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SUMMARY
The first 1,000 days of human life lay the foundation for brain development and later cognitive growth. How-
ever, the developmental rules of the functional connectome during this critical period remain unclear. Using
high-resolution, longitudinal, task-free functional magnetic resonance imaging data from 930 scans of 665
infants aged 28 postmenstrual weeks to 3 years, we report the early maturational process of connectome
segregation and integration.We show the dominant development of local connections alongside a few global
connections, the shift of brain hubs from primary regions to high-order association cortices, the develop-
mental divergence of network segregation and integration along the anterior-posterior axis, the prediction
of neurocognitive outcomes, and their associations with gene expression signatures of microstructural
development and neuronal metabolic pathways. These findings advance our understanding of the principles
of connectome remodeling during early life and its neurobiological underpinnings and have implications for
studying typical and atypical development.
INTRODUCTION

The human brain is organized as a hierarchical modular architec-

ture to facilitate segregated and integrated processing, which is

critical for maintaining brain plasticity, flexibility, and adapt-

ability.1 Functional segregation and integration refer to the

fundamental organizational principles by which brain regions

become specialized for specific functions, and these specialized

regionswork together as a cohesive network to support complex

cognitive processing.1 The first 1,000 days, from conception to

the first 3 postnatal years,2 are critical periods during which

the human brain undergoes a remarkable process of growth

and reorganization.3,4 One of the most important aspects of

this process is to unravel the developmental rules of segregation

and integration of functional connectomes. Understanding how

these processes mature during the perinatal and early postnatal

periods is a crucial step in elucidating the mechanisms underly-

ing typical and atypical development.

During the third trimester, the human brain undergoes a se-

ries of rapid and complex cellular and molecular processes
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that significantly shape the architecture of the cerebral cortex.

These processes include axonal growth,5 dendritic arboriza-

tion,6,7 synapse formation,8 and neuronal apoptosis.9 After

birth, neurogenesis10 and the migration of new neurons11 occur

during the first months of life, together with an increase in

neuronal complexity12 and synapse number.8 These micro-

structural changes during the first years of life reshape the

maturation of the network architecture of structural and func-

tional connectomes at the macroscale. In particular, several

studies have documented that white matter tracts and net-

works are largely established at birth but that intrinsic or spon-

taneous functional networks continue to develop rapidly from

the perinatal period through the first years of life. A sequential

and hierarchical development of functional connectomes has

been observed, with the primary cortex maturing first and grad-

ually progressing to higher-order areas of the cortex.13–17 Spe-

cifically, in our previous work, we observed predominantly

functional connectivity changes in primary brain systems and

less in higher-order default mode and executive control re-

gions, accompanied by increased functional segregation during
ay 28, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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the third trimester.13 The primary sensorimotor and auditory

networks resembled their adult maps, whereas the higher-order

salience and frontoparietal networks were immature at the end

of the first year.17 At the network level, functional hubs are

mainly located in the primary visual, auditory, and sensorimotor

areas around the time of birth.13,16 At 2 years of age, bilateral

superior medial frontal regions emerge as hubs, suggesting a

shift toward higher-order cognitive functions at this time, with

the distribution of functional hubs at this age being significantly

different from that in adults.18 The human brain already exhibits

a small-world topological architecture at birth, allowing for effi-

cient information segregation and integration with low wiring

and energy costs. The efficiency of whole-brain wiring im-

proves remarkably by 1 year of age and becomes more

stable by 2 years of age.18 After 2 years of age, brain develop-

ment is predominantly characterized by the reorganization,

fine-tuning, and remodeling of established major circuits and

networks.3 This stage involves the refinement and optimization

of existing neural connections and the shaping of functional

brain architecture. Previous studies have been limited in scope

because they were either cross-sectional in design13,15,19

or focused on narrow age ranges, such as the perinatal

period13,14,16 or the first17,20 or second18,21 years of life. These

studies did not provide a continuous understanding of connec-

tome developmental trajectories during the perinatal and post-

natal periods. Thus, the continuous, longitudinal developmental

process of functional segregation and integration of the whole

brain connectome during the first 1,000 days remains largely

unexplored. Furthermore, the potential genetic contributions

underlying connectome growth during this critical period

remain to be elucidated.

