain into 90 regions based on a previously published

DD patients and its relationships with the global network metrics. (A) The
connections formed a single connected network with 12 nodes and 12
nts. Of note, 9 of 12 connections are long-distance connections that link
es using in-house BrainNet viewer software. For the details, see Table S2 in
nected network against global network metrics. There were marginally
1). ANG, angular gyrus; DCG, median cingulate and paracingulate gyri; Eglob,
part); IFGtriang, inferior frontal gyrus (triangular part); IPL, inferior parietal

disorder; MOG, middle occipital gyrus; MTG, middle temporal gyrus; �,
G, superior parietal gyrus; STG, superior temporal gyrus; TPOsub, superior
s in M
These

patie
surfac
is con
� .05
cular
essive
re; SP
tlas. Brain networks derived using different parcellation schemes
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or at different spatial scales exhibit distinct topological architec-
tures (52,80 – 83). Further studies are needed to determine which
brain parcellation strategy or spatial scale is most appropriate for
the characterization of network topology in MDD. Third, the nodal
centrality results were not corrected by multiple comparisons,
meaning this should be considered an exploratory analysis. To in-
crease statistical power, future studies need to be conducted using
a large sample of MDD patients or by selecting a limited number of
regions of interest. Fourth, the recruited MDD patients were heter-
ogeneous in terms of symptom clusters. A previous fMRI study (84)
suggests that different MDD symptom dimensions could have dis-
tinct neuronal mechanisms. In the future, it would be interesting to
investigate whether patients with different MDD symptoms show
distinct topological organizations in their brain networks. Finally,
functional brain networks constructed from R-fMRI data are largely
constrained by anatomical pathways (85,86). Accordingly, a com-
bined analysis of multimodal imaging data will produce more fruit-
ful information on the interaction between brain function and
structure under pathological conditions.
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