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a b s t r a c t 

Human cognition and behaviors depend upon the brain’s functional connectomes, which vary remarkably across 
individuals. However, whether and how the functional connectome individual variability architecture is struc- 
turally constrained remains largely unknown. Using tractography- and morphometry-based network models, we 
observed the spatial convergence of structural and functional connectome individual variability, with higher 
variability in heteromodal association regions and lower variability in primary regions. We demonstrated that 
functional variability is significantly predicted by a unifying structural variability pattern and that this prediction 
follows a primary-to-heteromodal hierarchical axis, with higher accuracy in primary regions and lower accu- 
racy in heteromodal regions. We further decomposed group-level connectome variability patterns into individual 
unique contributions and uncovered the structural-functional correspondence that is associated with individual 
cognitive traits. These results advance our understanding of the structural basis of individual functional variabil- 
ity and suggest the importance of integrating multimodal connectome signatures for individual differences in 
cognition and behaviors. 
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. Introduction 

Each individual thinks or behaves differently from other individ-
als. A growing number of studies have suggested that the brain’s
unctional connectomes (FCs) and structural connectomes (SCs) act as
iological substrates underlying these individual differences in cog-
ition and behaviors ( Bullmore and Sporns, 2009 ; Liao et al., 2017 ;
ark and Friston, 2013 ). Several prior studies have documented that
he intrinsic FC profiles of the human brain during resting condi-
ions vary across individuals, with higher variability primarily in het-
romodal association regions and lower variability in primary senso-
imotor and visual regions ( Mueller et al., 2013 ; Gao et al., 2014 ;
u et al., 2018 ; Stoecklein et al., 2019 ). Such an FC variability pat-

ern is significantly correlated with focal cortical folding variation
 Mueller et al., 2013 ; Mansour et al., 2021 ) and evolutionary cortical ex-
ansion ( Mueller et al., 2013 ; Stoecklein et al., 2019 ) and predicts indi-
idual differences in cognitive domains ( Mueller et al., 2013 ; Liao et al.,
017 ). In the present study, we investigated whether and how interindi-
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idual FC variability is anatomically shaped by the SC variability of the
uman brain. 

There are currently two principal methods available for mapping
he SCs of the human brain: white matter tractography-based methods
sing diffusion weighted imaging and gray matter morphometry-based
ethods using structural imaging. Specifically, tractography-based con-
ectomes can be reconstructed by inferring axonal tracts among brain
egions using deterministic or probabilistic tractography approaches
 Gong et al., 2009 ; Hagmann et al., 2008 ; Zhang et al., 2022 ), while
orphometry-based connectomes can be obtained by examining the sta-

istical similarity of morphometric measures among regions ( He et al.,
007 ; Tijms et al., 2012 ; Kong et al., 2015 ). Although there are mount-
ng reports showing SC-FC coupling across brain regions or subjects
 Honey et al., 2009 ; Baum et al., 2019 ; Wang et al., 2015b ; Misic et al.,
016 ; Zimmerman et al., 2018 ), whether and how interindividual FC
ariability patterns are structurally constrained is understudied. To date,
nly three studies have examined the relationship between interindivid-
al FC and SC variability patterns. Of them, two studies reported non-
ignificant spatial correlations between FC variability and tractography-
ased SC variability ( Chamberland et al., 2017 ; Karahan et al., 2021 ),
) . 
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hich could be attributable to a relatively small sample size ( n = 9
 Chamberland et al., 2017 ) and n = 29 ( Karahan et al., 2021 )) and
onfounds of intraindividual variation ( Karahan et al., 2021 ). A very
ecent study reported a significant correlation between interindividual
ariability patterns of FC and tractography-based SC ( Mansour et al.,
021 ). However, there are several important issues that have not been
ddressed. First, these previous studies used only a single SC fea-
ure in which network edges represent the existence of direct white
atter connections, ignoring the contribution of network communica-

ions (such as path length ( Achard et al., 2006 ) and communicability
 Crofts and Higham, 2009 ) and morphometry-based SCs, which are im-
ortant anatomical scaffoldings for shaping the brain’s functional activ-
ties ( Goni et al., 2014 ; Avena-Koenigsberger et al., 2017 ; Alexander-
loch et al., 2013 ; Geng et al., 2017 ). Second, these prior studies focus
ainly on the relationship between whole-brain SC and FC variability,

gnoring the spatial heterogeneity of brain regions. Third, considering
hat there are structural and functional variabilities in brain networks
ven within an individual, thus the estimation and control of intrasub-
ect variability are important to accurately depict the relationship be-
ween SC and FC variability at both group and individual levels. Thus,
he correspondence between interindividual FC and SC variability has
een difficult to establish to date. 

To fill these gaps, we conducted a comprehensive integrative analy-
is of multimodal connectome features to unravel the relation between
unctional and structural variability in the human brain using repeated-
easures functional, structural, and diffusion imaging data from the Hu-
an Connectome Project (HCP) ( Van Essen et al., 2013 ). Specifically, we
rst calculated the canonical interindividual FC variability in the whole
rain and then quantified multifaceted interindividual SC variability
atterns that captured three communication models of tractography-
ased connectomes and five morphometric measures of morphometry-
ased connectomes. Next, we used both linear and nonlinear compu-
ational analyses to test the hypothesis that individual FC variability
s structurally constrained by unifying SC signatures across the whole
rain and across different systems. Finally, we decomposed the group-
evel FC and SC variability patterns into individual unique contributions
nd then explored the alignment of structural-functional uniqueness and
ts relevance to individual cognitive and behavioral traits. 

. Materials and methods 

.1. Participants and data acquisition 

Participants . We used two publicly available multimodal magnetic
esonance imaging (MRI) datasets from the Human Connectome Project
HCP) ( Van Essen et al . , 2013 ). For detailed subject inclusion/exclusion
riteria, please refer to ( Van Essen et al . , 2013 ). The HCP S1200 dataset
ncluded 1012 healthy young-adult subjects (ages 22–37, 543 females)
ith complete minimal preprocessed imaging data for all modalities.
he HCP Test-Retest (TRT) dataset included 42 subjects (ages 22–35,
0 females) who underwent two separate scans with an interval ranging
rom 0.5 to 11 months. The HCP TRT dataset was used as the discovery
ataset. The HCP S1200 dataset was used as the validation dataset. Writ-
en informed consent was obtained from all subjects, and the scanning
rotocol was approved by the Institutional Review Board of Washington
niversity in St. Louis, MO, USA (IRB #20,120,436). 

Data Acquisition . All MRI data were acquired on a customized 3 T
2-channel Siemens Skyra scanner at Washington University. All images
n the HCP S1200 dataset and HCP TRT dataset shared the same scan-
ing parameters. Resting-state functional MRI (rs-fMRI) images were
btained by multiband gradient-echo-planar imaging acquisitions with
wo rs-fMRI runs (the phase encoding direction corresponded to left-to-
ight and right-to-left, respectively). The sequence parameters for each
un were the same as follows: repetition time (TR) = 720 ms, echo
ime (TE) = 33.1 ms, flip angle = 52°, bandwidth = 2290 Hz/pixel,
eld of view = 208 × 180 mm 

2 , matrix = 104 × 90; 72 slices, voxel
2 
ize = 2 × 2 × 2 mm 

3 , multiband factor = 8, and 1200 vol. The high
patial resolution diffusion-weighted imaging (DWI) data (1.25 mm
sotropic, 18 b0 acquisitions, 270 diffusion-encoding directions with
hree shells of b = 1000, 2000, and 3000 s/mm 

2 , 90 directions for each
hell, 2 × 2 × 2 mm isotropic voxels, TR = 5520 ms, TE = 9.58 ms)
ere acquired by using a Stejskal-Tanner diffusion-encoding scheme.
1-weighted (T1w) images were acquired using a 3D-magnetization-
repared rapid acquisition with gradient echo (MPRAGE) sequence
0.7 mm isotropic voxels, matrix = 320 × 320; TR = 2400 ms,
E = 2.14 ms, 256 slices, flip angle = 8°). T2-weighted (T2w) im-
ges were acquired using a 3D T2-sampling perfection with application-
ptimized contrasts by using flip angle evolution (SPACE) sequence with
dentical geometry (TR = 3200 ms, TE = 565 ms). 

