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Highlights
The morphological brain connectome
(MBC) can be mapped at an individual
level from a single structural MRI scan.

Individualized MBCs can be modeled
using both low-order and high-order
methods, each of which has its own
advantages and disadvantages.

Individualized MBCs exhibit nontrivial
topological properties such as small-
worldness, modular organization, and
hubs with high robustness, repro-
ducibility, and reliability.

Future work is needed to elucidate the
Themorphological brain connectome (MBC) delineates the coordinated patterns
of local morphological features (such as cortical thickness) across brain regions.
While classically constructed using population-based approaches, there is a
growing trend toward individualized modeling. Currently, the methods for indi-
vidualized MBCs are varied, posing challenges for method selection and cross-
study comparisons. Here, we summarize how individualized MBCs are modeled
through low-order methods (correlation-, divergence-, distance-, and deviation-
based methods) describing relations in brain morphology, as well as high-order
methods capturing similarities in these low-order relations. We discuss the
merits and limitations of different methods, examining them in the context of ro-
bustness, reproducibility, and reliability. We highlight the importance of elucidat-
ing the cellular and molecular mechanisms underlying the individualized
connectome, and establishing normative benchmarks to assess individual varia-
tion in development, aging, and neuropsychiatric disorders.
cellular and molecular basis of individual-
ized MBCs and to establish normative
benchmarks to better understand indi-
vidual variations in healthy and diseased
conditions.
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Individualized morphological brain networks: a novel approach to the human
brain connectome
It is generally accepted that the human brain functions as a complex, interconnected network
(i.e., a connectome) [1] (see Glossary) to facilitate behavior and cognition [2,3]. This notion led
to the emergence of the field of network neuroscience, which approaches brain structure and
function from an integrative perspective by mapping, analyzing, and modeling the elements of
the brain and their interactions [4]. In the past two decades, network neuroscience has signifi-
cantly advanced our understanding of the architecture, organization, and underlying principles
of the wiring diagram in the human brain [5–8].

Currently, there are two main methods for mapping the human brain connectome in vivo:
structural connectivity, typically derived from diffusion MRI using fiber tractography, and
functional connectivity, estimated as the temporal synchronization of neural activity recorded
by functional imaging techniques such as functional MRI. Structural connectivity corre-
sponds to the physical axonal pathways responsible for neuronal signaling and communica-
tion in the brain, whereas functional connectivity is derived from statistical descriptions of
time series and is highly time-dependent [9]. In recent years, the MBC has received consid-
erable attention for mapping the morphological connectivity patterns of the brain in healthy
and diseased populations. Morphological connectivity is defined as the statistical interdepen-
dence of local morphological features between regions (Box 1). Initial studies estimated inter-
regional morphological connectivity by correlating specific morphological features, such as
cortical thickness or gray matter volume derived from structural MRI data, across partici-
pants [10–14]. However, these population-based MBC methods provide only one network
for a group of participants, limiting their broader applicability. Recognizing this limitation,
the field of the MBC is currently experiencing a pivotal shift from population-based
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Box 1. Major features of brain morphology