Gene expression plays a critical role in regulating human

neurodevelopment, with spatiotemporal dynamics that vary

between brain regions.22 The timing of key neurodevelopmen-

tal processes coincides with the developmental trajectories of

genes involved in neuronal differentiation, synaptogenesis,

and myelination.23 During perinatal development, aerobic

glycolysis (AG) is the predominant metabolic pathway to sup-

port the molecular demands of neuronal proliferation.24 Later

during postnatal development, AG continues to support the

maturational changes of neurons, such as myelination, synap-

togenesis, and axonal extension. AG produces acetyl-coen-

zyme A (CoA), which is essential for fatty acid synthesis

required for myelination25,26 and amino acid synthesis re-

quired for synaptogenesis and axonal extension.27 A meta-

analysis of previous studies on brain glucose and oxygen

metabolism shows that AG increases during childhood, coin-

ciding with the period of highest synaptic growth rates.28

Brain regions with higher levels of AG show increased gene

expression related to synapse formation and growth. In our

previous work, combining neuroimaging and computational

models, we found significant associations between total

axonal projection length and AG across brain regions, with

higher levels observed primarily in the default mode and pre-

frontal regions.29 Furthermore, the cerebral metabolic rate of

glucose is related to the degree of functional connectivity,

which represents the number of connections of network no-

des supporting both functional integration (global degree)
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and functional segregation (local degree) in the brain.30 Inter-

estingly, these functional hub regions have a relatively high

metabolic rate in infants.31 Therefore, we speculate that

the maturation process of the connectome segregation and

integration during the first 1,000 days is influenced by the

expression levels of genes involved in metabolism and

neurodevelopment.

To fill these critical knowledge gaps, this study investigated

the continuous developmental trajectory of connectome segre-

gation and integration during the first 1,000 days and its asso-

ciation with gene expression signatures. We used a large sam-

ple of high-quality longitudinal neuroimaging data, comprising

930 scans from 665 infants, obtained from the Developing Hu-

man Connectome Project (dHCP)32 and the Baby Connectome

Project (BCP).33 These infants underwent task-free functional

MRI (tf-fMRI) scans at different ages, ranging from 28 postcon-

ceptional weeks to 3 postnatal years. To comprehensively map

the developmental trajectory, we used a set of segregation and

integration measures based on high-resolution functional con-

nectomes. These measures allow us to capture the intricate

patterns of functional segregation and integration during this

period. We also used a subset of the dHCP cohort (321 term

infants) to investigate whether the neonatal functional connec-

tome could predict neurocognitive outcomes assessed at 1.5

years of age. Finally, we examined the association between

the connectome growth patterns and the transcriptome using

the developmental BrainSpan Atlas.34,35 Through these ana-

lyses, we aim to elucidate the intricate dynamics of the func-

tional connectome during the first 1,000 days and provide in-

sights into the potential molecular mechanisms underlying

early brain development.

RESULTS

We conducted a comprehensive study of developmental pat-

terns of functional connectome segregation and integration in

a longitudinal sample of 665 infants aged 28 postconceptional

weeks to 3 postnatal years from the dHCP and BCP projects

(for the quality control process and final data distribution, see

STAR Methods, Table S1, and Figures S1 and S2; for neuro-

image preprocessing, see STAR Methods and Figure S3A).

To capture the continuous maturational process of functional

segregation and integration during the first 1,000 days, we

used a generalized additive mixed model (GAMM) with age

as a smooth term and subject ID as a random effect. Linear co-

variates such as sex, head motion within scanners, and site

were included in the model. By applying the GAMM to each

brain voxel, we aimed to model the non-linear growth trajec-

tories across the cortex. Importantly, we investigated whether

the developmental trajectory of functional segregation and inte-

gration exhibited spatiotemporal heterogeneity across the cor-

tex. Using support vector regression analysis, we examined

whether the neonatal functional connectome could predict neu-

rodevelopmental outcomes at 1.5 years of age. Finally, we

investigated the potential influence of differential spatiotem-

poral gene transcription on the development of the functional

connectome. Through these analyses, we aimed to gain a

comprehensive understanding of the dynamic development



Figure 1. Development of functional connectivity
(A) Voxel-wise developmental changes of FCS. F-values obtained from the age term in GAMM were corrected using Gaussian random field method with voxel-

level p< 0:001 and cluster-level p< 0:05. The fitted FCS values at different ages were mapped using the BrainNet Viewer software.37 Black-outlined voxels are

hubs, defined as FCS values exceeding the mean plus 1.5 times standard error.