.2. Data preprocessing 

.2.1. Functional data 

All functional imaging data were preprocessed by the HCP min-
mal preprocessing pipeline ( Glasser et al., 2013 ), including gradi-
nt distortion correction, motion correction, echo-planar imaging dis-
ortion correction, registration to the Montreal Neurological Institute
MNI) space, and intensity normalization. Then, the volume time se-
ies were mapped to the standard CIFTI grayordinates space, down-
ampled to 32k_fs_LR mesh, and slightly smoothed using a 2 mm full-
idth half-maximum (FWHM) kernel on the surface. As a part of the
reprocessing pipeline, ICA-FIX denoising was used to remove non-
eural spatiotemporal noise and head motion. To further reduce the
ffects of nuisance covariates, we regressed out the white matter,
erebrospinal fluid, global signals, and the 12 head motion parame-
ers and performed temporal bandpass filtering (0.01–0.1 Hz) using
PM12 ( https://www.fil.ion.ucl.ac.uk/spm/ ) and GRETNA ( Wang et al.,
015a ). 

.2.2. Diffusion data 

All diffusion imaging data were preprocessed with the HCP diffu-
ion preprocessing pipeline, including mean b0 image normalization,
cho planar imaging (EPI) distortion correction, eddy-current distor-
ion correction, head motion correction, gradient nonlinearity correc-
ion, linear registration to native structural space using a 6 degrees of
reedom (DOF) boundary-based registration, and data masking with the
nal brain mask to reduce the file size ( Glasser et al., 2013 ). 

.2.3. Morphological data 

All T1w and T2w MRI scans went through the HCP structural pre-
rocessing pipeline ( Glasser et al., 2013 ). We obtained the individ-
al cortical thickness, cortical curvature, sulcal depth, surface area,
nd intracortical myelination after bias correction in the standard sur-
ace (32k_fs_LR space) from the publicly available dataset. Intracortical
yelination is characterized by the ratio of the T1w value to the T2w

alue ( Glasser and Van Essen, 2011 ). 

.3. Network reconstruction 

.3.1. Functional connectome (FC) 

A surface-based multimodal brain atlas (HCP-MMP1.0) was used to
arcellate the cerebral cortex into 180 regions of interest (ROIs) per
emisphere ( Glasser et al., 2016 ). For each run, we first obtained the
ean time series of vertices in each brain node and calculated Pearson’s

orrelation coefficient of the time series between any pair of nodes to
onstruct the FC. Then, we performed Fisher’s r-to-z transformation to
ormalize the correlation coefficient of the individual FCs. 

.3.2. Tractography-based structural connectome (SC) 

We transformed the surface-based parcel labels into each individ-
al’s native volume space by using HCP Workbench’s command label-to-

olume-mapping . These atlas labels at volume space were further dilated

https://www.fil.ion.ucl.ac.uk/spm/
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y 2.5 mm to enter the gray matter-white matter boundary. Together,
60 dilated regions represented the nodes of SCs. 

The edges of the direct white matter SCs were defined using prob-
bilistic tractography. Briefly, the preprocessed b0 data and crossing
ber modeled diffusion data (called BedpostX data) were obtained from
he HCP database. Each defined brain node was selected as a seed re-
ion, and probabilistic tractography was performed by sampling 5000
treamline fibers for each voxel within each seed region. The connectiv-
ty probability from the source region to the target region was defined
y the number of streamlines passing through the target region divided
y the total number of streamlines sampled from the source region. One
hallenge of probabilistic tractography is that the number of streamlines
rops with distance from the seed mask, which may underestimate long-
istance connections in the whole-brain network. Thus, we performed
he distance correction using the –pd flag in fsl ProbtrackX tools. As a
esult, the connectivity weight is the expected length of the pathways
imes the streamlines number ( Behrens et al., 2007 ; Cui et al., 2013 ).
he tractography procedure was repeated for all pairs of brain regions
o obtain a whole-brain weighted connectivity matrix. After perform-
ng the symmetrization operation, the tractography-based direct SC was
enerated for each individual. The above procedures were implemented
ith the FSL ( Jenkinson et al., 2012 ) and the PANDA Toolkit ( Cui et al.,
013 ). 

The tractography-based direct SC represents the direct communi-
ation between brain regions, while convergent evidence has empha-
ized that signal propagation among brain regions may also occur along
ne or more indirect pathways ( Crofts and Higham, 2009 ; Goni et al.,
014 ; Suárez et al., 2020 ; Vazquez-Rodriguez et al., 2019 ). To character-
ze interindividual structural variability from the perspective of differ-
nt regional communication models, we derived another two weighted
onnectomes that characterized two types of multipath communication
echanisms. As two extremes of the polysynaptic communication mod-

ls among brain regions, path length (PL) characterizes the routing pro-
ocols of information propagation, and communicability (CO) reflects
he diffusion processes of information propagation. 

Path length . The cost of a connection in the weighted SC network was
rst calculated by inverting the edge weight, i.e. 𝐶𝑜𝑠𝑡 𝑖𝑗 = 1∕ 𝐴 𝑖𝑗 , where
 𝑖𝑗 is the weight of the edge between node i and j . The path length

s defined as the minimum cost of the contiguous edges between two
odes. 

Communicability . Communicability is defined as the weighted sum
f all walks between two nodes ( Crofts and Higham, 2009 ; Estrada and
atano, 2008 ). For a binary network A, communicability 𝐶𝑂 𝑖𝑗 is defined
s 

𝑂 𝑖𝑗 = 

( ∑∞
𝑘 =1 𝐴 

𝑘 

( 𝑘 ! ) 

) 

𝑖𝑗 

= 

(
𝑒 𝐴 

)
𝑖𝑗 

here ( 𝐴 

𝑘 ) 𝑖𝑗 represents the number of walks within k steps that start at
ode i and finish at node j . Note that the walks of step k are normal-
zed by a penalty factor 1∕( 𝑘 ! ) to ensure that the shorter the walk is, the
reater the contribution. For a weighted network A , the communicabil-
ty 𝐶 𝑖𝑗 is defined as 

𝑂 𝑖𝑗 = 

(
𝑒𝑥𝑝 

(
𝐷 

−1∕2 𝐴𝐷 

−1∕2 ))
𝑖𝑗 

here D is a diagonal degree matrix formed by 𝐷 ≔𝑑𝑖𝑎𝑔( 𝑑 𝑖 ) , and

 i is the generalized degree of node i formed by 𝑑𝑖 ≔
𝑁 ∑
𝑘 =1 

𝑎 𝑖𝑘 . Path-

ength-based SC and communicability-based SC were implemented us-
ng the GRETNA toolbox ( Wang et al., 2015b ) and netneurotools
 https://netneurotools.readthedocs.io ), respectively. 

.3.3. Morphometry-based SC 

We use a common framework ( Kong et al., 2015 ; Li et al., 2021b ;
ijms et al., 2012 ) to map individual morphometry-based SCs based
n the interregional similarity of morphological features. Considering
3 
hat the distribution of morphological features of brain regions is dis-
rete, we choose the earth mover’s distance, which is a statistical mea-
urement of the difference between two discrete probability distribu-
ions ( Elizaveta Levina, 2001 ). Specifically, for each morphological fea-
ure, including cortical thickness, cortical curvature, sulcal depth, sur-
ace area, and intracortical myelination, we calculated the earth mover’s
istance between the feature distributions of any pair of regions and
hen obtained a dissimilarity matrix. We normalized each dissimilarity
atrix to the range [0,1] and quantified the interregional similarity as
-distance. Finally, we obtained five morphological-based SCs for each
ndividual, with large values in those SCs indicating high morphological
loseness. 

.4. Estimating interindividual variability patterns at the group level 

Following the method proposed by Mueller and colleagues
 Mueller et al., 2013 ), we calculated the adjusted interindividual vari-
bility in brain connectomes. Taking the FC as an example, the raw
nterindividual FC variability of a given brain region i was defined as
ollows: 

 𝑎𝑟 𝑖 ( 𝑡 ) = 1 − 𝐸 

[
𝑐𝑜𝑟𝑟 

(
𝐹 𝑖 
(
𝑠 𝑝 , 𝑡 

)
, 𝐹 𝑖 

(
𝑠 𝑞 , 𝑡 

))]
here 𝑝, 𝑞 = 1 , 2 …𝑁 ( 𝑝 ≠ 𝑞 ) ; N is the number of subjects in the
ataset; 𝑠 𝑝 and 𝑠 𝑞 indicate the subject; and t indicates the separated ses-
ion. 𝐹 𝑖 ( 𝑠 𝑝 , 𝑡 ) is the functional connectivity profile of region i of subject
 p in session t . Similarly, when calculating the individual SC variability,
 𝑖 is the structural connectivity profile between region i and all other
rain regions. 