Recent advances in automated image analysis techniques allow a large number of morphological features to be extracted
from a single structural MRI scan. Specifically, using voxel- and surface-based morphometry methods, researchers can
extract multiple morphological features at tens of thousands of points across the cortical mantle, such as gray matter
volume, cortical thickness, surface area, sulcal depth, and fractal dimension (Figure I). Gray matter volume in MRI scans
is typically defined as the amount of gray matter between the gray–white interface and the pia mater. Cortical thickness
measures the distance between the gray–white interface and the gray–cerebrospinal fluid interface (i.e., the pial surface)
and reflects the arrangement, size, and density of neurons, neuroglia, and nerve fibers. Surface area is defined as the area
of the exposed cortical pial surface and hidden area of the cortex within the sulci and is thought to be driven by the number
of cortical columns. Sulcal depth describes the distance from the central surface to the hemispheric hull surface and
characterizes the folded structure of the cortex. Fractal dimension is considered to be a combination of the frequency
of cortical folding, sulcal depth, and the convolution of gyral shape and quantifies the complexity of cortical folding.
Notably, the definitions and calculation methods for these morphological features can vary in the literature.
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Figure I. Schematic diagram of various features of brain morphology.
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Glossary
Characteristic path length: a
measure of network integration that
quantifies the overall routing efficiency of
a network by calculating the average
shortest path length between all pairs of
nodes in the network.
Clustering coefficient: a measure of
network segregation that quantifies the
extent of local ‘cliquishness’ of nodes in
a network.
Connectome: in the context of human
brain studies, the connectome refers to
a comprehensive map detailing the
structural, functional, and morphological
connectivity pattern of the brain that can
be derived macroscopically from
advanced multimodal MRI technologies.
Graph: a mathematical representation
of a network consisting of nodes linked
by edges.
Hubs: nodes that are highly connected
and occupy a central position in a
network.
Local efficiency: a measure of
segregation that reflects the capacity of
a network for modular information
processing or fault tolerance.
Modularity: the extent to which the
edges of a network tend to link nodes
within the same module, which is a
group of densely interconnected nodes
that have few connections to nodes
outside their group.
Parallel efficiency: the ability of a
network to transfer information between
nodes through multiple concurrent
paths.
Parcellation: a division of the brain into
a number of anatomically or functionally
distinct regions.
Reliability: the consistency of results
when the same evaluation is
administered to the same participants at
different times.
Reproducibility: the consistency of
results when the same evaluation is
administered to different participants.
Rich-club: a phenomenon in which
highly connected nodes tend to bemore
closely interconnected than would be
expected by chance.
Robustness: the consistency of results
when the same evaluation is performed
on the same participants with different
implementation details, such as different
analytical methods or parameters.
Small-worldness: a combination of
high clustering and short path length,
allowing both segregated and integrated
information processing within a network.
approaches to individualized modeling. This transition offers unparalleled opportunities to
study interindividual variance in the coordinated patterns of brain morphology in health and
disease.

Compared with individual-based structural connectivity and functional connectivity, individualized
MBCs are particularly suitable for studies aimed at identifying biomarkers for development, aging,
and brain disorders. This is because (i) individualized MBCs have been often shown to have high
robustness, reproducibility, and reliability [15–28]; (ii) individualized MBCs are probably the
simplest, fastest, and most cost-effective MRI-based brain networks and therefore have poten-
tially greater utility in multicenter, large-sample collaborative studies; and (iii) structural MRI has
unique advantages over diffusion and functional MRI in terms of its widespread availability, high
signal-to-noise ratio, high spatial resolution, and relative insensitivity to artifacts (e.g., head
motion). Although the biological significance of individualized MBCs is not fully understood, accumu-
lating evidence points to the important role of genetic, cytoarchitectonic, and chemoarchitectonic fac-
tors in the formation and shaping of individualized MBCs [20,25–27,29,30]. Moreover, individualized
MBCs recapitulate, to some extent, the structural networks of axonal white matter tracts [20,27],
functional networks of synchronized brain activity [31], and networks of coordinated development
[29]. These findings support the biological validity of individualized MBCs.

In this review, we aim to provide a systematic overview of state-of-the-art progress in the field of
individualizedMBCs.We highlight in particular methods for individualized MBCs, given that one of
the main challenges in the field is estimating inter-regional morphological connectivity from a
single MRI scan. We also summarize the robustness, reproducibility, and reliability of individualized
MBCs. Finally, we conclude with open questions and directions for future research.
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Basic concepts of brain networks
A network consists of a set of nodes, as well as edges that connect the nodes. In the context of
brain networks, nodes typically denote parcellation units within the brain (e.g., regions, vertices,
or voxels), and edges represent brain connectivity between nodes, as derived from various neu-
roimaging techniques. Once a brain network is constructed, it can be modeled as a graph and
further topologically characterized using graph theory-based approaches. The graph theory-
based framework provides a set of well-defined metrics to quantify the system-level organization
of a network or graph [6,32,33].