(B) All regionswith significant age-related changes in FCSwere categorized into four clusters based on their similarity of developmental trajectories. For each cluster,

the trajectory of the averaged FCS was delineated using different colors, with 95% confidence intervals plotted and their corresponding p values displayed.

(legend continued on next page)
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of functional segregation and integration during the first

1,000 days of life.

Dominant development of local connections alongside a
few global connections
Functional connectivity strength (FCS) is one of the most direct

measures of overall functional connectivity (FC). Significant

age-related changes in FCS during the first 1,000 days were

observed primarily in the primary sensorimotor, visual, auditory,

and language cortical regions as well as regions within default

mode and executive control systems (Gaussian random field

corrected, voxel-level p< 0:001, cluster-level p< 0:05; Fig-

ure 1A, left). The fitted FCS maps are shown on the right in Fig-

ure 1A. To illustrate the different patterns of developmental tra-

jectories, we categorized the brain nodes with significant FCS

changes into four clusters (Figure 1B, left; for details, see

STAR Methods and Figure S3B). This categorization is based

on the similarity of the developmental trajectories of FCS within

each cluster. It is clear that different clusters show heteroge-

neous developmental patterns in FCS (Figure 1B, right). Specif-

ically, cluster 1 (blue color), which is mainly located in the supe-

rior temporal, lateral occipital, and medial and lateral parietal

cortices, is characterized by a U-shaped developmental curve

(F = 26:04; p< 0:001). Cluster 2 (yellow color), which includes

the medial occipital, middle, and inferior temporal cortices

and the putamen, exhibits an initial increase followed by rela-

tive stability (F = 24:61; p< 0:001). Cluster 3 (orange color),

located in the medial and lateral prefrontal cortices, shows a

moderate decreasing pattern (F = 24:61; p< 0:001). Cluster 4

(red color), located in the sensorimotor cortex, shows an almost

linear decreasing pattern (F = 24:58;p< 0:001). We then calcu-

lated the functional connectivity between each cluster and all

voxels and found significant changes in cluster-based connec-

tivity mainly within local functional systems (Gaussian random

field corrected, voxel-level p< 0:001, cluster-level p< 0:05)

(Figure 1C). The ratio of the F-values in Yeo’s 7 functional sys-

tems36 to the total F-value for each cluster, as shown in the

radar plot, supports this finding. In addition, significant sex dif-

ferences were observed in the developmental trajectories of

mean FCS within cluster 1 (Deviance = 0:0026; p< 0:001).

No significant sex differences were observed in the develop-

mental trajectories within other clusters (cluster 2,

Deviance = 0:0004; cluster 3, Deviance = 0:0009; cluster 4,

Deviance = � 0:0007; all p > 0:05), as shown in Figure S4A.

Hubs were highly connected regions, identified as FCS

greater than the mean plus 1.5 times the standard deviation

(Figure 1A, right). To illustrate the distribution of hubs across

different functional systems, we mapped Yeo’s 7 functional
(C) Cluster-based functional connectivity development. For each cluster, the func

and all brain voxels. F-maps are obtained from the voxel-wise GAMM of functi

functional system to the total F-value.

(D) Hub distribution across different functional systems. The hub voxel numbers in

of the hub voxel ratio in each system were fitted with GAMM, respectively.

(E) Age-related changes in FCS across different distance bins. F-maps are from t

values within each bin, with the first PCA loadings representing the overall deve

derived by calculating the first difference of the loading curve (right). Dotted lines

FCS, functional connectivity strength; VIS, visual; SM, somatomotor; DA, dorsal at

w, postconceptional week; m, postnatal month; yr, postnatal year.
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systems36 on the infant brain (STAR Methods). The distribution

of hubs across different functional systems at different ages is

shown in Figure 1D. It is clear that the distribution of hubs dur-

ing the perinatal period is mainly in the sensorimotor system. In

the postnatal period, hubs were predominantly found in the

dorsal attention and visual systems, then transitioned to the

default mode at 2 years of age, potentially undergoing reorga-

nization by 3 years of age. The hub voxel ratio, calculated as

the number of voxels in each functional system divided by

the total number of hub voxels, changed significantly with

age (all p< 0:001). In particular, the hub voxel ratio in the senso-

rimotor system initially decreased from a relatively high level

and then increased to some extent. The hub voxel ratio of

the dorsal attention system follows an increasing and then

decreasing trajectory, while the default mode and visual sys-

tems continue to increase, with the default mode system hav-

ing a higher ratio.