For each subject, the intraindividual variance in region i was esti-
ated using repeat-scan data from all sessions/runs, 

𝑛𝑡𝑟𝑎𝑉 𝑎𝑟 𝑖 ( 𝑠 ) = 1 − 𝐸 

[
𝑐𝑜𝑟𝑟 

(
𝐹 𝑖 
(
𝑠, 𝑡 𝑚 

)
, 𝐹 𝑖 

(
𝑠, 𝑡 𝑛 

))]
here 𝑚, 𝑛 = 1 , … 𝑇 ; T is the total number of sessions/runs. Then, by
veraging the intraindividual variance of N individuals, we obtained
he intraindividual variability of region i that can characterize the entire
ataset, 

 𝑛𝑡𝑟𝑎𝑉 𝑎𝑟 𝑖 = 𝐸 

[
𝐼 𝑛𝑡𝑟𝑎𝑉 𝑎𝑟 𝑖 ( 𝑠 ) 

]
To estimate the adjusted interindividual variability, we regressed out

he intraindividual variability map from the raw interindividual vari-
bility map using a general linear model and then averaged the in-
erindividual variability map across sessions/runs. 

.5. Principal component analysis 

Considering distinct structural patterns provided by tractography-
ased SCs and morphometry-based SCs, we first generated a linear mul-
ivariate representation of the structural variability by performing a
rincipal component analysis (PCA) of the interindividual variability
aps of all eight structural features. Specifically, the SC variability maps

f all features were first z-transformed and combined into a region × fea-
ure matrix X . Then, PCA was applied to X , yielding principal axes and
he coefficients of linear combinations via the eigenvalue decomposition
f the covariance matrix. The principal components were defined as the
oordinate representations of features on the corresponding principal
xes. The first principal component of SC variability captured the largest
roportion of total variances. We calculated the ratio of the squared fac-
or score ( Abdi and Williams, 2010 ) of each feature by the eigenvalue
ssociated with the principal component to characterize its contribution
o the principal component. 

.6. Predicting interindividual FC variability using a multivariate prediction

odel 

We employed a support vector regression (SVR) model ( fitrsvm func-
ion in MATLAB) with a ‘ rbf ’ nonlinear kernel to examine the ability

https://netneurotools.readthedocs.io
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f SC variability to predict FC variability. Specifically, the FC variabil-
ty map for the whole brain was represented as a vector ( 𝑁 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 × 1 ).
ll eight SC variability maps were chosen as input features ( 𝑁 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 ×
 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 ). We first linearly scaled all features to the range of 0–1. Then,

he prediction model was trained and evaluated using the leave-one-
ut cross-validation (LOOCV) strategy. The variability map of each re-
ion across the whole cortex was designated as the testing sample, while
he variability maps of the remaining regions were defined as the train-
ng samples. After LOOCV, Pearson’s correlation coefficient between the
redicted FC variability and the observed FC variability across all re-
ions was calculated as the prediction accuracy. The same predictive
ramework was also performed for regions within each hierarchical sys-
em separately. 

.7. Direct SC-FC coupling 

Inspired by Bertha and colleagues ( Vazquez-Rodriguez et al., 2019 ),
e performed a multiple regression linear model to fit the FC profile in

ach region using SC profile predictors of all structural metrics in the
ame region. The regional SC-FC coupling was quantified by the fitted
djusted R 

2 , which represents the degree of correspondence of structural
nd functional connectivity profiles. For each FC and SC metric, a group-
evel network was first estimated as the averaged connectivity matrix
cross individuals and sessions. Then, the estimated FC profile of node
 was represented as 

 𝐶 𝑖 = 𝑏 0 + 𝑏 1 𝑆𝐶 𝑖 + 𝑏 2 𝑃 𝐿 𝑖 + 𝑏 3 𝐶𝑂 𝑖 + 𝑏 4 𝐶𝑇 𝑖 

+ 𝑏 5 𝐼𝑀 𝑖 + 𝑏 6 𝑆𝐷 𝑖 + 𝑏 7 𝐶𝐶 𝑖 + 𝑏 8 𝑆𝐴 𝑖 

here the independent variables 𝑆𝐶 𝑖 , 𝑃 𝐿 𝑖 , and 𝐶𝑂 𝑖 are the
ractography-based structural connectivity between node i and all
ther nodes, and 𝐶𝑇 𝑖 , 𝐼𝑀 𝑖 , 𝑆𝐷 𝑖 , 𝐶𝐶 𝑖 , and 𝑆𝐴 𝑖 are the morphometry-
ased structural connectivity between node i and all other nodes. Such
 multilinear regression framework to characterize SC-FC correspon-
ence has been widely reported ( Betzel et al., 2019 ; Goni et al., 2014 ;
azquez-Rodriguez et al., 2019 ). 

.8. Mediation analysis 

To investigate whether the effect of SC variability on FC variability
as mediated by the regional distribution of SC-FC coupling, a boot-

trapped mediation analysis was employed using the MATLAB package
ediation ToolBox ( https://github.com/canlab/MediationToolbox ). We
rst normalized the independent ( X , principal SC variability), dependent
 Y , functional variability), and mediating ( M , SC-FC coupling) variables.
hen, we examined the total effect of principal SC variability on FC
ariability (path c ), the relationship between SC-FC coupling and prin-
ipal SC variability (path a ), the relationship between FC variability and
C-FC coupling (path b ), and the direct effect of principal SC variabil-
ty on FC variability controlling for the mediator (i.e., SC-FC coupling)
path c’ ). The significance of the mediation/indirect effect ( ab ) of prin-
ipal SC variability on FC variability through the mediator was tested
sing a bootstrapping analysis (resampled 10,000 times). For the SVR
odel-based result, we repeated the mediation analysis using predicted

C variability instead of principal SC variability. 

.9. Spatial permutation testing (Spin test) 

To further test whether spatial distributions of FC and SC variabilities
ollow a hierarchical manner from primary to heteromodal organization,
e used a spherical projection null framework to estimate whether these
ariabilities are determined by the hierarchical classes or derived by
patial autocorrelation ( Alexander-Bloch et al., 2018 ; Liu et al., 2020 ).
pecifically, we first stratified all 360 cortical regions into four cortical
unctional hierarchies ( Liu et al., 2020 ) so that each vertex in the cortical
urface had a hierarchy type assignment. Mean variability values were
4 
hen calculated within each hierarchical class. Under the premise of pre-
erving spatial autocorrelation, the class labels were randomly rotated
n the spherical space of the cortical surface, and the mean variability
alues were recomputed. After 10,000 permutations, the class-specific
ean variability values were expressed as z scores relative to this null
odel. A positive z score indicated greater variability than expected by

hance, and a negative z score indicated smaller variability than ex-
ected by chance. The p value of each class was defined as the propor-
ion by the mean variability values in the null model that exceeded the
rue mean variability value. We also used this spin test to assess the sig-
ificance of the alignment between two brain spatial patterns at both
roup and individual levels, including the correspondence between ob-
erved FC and SC variability pattern, the observed FC and predicted FC
ariability pattern, and the predicted FC and SC variability pattern. 

.10. Estimating individual uniqueness at the subject level 

.10.1. Individual deviation quantification for each subject 

For a given subject s , we estimated the deviation of individual con-
ectivity profiles from the population-level connectivity profiles for
ach FC and SC by decomposing the definition of individual variability
t the group level ( Mueller et al., 2013 ). Specifically, we first computed
he raw interindividual deviation of brain region i by estimating the
issimilarity of the connectivity profile of subject s with the profile of
ll other subjects as follows in the equation below. This measurement
ives an overall description of the degree of uniqueness between the
onnectivity profile of the current node and that of other nodes. 

 𝑎𝑟 𝑖 ( 𝑡 ) = 1 − 𝐸 

[
𝑐𝑜𝑟𝑟 

(
𝐹 𝑖 ( 𝑠, 𝑡 ) , 𝐹 𝑖 

(
𝑠 𝑞 , 𝑡 

))]
here 𝑞 = 1 , 2 , ..., 𝑁 ; N is the number of subjects in the dataset; s q indi-

ates the subject; and t indicates the session. 𝐹 𝑖 ( 𝑠 𝑞 , 𝑡 ) is the connectivity
rofile of region i of subject s q in session t . After calculating the raw in-
erindividual deviation of each region, we obtained an interindividual
eviation map for each subject. Second, we calculated the intraindivid-
al variance map 𝐼𝑛𝑡𝑟𝑎𝑉 𝑎𝑟 ( 𝑠 ) for subject s . Finally, we regressed out the
ntraindividual variance from the raw interindividual deviation map to
stimate the real individual deviation map of subject s . This subject-
pecific connectivity deviation could act as an indicator to character-
ze individual brain uniqueness. Together, we obtained the individual
niqueness of one FC and eight SCs in each session/run for this given
ubject. 