Methods for individualized MBCs
To date, several methods have been developed to construct individualized MBCs, which can be
divided into two categories: low-order and high-order. The low-order methods represent pairwise
relations in local morphological features between brain nodes (Figure 1), while the high-order
methods describe similarities between low-order morphological relations (Figure 2). Currently, re-
search on individualized MBCs has been predominantly based on low-order methods, which can
TrendsTrends inin NeurosciencesNeurosciences

Figure 1. Overview of low-order methods for individualized MBCs. Low-order individualized MBCs represent pairwise
relations in local morphological features between brain nodes. They can be constructed using four classes of methods
correlation-based, divergence-based, distance-based, and deviation-based methods. Within each class, methods also diffe
in the number of morphological features used to estimate inter-regional morphological relations (single vs. multiple features)
Abbreviations: HC, healthy control; MBCs, morphological brain connectomes; PDF, probability density function.
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Figure 2. Overview of high-order methods for individualized morphological brain connectomes (MBCs). High-
order individualized MBCs describe similarities between low-order morphological relations. They can be derived by analyzing
the interactions of low-order morphological relations between different pairs of brain regions (top row), by convolving different
pairs of low-order individualized MBCs (middle row), or by estimating the correlations of regional profiles of low-order
morphological relations between brain regions (bottom row).
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be further categorized into four classes according to the measure utilized to estimate inter-
regional morphological connectivity: correlation-based, divergence-based, distance-based,
and deviation-based. Within each class, the methods also differ in the number of morphological
features being used (single vs. multiple).

Correlation-based methods
In statistical analyses, Pearson correlation is a widely used method for quantifying the extent to
which two variables have a linear relationship. When using Pearson correlation to detect inter-
Trends in Neurosciences, February 2024, Vol. 47, No. 2 109
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regional morphological connectivity, the main challenge is how to define the samples or observa-
tions for which the correlation is calculated. Two subclasses of methods have been developed to
address this challenge: one defines the samples as discrete representations of a single morpho-
logical feature in different domains (space, frequency, or wavelet) [15,21,34,35], and the other
treats different morphological features as observations [19,20,26].

In an initial study, individualized MBCs were constructed using a correlation-based, single-feature
methodi [15]. In this study, the brain was parcellated into thousands of cubes (27 voxels per
cube), between which the morphological connectivity was estimated by calculating the Pearson
correlation of gray matter volume across intracube voxels. However, as the cubes are defined in
individual native space, the resulting networks have a different number of network nodes between
participants. In addition, the rigid extraction of the cubes may not correspond well to functionally
or anatomically homogeneous regions of the brain. As a remedy, a cube-to-region transformation
is typically applied to improve comparability between participants and facilitate interpretation of
results [36]. Subsequently, a simpler method was proposed to generate individualized MBCs at
the regional level based on prior brain parcellations [34]. Given the variability in regional sizes,
the Pearson correlation is calculated across vertex frequencies in 30 uniform bins of regional
gray matter volume to determine inter-regional morphological connectivity. This method is less
computationally demanding than the previous method and more flexible in the definition of net-
work nodes. However, both methods overlook the unique connectivity of different voxels or ver-
tices within cubes or regions. To address this, researchers have developed a voxel-level method
that estimates the morphological connectivity between voxels by calculating the Pearson corre-
lation across a set of voxel-wise wavelet coefficients derived from applying a wavelet transform
to a gray matter volume mapii [21]. The wavelet transform, a multiresolution technique, can de-
compose the energy of a signal into a hierarchically organized group of scales [37] and has proven
to be an efficient tool for the signal representation of structural MRI data [38]. Notably, the wavelet
transform can also be used to generate individualized MBCs between white matter regions [35].

In contrast to the methods that estimate morphological connectivity using discrete representations
of a single morphological feature, the second subclass of correlation-based methods calculates
the Pearson correlation across multiple morphological features to infer morphological connectivity.
Previous research suggests that different morphological features have unique cellular mechanisms
and genetic underpinnings [39,40]. Therefore, integrating multiple morphological features may be
beneficial for the accurate mapping of individualized MBCs. There are several correlation-based,
multifeature methods currently available [19,20,26]. These methods differ mainly in how they ex-
tract as many morphological features as possible to estimate morphological connectivity. Specifi-
cally, an earlier study used seven features derived from the surface-based morphometric analysis
of structural MRI data [19]. Later studies incorporatedmore features, either by adding an additional
data modality of diffusion MRI (ten features) [20] or through radiomics-based analysis of structural
MRI dataiii (25 features) [26]. It should be noted that these multifeaturemethods are based on a sin-
gle summary statistic for each morphological feature per region, thereby omitting detailed voxel- or
vertex-level connectivity information. In addition, these methods require a potentially unrealistic
standardization by forcing each morphological feature to be equally variable across regions.