To gain a better understanding of the spatial extent of con-

nectivity development, we examined age-related changes in

FCS across distances. We found extensive development of

short-range FCS throughout the brain (10–30 mm, Gaussian

random field corrected, voxel-level p< 0:001, cluster-level

p< 0:05) (Figure 1E). Significant medium- to long-range

FCSs were observed in a few brain regions (>30 mm,

Gaussian random field corrected, voxel-level p< 0:001, clus-

ter-level p< 0:05). To further investigate the developmental

trajectory of FCS across different distance bins, we performed

a principal-component analysis (PCA) on FCS within each dis-

tance bin. This approach considered the developmental tra-

jectory of the brain rather than focusing on a single voxel

property. The first principal components (PCs) from each

PCA explained 32%, 27%, and 18% of the variance in devel-

opmental profiles within distance bins, respectively. FCS fol-

lowed an inverted U-shaped developmental curve in all dis-

tance bins (short: F = 14:14; p< 0:001; medium: F = 10:49;

p< 0:001; long: F = 29:72; p< 0:001). The peak age of FCS

differed between distance bins, with short to medium connec-

tivities, peaking (84.8 weeks and 81.4 weeks, approximately

10–11 months) earlier than long connectivities (99.2 weeks,

approximately 15 months).

In summary, significant developmental trajectories in the FCS

during the first 1,000 days are mainly located in the primary

sensorimotor, visual, auditory, and language cortical regions,

as well as regions within the default mode and executive control

systems. Hubs shift from primary to higher-order cortices during

the critical period. The local short-range functional connections

within systems contribute much more to these developmental

changes.
tional connectivity was computed between averaged time series of the cluster

onal connectivity. The radar plot represents the ratio of the F-values in each

each system at various ages are shown in a bar plot. The age-related changes

he voxel-wise GAMM in each distance bins (left). PCA was performed on FCS

lopmental trajectory of the brain (center). The curve of development rate was

indicate the ages when the development rate is zero.

tention; VA, ventral attention; LIM, limbic; FP, frontoparietal; DM, default-mode;
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Development of functional segregation and integration
diverged along an anterior-posterior axis
Previous cross-sectional studies of brain networks have sug-

gested a gradual enhancement of functional segregation during

the third trimester and early postnatal period, followed by a

potentially slower growth during infancy.13,18 Therefore, we

aimed to investigate whether the developmental trajectory of

functional segregation follows a non-linear pattern, character-

ized by an initial increase followed by a decrease, and exhibits

spatial heterogeneity across the cortex. We also aimed to un-

cover the developmental pattern of functional integration, which

remains unknown.We used the clustering coefficient, a common

measure of functional segregation, which quantifies the extent to

which a node’s neighbors are interconnected in the graph. Our

analysis revealed that the overall mean clustering coefficient

across the cortex showed significant age-related changes,

following an inverted U-shaped developmental curve during

the first 1,000 days (F = 11:07;p< 0:001) (Figure 2A). We also

examined the developmental patterns of functional integration

by analyzing nodal efficiency, a measure that quantifies the effi-

ciency with which a node communicates with other nodes. As

shown in Figure 2A, mean nodal efficiency showed significant

changes with age, following a U-shaped developmental

trajectory (F = 5:83; p = 0:005). As shown in Figure S4B,

significant sex differences were evident in the developmental

trajectories of the mean clustering coefficient (Deviance =

0:067; p = 0:007). In contrast, the developmental trajectories

of mean nodal efficiency showed no significant sex differences

(Deviance = 0:007;p = 0:24).

To further investigate the progression of functional segrega-

tion and integration changes across the cortex, we performed

data-driven PCA on the clustering coefficient and nodal effi-

ciency at the voxel level, respectively, as shown in Figure 2B.