For each subject, the individual-level correspondence between SC
niqueness and FC uniqueness was estimated following the same anal-
sis procedure as previously described at the group level. 

.10.2. Within-subject reliability of individual uniqueness 

To investigate whether individual FC and SC uniqueness were stable
ithin subjects across repeated sessions and variable between subjects,
e performed the following reliability analysis and individual identifi-

ation analysis. 
Reliability analysis. For a given subject, we evaluated the within-

ubject similarity by calculating Pearson’s correlation coefficient of in-
ividual uniqueness in two sessions (S1 to S2). Next, we quantified the
etween-subject similarity by averaging the Pearson’s correlation of the
niqueness pattern between this given subject in S1 (S2) and all other
ubjects in S2 (S1). All subjects then had within- and between-subject
imilarity metrics. The individual uniqueness is considered to be repro-
ucible if the within-subject similarity is significantly larger than the
etween-subject similarity. We performed a nonparametric permutation
est to explore whether the reproducibility of individual uniqueness was
ignificantly larger than random levels. Briefly, the subjects were ran-
omly permutated, and the difference between within- and between-
ubject similarity was recomputed. This permutated procedure was re-
eated 10,000 times, yielding a null distribution. The p value was de-
ned as the proportion of permutations with a difference value that
xceeded the value in the observed data. 

https://github.com/canlab/MediationToolbox
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Individual identification analysis . We implemented the individual
dentification procedure as described by Finn and colleagues ( Finn et al.,
015 ). Briefly, for all individual deviation maps in both sessions (S1 and
2), if the deviation maps from two repeated sessions of a given individ-
al showed the highest similarity among any other two pairs, the iden-
ification was correct. The success ratio was calculated as the fraction of
ndividuals who were identified correctly. The individual identification
nalysis was performed in two directions, one from S1 to S2 and the
ther from S2 to S1. Finally, we averaged the success ratio across these
wo directions. 

.11. Relevance for cognition and behavioral performance 

.11.1. Cognitive and behavioral measurements 

We obtained the independent behavioral phenotypes in the HCP
1200 dataset provided by Tian and colleagues ( Tian et al., 2020 ).
n brief, 109 raw behavioral and cognitive measurements in the HCP
ataset were selected for each subject, involving alertness, cognition,
motion, motor, personality, sensory, psychiatric and life function, sub-
tance use, and in-scanner task (emotion task, gambling task, language
ask, relational task, social task, and work memory task). Subjects miss-
ng one or more measurements were excluded from the analysis (fi-
al sample size n = 958). Applying a data-driven independent compo-
ent decomposition pipeline, the 109 behavioral and cognitive measures
ere parsed into five independent summarizing dimensions, including

ognition, illicit substance use, tobacco use, personality and emotional
raits, and mental health (detailed in Tian et al., 2020 ). These five sum-
arizing measurements were used in the following brain-behavior anal-

sis. 

.11.2. Partial least-squares (PLS) analysis 

We then performed a partial least-squares correlation analysis with
he myPLS toolbox ( https://github.com/danizoeller/myPLS ) to evaluate
he implications of the structural-functional uniqueness correspondence
n individual cognitive and behavioral performance. As a data-driven
ultivariate statistical technique, PLSC analysis was widely used to de-

ineate the brain-behavior association by performing singular value de-
omposition (SVD) to obtain the orthogonal latent components (LCs)
 Krishnan et al., 2011 ). LCs are the optimal linear combinations of the
riginal variables from two matrices that maximize their covariance.
pecifically, for brain domains, we considered the structural-functional
niqueness alignments at both the whole-brain and system levels. For
ehavioral domains, we used the five behavioral measurements men-
ioned above. We regressed out age and sex from brain measurements
nd behavioral measurements. Then, after z-scoring brain data X (sub-
ects × brain measures) and behavioral data Y (subjects × behavioral
easures) across all subjects, we computed the brain-behavior covari-

nce matrix R , 

 = 𝑌 𝑇 × 𝑋 

ollowed by performing SVD on R , 

 = U × 𝑆 × 𝑉 𝑇 

here U and V are the singular vectors, which could be called brain
nd behavioral weights, and S is a diagonal matrix containing the sin-
ular values. Therefore, each LC includes a distinct brain weight and a
istinct behavioral weight. By linearly mapping the original brain and
ehavioral measurements of each subject onto their respective weights,
he subject-specific brain and behavioral composite scores were esti-
ated. To determine the significance level of each LC, we conducted
 permutation test as follows. By performing 10,000 permutations to
he brain measurements (randomly reordering the subjects) and leaving
ehavioral measurements unchanged, we calculated 10,000 null brain-
ehavior covariance matrices and obtained a sampling distribution of
he singular values under the null hypothesis. The statistical significance
5 
f each LC was computed by comparing the singular value of the ob-
erved LC with its null distribution. For LC interpretation, we obtained
he brain (behavioral) loadings by calculating Pearson’s correlation coef-
cients between the original brain (behavioral) measurements and brain
behavioral) composite scores. A large positive (or negative) loading for
 given brain (behavioral) measurement indicates greater importance of
his brain (behavioral) measurement for the LC. Using bootstrap resam-
ling (1000 iterations), we computed 95% confidence intervals for the
rain loadings and behavioral loadings. 

. Results 

.1. FC and sc individual variability patterns represent cortical hierarchical

rganization 

We leveraged multimodal functional, structural, and diffusion imag-
ng data from 42 subjects with repeated scans in the HCP Test-Retest
TRT) dataset ( Van Essen et al . , 2013 ). For each individual, we recon-
tructed the FCs and eight types SCs of the brain ( Fig 1 A). For FC and
ach type of SC, we calculated intra- and inter-individual variability
atterns according to a classic approach proposed by Mueller and col-
eagues ( Mueller et al., 2013 ) ( Fig 1 B). 

For intraindividual variability, we observed that the spatial pat-
erns were nonuniformly distributed throughout the cortical mantle,
n which both FC and SC variability values were prominent primarily
n the medial temporal lobe and insular cortex ( Fig 2 A). However, we
bserved significant differences in the intraindividual variability val-
es among these connectomes (one-way repeated analysis of variance
ANOVA), F = 2916.6, p < 0.0001): the highest variability values in FC,
ollowed by morphometry-based SC, and the lowest variability values
n tractography-based SC (post hoc pairwise comparisons analysis, all p
 0.0001, Bonferroni-corrected). 

For interindividual variability, FC variability values ( Fig 2 B, first col-
mn) were higher in the lateral prefrontal cortex and temporal-parietal
unction and lower in sensorimotor and visual regions, which is in line
ith previous studies ( Mueller et al., 2013 ; Gao et al., 2014 ; Xu et al.,
018 ; Stoecklein et al., 2019 ). Interindividual SC variability patterns
ere generally similar to those in FC variability patterns, but there were

ome feature-specific distributions in several regions, such as the pre-
uneus cortex, lateral prefrontal cortex, and temporal-parietal junction
ortex ( Fig 2 B, second to last column). Hierarchical clustering analysis
ivided these SC variabilities into three clusters ( Fig 2 C), representing
istinct structural signatures in tractography- and morphometry-based
cortical folding-based and cortical architecture-based, separately) con-
ectomes. To further test whether spatial distributions of FC and SC
ariabilities follow a hierarchical manner from primary to heteromodal
rganization, we first classified all 360 brain nodes into four cortical
ierarchies ( Mesulam, 1998 ; Liu et al., 2020 ) ( Fig 2 D) and calculated
he mean interindividual variability within each class. Then, we used
 spherical projection null test by permuting class positions 10,000
imes to estimate whether these variabilities were determined by the
ierarchical classes or derived by spatial autocorrelation ( Alexander-
loch et al., 2018 ; Liu et al., 2020 ). We found that the heteromodal class
isplayed significantly greater mean variability than expected by chance
p spin < 0.0001 for FC; p spin < 0.01 for all SCs; Fig 2 E). In contrast, the
rimary class (p spin < 0.05 for FC; p spin < 0.05 for all tractography-
ased SCs) and paralimbic class (p spin < 0.05 for FC; p spin < 0.001
or all morphometry-based SCs) displayed significantly lower variabil-
ty than null models. 