Divergence-based methods
There are several divergence measures in mathematical statistics and probability theory to deter-
mine the dissimilarity between two probability distributions. The core principle of divergence-
based methods for individualized MBCs involves estimating a probability density function (PDF)
from a morphological feature within a brain region. The dissimilarity between regional PDFs is
then quantified using different divergence measures. Initial studies used gray matter volume to
110 Trends in Neurosciences, February 2024, Vol. 47, No. 2
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estimate the PDFs and Kullback–Leibler divergence to quantify PDF dissimilarity [16,17]. How-
ever, gray matter volume is thought to reflect a composite of several factors, including thickness,
area, and folding. Consequently, individualized MBCs constructed on the basis of gray matter
volume overlook the nuanced connectivity data inherent in distinct, finely defined morphological
features. Kullback–Leibler divergence has poor mathematical properties, such as asymmetry
and unboundedness. Considering these issues, divergence-based methods have been subse-
quently extended from gray matter volume to several cortical surface-based morphological fea-
tures that capture specific aspects of brain morphology (e.g., cortical thickness, fractal
dimension, gyrification index, and sulcal depth) and from the Kullback–Leibler divergence to the
Jensen–Shannon divergence (a symmetric variant of the Kullback–Leibler divergence with finite
values) [24]. Notably, individualized MBCs derived from different surface-based morphological
features exhibit distinct connectivity patterns [24], sensitivities to disease-related alterations
[41], and trajectories across the adult lifespan [42]. These findings underscore the need to de-
velop methods that can integrate different morphological features for a more accurate mapping
of individualizedMBCs. Along these lines, a recent study introduced amultivariate strategy by for-
mulating a multidimensional distribution of several morphological features per regioniv [27]. Spe-
cifically, a k-nearest neighbor approach is used to compute multivariate Kullback–Leibler
divergence from vertex-level data, considering the computational demands and suboptimal re-
sults of multivariate PDF estimation [43]. In addition to divergence measures, mutual information
is also used to quantify the similarity between regional PDFs of gray matter volume after dimen-
sion reduction by principal component analysis [18].

Distance-based methods
Mathematically, there are many distance functions to quantify the dissimilarity between two var-
iables. The simplest distance function is the Euclidean distance between two points in a 1D co-
ordinate system, defined as the absolute difference in their coordinates. Using this function or
its variant (i.e., the square of the difference between two points), previous studies have developed
methods to construct individualized MBCs based on the regional mean of specific morphological
features such as cortical thickness, sulcal depth, and curvature [44–46]. However, such a simplis-
tic representation of inter-regional dissimilarity may introduce biases into the resulting networks,
as it does not account for intra-regional morphological patterns or inter-voxel/vertex relationships
in different regions. These challenges can be mitigated by advanced distance functions rooted in
data distributions, such as the earth mover’s distance [47], or by determining distance at the
voxel/vertex level [48]. Beyond 1D distance estimates based on a single morphological feature,
inter-regional dissimilarity can also be assessed in a multidimensional space spanning different
morphological features. In this context, two studies constructed individualized MBCs by calculat-
ing the Euclidean [22] and Mahalanobis [49] distances between regional vectors comprising six
and five morphological features, respectively.

