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ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a highly heterogeneous disorder that typically emerges in
adolescence and can occur throughout adulthood. Studies aimed at quantitatively uncovering the heterogeneity of
individual functional connectome abnormalities in MDD and identifying reproducibly distinct neurophysiological MDD
subtypes across the lifespan, which could provide promising insights for precise diagnosis and treatment prediction,
are still lacking.

METHODS: Leveraging resting-state functional magnetic resonance imaging data from 1148 patients with MDD and
1079 healthy control participants (ages 11-93), we conducted the largest multisite analysis to date for
neurophysiological MDD subtyping. First, we characterized typical lifespan trajectories of functional connectivity
strength based on the normative model and quantitatively mapped the heterogeneous individual deviations among
patients with MDD. Then, we identified neurobiological MDD subtypes using an unsupervised clustering algorithm
and evaluated intersite reproducibility. Finally, we validated the subtype differences in baseline clinical variables
and longitudinal treatment predictive capacity.

RESULTS: Our findings indicated great intersubject heterogeneity in the spatial distribution and severity of functional
connectome deviations among patients with MDD, which inspired the identification of 2 reproducible neurophysio-
logical subtypes. Subtype 1 showed severe deviations, with positive deviations in the default mode, limbic, and
subcortical areas and negative deviations in the sensorimotor and attention areas. Subtype 2 showed a moderate but
converse deviation pattern. More importantly, subtype differences were observed in depressive item scores and the
predictive ability of baseline deviations for antidepressant treatment outcomes.

CONCLUSIONS: These findings shed light on our understanding of different neurobiological mechanisms underlying
the clinical heterogeneity of MDD and are essential for developing personalized treatments for this disorder.

https://doi.org/10.1016/j.biopsych.2023.05.021

Major depressive disorder (MDD) is one of the most prevalent
and burdensome psychiatric disorders worldwide (1). It typi-
cally emerges in adolescence and can occur throughout
adulthood and is accompanied by heterogeneous emotional,
neurovegetative, and neurocognitive symptoms (2-4). This
clinical diversity creates a huge challenge for disease diag-
nosis and treatment prediction. However, the underlying
neurophysiological substrates of clinical heterogeneity remain
largely unclear. Parsing neurophysiological heterogeneity is
essential to better link complex biological dysregulations with
clinical manifestations, thereby facilitating optimized treatment
allocation for patients. Previous studies have attempted to
identify MDD subtypes based on clinical symptoms, such as
melancholic depression, atypical depression, and seasonal

affective disorder (5-7). These studies have shown neuro-
physiological differences between the clinical subtypes and
indicated a possible relationship between specific depressive
symptom profiles and biological dysregulations. However,
clinical symptoms interact in a complex manner with biological
substrates and may change over age and disease course, and
neurophysiologically informed subtyping of MDD is still lack-
ing. Exploring neurophysiological MDD subtypes is expected
to provide a more objective understanding of the biological
mechanisms underlying the complex clinical heterogeneity and
inspire imaging-derived candidate phenotypes for the guid-
ance of future precise diagnostic methods and treatments.
Based on resting-state functional magnetic resonance im-
aging (rs-fMRI), many case-control studies have documented
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disrupted functional brain connectomes in patients with MDD
(8-11), thereby significantly enhancing our understanding of
the neurophysiological substrates of this disease. Notably, the
results from the between-group comparisons in small-sample
studies were largely inconsistent, and the effect sizes were
small in recent large-sample multisite studies. These obser-
vations recently led to an increased focus on the heterogeneity
of functional connectomes among patients with MDD (12-14)
and on the investigation of neurophysiological subtypes based
on functional connectomes (15-19). Studies have found the
important roles of functional connectomes of default mode
network (DMN), limbic system (LIM), and subcortical (SUB)
regions for MDD subtyping. For example, Liang et al. (17) found
hyperconnectivity of DMN areas in one subtype and hypo-
connectivity in the other subtype. Drysdale et al. (16) defined 4
neurophysiological subtypes based on the distinct functional
connectivity patterns in LIM and frontostriatal networks. These
studies observed differences in clinical presentations and
treatment response among neurophysiological subtypes,
which indicates the promise of discovering clinically valuable
neurobiological subtypes based on functional connectomes.
However, previous studies have largely ignored the fact that
the functional connectomes can change dramatically over the
lifespan and that individual abnormal measurements, quanti-
tatively obtained from changes during a typical lifespan, can
provide more accurate and disease-specific information for
subtyping. Moreover, most previous studies lacked the
reproducible validation of results from multiple centers.
Reproducible neurophysiological subtypes hold promise for
the future of personalized diagnosis and treatment of a more
general population with MDD.

The normative model, a cutting-edge statistical framework
that maps demographic or behavioral variables onto a neuro-
imaging feature, has demonstrated its superiority in charac-
terizing the expected change trajectory of neuroimaging
features in healthy control participants (HCs) and quantitatively
identifying heterogeneous individual deviations for psychiatric
disorders from the norm (20-22). Similar to the widely used
normative growth charts used in pediatric medicine, where a
child’s height or weight is compared with the normative dis-
tribution for that particular age and sex (23), the normative
model can be used to evaluate individuals in relation to a
neuroimaging normative feature for a particular age and sex.
Unlike the traditional case-control analysis, which provides
information only on group-level abnormalities, the normative
model considers intersubject differences within the patient and
control groups and allows for measuring individual deviations
from a typical trajectory (21,24-26). These individual deviations
lead to a quantitative characterization of patients’ develop-
mental abnormalities and intersubject heterogeneity, which
provides critical information for detecting neurobiological
subtypes with distinct biological dysregulations and clinical
manifestations (27).

In this study, we conducted a comprehensive investigation
into the neurobiological heterogeneity and subtypes of MDD
using a large, multisite rs-fMRI dataset of 2227 participants.
We adopted a novel normative model framework, which
allowed us to quantitatively estimate individual deviations in
functional connectivity strength (FCS) over a lifespan. Through
the analysis of these deviations, we aimed to uncover the
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intersubject heterogeneity among patients with MDD and
identify reproducible neurobiological subtypes based on their
deviation patterns. The identified neurobiological MDD sub-
types were evaluated by testing for and examining multiple
demographic and clinical variable differences among them.

METHODS AND MATERIALS

Imaging Dataset and Preprocessing

In this study, we used a strictly quality-controlled imaging
dataset, including 1148 patients with MDD and 1079 matched
HCs from 9 research centers from the DIDA-MDD (Disease
Imaging Data Archiving - Major Depressive Disorder Working
Group) (11) (Table 1; Figure S1). A subsample of 43 patients
received a 6-month treatment with paroxetine, and treatment
outcomes were recorded (Table S1). All rs-fMRI data of par-
ticipants were obtained using 3T MRI scanners and then pre-
processed using a standard pipeline as described in our
previous work (11,28) (Table S2).

Normative Modeling for FCS

First, we computed the whole-brain FCS values for each
participant based on a predefined functional parcellation (29),
including 220 cerebral regions that had qualified fMRI signals
in all participants (Supplement). Then, for each brain region, we
estimated a normative model of FCS as a function of age and
sex by using Gaussian process regression (20) in the HCs
(Figure 1A; Supplement). Gaussian process regression is a
Bayesian nonparametric interpolation method that yields
coherent measures of predictive confidence alongside point
estimates (30). In addition to fitting potentially nonlinear pre-
dictions of a brain feature, it can provide regional estimates of
the expected variation in the relationship between age and
brain features (normative variance) and estimates of uncer-
tainty in this variance. To assess the generalizability of the
models, we first estimated the normative models in the HCs
under 10-fold cross-validation (Supplement), and overall
standardized mean squared error and mean squared log-loss
were used to evaluate the models. Then, the final normative
models were trained on all HCs for the subsequent MDD de-
viation analyses. To evaluate potential age/sex effects on
model design, we also constructed the normative models in
young/old and female/male groups separately (Supplement).