.2. The structural constraints of the hierarchical organization of 

unctional variability 

Next, we sought to determine the relationship between individual FC
nd SC variability patterns using both linear and nonlinear approaches.

https://github.com/danizoeller/myPLS
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Fig. 1. Study overview. (A) Functional connectome (FC) and structural connectome (SC) reconstruction. FCs were obtained by computing Pearson’s correlation 
coefficients among the time series of all pairs of nodes. Tractography-based SCs and morphometry-based SCs were obtained by computing internode probabilistic 
white matter fiber streamlines and internode gray matter morphometric similarity, respectively. (B) Following the approach proposed by Mueller and colleagues 
( Mueller et al., 2013 ), we calculated the adjusted interindividual FC and SC variability and decomposed the group-level variability pattern into individual unique 
contributions. (C) Both linear and nonlinear computational analyses were used to test the hypothesis that FC variability is structurally constrained across the whole 
brain and each hierarchical system. We hypothesize that direct SC-FC coupling may underlie the alignment between SC and FC variability. pri, primary cortex; 
uni, unimodal cortex; heter, heteromodal cortex; para, paralimbic cortex. (D) Partial least-squares (PLS) analysis was used to explore the multivariate correlations 
between FC-SC variability correspondence at the individual level and multiple cognitive and behavioral traits. 

Fig. 2. The heterogeneous spatial distribution of FC variability and SC variability. (A) Intraindividual FC variability and SC variability of all anatomical features. The 
results showed here are for the left hemisphere, and the relatively symmetrical whole-brain patterns are displayed in Fig S1A. (B) Interindividual FC and SC variability 
after accounting for intraindividual variability. The raw variability values were scaled using a rank-based inverse Gaussian transformation (Van der Waerden, 1952) 
for visualization. Negative scores represent raw values below the average. The interindividual FC and SC variability pattern without regressing intraindividual 
variance is shown in Fig S1B. (C) Results of hierarchical clustering analysis and the feature-feature correlational matrix. (D) The cortical hierarchy assignments for 
each region in Glasser’s 360-atlas (primary, green; unimodal, yellow; heteromodal, purple; paralimbic, red) ( Liu et al., 2020 ; Mesulam, 1998 ). (E) Interindividual 
variability across four hierarchical systems. Nodewise variability values are averaged according to their hierarchical classes. To determine these variabilities were 
not driven by spatial autocorrelation, we performed a spatial permutation test by spinning class positions 10,000 times as a null model. The class-specific mean 
variability values were expressed as z scores relative to this null model. A positive z score indicated greater variability value than expected by chance. Classes with 
significant z scores are shown in color, and those with nonsignificant z scores are shown in gray. FC, functional connectome; dSC, direct structural connectome; PL, 
path length-based SC; CO, communicability-based SC; SD, sulcal depth-based SC; CC, cortical curvature-based SC; SA, surface area-based SC; CT, cortical thickness- 
based SC; IM, intracortical myelination-based SC. ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001. Values of a brain map were visualized on the inflated cortical 32 K surface 
( Glasser et al., 2016 ) using BrainNet Viewer ( Xia et al., 2013 ). 

6 



L. Sun, X. Liang, D. Duan et al. NeuroImage 259 (2022) 119387 

Fig. 3. The relationship between interindivid- 
ual FC and SC variability at the population 
level. (A) Principal component analysis (PCA) 
estimated linear combinations of SC variabil- 
ity patterns with maximum variance across the 
cortical mantle. The first component accounted 
for 54.9% of the total variance, with the largest 
weight contribution of tractography-based SC 
variability, followed by cortical folding-based 
SC variability and cortical architecture-based 
SC variability (Inset Figure) (left panel). The 
dashed line on the inset figure indicates the 
expected average contribution (1/number (fea- 
tures) = 12.5%). A feature with a contribution 
percent larger than this cutoff could be con- 
sidered important in contributing to the prin- 
cipal component. The principal SC variability 
varied across cortical regions, exhibiting signif- 
icantly higher values in heteromodal and uni- 
modal areas but significantly lower values in 
primary and paralimbic areas (p spin < 0.05) 
(right panel). (B) The correlational relation- 
ships between principle SC variability and FC 
variability were significant in the whole brain 
(left panel) and each hierarchical system (right 
panel) with highest values in the primary sys- 
tem and lowest values in the hetermodal sys- 
tem. (C) The observed FC variability map and 
the predicted FC variability map that was ob- 
tained by a nonlinear SVR model. (D) The pre- 
dicted FC variability was also significantly as- 
sociated with the observed FC variability in the 
whole brain (left panel) and each hierarchical 
system (right panel) with highest values in the 
primary system and lowest values in the heter- 
modal system. ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 
0.001. 

 

t  

l  

c  

i  

p  

(  

c  

v  

f  

w  

i
<  

t  

t  

r  

F  

i  

h
 

b  

t  
First, considering the distinct structural patterns provided by
ractography- and morphometry-based connectomes, we generated a
inear representation of the structural variability by applying a prin-
ipal component analysis to the interindividual SC variability maps that
ncluded all eight SC characteristics. The first principal component ex-
lained 54.9% of the variance in total variabilities across brain nodes
 Fig 3 A, left), with contributions from tractography-based SC variability,
ortical folding-based SC variability, and cortical architecture-based SC
ariability in a descending order ( Fig 3 A, left inset). Similar to single-
eature findings, the first principal component of structural variations
as significantly higher in heteromodal and unimodal areas and lower
7 
n primary and paralimbic areas than expected by chance (all p spin 

 0.05, Fig 3 A, right). Next, we calculated the spatial correlation be-
ween functional variability and principal structural variability at both
he whole-brain and system levels. We found a significant spatial cor-
elation across whole-brain nodes (adjusted r = 0.43, p spin < 0.0001,
ig 3 B, left). At the system level, the spatial correlations were greatest
n primary regions (adjusted r = 0.71, p spin < 0.001) and smallest in
eteromodal regions (adjusted r = 0.30, p spin < 0.05) ( Fig 3 B, right). 

Second, to further test whether the FC variability architecture can
e predicted from unifying SC variability patterns, we performed a mul-
ivariate nonlinear-kernel-based prediction analysis using a supervised



L. Sun, X. Liang, D. Duan et al. NeuroImage 259 (2022) 119387 

s  

a  

s  

p  

F  

S  

j  

p  

i  

e  

t  

v

3

i

 

o  

2  

o  

fl  

u  

e  

t  

t  

m  

i  

f  

R  

2  

f  

h  

p  

a  

d  

c  

𝛽  

n  

s  

p  

𝛽  

c  

C  

v  

t  

o  

d

3

s

 

a  

u  

u  

i  

t  

t  

t  

M  

i  

t  

t  

f  

u  

s  

Fig. 4. The SC-FC coupling pattern mediates the relationship between SC and 
FC variability. (A) Nodal differences in SC-FC coupling. For each node, the cou- 
pling of structural and functional connectivity profiles was estimated by a mul- 
tilinear regression framework ( Vazquez-Rodriguez et al., 2019 ). (B) SC-FC cou- 
pling partially mediated the correspondence between principal SC variability 
and observed FC variability. Path a: 𝛽 = − 0.16, ∗ ∗ , CI: [ − 0.26, − 0.06]; path b : 
𝛽 = − 0.32, ∗ ∗ ∗ , CI: [ − 0.38, − 0.24]; path c’ : 𝛽 = 0.38, ∗ ∗ ∗ , CI: [0.29, 0.49]; path 
a ∗ b : 𝛽 = 0.05, ∗ ∗ , CI: [0.02, 0.09]. (C) SC-FC coupling partially mediated the cor- 
respondence between predicted FC variability and observed FC variability. Path 
a : 𝛽 = − 0.30, ∗ ∗ ∗ , CI: [ − 0.41, − 0.20]; path b : 𝛽 = − 0.25, ∗ ∗ ∗ , CI: [ − 0.32, − 0.17]; 
path c’ : 𝛽 = 0.41, ∗ ∗ ∗ , CI: [0.32, 0.52]; path a ∗ b : 𝛽 = 0.08, ∗ ∗ ∗ , CI: [0.05, 0.11]. 
The significance of the mediation effect was identified using 95% bootstrapped 
confidence intervals (bootstrapped n = 10,000). ∗ ∗ p < 0.01; ∗ ∗ ∗ p < 0.001. 

h  

s  

s  

s  

i  

t  

1  

d  

e  

h  

u  

d
 

a  

t  

t  

n  

r  

f  

s  

j  

t  

b  

r  

S  

f  

s

upport vector regression (SVR) model. This model took eight SC vari-
bility maps as input and was trained and estimated in a leave-one-out
trategy. We found that FC variability ( Fig 3 C) could be significantly
redicted across whole-brain nodes (adjusted r = 0.48, p spin < 0.0001,
ig 3 D, left). At the system level, we found that the predictive power of
C variability for FC variability decreased along the hierarchy axis (ad-
usted r = 0.76, p spin < 0.0001 in the primary cortex; adjusted r = 0.40,
 spin < 0.001 in the unimodal cortex; adjusted r = 0.44, p spin < 0.01
n the paralimbic cortex; adjusted r = 0.35, p spin < 0.001 in the het-
romodal cortex, Fig 3 D, right). Taken together, these findings indicate
hat interindividual FC variability was structurally constrained by SC
ariability in a primary-to-heteromodal hierarchical order. 