Deviation-based methods
Deviation-based methods for individualized MBCs are based on the rationale that the deviation of
an observation from a reference distribution can be used to estimate the similarity between obser-
vations. Specifically, for a given reference distribution, the deviation of an observation is quantified
by a Z score, which is calculated as the difference between the observation and the mean of the
reference distribution divided by the standard deviation of the reference distribution. The similarity
between two observations can then be expressed by their Z scores. To date, several studies have
adopted this strategy to construct individualizedMBCs in which the observations represent mean
cortical thickness, surface area, curvature, or volume within brain regions [50–55]. A main differ-
ence between these studies lies in the formulas used to determine the similarity between two Z
scores, which include the maximum of their absolute values [50], the average of their absolute
Trends in Neurosciences, February 2024, Vol. 47, No. 2 111
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values [51,52], and the inverse of the exponential function derived from the square of their differ-
ence [53–55]. In addition, the definition of the reference distribution varies across studies. Specif-
ically, most studies define the reference distribution for each brain region based on data from all
healthy subjects in the control group [50,51,53–55]. In contrast, one study defined the reference
distribution using vertex-wise data within each brain region [52]. This discrepancy leads to differ-
ent interpretations of the Z scores, namely, the deviation of one brain region of one individual from
the same brain region in healthy controls or the deviation of one brain region relative to another
brain region within the same individual. In addition to inferring inter-regional morphological con-
nectivity based on deviations in local brain morphology, a recent study constructed individualized
MBCs by examining the differences in inter-regional morphological connectivity before and after
the addition of an extra patient to a control group of healthy subjects [56]. These differences follow
a symmetric distribution, termed the ‘volcano distribution’, and can be transformed into Z scores,
indicating the impact of the added patient on the inter-regional morphological connectivity esti-
mated from the reference group of healthy controls. It is worth noting that the core of this class
of methods requires the construction of a robust normative reference model using a large struc-
tural MRI dataset.

High-order individualized MBCs
The methods for constructing individualized MBCs discussed thus far are considered low-order
methods, focusing only on pairwise relations between brain nodes in local brain morphology.
Currently, several methods have been introduced to develop high-order individualized MBCs
based on low-order networks. In an initial study, high-order individualized MBCs were formulated
by examining the interplay of low-order morphological relations between different pairs of brain
nodes [46]. Specifically, four low-order, distance-based, single-feature individualized MBCs
were first constructed. Across these networks, the Pearson correlation was then computed for
the morphological relations between different pairs of brain regions, capturing the covariance of
morphological relations between two regions with respect to another pair. In a subsequent
study, a brain multiplex was used to model the interactions between four low-order, distance-
based, single-feature individualized MBCs by convolving each pair of the networks [57]. The con-
volution blends two networks together and represents their degree of overlap as one network is
shifted over the other. In addition, this study introduced a deep multilevel network architecture to
extract high-order morphological network information, where each level integrates the similarity
networks of all network pairs in the previous level. Finally, a recent study built high-order individ-
ualized MBCs by computing the inter-regional linear correlation in the regional connectivity pro-
files of low-order, distance-based, multifeature MBCs [23].

Topological architecture of individualized MBCs
Regardless of the specific method used, graph-based analyses of the resulting individualized
MBCs consistently reveal non-trivial topological properties, including small-worldness, high
parallel efficiency, modularity, rich-club architecture, and hubs [15–22,24,26,27]. These
findings suggest that the edges of individualized MBCs are wired in specific and partly consistent
ways. The brain-wide network is characterized by gradual transitions of inter-regional morpholog-
ical connectivity across the cortical mantle along a principal axis anchored by the motor and sen-
sory cortices at its extremities and the association cortices centrally [25]. Presumably, this wiring
pattern may have evolved due to natural selection pressures favoring cost efficiency. Notably, de-
spite the shared topological structure, initial quantitative comparisons have revealed discernible
differences between the MBCs resulting from different methods. For instance, the small-
worldness property of individualized MBCs derived from a low-order, distance-based,
multifeature method is apparently higher than that of individualized MBCs built from a low-
order, correlation-based, single-feature method [22]. This raises a key question: which method
112 Trends in Neurosciences, February 2024, Vol. 47, No. 2
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Outstanding questions
What are the precise cellular and
molecular mechanisms underlying
individualized MBCs?

What is the relationship among the
morphological, structural, and functional
connectomes of the brain? Does the
relationship among the connectomes
change over the course of normal
development and aging or during brain
disorders, and if so, how?

Can individualized MBCs be modulated
by drugs or neuromodulation techniques
(e.g., transcranial magnetic stimulation)?
What are the functional changes that
occur following the modulation?

Individual skill acquisition and training can
lead to plastic changes in individualized
MBCs. What are the mechanisms
underlying these changes?