Estimating Individual FCS Deviations in Normative
Models for Patients With MDD

For each patient with MDD, the FCS of the brain regions were
positioned on the normative percentile charts from HCs to
estimate individual deviation (Figure 1B). We derived a z value
that quantifies the deviation from the normative model in each
brain region based on their observed FCS values and the
predictive FCS values obtained from the model (Supplement)
(20). The influence of patient sites on the calculation of FCS
deviations was assessed in the validation analyses
(Supplement). Similarly, the individual deviation map of each
HC was estimated by computing the z values during 10-fold
cross-validation. To further define the extreme individual-
level deviations in the FCS of participants, we thresholded
the deviation maps using z = *=2.6 (corresponding to a
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Table 1. Demographic and Clinical Characteristics of the Participants
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Age, Years, Sex, Female/ Duration of lliness, Recurrent Medicated, HDRS-17, Onset, Years, Mean FD, mm,
Center Group Mean (SD) Male, n Years, Mean (SD) Episode, n Yes/No, n Mean (SD) Mean (SD) Mean (SD)
CMU, Shenyang Patients, n = 125 27.91 (9.70) 86/39 1.65 (3.17) 100/11 49/76 21.44 (8.67) 26.36 (9.93) 0.115 (0.072)
HCs, n = 248 27.25 (8.22) 145/103 0.107 (0.057)
tor 42 p ts7q = 0.69, %12 = 3.76, ts71 = 1.09,
p = .493 p =.052 p=.278
CSU, Changsha Patients, n =177  36.28 (10.21) 100/77 2.83 (3.95) NA NA 23.24 (5.91) 30.97 (8.43) 0.141 (0.073)
HCs, n = 108 32.31 (7.96) 46/62 0.134 (0.064)
tory® p togs = 3.45, 11 = 5.19, toes = 0.90,
p = .001 p =.023 p = .371
GCMU1, Guangzhou Patients, n = 34 29.41 (8.27) 25/9 0.65 (0.70) 34/0 0/34 21.85 (2.25) NA 0.094 (0.030)
HCs, n = 34 30.09 (10.88) 24/10 0.096 (0.033)
tory3 p tes = —0.29, %12 = 0.07, tes = —0.26,
p=.774 p=.787 p=.797
GCMU2, Guangzhou Patients, n = 66 29.48 (9.91) 41/25 0.76 (1.00) 66/0 0/66 22.30 (3.57) NA 0.089 (0.057)
HCs, n = 66 29.33 (10.12) 35/31 0.086 (0.042)
tor 42 p ty130 = 0.29, 22 =112, t130 = 0.29,
p=.774 p = .291 p=.770
KMU, Kunming Patients, n = 41 34.20 (9.37) 21/20 1.13 (1.28) NA NA 23.61 (4.64) NA 0.186 (0.083)
HCs, n = 46 39.02 (12.20) 20/26 0.166 (0.065)
tor 42 p tgs = —2.05, 712 = 0.52, tes = 1.25,
p =.043 p = .470 p=.216
PKU, Beijing Patients, n = 75 31.51 (7.86) 31/44 0.52 (0.47) 75/0 0/75 25.35 (4.77) 30.99 (7.91) 0.175 (0.063)
HCs, n = 73 31.90 (9.01) 31/42 0.185 (0.067)
torx% p tius = —029,  %4°=0.02, tias = —0.91, _
p=.775 p =.889 p =.362 a3
SCU, Chengdu Patients, n = 48 35.75 (12.22) 25/23 1.13 (1.49) 28/19 23/25 22.88 (4.25) 35.17 (12.65) 0.111 (0.067) <
HCs, n = 41 34.83 (17.69) 24/17 0.122 (0.072) g
tor 42 p tg; = 0.29, 742 = 0.37, tgy = —0.72, =
p=.773 p = 542 p = 473 g
SWU, Chongging Patients, n = 282  38.74 (13.65) 183/99 4.20 (5.52) 209/49 124/125 20.94 (5.60) NA 0.125 (0.054) 3-
HCs, n = 254 39.65 (15.80) 166/88 0.134 (0.063) 5
tory p tsss = —0.72, %42 =0.01, tsas = —1.68, @
p = .472 p =911 p =.094 o
YMU, Taipei Patients, n = 105 57.05 (16.21) 42/63 1.21 (1.54) NA 79/26 11.23 (6.46) 43.08 (15.30) 0.139 (0.082) %.
HCs, n = 109 51.12 (11.70) 40/69 0.128 (0.058) @
tor % p triz=3.06, % =0.25, ta1z = 1.18, g
p = .003 p=.619 p = .240 )
ZZU, Zhengzhou Patients, n = 195 18.40 (5.54) 98/97 1.29 (1.48) NA 0/195 22.43 (5.70) NA 0.100 (0.045) §
HCs, n = 100 22.43 (4.49) 53/47 0.088 (0.039) o
tory3 p togz = —6.29, %12 = 0.20, thos = 2.16, ;
p = <.001 p = .655 p =.032 &
o
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. 2 p < .005) as was done in previous studies (25,26,31). The ef-
E 88 88« & fect on the results of different thresholds for defining extreme
s2la gl g 5 . individual deviations was validated (Supplement). The overall
“5le g k| 8% deviations of each participant and the spatial overlap map of
3=|g5 |5l & e §_g extreme deviations across participants were calculated to
= < é assess the intersubject heterogeneity. The between-group
E % differences in the mean deviation map and the overall devia-
§ g’é‘ S ‘I“ g tion indices between patients with MDD and HCs were
£E20|a 25 compared using two-sample t tests. The significance level was
® :(E 5 E 2 = corrected for multiple comparisons using the false discovery
s i €N te (FDR) method (corrected g < .05).
$5=|d 2
2 £
§ g Characterizing MDD Subtypes Based on Individual
‘,:'Ua) N ° 2 FCS Deviations
g:') g f’ § § We used a data-driven k-means clustering algorithm to explore
[a ) I z2 MDD subtypes with different deviation patterns (Figure 1C;
=& R s | t . . o g
ez upplement). The intersite reproducibility of subtyping was
. S 6 evaluated by comparing the number of patients within each
3 Sla f, 5 subtype among different sites and repeating the clustering
8 2 % =] analysis based on leave-one-site-out validation (Supplement).
® é N é = For the obtained subtypes, the brain deviations and the de-
= 2 g mographic and clinical variables were further compared
- é’ 2 (Supplement). Support vector regression analysis was con-
3. c o5 ducted to examine the predictive ability of baseline deviation
2 é gIR ; . values for treatment response in each patient subtype
lé)' 3 _g:_ 5 . g % (Supplement).
2y §E3
N c32 RESULTS
G N
2 g g §’g Normative Models of FCS
,Ef s|le 42 (35 % The 10-fold cross-validation in the HCs revealed a high
2 s % $3 2 generalizability of the fitting performance of normative models
-% % o 5 ‘3 § for FCS, as indicated by an overall standardized mean squared
E o § é % error close to 1 (0.996 + 0.013) and a mean squared log-loss
283 close to 0 (-0.001 + 0.007) (Figure S2). The normative
ko) - § L models established in all HCs showed that the brain regions
g=le |8 <5 2 E ‘5 can be clustered (Supplement) into 2 categories according to
e e % S it T ; e g their age-related FCS change trajectories in both female
3 2|l b z e § % 2 (Figure 2A) and male (Figure S3) groups. Specifically, regions
@ E z. £ with increased age-related FCS values were located mostly in
555 § i~ %'—;3 the lateral frontoparietal cortices, dorsal anterior cingulate
$Q|s |89 3o % cortex, medial occipital cortices, sensorimotor areas, and
“ele el il subcortical areas, while those with decreased FCS were mainly
[ONRTH IR} D w £ 53 . . \ .
23lg g & 2lg2 8 in the precuneus, posterior cingulate cortex, medial prefrontal
= g g g cortex, angular gyrus, insula, and medial temporal areas.
252 Hi . -
® St g ighly Heterogeneous Individual Deviations From
Sl = S 3 f Z Normative Models in Patients With MDD
G *2 - g NQ" 28 2 Compared with the HCs, patients with MDD exhibited larger
22 4 ; 8 gé individual FCS deviations, including the number of extremely
e T N deviated regions (Cohen’s d = 0.18) and the sum of positive
s 2573 (d = 0.17) and negative (d = —0.12) extreme deviations
g o) 3 i (Figure 2B) (FDR-corrected g < .05). Regionally, the patient
£ g § £ group had larger deviations than the HC group, with positive
5 5 gé deviations mainly in the bilateral lateral frontal cortex, pre-
9 263 cuneus, angular gyrus, and subcortical areas and negative
; 5| & % é’é deviations in the left parahippocampal gyrus, right Rolandic
% £|0e =] operculum, and middle cingulum gyrus (Figure S4; Table S3)
- Ol Z @ (absolute d = 0.12-0.21, FDR-corrected g < .05). A total of
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Figure 1. Flowchart of data analysis. (A) Estimation of the normative model of functional connectivity strength (FCS) for each brain region by training
Gaussian process regression on the healthy control participant dataset (gray dots). The solid line represents the predicted FCS values from the normative
model, and the dashed line indicates the normative range. Tenfold cross-validation was performed to assess the generalizability of the models. (B) Char-
acterization of the FCS deviation of each brain region for each patient with major depressive disorder (MDD) (red dots) based on the normative model. (C)
Identification of MDD subtypes based on the individual FCS deviation patterns and characterization of their imaging and clinical differences.