.3. Structure-Function coupling mediates the relationship between 

ndividual structural and functional variability 

The connection patterns of brain FCs are formed by interactions
f neuronal elements via complex structural pathways ( Wang et al.,
015b ). Direct SC-FC coupling is treated as a basic index for the intensity
f structural constraints on brain function and has been considered to re-
ect common cortical hierarchical organization ( Suárez et al., 2020 ). Let
s assume that for each individual, if the SC profiles of brain nodes were
xactly coupled with their FC profiles (with Pearson’s coefficient = 1),
he topography of individual FC and SC variability patterns would be
he same. Thus, it is reasonable to hypothesize that this SC-FC coupling
ay underlie the alignment between interindividual SC and FC variabil-

ty. To test this hypothesis, we first computed the direct SC-FC coupling
or each given node using a multilinear regression approach ( Vazquez-
odriguez et al., 2019 ). Consistent with previous findings ( Baum et al.,
019 ; Vazquez-Rodriguez et al., 2019 ; Zamani Esfahlani et al., 2022 ), we
ound that the sensorimotor and occipital cortices exhibited relatively
igh SC-FC coupling, while the lateral parietal, frontoparietal and tem-
oral cortices exhibited relatively low SC-FC coupling ( Fig 4 A). Using
 bootstrapped mediation analysis, we found that the spatial pattern of
irect SC-FC coupling partially mediated the relationship between prin-
ipal structural variability and functional variability (indirect effect ab :
= 0.05, p < 0.01, 95% confidence interval = [0.02, 0.09], bootstrapped
 = 10,000; Fig 4 B). The spatial pattern of direct SC-FC coupling was
ignificantly negatively associated with both functional variability and
rincipal structural variability (path a: 𝛽 = − 0.16, p = 0.002; path b :
= − 0.32, p < 0.001), indicating that brain nodes with stronger SC-FC

oupling correspond to those with weaker interindividual variability.
onsistent results were also found when using the predicted functional
ariability map driven by SVR analysis instead of the principal struc-
ural variability map ( Fig 4 C). These results suggest that the constraint
f interindividual structural variability on functional variability was me-
iated by direct SC-FC coupling. 

.4. The robust correspondence between individual functional and 

tructural uniqueness 

The group-level FC or SC variability pattern captures the total vari-
nce within a particular population, while it is unable to represent the
nique contributions of each individual. To characterize the individ-
alized source of group-level variability, we decomposed the overall
nterindividual FC or SC variability map into individual uniqueness pat-
erns. Briefly, the individual uniqueness delineates the personal devia-
ion of individual connectivity profiles from the populational connec-
ivity profiles while controlling for intraindividual variance (detailed in
aterials and Methods). Similar to the group-level analysis, for each

ndividual, we performed principal component analysis on all struc-
ural uniqueness patterns to represent the individual principal struc-
ural uniqueness map. The intraindividual spatial similarity of either
unctional unique maps or principal structural unique maps (functional
niqueness: r, mean ± standard deviation (std) = 0.80 ± 0.09; principal
tructural uniqueness: r, mean ± std = 0.91 ± 0.02) were significantly
8 
igher (ps < 0.0001) than interindividual spatial similarity from either
ession (functional uniqueness: r, mean ± std = 0.52 ± 0.05; principal
tructural uniqueness: r, mean ± std = 0.67 ± 0.02) ( Fig 5 A, 5 B). Con-
istent results at the system level are shown in Fig S2. An individual
dentification analysis further revealed that the success rates of func-
ional uniqueness and principal structural uniqueness were 91.7% and
00%, respectively. In addition, to be expected, the interindividual stan-
ard deviation for both functional and structural uniqueness was small-
st in the primary sensorimotor and visual regions and largest in the
eteromodal cortex ( Fig 5 C). These results indicated that the individ-
al uniqueness maps of the brain could act as potential signatures to
escribe the intersubject connectome diversity. 

We next focused on the spatial relationships between the functional
nd structural uniqueness maps using correlational analysis and predic-
ive models as previously described. We found that the spatial correla-
ions between functional uniqueness and principal structural unique-
ess across the whole brain were moderate (r ∈ [0.09, 0.36], mean
 = 0.20; Fig 5 D, left) but significant for most subjects (p spin < 0.05
or 39 of 42 subjects, other 3 subjects were marginally significant (p

pin ∈ [0.05,0.09])). The significant correlation of an example sub-
ect was shown in a scatter plot ( Fig 5 D middle). At the system level,
he spatial correlations were largest in the primary cortex, followed
y the heteromodal, unimodal cortices and paralimbic cortex ( Fig 5 D,
ight). These spatial relationships were also confirmed by the nonlinear
VR model ( Fig 5 E). Together, these results show that the structure-
unction correspondence of individual uniqueness was robust across
ubjects. 
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Fig. 5. Within-individual FC and principal SC uniqueness patterns and hierarchical correspondence between individual FC uniqueness and SC uniqueness. (A) The 
FC uniqueness (top panel) and principal SC uniqueness pattern (bottom panel) of two example subjects (#1 and #2) showed high reliability across sessions. (B) 
The whole brain spatial similarity within the same subject (intrasub) of either FC uniqueness maps (top panel) or principal SC uniqueness maps (bottom panel) 
was significantly higher than those between different subjects (intersub, Session 1 to Session 2 and Session 2 to Session 1 were shown separately). The spatial 
similarity between two uniqueness maps was estimated using Pearson’s correlation coefficient. The significances of differences between categories were tested using 
a nonparametric permutation test. (C) The standard deviation (std) of FC and principal SC uniqueness map across 42 subjects were shown in left. Hetermodal system 

showed significant higher std than expected by chance (right). (D) The spatial similarities between FC uniqueness and principal SC uniqueness at whole-brain (left 
panel, distribution of 42 subjects; middle panel, an example of subject #1) and system level (right panel). The spatial similarities were higher in the primary system 

than the hetermodal system: one-way repeated analysis of variance (ANOVA), F = 190.88, p < 0.0001, post hoc pairwise comparisons analysis, all ps < 0.001. (E) 
The consistent results estimated by the nonlinear SVR model. ∗ , p < 0.05; ∗∗∗ , p < 0.001; ∗∗∗∗ , p < 0.0001. 
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.5. The structure-function correspondence of brain uniqueness reflects 

ndividual cognitive and behavioral traits 

Studies have shown that the extent of direct SC-FC coupling at
he individual level is associated with cognitive performance, such
s cognitive flexibility ( Medaglia et al., 2018 ) and executive function
 Baum et al., 2019 ). The alignment between SC and FC uniqueness re-
ects the degree of the individual-specific constraint rule out of group
onstraints and could also support individual cognitive traits. To address
9 
his issue, we performed a partial least-square (PLS) analysis to evalu-
te the latent relationship between the structural-functional alignments
f brain connectome uniqueness and general behavioral traits across
ndividuals. For brain measurements, we considered the structural-
unctional linear correspondences at both the whole-brain and system
evels. For behavioral domains, we used individual behavioral mea-
urements in five independent dimensions derived from 109 behavioral
tems in the HCP S1200 dataset ( Tian et al., 2020 ). After performing
LS analysis, we decomposed the brain-behavior associations into driv-
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Fig. 6. Partial least-square analysis revealed a multivariate association between the structural-functional alignment of individual uniqueness and individual behav- 
ioral traits. (A) Correlation between brain and behavioral composite scores of 954 subjects. The inset figure shows the null distribution of singular values estimated 
by the permutation test ( n = 10,000). The dashed red line represents the actual singular value estimated for the first latent component. (B) The brain loadings that 
were calculated by the correlations between subjects’ brain measurements and their brain composite scores. (C) The behavioral loadings that were calculated by 
the correlations between subjects’ behavioral measurements and their behavioral composite scores. Error bars indicate bootstrapping fifth to 95th percentiles, and 
robust results are indicated by a star symbol (bootstrapped n = 1000). The consistent results based on the nonlinear SVR model are shown in Fig S3. 
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ng latent components (LCs), which are the optimal linear combinations
f original brain or behavioral measurements. We found that the first LC
LC1, accounting for 62.6% of the covariance) significantly survived af-
er permutation tests ( p = 0.004), with a significant association ( r = 0.11,
 < 0.01) between brain and behavioral composite scores ( Fig 6 A).
e further obtained the brain and behavioral loadings of this compo-

ent by calculating Pearson’s correlations between the original measure-
ents and their composite scores. A large absolute loading value indi-

ates great importance. We found significant positive brain loadings in
tructural-functional alignments, with the greatest loading value at the
hole-brain level and ascending loading values from unimodal to het-
romodal systems ( Fig 6 B). The behavioral significant loadings included
obacco use, the personality-emotion score, and the mental health score
 Fig 6 C). We observed consistent results using the nonlinear SVR model
Fig S3). These results suggest that the hierarchical correspondence be-
ween functional and structural uniqueness, especially in the hetero-
odal cortex, reflects the individual traits in human general behaviors.