How do different sources of
methodological noise, such as
confounds associated with multi-site
datasets and in-scanner head motion,
affect the network architecture of indi-
vidualized MBCs?
is optimal for the construction of individualized MBCs? Deeper insights into this question can
be gained by evaluating and contrasting the robustness, reproducibility, and reliability of
each method.

Robustness, reproducibility, and reliability of individualized MBCs
Following the formulation of methods for individualized MBCs, several studies have delved
deeper into examining the networks with respect to their robustness to methodological variation,
reproducibility across participants or datasets, and reliability between scans and rescans
(Table 1). Individualized MBCs consistently show high robustness, reproducibility, and reliability,
regardless of the specific method used. For example, individualized MBCs derived from low-
order, correlation-based, multifeature methods are robust to the use of different feature sets
[20,25,26]. Nevertheless, the evidence so far suggests that the performance of different methods
varies: (i) for robustness, low-order, divergence-based, multifeature methods appear to outper-
form low-order, correlation-based, multifeature methods [27]; (ii) for reproducibility, low-order,
divergence-based, multifeature methods outperform low-order, divergence-based, single-
feature methods [27]; and (iii) for reliability, Jensen–Shannon divergence seems superior to
Kullback–Leibler divergence, and cortical folding-related morphological features are superior to
cortical thickness within the realm of low-order, divergence-based, single-feature methods
[24,28]. In addition, for low-order, divergence-based, single-feature methods, certain analytical
choices, such as performing spatial smoothing, using a high-resolution brain parcellation atlas,
and using a proportional thresholding procedure, can further improve reliability [24,28].

Concluding remarks and future perspectives
Although individualized MBCs have received increasing attention in recent years, the field is still in
its infancy. As discussed next, several fundamental questions remain to be addressed (see also
Outstanding questions).
Table 1. A summary of studies evaluating the robustness, reproducibility, and/or reliability of individualized MBCs

Refs Method Approach to assess

Order Measure Feature Robustness Reproducibility Reliability

[15] Low Correlation Single Two scans (interval: <6 months)

[21] Low Correlation Single Wavelet scale, network threshold, and
network type

Two scans (interval: 1 h)

[19] Low Correlation Multiple Multiple scans

[20] Low Correlation Multiple Feature sets and brain parcellation Within a dataset and between two
datasets

[25] Low Correlation Multiple Feature sets and brain parcellation Between five datasets

[26] Low Correlation Multiple Feature sets and brain parcellation Within a dataset Multiple scans

[16] Low Divergence Single Within a dataset Two scans (interval: <1 day)

[17] Low Divergence Single Spatial smoothing, brain parcellation,
and network type

Two scans (interval: ∼6 weeks)

[24] Low Divergence Single Brain parcellation and similarity
measure

Within a dataset Two scans (interval: ∼6 weeks)

[28] Low Divergence Single Multiple scans in different sites

[18] Low Divergence Single Within a dataset Two scans (interval: ∼1 month)

[27] Low Divergence Multiple Brain parcellation and noisy features Within a dataset and between two
datasets

[22] Low Distance Multiple Two scans (interval: <3 months)

[23] High Distance Multiple Two scans (interval: 1 h)
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First, given the plethora of methods currently available for individualized MBCs, a practical con-
cern is how these methods correlate with each other. It remains largely undetermined whether
each method provides unique or similar insights into the network organization of the human
brain. To date, only a handful of studies have compared some of these methods from different
perspectives, such as their performance in disease classification and diagnosis, alignment with
axonal tract-tracing connectivity, or reliability [22,24,27,28,46,57–59]. However, these studies
have mainly focused on within-class comparisons. A significant gap remains in conducting sys-
tematic exploration of the similarities and differences between the different methods tailored for
individualized MBCs. More comparative studies are warranted to address this fundamental ques-
tion using both simulated and empirical data. To facilitate such studies, it is important to develop
user-friendly, open-source, freely available toolboxes capable of integrating the existing methods
and possibly reach a standardized pipeline for individualized MBC studies.