This approach considered the entire developmental trajectory

of the graph theory measures rather than focusing on a single

age-related property. The first PC from the PCA explained

27% of the variance in the developmental profiles of the clus-

tering coefficients. Notably, this principal developmental axis

(Figure 2C) closely resembled the variation in functional connec-

tivity profiles along the anterior-posterior (A-P) axis in neo-

nates,38 which is considered an immature sensorimotor-associ-

ation (S-A) axis. The developmental axis of the clustering

coefficient suggests that the spatial and temporal maturation

of functional segregation aligns with the A-P axis. To visually

represent the developmental trajectories of the clustering coeffi-

cient along the A-P axis, we divided the axis into 10 decile bins

and calculated the average clustering coefficient across all vox-

els within each bin. The maturational trajectories all changed

significantly with age (all p< 0:001) and diverged continuously

along the A-P axis (Figure 2C). For node efficiency, the first PC

derived from the PCA explained 45%of the variance in the devel-

opmental profiles of node efficiency. Notably, the principal

developmental axis for node efficiency also varied along the

A-P axis. The developmental trajectories across the 10 decile

bins showed a U-shaped curve (all p< 0:001) with continuous

variation along the A-P axis (Figure 2C). This analysis revealed

a continuous spectrum of developmental trajectories that

mirrored the patterns observed at the voxel level.
Significant age-related changes in clustering coefficient at the

voxel levelweremainly observed in sensorimotor, visual, superior

temporal, prefrontal, dorsal attention, and subcortex regions

(Gaussian random field corrected, voxel-level p< 0:001, clus-

ter-levelp< 0:05; Figure 2D). From the fitted clustering coefficient

maps shown here, the overall clustering coefficient showed an

increasing and decreasing trend with the highest values in the

sensorimotor and visual cortex. Specifically, the clustering coef-

ficient in the visual cortex showed an initial increase then a

decrease in its developmental curve (visual: F = 50:11;

p< 0:001), while the superior temporal and sensorimotor cortices

followed first a slight increase followed by a decrease in their

developmental curves (superior temporal: F = 34:05;p< 0:001;

sensorimotor: F = 33:83; p< 0:001). The clustering coefficient

of the medial prefrontal cortex (mPFC) and thalamus decreased

with age (mPFC: F = 25:75; p< 0:001; thalamus: F = 8:73;

p< 0:001). For nodal efficiency, the significantly changed regions

are similar to thoseof the clustering coefficient (Gaussian random

field corrected, voxel-level p< 0:001, cluster-level p< 0:05; Fig-

ure 2E). The fitted nodal efficiency maps showed that the overall

nodal efficiency tended to decrease and then increase. In fact,

the nodal efficiency in different functional systems showed a

U-shaped developmental curve (visual: F = 22:37;p< 0:001; su-

perior temporal: F = 13:07;p< 0:001; sensorimotor: F = 28:35;

p< 0:001; lateral prefrontal cortex [LPFC]: F = 15:09;p< 0:001;

putamen: F = 12:72;p< 0:001). The coordinates of the regions

of interest [ROIs] can be found in Table S2.

Our results showed a non-linear pattern for both functional

segregation, as measured by the clustering coefficient, and

functional integration, as measured by the global efficiency, dur-

ing the first 1,000 days. Functional segregation and integration

followed different developmental trajectories, which were

spatially heterogeneous across the cortex and aligned with the

A-P axis.

Reorganization of network modules mirrors maturation
of functional segregation and integration
The development of functional systems or modules is crucial, as

it underpins specialized cognitive processes and efficient infor-

mation processing. To gain further insight into the developmental

pattern of functional segregation and integration from a system

level, we performed a modularity analysis. We used the Louvain

algorithm,39 a fast and accurate community detection algorithm

for large networks, to explore the modular structure and exam-

ined the age-related changes in modularity (Q) and within- and

between-module functional connectivity. The developmental

trajectory of modularity showed an initial increase followed by

a decrease (F = 10:26;p< 0:001; Figure 3A). Notably, the devel-

opmental trajectory of mean within-module functional connec-

tivity closely resembled that of modularity, both of which quan-

tized functional segregation (F = 12:39; p = 0:001). On the

other hand, no significant change in the mean between-module

functional connectivitywasobserved (F = 0;p> 0:05; Figure 3A).