72.82% (n = 836) of the patients with MDD showed extreme
FCS deviations from the normative model in at least one brain
region, including extreme positive deviations in 25.78% (n =
296) of patients and extreme negative deviations in 66.38%
(n = 762) of patients (Figure 2C). From the perspective of brain
regions, 99.55% (n = 219) of the nodes showed an extreme
FCS deviation in at least one patient (positive: 67.73%, n =
149; negative: 96.36%, n = 212). The extreme positive de-
viations in patients with MDD were mostly located in the pre-
frontal cortex, precuneus, angular gyrus, and subcortical
areas, and the extreme negative deviations were widespread
over the whole brain, especially in the medial sensorimotor
cortex and the temporal lobe (Figure 2D). However, for any
single brain region, the percentage of patients who deviated
extremely from the normative range was remarkably low for
both positive (=2.35%, n = 27) and negative (=3.14%, n = 36)
deviations (Figure 2D). These findings suggest that while

940

alterations in FCS existed in most patients with MDD, the
specific brain regions having out-of-range alterations varied
remarkably among individual patients.

FCS Deviation-Based MDD Subtypes

Two MDD subtypes were identified based on individual FCS
deviations. This optimal subcluster number was consistently
selected by 11 of 22 effective quality indices (Figure 3A). This
subtyping result showed high intersite reproducibility, indi-
cated by no significant site difference in the number of patients
within each subtype (xo2 = 14.74, p = .098), and the overlap
rates of the resulting clustered indices in the leave-one-site-
out validation with the clustered indices in the main results
were all >92% (Figure 3B; Table S4).

Subtype 1 (37%, n = 425) showed severe deviations,
with positive deviations in the DMN, LIM, and SUB areas
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and negative deviations in the sensorimotor, dorsal atten-
tion, and ventral attention areas, while subtype 2 (63%, n =
723) showed moderate deviations with a conversed devia-
tion pattern (Figure 3C; Table S5) (absolute d = 0.32-1.65,
FDR-corrected g < .05). Statistical comparisons showed
that all 3 overall deviation indices of subtype 1 were higher
than those of HCs, while the number of extremely deviated
regions and the sum of negative extreme deviations of
subtype 2 were lower than those of HCs (Figure 3D;
Table S6) (np2 = 0.05-0.08, FDR-corrected g < .05). From
the spatial overlap maps of extreme deviations, we
observed a higher consistency of extremely deviated re-
gions among patients with the severe-deviation subtype
(positive: 0.23%-4.71%, d = 0.32; negative: 0.23%-5.88%,
d = 0.35; FDR-corrected g < .05) and a lower consistency
among patients with the moderate-deviation subtype (pos-
itive: 0.13%-2.49%, d = —0.31; negative: 0.13%-1.80%,
d = —0.36; FDR-corrected g < .05) compared with that
among all patients (Figure 3E).

Regarding demographic and clinical variables, severe-
deviation subtype patients were significantly older on
average (d = 0.16, p = .008) and had a higher medicated
proportion (Cramer’'s V = 0.08, p = .013) than moderate-
deviation subtype patients (Figure 4A; Table S7). The
severe-deviation subtype had more severe symptoms as
measured using the suicide item (d = 0.19, p = .044), while
the moderate-deviation subtype exhibited more severe
symptoms as measured by the work and activities (d = 0.29,
p = .002) and depressed mood (d = 0.23, p = .016) items
(Figure 4A; Table S7). Moreover, analysis of covariance
showed that the correlations between the Hamilton
Depression Rating Scale-17 item (HDRS-17) score and the
onset age were significantly different between the 2 sub-
types (np2 = 0.01, p = .036) (Tables S8 and S9). The HDRS-
17 score was negatively correlated with onset age in the
severe-deviation subtype (r = —0.24, p = .004) but not in the
moderate-deviation subtype (r = -0.00, p = .966)
(Figure 4B). These neuroimaging and clinical differences
between subtypes were largely unchanged under leave-one-
site-out validation (Figure S5; Table S10).

Among the patients who had follow-up treatment outcomes
(16 severe-deviation subtype patients and 27 moderate-
deviation subtype patients), the baseline individual deviation
map could significantly predict HDRS score changes after
treatment for the severe-deviation subtype (r = 0.47, p = .019,
one-tailed permutation test) (Figure 4C). The most positively
contributive features were in the DMN (24.1%), frontoparietal
network (16.1%), and ventral attention network (15.6%), and
the most negatively contributive features were in the visual
network (40.5%) (Figure 4C). In contrast, the baseline deviation
map of the moderate-deviation subtype could not predict their
HDRS score changes (r = —0.14, p = .785, one-tailed permu-
tation test).