.6. Sensitivity and replication analyses 

To estimate the effect of the sample size ( Button et al., 2013 ;
ubois and Adolphs, 2016 ) of the HCP TRT dataset, which contains
nly 42 subjects, we validated all analyses using a large-sample dataset
f HCP S1200 release (1012 subjects). Because this dataset contains
epeat-scan fMRI data but no repeat-scan diffusion or structural imag-
ng data, we calculated the individual structural variability without ac-
ounting for intrasubject variability. This approach was acceptable since
e found that the principal structural variability with removing intra-

ubject variability was highly similar to that without removing intra-
ubject variability ( r = 0.94, p spin < 0.0001, Fig S4) using the HCP
RT dataset. However, the correlation value between functional vari-
bility with the removal of intrasubject variability and that without
he removal of intrasubject variability was only 0.41 (p spin < 0.001,
ig S4), indicating the importance of excluding intrasubject variations
hen estimating intersubject FC variability. Over the large sample, we
bserved highly consistent results for the hierarchical relationships be-
ween brain structural and functional variability, the mediation effect of
irect structure-function coupling, and the significant correspondence at
he single-subject level (Figs S5-S8). 

Next, we estimated the reliability of our results by considering sev-
ral confounding factors. First, the number of nodes in the Glasser360 at-
as assigned to each of the four hierarchical systems is not equal (range:
2–144). To verify that the differential correspondence of variability
aps between hierarchical systems is not influenced by the node num-

er, we randomly selected brain regions of a fixed number of 30 in all
ystems 1000 times and recomputed the correlation coefficient based
n these subsets of nodes (Fig S9). Second, to reduce the partition ef-
10 
ect, we consistently validated the results in another well-known cortical
ystem —the seven cytoarchitectonic classes described by Von Economo
nd Koskinas ( Von Economo and Koskinas, 1925 ) (Fig S10). Third, to
ule out the possibility that the spatial variability maps are caused by the
ower fidelity of cross-subject alignment, we assessed the relationship
etween the spatial variability patterns and the surface deformation map
hat occurred in cross-subject registration. We found that the subject-
veraged surface deformation map was not associated with functional
ariability ( r = − 0.04, p spin > 0.05) but significantly associated with
rincipal structural variability ( r = − 0.18, p spin < 0.05). After regress-
ng out the cross-subject registration deformation map, the functional
ariability pattern and principal structural variability pattern were still
ignificantly correlated ( r = 0.43, p < 0.0001; Fig S11). Fourth, a re-
ent study excluded one of all twins in HCP dataset while estimating
 brain-behavior association ( Zekelman et al., 2022). To exclude the
nfluence of the related subjects, we excluded 17 subjects (one of the
wins) from the TRT dataset and found that the individual variability
attern of both FC and SC were almost unchanged ( r > 0.97 for all vari-
bility patterns). Meanwhile, we observed highly consistent results for
he correspondence between structural and functional variability at the
hole-brain level and system level (Fig S12). 

Several processing steps are used to reduce the motion effect in both
MRI and dMRI frames during network construction. For fMRI data, it in-
ludes realignment to single-band reference, ICA-FIX denoising and mo-
ion parameter regression. For dMRI data, the head motion correction
as implemented using the “eddy ” tool in FSL. However, it’s still valu-
ble to estimate the influence of subjects with high-level motion. To this
nd, we excluded subjects with high-level head motion for either fMRI
r dMRI images in both HCP TRT dataset and S1200 dataset and further
alidated all main results. Specifically, the head motion indexes (i.e.
ean and mean absolute deviation of the frame-to-frame displacements)

f each subject during the fMRI and DWI scanning sessions were esti-
ated (by using Movement_RelativeRMS.txt from minimal fMRI prepro-

essing pipeline and using eddy_unwarped_images. eddy_movement_rms
rom minimal dMRI preprocessing pipeline). After that, we excluded
ubjects with one or more indexes greater than 1.5 times the inter-
uartile range of the corresponding index distribution ( Zamani Esfahlani
t al., 2022 ). Under this criterion, five subjects were excluded for the
CP TRT dataset, while 95 subjects were excluded for the HCP S1200
ataset. Validation analysis was carried out by using the remaining 37
ubjects (TRT dataset) and 917 subjects (S1200 dataset). Of note, the in-
ividual variability patterns of both FC and SC were almost unchanged
efore and after excluding subjects with high-level head movements ( r
 0.98 for all variability patterns). The correspondence between SC and
C variability at the whole-brain level and system level and the brain-
ehavior multivariate association were highly repeatable as well (Figs
13 and S14). 
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. Discussion 

In this study, we demonstrate for the first time that FC individual
ariability is largely constrained by unifying SC variability and that this
onstraint follows a hierarchical pattern with stronger coupling in the
rimary cortex and weaker coupling in the heteromodal cortex. By de-
omposing group-level brain variability patterns into individual unique-
ess maps, we also demonstrate individual-level structural-functional
niqueness correspondences that act as indicators to capture individual
ognitive traits. These results markedly advance our understanding of
he structural underpinnings behind individual variability in both FC
nd cognitive performance. 

The SCs and FCs of the human brain are inherently correlated.
espite extensive research on SC-FC coupling ( Suárez et al., 2020 ),
hether interindividual FC variability is anatomically constrained by
C variability is still an open question. We emphasize that the char-
cterization of this relationship depends on several key factors. First,
 relatively large sample size with repeated structural and functional
rain scans is needed. Previously, Camberland et al. ( Chamberland et al.,
017 ) and Karahan et al. ( Karahan et al., 2021 ) both reported no sig-
ificant correlation between SC and FC variability at a global level,
hich could be attributable to the small sample sizes of their studies
 Chamberland et al., 2017 ; Karahan et al., 2021 ) or the confounds of
ntrasubject variations ( Karahan et al., 2021 ). In this study, we found
hat the correlation between FC variability maps before and after re-
ressing intraindividual variance was only 0.41 (0.94 for principal SC
ariability), highlighting the necessity of removing intraindividual FC
ariance when studying the relationship between FC and SC variability.
econd, the unifying contribution from multimodal connectome signa-
ures, including tractography- and morphometry-based networks as well
s communication models, should be taken into account. Although Kara-
an et al. reported a significant spatial correlation ( 𝜌 = 0.32) between
C variability and tractography-based SC variability ( Mansour et al.,
021 ), this study ignored the contribution of communication models and
orphometry-based SC: the former provides important anatomical scaf-

olding for interregional communication through multistep signal prop-
gation ( Avena-Koenigsberger et al., 2017 ; Crofts and Higham, 2009 )
nd manifests as strong interregional FC ( Goni et al., 2014 ; Suárez et al.,
020 ), and the latter is sensitive for capturing axo-synaptic projec-
ions within the same cytoarchitectonic class, which is not character-
zed by diffusion MRI ( Gong et al., 2012 ; Evans, 2013 ; Goulas et al.,
017 ; Seidlitz et al., 2018 ) and partly recapitulates interregional FC
 Alexander-Bloch et al., 2013 ; Geng et al., 2017 ). It is widely rec-
gnized that multifaceted but integrated approaches provide comple-
entary advantages and perspectives to explore human brain organi-

ation ( Paquola et al., 2020 ; Van Essen et al., 2019 ). Using repeated-
easurement, multimodal connectome features in a large sample from

he HCP database, in the present study, we highlight the constraints of
ntegrated SC variabilities on FC variability. Notably, these results are
nly based on correlation or prediction analyses, which could not ex-
lude potential confounders such as parcellation. Future investigations
mploying neurodynamic models ( Demirtas et al., 2019 ) might be help-
ul to reveal underlying determinants. 