Second, given the nascent nature of individualized MBCs, a pertinent question arises: how do
these networks correlate with other types of established brain networks, such as structural and
functional networks? Although there are some studies on this topic [20,25,27,31,60], the
intricate inter-relationships remain largely unexplored. Therefore, findings and methods for
the construction and characterization of other types of brain networks should be carefully
evaluated and adapted to the context of individualized MBCs. In the future, a holistic under-
standing of the inter-relationships may benefit from an integrated analysis of multimodal and
multiscale brain networks [61].

Third, structural MRI, like functional and diffusion MRI, is susceptible to noise from a variety of
sources. Among these, in-scanner head motion stands out as a predominant concern in
Box 2. Individualized MBCs during development and aging

Brain morphology undergoes significant changes throughout the human lifespan [70]. These changes inevitably lead to the
remodeling of coordinated patterns in brain morphology. Due to advances in the methodology of individualized MBC
modeling, researchers can now explore interindividual variation in the coordination patterns of brainmorphology during de-
velopment and aging (Table I). Several studies have reported age-related changes in individualized MBCs at different
levels, including inter-regional morphological connectivity, nodal centrality, and overall topological structure
[16,42,71–73]. These changes are modulated by several factors, such as sex [73] and anatomical distance between brain
regions [42]. Interestingly, local efficiency is consistently found to decrease with age across the adult lifespan [16,42,73].
In addition to tracking the trajectory of individualized MBCs with age, a few studies have used individualized MBCs to pre-
dict brain age [27,73,74] and to discriminate between preterm and full-term infants [74]. Individualized MBCs have been
shown to successfully predict brain age regardless of the age range of participants [27,73,74]. Notably, low-order, diver-
gence-based, multifeature methods show superior predictive performance compared to low-order, correlation-based,
multifeature methods [27].

Table I. A summary of individualized MBC studies on development and aging

Refs Participant Age Method

Order Measure Feature

[16] 21 adults 22–61 years Low Divergence Single

[71] 241 infants 37–44 weeks postmenstrual age Low Correlation Multiple

[72] 1427 adults 20–89 years Low Divergence Single

[73] 812 adults 25.8–85.1 years Low Correlation Single

[42] 650 adults 18–88 years Low Divergence Single

[74] 105 neonates 38–45 weeks postmenstrual age Low Correlation Multiple

[27] 960 adults
655 subjects

21–35 years
8–21years

Low Divergence and correlation Single and
multiple
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Box 3. Individualized MBCs in brain disorders

Individualized MBCs have been used to study various brain disorders (Table I). These studies are involved in delineating
abnormal organization, identifying biological subtypes, predicting treatment outcomes, and classifying disease states. In
the following, we use Alzheimer’s disease as an illustrative example, as it is among themost studied diseases for the clinical
application of individualized MBCs. Despite considerable variation in methods and samples across studies, it has been
consistently found that individualized MBCs in Alzheimer’s disease shift toward a more randomized topological organiza-
tion (i.e., reduced clustering coefficient and/or characteristic path length), irrespective of disease stage [75–78].
Furthermore, the more randomized topological organization of individualized MBCs occurs before symptom onset
[78], accounts for cognitive deficits [76,79], predicts faster cognitive decline [80], and is associated with an increased risk
of progression [77]. In addition, individualized MBCs have been shown to be able to classify patients at different disease
stages from controls and to identify and separate different subgroups [22,57,58,81–83]. Notably, compared to solely
utilizing regional morphology or inter-regional structural or functional connectivity, the integration of additional individual-
ized MBCs accounts for a greater proportion of the variance in cognitive decline of patients and improves the efficacy of
diagnostic and prognostic models across disorders [47,49,76,82,84–86]. Finally, high-order methods for individualized
MBCs show superiority over low-order methods in disease classification [46,57–59], and divergence- and distance-based
methods show greater sensitivity than correlation-basedmethods in detecting alterations associated with attention-deficit/
hyperactivity disorder [87].