Validation Results

Overall, the findings reported above were generally reproduc-
ible across different analytical choices (Supplement). Under
different thresholds in FCS calculation (r = 0.15, 0.25), in
extreme deviation definition (FDR-corrected g < .05), and in
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constructing normative models in each age/sex subgroup, the
normative models and patients’ deviations were similar to our
main results: the overlap rates of the resulting subtype indices
with the clustered indices in the main results were >92%
(range: 92.84%-99.22%), and the subtype differences largely
remained (Figures S6-S13). There were no significant site-
related effects in the deviation values of any of the brain re-
gions (FDR-corrected g = .183~.100).

DISCUSSION

In this study, we quantitatively uncovered neurophysiological
heterogeneity and identified intersite reproducible MDD sub-
types by mapping deviations from the normative models of
functional connectome based on the currently largest rs-fMRI
dataset in MDD. Our findings highlight the significant inter-
subject variability in the spatial distribution and severity of
functional connectome abnormalities among patients with
MDD and accordingly suggest 2 neurobiological subtypes with
distinct functional abnormality patterns and clinical charac-
teristics. Our study offers a novel analytical framework for
subtyping MDD and offers promising implications for future
personalized diagnosis and treatment of this disorder.

Normative Models of FCS

Compared with the traditional general linear model, the
normative model allows nonlinear changes to be characterized
without assumptions about the change trajectories (24-27).
Here, based on a large-sample dataset, we estimated the
normative model of FCS for each brain region and found 2
categories of FCS change trajectories. Similar to our findings,
several previous studies found linear age-related FCS de-
creases in the medial prefrontal cortex, precuneus, and insula
and calcarine, and linear increases in sensorimotor areas
based on the general linear model (32-34). The areas of FCS
decrease are the prominent hubs of global and local functional
connectivity, and the age-related decrease could underlie the
performance decline in working memory and visual sustained
attention, which are the most-affected cognitive functions that
occur with aging (35-37). Conversely, the sensorimotor areas
are the least affected by aging (32). Notably, in our study,
although brain regions had overall increased or decreased
change trajectories, the changes did not always follow a linear
or quadratic change, which demonstrates the value of the
normative model in characterizing the natural FCS change
trajectories more accurately.

Highly Heterogeneous Individual Deviations From
Normative Models in Patients With MDD

The normative model has shown its advantages in accurately
quantifying patients’ individual deviations from a large refer-
ence cohort by recognizing all sources of variance and
reducing overly optimistic inferences (21,38). By exploring
mechanisms and identifying potential subtypes of patients
based on individual objective biological measures rather than
their clinical diagnoses, the normative model provides a valu-
able framework to consider the challenging issues of comor-
bidity and heterogeneity in studies investigating
neurophysiological mechanisms of mental disorders (38,39).
Based on the normative model of FCS, we identified the
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(purple: increased; blue: decreased) in HCs (female). The FCS change trajectories (solid line) and the normative range (dashed line) of the postcentral gyrus and
posterior cingulate cortex are shown on the left and right as examples. Each dot represents the data from 1 HC. (B) The between-group differences in the
overall deviation indices between patients with MDD and HCs. “*False discovery rate—corrected q < .05. (C) Bar plots show the distribution of the number of
regions per patient with extremely positive (red) and negative (blue) deviations. (D) The spatial overlap maps indicate the percentage of patients who deviated
extremely from the normative range for each brain region (left, extreme positive deviations; right, extreme negative deviations).

individual deviations for each patient with MDD and explored
the heterogeneity of FCS deviations among patients. We found
positive FCS deviations mainly in the DMN and SUB areas and
negative deviations mainly in the sensorimotor and lateral
temporal cortices. The increased FCS in the DMN and SUB
indicates their strengthened role in coordinating whole-brain
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networks, which has been shown to be associated with inter-
nally directed cognitive rumination and emotional processing
in patients with MDD (40,41). The decreased FCS in the
sensorimotor and lateral temporal cortices suggests weakened
integration of these regions, possibly reflecting impairments in
decoding and integrating primary sensory input processing in
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Figure 3. Functional connectivity strength (FCS) deviation—-based major depressive disorder (MDD) subtypes. (A) Determination of the optimal number of
MDD subtypes using the NbClust package and the intersubject similarity in the FCS deviation patterns among all patients. (B) Subtyping results in each site
and the overlap rates of the resulting clustered indices in the leave-one-site-out validation with the clustered indices in the main results. (C) The mean deviation
map of each subtype and their system-level differences. (D) The group differences in the overall deviation indices among MDD subtypes and healthy controls
(HCs). (E) The spatial overlap map of extreme positive and negative deviations of each subtype. **False discovery rate-corrected g < .05. CMU, China Medical
University; CSU, Central South University; DAN, dorsal attention network; DMN, default mode network; FPN, frontoparietal network; GCMU, Guangzhou
University of Chinese Medicine; KMU, Kunming Medical University; LIM, limbic network; Neg, negative; PKU, Peking University; Pos, positive; SCU, Sichuan
University; SMN, sensorimotor network; SUB, subcortical regions; SWU, Southwest University; VAN, ventral attention network; VIS, visual network; YMU,

National Yang-Ming University; ZZU, Zhengzhou University.

patients (40,41). More importantly, we found that the overlap
rates among patients in these regions were very low. This large
interpatient heterogeneity provides an important cue to help
explain the inconsistent findings in previous functional
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connectome studies in MDD. For example, the medial pre-
frontal cortex, which showed heterogeneous FCS alterations in
our study, was found to have both increased and decreased
FCS in previous case-control studies (41-44). Our results
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suggest that FCS alteration is an important neuropathological
feature of MDD, while the alteration patterns among patients
are largely different and there may be multiple forms of MDD.

FCS Deviation-Based MDD Subtypes

We identified 2 subtypes; the severe-deviation subtype showed
positive deviations in the DMN, LIM, and SUB areas, whereas in
the moderate-deviation subtype the deviations of these regions
were negative. These findings are consistent with several pre-
vious reports. For example, based on the power envelope—
based connectivity of signals reconstructed from high-density
resting-state electroencephalography, Zhang et al. (45) identi-
fied 2 MDD subtypes with different functional connectivity pat-
terns of the frontoparietal-control network and DMN. Two other
rs-fMRI studies also identified 2 subtypes with distinct functional
connectivity patterns among DMN areas in patients with MDD
(17,46). A transdiagnostic study, based on the whole-brain
amplitude of low-frequency fluctuations, clustered patients
with MDD into 2 subtypes with distinct activity patterns (47).
Based on multimodal imaging data and different measures,
these findings indicate that the functional connectome and ac-
tivity of DMN areas are the most important biomarkers for the
neurophysiological subtyping of MDD. Our study extends this
understanding of neurophysiological MDD subtypes based on
individual functional connectome abnormalities of patients
against a reproducible normative trajectory derived from a large
multisite cohort. Future studies combining different measures
from multimodal imaging features may be helpful for better un-
derstanding disease heterogeneity and identifying patient-
specific biomarkers for precise diagnosis and treatment of
MDD. Notably, the current dataset was collected in China, and
so it may be more representative of the Asian population.

Although our subtyping results are consistent with the above-
mentioned studies conducted in the Western population (45,46),
it would be valuable to expand our sample to other ethnic groups
through international collaborations to assess the generaliz-
ability of subtyping across different ethnicities (48,49).