It is worth noting that the present study exhibited a hierarchical cor-
espondence between SC and FC variability at both the group and in-
ividual levels. These findings agree with mounting evidence that the
rimary-to-heteromodal hierarchy has been emphasized as a unifying
rinciple for brain structural-functional organization ( Huntenburg et al.,
018 ), including intracortical myelination ( Huntenburg et al., 2017 ),
ortical laminar interareal projections ( Paquola et al., 2019 ) and SC-FC
ouplings ( Zamani Esfahlani et al., 2022 ). The hierarchical correspon-
ence between SC and FC variability might have several originations.
irst, from an evolutionary view, to adopt rich environmental condi-
ions, the heteromodal cortex is untethered from canonical sensory-
otor activity cascades during cortical expansion to form varied and

omplex wiring organizations ( Buckner and Krienen, 2013 ), such as in-
11 
erently spatially distributed communities ( Margulies et al., 2016 ) and
ong-range rich-club edges ( Griffa and van den Heuvel, 2018 ; van den
euvel and Sporns, 2011 ). Simulation and neuroimaging studies demon-

trated that these wiring characteristics facilitate the high complexity of
unctional dynamics ( Senden et al., 2014 ; Zamora-Lopez et al., 2016 ),
hich may result in inconsistencies in the alignment between SC and
C variability. Second, the heteromodal cortex processes mixed and di-
erse signals from multiple sources ( Avena-Koenigsberger et al., 2017 ;
etzel et al., 2018 ), which vary greatly across individuals ( Betzel et al.,
018 ). These signals may form discrepant FC profiles across individ-
als under similar structural organizations. Third, accumulating evi-
ence has shown that the regional heterogeneity of individual vari-
bility is largely determined by both i) genetic factors, including her-
tability ( Anderson et al., 2021 ; Valk et al., 2022 ) and gene expression
 Li et al., 2021a ), and ii) environmental factors, such as socioeconomic
tatus ( Leonard et al., 2019 ) and chronic stress ( Sheth et al., 2017 ) dur-
ng development ( Foulkes and Blakemore, 2018 ; Tooley et al., 2021 ).
eteromodal regions undergo prolonged maturation compared with pri-
ary regions ( Cao et al., 2017 ; Gilmore et al., 2018 ; Zhao et al., 2019 ),
hich could provide a high freedom of plasticity for functional and

tructural refinements during the postnatal environment and form vary-
ng FC-SC alignments across individuals. Previous works have demon-
trated the heterogeneous age-related changes in regional SC-FC cou-
ling ( Baum et al., 2019 ; Zamani Esfahlani et al., 2022 ). Further explo-
ation on whether and how SC-FC variability correspondence changes
uring neurodevelopment and aging is critical to understand the orig-
nation of hierarchical correspondence between brain SC and FC vari-
bility. 

We observed a robust mediation effect of SC-FC coupling on the
C-FC variability correspondence, which indicated that the alignment
f SC and FC variability may be intrinsically affected by the direct
tructure-function relationship. This finding agrees with previous evi-
ence on the origin of brain variability. A simulation study on the SC-
C relationship has shown that the spatial distribution of FC variability
ould be derived by the heterogeneous oscillations of neurons through
nterregional SC pathways ( Demirtas et al., 2019 ). Other studies have
emonstrated that the flexible dependence of underlying SCs enables
Cs to reconfigure flexibly, which provides key information for indi-
idual identification ( Griffa et al., 2022 ) and results in interindividual
ognitive switching variability ( Medaglia et al., 2018 ). Other biological
ources may also underlay the correspondence of SC and FC variabil-
ty. For instance, we also observed a significant medication effect of
egional cerebral blood flow (Fig S15), which has been demonstrated to
e highly coupled with regional metabolism during brain development
 Raichle and Mintun, 2006 ) and to affect the structural-functional rela-
ionship ( Chen et al., 2021 ). How the SC-FC variability correspondence
riginates still requires further detailed investigation. Crucially, identi-
ying genetic, environmental or biological influences between FC and SC
ariability will be important for neuroscientific studies of individualized
linical applications. 

The individual brain connectome can be regarded as a common
ackbone with unique personal refinements ( Gratton et al., 2018 ;
ang et al., 2021 ; Zimmerman et al., 2018 ). By decomposing the group-

evel variability patterns into individual deviation maps, we delineated
he SC and FC variability at the individual level. These maps show high
ession-to-session stability and high identification accuracy of individu-
ls, reflecting the individual uniqueness of the brain. Other efforts have
lso been made to extract the individual refinements by comparing indi-
idual deviations to group-level normative distributions during disorder
Liu et al., 2021; Marquand et al., 2016 ) and development ( Nadig et al.,
021 ). These unique measurements show crucial significance in brain
ngerprinting ( Seitzman et al., 2019 ) and individual cognitive and be-
avioral predictions ( Nadig et al., 2021 ; Saggar et al., 2015 ). Notably,
he correspondence of individual SC and FC uniqueness also followed
 hierarchical axis and showed a significant association with general
ehavioral and cognitive performance, with most contributing features
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eriving from the association cortex. This finding is in line with previous
tudies showing that the association cortex acts as the most informative
redictor of individual fluid intelligence ( Finn et al., 2015 ) and other
ognitive and behavioral domains ( Mueller et al., 2013 ). Recent stud-
es have pointed out that study on brain-behavior associations requires
arge cohorts containing thousands of samples to obtain reproducible re-
ults ( Marek et al., 2022 ). Although our findings are based on cohorts of
ear one thousand (958 subjects) and remain significant after removing
ubjects with high-level head motion (870 subjects), future validations
n larger-sample and multi-site datasets (such as UK Biobank) are still
esirable. Meanwhile, we adopted a doubly multivariate PLS analysis, in
hich brain systems are jointly mapped into several general behavioral

raits. This approach enables the representation of interindividual vari-
bility in brain and behavior and improves reproducibility ( Marek et al.,
022 ; Genon et al., al.,2022 ). Additionally, the hierarchical contribu-
ions of brain systems for the behavioral associations, that is the highest
n heteromodal system, emphasized the need to include regional-specific
ffects in brain-wide association studies ( Gratton et al., 2022 ). For de-
ailed behavioral measurements, we found that the tobacco use shows
ighest loadings than other behavioral scores after PLS analysis. Prior
tudies also found that tobacco use is relatively highly correlated with
rain measurements than mental health and illicit substance use dimen-
ions ( Mansour et al., 2021 ; Wang et al., 2021 ; Seguin et al., 2020 ).
n addition, Illicit drugs use and cognition showed no significant brain
ssociation. Illicit drugs use is highly related to the corticostriatal func-
ional circuits ( Ersche et al., 2020 ). The lack of subcortical connections
n the current FC-SC uniqueness evaluation may hinder the seeking for
egional connectivity support of it. Total cognition score has been shown
o be mostly related to the regional SC-FC coupling of only 4 focal brain
egions (located in bilateral middle cingulate cortex and supplementary
otor area) ( Gu et al., 2021 ). Future estimations with fine-grained re-

ional parcellation and nodal level indicators are needed to capture its
eliable regional association. Our measurements of the correspondence
etween SC and FC uniqueness reflect the pure individual constraints be-
ween SC and FC that rule out group factors, which could offer insights
nto reflecting the true interindividual diversity of human behaviors and
ognitions and highlight the potential for progress in individualized clin-
cal therapeutics and interventions. 

Several issues need to be considered. First, although the HCP TRT
ataset contains data from only 42 subjects, it is the largest public
oung-adult database with high-quality and full repeat-scan multimodal
mages, which provides an irreplaceable opportunity to explore the con-
traints of structural variations on FC variability. In the future, we hope
o replicate our findings in a larger-sample dataset. Second, it is in-
riguing to explore the potential genic origins of the spatial correspon-
ence between structural and functional variability. However, this ex-
loration would depend on the availability of an individual-specific gene
xpression dataset with data from a large number of donors. Third, a
ecent study emphasized a regional "model preference" for SC-FC rela-
ionship ( Zamani Esfahlani et al., 2022 ). Diversified SC communication
odels can be adopted for different brain regions in future studies on

he SC-FC relationship of individual variability. Fourth, there are in-
erent limitations to reconstruct accurate anatomical projections from
MRI-based tractography ( Maier-Hein et al., 2017 ; Reveley et al., 2015 ;
homas et al., 2014 ), such as the underestimation of long-distance white
atter fiber bundles ( Reveley et al., 2015 ) and the missing of tiny fiber

racts ( Maier-Hein et al., 2017 ). These could bring biases to the observed
C-FC relationships of individual variability. How to reduce tractogra-
hy biases in the estimation of the true regional structure-function cor-
espondence, especially in terms of individual variability, needs further
esearch. Finally, a recent study delineated that FC variability changes
iversely in neuropsychiatric disorders ( Sun et al., 2020 ), and future
tudies should focus on exploring whether the SC-FC correspondence of
ndividual variability transforms in brain disorders, especially for indi-
idualized diagnosis and treatment evaluation. 
12 
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