Table I. A summary of individualized MBC studies on brain disorders

Disease Method

Order (Refs) Measure (Refs) Feature (Refs)

Alzheimer’s disease Low: [22,75–83,88]
High: [57,58]

Correlation: [75–81]
Divergence: [82,83,88]
Distance: [22,57,58]

Single: [57,58,75–80,82,83,88]
Multiple: [22,81]

Schizophrenia Low: [53,56,85,89–93] Correlation: [91,93]
Divergence: [85,89,90,92]
Deviation: [53,56]

Single: [53,56,85,89,90,92,93]
Multiple: [91]

Major depressive disorder Low: [51,94–100]
High: [59]

Correlation: [94,96–98,100]
Divergence: [95,99]
Distance: [59]
Deviation: [51]

Single: [51,94,95,97–100]
Multiple: [96]

Autism spectrum disorder Low: [47,101–104]
High: [46]

Divergence: [102–104]
Distance: [46,47,101]

Single: [47,101–104]

Bipolar disorder Low: [53,93,105,106] Correlation: [93,105]
Divergence: [106]
Deviation: [53]

Single: [53,93,105,106]

Multiple sclerosis Low: [84,86,107,108] Correlation: [84,86,107]
Divergence: [108]

Single: [84,86,107,108]

Temporal lobe epilepsy Low: [50,109–111] Correlation: [109–111]
Deviation: [50]

Single: [109]
Multiple: [50,110,111]

Attention-deficit/hyperactivity
disorder

Low: [49,87,112] Correlation: [87,112]
Divergence: [87]
Distance: [49,87]

Single: [87,112]
Multiple: [49]

Social anxiety disorder Low: [98,113,114] Correlation: [98,113]
Divergence: [114]

Single: [98,113,114]

Parkinson’s disease Low: [115,116] Divergence: [115,116] Single: [115,116]

Post-traumatic stress
disorder

Low: [117,118] Correlation: [117,118] Single: [117,118]

Stroke Low: [41] Divergence: [41] Single: [41]

Neuromyelitis optica
spectrum disorder

Low: [108] Divergence: [108] Single: [108]

Obsessive-compulsive
disorder

Low: [54] Deviation: [54] Single: [54]
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neuroimaging. Previous research has shown that in-scanner head motion can significantly influ-
ence inter-regional relationships in functional [62,63], structural [64], and population-based mor-
phological [65] brain networks. However, the impact of in-scanner head motion on individualized
MBCs remains largely unexplored. In addition to in-scanner headmotion, site/scanner-related ef-
fects are another important source of noise in multicenter MRI studies. This issue is particularly
relevant to individualized MBCs, which are suitable for multicenter, large-scale collaborative stud-
ies. Although numerous statistical and deep learning harmonization methods have been devel-
oped to control for site/scanner-related effects [66], it is largely unknown whether these
methods work effectively on individualized MBCs. Finally, it should be noted that standardization
of morphological estimates from structural MRI images is still in progress. Several previous stud-
ies have shown systematic differences in morphological estimates between different software
packages [67–69], which may further affect downstream individualized MBCs. Elucidation of
these effects is crucial for the reliable mapping of individualized MBCs by developing effective
strategies to mitigate such influences.

Fourth, to biologically understand individualized MBCs, several studies have associated them with
various publicly accessible attributes of cortical microarchitecture, such as gene expression,
cytoarchitectonic classification, andmyelin content [20,25–27,29,30]. However, whether these asso-
ciations are unique to individualizedMBCs or are shared with structural and functional brain networks
is largely unknown. Addressing this fundamental question is essential for understanding the nature of
individualized MBCs. Beyond the exploration of macro–micro-coupling, more tangible and compel-
ling evidence for the neurobiological basis of individualized MBCs may emerge from research com-
paring the morphological connectivity of neurons with neuronal axonal projections. With the rapid
development of modern molecular techniques, such investigations are on the horizon.

Finally, the high robustness, reproducibility, and reliability of individualized MBCs give them signif-
icant potential for detecting interindividual variation and identifying diagnostic and prognostic bio-
markers in pathological scenarios. As a result, individualized MBCs are increasingly being used in
the fields of brain development and aging (Box 2), as well as in various neurological and psychi-
atric disorders (Box 3). Further studies should take full advantage of the widespread availability of
large structural MRI datasets to chart robust MBC trajectories across the lifespan that will serve
as a reference to detect individual differences, identify biological subtypes, and localize potential
neuromodulation targets for personalized medicine.
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