We found that the severe-deviation subtype had a higher
suicide item score on the HDRS-17. Previous studies have
shown that the increased functional connectomes and activ-
ities of the DMN, LIM, and SUB areas, including the orbito-
frontal cortex, medial prefrontal cortex, cingulate cortex, and
striatum, are associated with suicide (50-53). More specifically,
the orbitofrontal cortex is involved in learning, prediction, and
decision making for emotional and reward-related behaviors
and is important in regulating behavioral impulsivity and
response inhibition (54). The higher FCS in the orbitofrontal
cortex may be associated with increased vulnerability to sui-
cidal behavior. Regions of the DMN are associated with self-
referential processing. Evidence suggests that when in-
dividuals are involved in regurgitating negative emotions about
themselves, suicidal thoughts and behaviors occur in response
to the individual’s desire to escape from both self-awareness
and the associated unpleasant feelings (53,55). On the other
hand, the moderate-deviation subtype showed more severe
symptoms in the work and activities item and the depressed
mood item, which are considered the core symptoms of pa-
tients with MDD in clinical diagnostics (56). The decreased
functional connectomes in areas of the DMN, LIM, and SUB
are considered to be related to anhedonia (57-63), which is
defined as diminished interest or pleasure in response to
stimuli that were previously perceived as rewarding in a pre-
morbid state (58). Our results provide new evidence that the
lower FCS in these areas is related to the nonreactive mood
and the failure to respond to contextual changes in patients
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with MDD. Additionally, a significant negative correlation be-
tween age of onset and HDRS-17 score was found only in the
severe-deviation subtype. Several studies have explored the
association between age of onset and HDRS-17 scores in
patients with MDD, but the results have been inconsistent
(64-67). Our results indicated that these inconsistent obser-
vations may be partly due to patient subtypes with different
neurobiological mechanisms. More importantly, we found that
the predictive power of FCS deviation patterns for treatment
effects was observed only in the severe-deviation subtype, and
the most contributing features were found in the DMN and
visual network. Interestingly, previous studies have reported
differential functional connectivity and activities of the DMN
and visual network areas between treatment-resistant and
treatment-sensitive patients, suggesting the potential predic-
tive power of these areas for clinical outcomes in patients with
MDD (11,68-70). Our findings extend this knowledge,
demonstrating that this brain-phenotype relationship may exist
in only one subtype of patients with severe brain alterations.
Additionally, there is evidence that the recovery of elevated
DMN FCS was significantly correlated with treatment response
(43), while decreased DMN FCS was associated with nonre-
sponse to first-line antidepressants (17). Combined with the
subtype differences in depressive item scores, our study
highlights the different mechanisms that underly the different
clinical profiles and treatment responses among patients.

Limitations and Future Directions

Several issues with the current study need to be addressed
further. First, our analysis was performed based on data from a
cross-sectional sample, and the nonlinear age effects on
characterizing trajectories and patient subtyping should be
considered. Our validation analysis of constructing normative
models in age/sex subgroup suggests that neurophysiological
subtypes were not driven by age/sex effects, although there
was a significant age difference between the 2 subtypes. Using
longitudinal samples will improve the representativeness and
accuracy of the age-related brain change curve by delineating
the trajectories of each participant. Second, in this study, we
compared the subtype differences in clinical symptoms using
HDRS-17 item scores. The patients with MDD also had varied
cognitive impairments, which were not assessed in the current
retrospective study. Further analysis combined with more
detailed cognitive performances could help us to better un-
derstand the complex relationship between the neurophysio-
logical basis and the clinical presentations of MDD. Third, all
the patients who were included in the analysis to predict
treatment outcomes were responders to paroxetine because
patients who had a poor response discontinued the medica-
tion or changed their treatment plans. Future studies need to
include more nonresponders to establish prediction models for
treatment-resistant depression and thereby explore the
different neuroimaging biomarkers between patients with
different treatment outcomes. Fourth, although the signifi-
cance level of our results was corrected for multiple compari-
sons using the FDR method, the effect sizes of subtype
differences are relatively small. These findings suggest that
there may be remaining heterogeneity within each subtype.
Uncovering disease heterogeneity, especially in relation to
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clinical symptoms from the perspective of brain functional
connectome, warrants further investigation. Fifth, an episode
of MDD may be caused by numerous different factors, such as
genetic liability, childhood adversity, and life stress (2,71,72).
Several studies have identified genetic subtypes of MDD
based on the heritability of single nucleotide polymorphisms
(15,72). Additionally, neurobiological subtypes of MDD have
been shown to exhibit different polygenic risk scores,
expression of high-risk genetic profiles, and Child Abuse
Trauma Scale scores (47,73). Future studies incorporating
more comprehensive genetic and environmental data will
provide valuable insight into the factors that lead to the
different neurophysiological subtypes. Finally, we used 10-fold
and leave-one-site-out cross-validation to validate the stability
of the normative model and neurophysiological subtypes in our
study and found good internal generalizability of our results. To
maximize generalizability and replicability and reduce bias in
model evaluation of our study, external validation in indepen-
dent datasets from other populations and demographic groups
is needed in future research.

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the SIT 2030-Major Projects (Grant No.
2022ZD0211500 [to MX]), National Natural Science Foundation of China
(Grant No. 82071998 [to MX]; Grant No. 82021004 [to YH]; Grant Nos.
81920108019, 91649117, 81771344, and 81471251 [to SQ]), Beijing Nova
Program (Grant No. Z191100001119023 [to MX]), Beijing United Imaging
Research Institute of Intelligent Imaging Foundation (Grant No.
CRIBJZD202102 [to MX]), Science and Technology Plan Project of
Guangzhou (Grant No. 2018-1002-SF-0442 [to SQ]), Guangzhou Key Lab-
oratory (Grant No. 09002344 [to SQ]), and Key R&D Program of Sichuan
Province (Grant No. 2023YFS0076 [to TC]).

A previous version of this article was published as a preprint on bioRxiv:
https://doi.org/10.1101/2023.02.13.528399.

The authors report no biomedical financial interests or potential conflicts
of interest.

ARTICLE INFORMATION

From the State Key Laboratory of Cognitive Neuroscience and Learning,
Beijing Normal University, Beijing, China (XS, JL, QM, YH, MX); Beijing Key
Laboratory of Brain Imaging and Connectomics, Beijing Normal University,
Beijing, China (XS, JL, QM, YH, MX); IDG/McGovern Institute for Brain
Research, Beijing Normal University, Beijing, China (XS, JL, QM, YH, MX);
School of Systems Science, Beijing Normal University, Beijing, China (XS,
WW); Department of Psychiatry and National Clinical Research Center for
Mental Disorders, The Second Xiangya Hospital of Central South University,
Changsha, Hunan, China (JS, XL, QD, LZ, BL, LL); Mental Health Institute of
Central South University, China National Technology Institute on Mental
Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory
of Psychiatry and Mental Health, Hunan Medical Center for Mental Health,
Changsha, Hunan, China (JS, XL, QD, LZ, BL, LL); Affiliated WuTaiShan
Hospital of Medical College of Yangzhou University, Yangzhou Mental
Health Centre, Yangzhou, China (JS); Affiliated Wuhan Mental Health Cen-
ter, Huazhong University of Science and Technology, Wuhan, China (XL);
Department of Psychiatry, Lanzhou University Second Hospital, Lanzhou,
China (QD); Mental Health Education and Counseling Center, Shanghai
University of Medicine and Health Sciences, Shanghai, China (LZ); Institute
of Science and Technology for Brain-Inspired Intelligence, Fudan University,
Shanghai, China (QM); Key Laboratory of Cognition and Personality
(Southwest University), Ministry of Education, Chongging, China (XW, DW,
JQ); Department of Psychology, Southwest University, Chongging, China
(XW, DW, JQ); Department of Magnetic Resonance Imaging, The First
Affiliated Hospital of Zhengzhou University, Zhengzhou, China (YC, JC);
Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Edu-
cation), Affiliated Mental Health Center, School of Psychology and Cognitive

Biological Psychiatry December 15, 2023; 94:936-947 www.sobp.org/journal 945


https://doi.org/10.1101/2023.02.13.528399
http://www.sobp.org/journal

Biological
Psychiatry

Science, East China Normal University, Shanghai, China (C-CH); Depart-
ment of Radiology, The First Affiliated Hospital of Guangzhou University of
Chinese Medicine, Guangzhou, China (YZ, SQ); Peking University Sixth
Hospital, Peking University Institute of Mental Health, National Health
Commission Key Laboratory of Mental Health (Peking University), National
Clinical Research Center for Mental Disorders (Peking University Sixth
Hospital), Peking University, Beijing, China (YW, TS); Huaxi Magnetic
Resonance Research Center, Department of Radiology, West China Hos-
pital, Sichuan University, Chengdu, China (TC, QG); Department of Psy-
chiatry, First Affiliated Hospital of Kunming Medical University, Kunming,
China (YC, XX); Research Unit of Psychoradiology, Chinese Academy of
Medical Sciences, Chengdu, Sichuan, China (QG); Institute of Neuroscience,
National Yang-Ming Chiao-Tung University, Taipei, Taiwan (C-PL); Depart-
ment of Education and Research, Taipei City Hospital, Taipei, Taiwan
(C-PL); Department of Psychiatry, The First Affiliated Hospital of China
Medical University, Shenyang, China (YT, FW); Chongqging Key Laboratory
of Neurobiology, Chongging, China (PX); Department of Neurology, The First
Affiliated Hospital of Chongqing Medical University, Chongging, China (PX);
and Chinese Institute for Brain Research, Beijing, China (YH).

DIDA-MDD Working Group includes Yong He, Lingjiang Li, Jingliang
Cheng, Qiyong Gong, Ching-Po Lin, Jiang Qiu, Shijun Qiu, Tianmei Si,
Yanging Tang, Fei Wang, Peng Xie, Xiufeng Xu, and Mingrui Xia.

Address correspondence to Mingrui Xia, Ph.D., at mxia@bnu.edu.cn.

Received Mar 9, 2023; revised May 15, 2023; accepted May 29, 2023.

Supplementary material cited in this article is available online at https://
doi.org/10.1016/j.biopsych.2023.05.021.

REFERENCES

1. World Health Organization (2017): Depression and Other Common
Mental Disorders: Global Health Estimates. Geneva: World Health
Organization.

2. Malhi GS, Mann JJ (2018): Depression. Lancet 392:2299-2312.

3. Kaufmann T, van der Meer D, Doan NT, Schwarz E, Lund MJ, Agartz |,
et al. (2019): Common brain disorders are associated with heritable
patterns of apparent aging of the brain. Nat Neurosci 22:1617-1623.

4. Marin O (2016): Developmental timing and critical windows for the
treatment of psychiatric disorders. Nat Med 22:1229-1238.

5. van Loo HM, de Jonge P, Romeijn JW, Kessler RC, Schoevers RA
(2012): Data-driven subtypes of major depressive disorder: A sys-
tematic review. BMC Med 10:156.

6. Harald B, Gordon P (2012): Meta-review of depressive subtyping
models. J Affect Disord 139:126-140.

7. Maglanoc LA, Landre NI, Jonassen R, Kaufmann T, Cérdova-
Palomera A, Hilland E, Westlye LT (2019): Data-driven clustering re-
veals a link between symptoms and functional brain connectivity in
depression. Biol Psychiatry Cogn Neurosci Neuroimaging 4:16-26.

8. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA (2015): Large-
scale network dysfunction in major depressive disorder: A meta-
analysis of resting-state functional connectivity. JAMA Psychiatry
72:603-611.

9. Fornito A, Zalesky A, Breakspear M (2015): The connectomics of brain
disorders. Nat Rev Neurosci 16:159-172.

10. Gong Q, He Y (2015): Depression, neuroimaging and connectomics: A
selective overview. Biol Psychiatry 77:223-235.

11. Xia M, Liu J, Mechelli A, Sun X, Ma Q, Wang X, et al. (2022): Con-
nectome gradient dysfunction in major depression and its association
with gene expression profiles and treatment outcomes. Mol Psychiatry
27:1384-1393.

12. Fox MD, Liu H, Pascual-Leone A (2013): Identification of reproducible
individualized targets for treatment of depression with TMS based on
intrinsic connectivity. Neuroimage 66:151-160.

13. Cash RFH, Weigand A, Zalesky A, Siddigi SH, Downar J,
Fitzgerald PB, Fox MD (2021): Using brain imaging to improve spatial
targeting of transcranial magnetic stimulation for depression. Biol
Psychiatry 90:689-700.

14. Sun X, Liu J, Ma Q, Duan J, Wang X, Xu Y, et al. (2021): Disrupted
intersubject variability architecture in functional connectomes in
schizophrenia. Schizophr Bull 47:837-848.

946

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Individual Deviations Define Depression Subtypes

Beijers L, Wardenaar KJ, van Loo HM, Schoevers RA (2019): Data-
driven biological subtypes of depression: Systematic review of bio-
logical approaches to depression subtyping. Mol Psychiatry 24:888-
900.

Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y,
et al. (2017): Resting-state connectivity biomarkers define neuro-
physiological subtypes of depression. Nat Med 23:28-38.

Liang S, Deng W, Li X, Greenshaw AJ, Wang Q, Li M, et al. (2020):
Biotypes of major depressive disorder: Neuroimaging evidence from
resting-state default mode network patterns. Neuroimage Clin 28:
102514.

Wang X, Qin J, Zhu R, Zhang S, Tian S, Sun Y, et al. (2022): Predicting
treatment selections for individuals with major depressive disorder ac-
cording to functional connectivity subgroups. Brain Connect 12:699-710.
Wang Y, Tang S, Zhang L, Bu X, Lu L, Li H, et al. (2021): Data-driven
clustering differentiates subtypes of major depressive disorder with
distinct brain connectivity and symptom features. Br J Psychiatry
219:606-613.

Marquand AF, Rezek |, Buitelaar J, Beckmann CF (2016): Under-
standing heterogeneity in clinical cohorts using normative models:
Beyond case-control studies. Biol Psychiatry 80:552-561.

Marquand AF, Kia SM, Zabihi M, Wolfers T, Buitelaar JK,
Beckmann CF (2019): Conceptualizing mental disorders as deviations
from normative functioning. Mol Psychiatry 24:1415-1424.

Marquand AF, Wolfers T, Mennes M, Buitelaar J, Beckmann CF (2016):
Beyond lumping and splitting: A review of computational approaches
for stratifying psychiatric disorders. Biol Psychiatry Cogn Neurosci
Neuroimaging 1:433-447.

Cole TJ (2012): The development of growth references and growth
charts. Ann Hum Biol 39:382-394.

Zabihi M, Oldehinkel M, Wolfers T, Frouin V, Goyard D, Loth E, et al.
(2019): Dissecting the heterogeneous cortical anatomy of autism
spectrum disorder using normative models. Biol Psychiatry Cogn
Neurosci Neuroimaging 4:567-578.

Wolfers T, Beckmann CF, Hoogman M, Buitelaar JK, Franke B,
Marquand AF (2020): Individual differences v. the average patient:
Mapping the heterogeneity in ADHD using normative models. Psychol
Med 50:314-323.

Wolfers T, Doan NT, Kaufmann T, Alnaes D, Moberget T, Agartz |, et al.
(2018): Mapping the heterogeneous phenotype of schizophrenia and
bipolar disorder using normative models. JAMA Psychiatry 75:1146-
1155.

Shan X, Uddin LQ, Xiao J, He C, Ling Z, Li L, et al. (2022): Mapping the
heterogeneous brain structural phenotype of autism spectrum disor-
der using the normative model. Biol Psychiatry 91:967-976.

Xia M, Si T, Sun X, Ma Q, Liu B, Wang L, et al. (2019): Reproducibility of
functional brain alterations in major depressive disorder: Evidence
from a multisite resting-state functional MRI study with 1,434 in-
dividuals. Neuroimage 189:700-714.

Shen X, Tokoglu F, Papademetris X, Constable RT (2013): Groupwise
whole-brain parcellation from resting-state fMRI data for network node
identification. Neuroimage 82:403-415.

Rasmussen CE, Williams CKI (2006): Gaussian Processes for Machine
Learning. Cambridge: MIT Press.

Dimitrova R, Arulkumaran S, Carney O, Chew A, Falconer S,
Ciarrusta J, et al. (2021): Phenotyping the preterm brain: Character-
izing individual deviations from normative volumetric development in
two large infant cohorts. Cereb Cortex 31:3665-3677.

Tomasi D, Volkow ND (2012): Aging and functional brain networks. Mol
Psychiatry 17:549-558.

Wu K, Taki Y, Sato K, Hashizume H, Sassa Y, Takeuchi H, et al. (2013):
Topological organization of functional brain networks in healthy children:
Differences in relation to age, sex, and intelligence. PLoS One 8:€55347.
Cao M, Wang JH, Dai ZJ, Cao XY, Jiang LL, Fan FM, et al. (2014):
Topological organization of the human brain functional connectome
across the lifespan. Dev Cogn Neurosci 7:76-93.

Dai Z, Yan C, Li K, Wang Z, Wang J, Cao M, et al. (2015): Identifying
and mapping connectivity patterns of brain network hubs in Alz-
heimer’s disease. Cereb Cortex 25:3723-3742.

Biological Psychiatry December 15, 2023; 94:936-947 www.sobp.org/journal


mailto:mxia@bnu.edu.cn
https://doi.org/10.1016/j.biopsych.2023.05.021
https://doi.org/10.1016/j.biopsych.2023.05.021
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref1
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref1
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref1
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref2
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref3
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref3
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref3
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref4
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref4
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref5
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref5
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref5
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref6
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref6
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref7
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref7
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref7
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref7
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref8
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref8
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref8
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref8
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref9
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref9
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref10
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref10
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref11
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref11
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref11
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref11
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref12
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref12
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref12
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref13
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref13
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref13
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref13
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref14
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref14
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref14
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref15
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref15
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref15
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref15
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref16
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref16
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref16
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref17
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref17
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref17
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref17
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref18
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref18
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref18
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref19
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref19
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref19
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref19
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref20
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref20
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref20
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref21
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref21
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref21
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref22
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref22
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref22
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref22
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref23
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref23
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref24
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref24
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref24
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref24
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref25
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref25
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref25
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref25
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref26
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref26
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref26
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref26
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref27
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref27
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref27
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref28
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref28
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref28
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref28
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref29
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref29
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref29
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref30
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref30
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref31
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref31
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref31
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref31
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref32
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref32
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref33
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref33
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref33
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref34
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref34
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref34
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref35
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref35
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref35
http://www.sobp.org/journal

Individual Deviations Define Depression Subtypes

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Filley CM, Cullum CM (1994): Attention and vigilance functions in
normal aging. Appl Neuropsychol 1:29-32.

Sambataro F, Murty VP, Callicott JH, Tan HY, Das S, Weinberger DR,
Mattay VS (2010): Age-related alterations in default mode network:
Impact on working memory performance. Neurobiol Aging 31:839-852.
Feczko E, Miranda-Dominguez O, Marr M, Graham AM, Nigg JT,
Fair DA (2019): The heterogeneity problem: Approaches to identify
psychiatric subtypes. Trends Cogn Sci 23:584-601.

Feczko E, Fair DA (2020): Methods and challenges for assessing
heterogeneity. Biol Psychiatry 88:9-17.

Yang Y, Zhu DM, Zhang C, Zhang Y, Wang C, Zhang B, et al. (2020):
Brain structural and functional alterations specific to low sleep effi-
ciency in major depressive disorder. Front Neurosci 14:50.

Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011):
Disrupted brain connectivity networks in drug-naive, first-episode
major depressive disorder. Biol Psychiatry 70:334-342.

Wang L, Dai Z, Peng H, Tan L, Ding Y, He Z, et al. (2014): Overlapping
and segregated resting-state functional connectivity in patients with
major depressive disorder with and without childhood neglect. Hum
Brain Mapp 35:1154-1166.

Wang L, Xia M, Li K, Zeng Y, Su Y, Dai W, et al. (2015): The effects
of antidepressant treatment on resting-state functional brain net-
works in patients with major depressive disorder. Hum Brain Mapp
36:768-778.

Shi 'Y, Li J, Feng Z, Xie H, Duan J, Chen F, Yang H (2020): Abnormal
functional connectivity strength in first-episode, drug-naive adult pa-
tients with major depressive disorder. Prog Neuropsychopharmacol
Biol Psychiatry 97:109759.

Zhang Y, Wu W, Toll RT, Naparstek S, Maron-Katz A, Watts M, et al.
(2021): Identification of psychiatric disorder subtypes from functional
connectivity patterns in resting-state electroencephalography. Nat
Biomed Eng 5:309-323.

Price RB, Gates K, Kraynak TE, Thase ME, Siegle GJ (2017): Data-
driven subgroups in depression derived from directed functional
connectivity paths at rest. Neuropsychopharmacology 42:2623-2632.
Chang M, Womer FY, Gong X, Chen X, Tang L, Feng R, et al. (2021):
Identifying and validating subtypes within major psychiatric disorders
based on frontal-posterior functional imbalance via deep learning. Mol
Psychiatry 26:2991-3002.

Greene AS, Shen X, Noble S, Horien C, Hahn CA, Arora J, et al. (2022):
Brain-phenotype models fail for individuals who defy sample stereo-
types. Nature 609:109-118.

Dhamala E, Yeo BTT, Holmes AJ (2023): One size does not fit all:
Methodological considerations for brain-based predictive modeling in
psychiatry. Biol Psychiatry 93:717-728.

Auerbach RP, Pagliaccio D, Allison GO, Alqueza KL, Alonso MF (2021):
Neural correlates associated with suicide and nonsuicidal self-injury in
youth. Biol Psychiatry 89:119-1383.

Jollant F, Lawrence NL, Olié¢ E, Guillaume S, Courtet P (2011): The
suicidal mind and brain: A review of neuropsychological and neuro-
imaging studies. World J Biol Psychiatry 12:319-339.

Zhang H, Chen Z, Jia Z, Gong Q (2014): Dysfunction of neural circuitry
in depressive patients with suicidal behaviors: A review of structural
and functional neuroimaging studies. Prog Neuropsychopharmacol
Biol Psychiatry 53:61-66.

Chen Z, Xia M, Zhao Y, Kuang W, Jia Z, Gong Q (2021): Characteristics
of intrinsic brain functional connectivity alterations in major depressive
disorder patients with suicide behavior. J Magn Reson Imaging
54:1867-1875.

Elliott R, Dolan RJ, Frith CD (2000): Dissociable functions in the medial
and lateral orbitofrontal cortex: Evidence from human neuroimaging
studies. Cereb Cortex 10:308-317.

55.

56.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

73.

Biological
Psychiatry

Morrison R, O’Connor RC (2008): A systematic review of the rela-
tionship between rumination and suicidality. Suicide Life Threat Behav
38:523-538.

First M, Spitzer R, Gibbon M, Williams J (1997): Structured Clinical
Interview for DSM-IV Axis | Disorders. Washington, DC: American
Psychiatric Publishing.

Héflich A, Michenthaler P, Kasper S, Lanzenberger R (2019): Circuit
mechanisms of reward, anhedonia, and depression. Int J Neuro-
psychopharmacol 22:105-118.

Su YA, Si T (2022): Progress and challenges in research of the
mechanisms of anhedonia in major depressive disorder. Gen Psychiatr
35:¢100724.

Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X, Miller AH
(2016): Inflammation is associated with decreased functional con-
nectivity within corticostriatal reward circuitry in depression. Mol
Psychiatry 21:1358-1365.

Gabbay V, Ely BA, Li Q, Bangaru SD, Panzer AM, Alonso CM, et al.
(2013): Striatum-based circuitry of adolescent depression and anhe-
donia. J Am Acad Child Adolesc Psychiatry 52:628-641.e13.

Geller WN, Liu K, Warren SL (2021): Specificity of anhedonic alter-
ations in resting-state network connectivity and structure: A trans-
diagnostic approach. Psychiatry Res Neuroimaging 317:111349.
Guo CC, Hyett MP, Nguyen VT, Parker GB, Breakspear MJ (2016):
Distinct neurobiological signatures of brain connectivity in depression
subtypes during natural viewing of emotionally salient films. Psychol
Med 46:1535-1545.

Zhang T, He K, Bai T, Lv H, Xie X, Nie J, et al. (2021): Altered neural
activity in the reward-related circuit and executive control network
associated with amelioration of anhedonia in major depressive disor-
der by electroconvulsive therapy. Prog Neuropsychopharmacol Biol
Psychiatry 109:110193.

Zisook S, Rush AJ, Albala A, Alpert J, Balasubramani GK, Fava M,
et al. (2004): Factors that differentiate early vs. later onset of major
depression disorder. Psychiatry Res 129:127-140.

Cui L, Wang Y, Cao L, Wu Z, Peng D, Chen J, et al. (2023): Age of
onset for major depressive disorder and its association with symp-
tomatology. J Affect Disord 320:682-690.

Klein DN, Schatzberg AF, McCullough JP, Dowling F, Goodman D,
Howland RH, et al. (1999): Age of onset in chronic major depression:
Relation to demographic and clinical variables, family history, and
treatment response. J Affect Disord 55:149-157.

Gournellis R, Oulis P, Rizos E, Chourdaki E, Gouzaris A, Lykouras L
(2011): Clinical correlates of age of onset in psychotic depression.
Arch Gerontol Geriatr 52:94-98.

Korgaonkar MS, Goldstein-Piekarski AN, Fornito A, Wiliams LM
(2020): Intrinsic connectomes are a predictive biomarker of remission
in major depressive disorder. Mol Psychiatry 25:1537-1549.

Chin Fatt CR, Jha MK, Cooper CM, Fonzo G, South C, Grannemann B,
et al. (2020): Effect of intrinsic patterns of functional brain connectivity
in moderating antidepressant treatment response in major depression.
Am J Psychiatry 177:143-154.

Dichter GS, Gibbs D, Smoski MJ (2015): A systematic review of re-
lations between resting-state functional-MRI and treatment response
in major depressive disorder. J Affect Disord 172:8-17.

Flint J, Kendler KS (2014): The genetics of major depression. Neuron
81:484-503.

Nguyen TD, Harder A, Xiong Y, Kowalec K, Hagg S, Cai N, et al. (2022):
Genetic heterogeneity and subtypes of major depression. Mol Psy-
chiatry 27:1667-1675.

Tokuda T, Yoshimoto J, Shimizu Y, Okada G, Takamura M, Okamoto Y,
et al. (2018): Identification of depression subtypes and relevant brain
regions using a data-driven approach. Sci Rep 8:14082.

Biological Psychiatry December 15, 2023; 94:936-947 www.sobp.org/journal 947


http://refhub.elsevier.com/S0006-3223(23)01331-8/sref36
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref36
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref37
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref37
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref37
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref38
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref38
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref38
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref39
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref39
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref40
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref40
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref40
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref41
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref41
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref41
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref42
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref42
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref42
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref42
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref43
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref43
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref43
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref43
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref44
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref44
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref44
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref44
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref45
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref45
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref45
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref45
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref46
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref46
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref46
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref47
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref47
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref47
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref47
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref48
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref48
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref48
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref49
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref49
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref49
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref50
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref50
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref50
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref51
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref51
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref51
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref52
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref52
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref52
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref52
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref53
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref53
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref53
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref53
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref54
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref54
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref54
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref55
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref55
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref55
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref56
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref56
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref56
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref57
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref57
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref57
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref58
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref58
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref58
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref59
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref59
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref59
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref59
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref60
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref60
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref60
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref61
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref61
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref61
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref62
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref62
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref62
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref62
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref63
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref63
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref63
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref63
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref63
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref64
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref64
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref64
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref65
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref65
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref65
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref66
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref66
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref66
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref66
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref67
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref67
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref67
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref68
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref68
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref68
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref69
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref69
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref69
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref69
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref70
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref70
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref70
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref71
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref71
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref72
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref72
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref72
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref73
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref73
http://refhub.elsevier.com/S0006-3223(23)01331-8/sref73
http://www.sobp.org/journal

	Mapping Neurophysiological Subtypes of Major Depressive Disorder Using Normative Models of the Functional Connectome
	Methods and Materials
	Imaging Dataset and Preprocessing
	Normative Modeling for FCS
	Estimating Individual FCS Deviations in Normative Models for Patients With MDD
	Characterizing MDD Subtypes Based on Individual FCS Deviations

	Results
	Normative Models of FCS
	Highly Heterogeneous Individual Deviations From Normative Models in Patients With MDD
	FCS Deviation–Based MDD Subtypes
	Validation Results

	Discussion
	Normative Models of FCS
	Highly Heterogeneous Individual Deviations From Normative Models in Patients With MDD
	FCS Deviation–Based MDD Subtypes
	Limitations and Future Directions

	References