Besides, developmental trajectories of modularity (Deviance =

0:10; p < 0:001) and within-module functional connectivity

(Deviance = 0:015; p = 0:01) revealed significant sex differ-

ences (Figure S4C). No significant sex differences were

observed in the developmental trajectories of between-module
Cell Reports 43, 114168, May 28, 2024 5



Figure 2. The developmental trajectories of functional segregation and integration exhibited spatial heterogeneity along the A-P axis of the

cortex

(A) The developmental trajectories of mean clustering coefficient and nodal efficiency of all voxels with 95% confidence interval.

(B) Illustration of PCA on the clustering coefficient (or nodal efficiency) of all voxels.

(C) The principal developmental axis capturing cortex-wide differences in maturational patterns along the A-P direction for clustering coefficient and nodal ef-

ficiency, respectively. Maturational trajectory 10-decile bins all significantly changed with age and continuously diverged along the A-P axis.

(D and E) Voxel-wise developmental changes of clustering coefficient (D) and nodal efficiency (E). F-values obtained from the age term in GAMMwere corrected

using the Gaussian random field method with voxel-level p< 0:001 and cluster-level p< 0:05. The fitted clustering coefficients at different ages were mapped

using the BrainNet Viewer software.37 The selected five seeds from the brain regions exhibited significant changes, as indicated with colored circles. Their

developmental trajectories were plotted with 95% confidence interval and displayed with their corresponding p values.

Cp, clustering coefficient; mPFC, medial prefrontal cortex; LPFC, lateral prefrontal cortex; PC, principal component; w, postconceptional week; m, postnatal

month; yr, postnatal year.
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Figure 3. Reorganization of modules mirrors functional segregation and integration development

(A) Developmental trajectories of modularity, mean within-module functional connectivity, and mean between-module functional connectivity of all voxels, with

95% confidence intervals plotted and their corresponding p values displayed.

(B) Voxel-wise developmental changes of the participation coefficient. F-values obtained from the age term in GAMMwere corrected using the Gaussian random

field method with voxel-level p< 0:001 and cluster-level p< 0:05. The fitted participation coefficients at different ages were mapped using the BrainNet Viewer

software.37

(C) The principal developmental axis capturing cortex-wide differences in maturational patterns along the A-P direction for participation coefficient. Maturational

trajectory 10-decile bins all significantly changed with age and continuously diverged along the A-P axis.

(D) Illustration of the process to perform module detection on the group mean functional connectivity through the sliding window method.

(E) Trackingmodule membership of each voxel across ages using a Sankey plot reveals a fine-grained and flexible organization of functional modules during early

development.

(F) The flexibility of module assignment of each voxel was calculated as the number of times of a node changes its community assignment across age windows,

normalized by the total number of possible changes.

pc, participation coefficient; FC, functional connectivity; w, postconceptional week; m, postnatal month; yr, postnatal year.
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functional connectivity (Deviance = 0:000; p> 0:05). Further-

more, the participation coefficient, which captures the diversity

of the edges of a node between modules, showed significant

age-related changes in the primary sensorimotor, auditory,

mPFC, and LPFC regions (Gaussian random field corrected,

voxel-level p< 0:001, cluster-level p< 0:05; Figure 3B). The fitted

maps of the participation coefficient at different ages showed

that different regions have different developmental tendencies.

Importantly, the main developmental axis for the participation

coefficient was also aligned with the A-P axis. The maturation

trajectories across the 10 decile bins showed a continuous spec-

trum of developmental patterns from an inverted U-shaped tra-

jectory to an increasing trend (Figure 3C).

Furthermore, we examined the functional module assignment

across age by performing module detection on the group func-

tional networks obtained through the sliding window of age, as

shown in Figure 3D. The module assignment of each voxel

across age is shown in Figure 3E. Notably, the sensorimotor

and visual cortices show changes across age with a finer subdi-

vision, whereas the prefrontal cortex shows little change in mod-

ule assignment across this period. Finally, the flexibility of mod-

ule assignment was found to be greater in the sensorimotor and

visual cortices compared to other regions (Figure 3F).

In summary, module-based properties reflected heterogene-

ity in the development of functional segregation and integration

during the first 1,000 days, with within-module functional con-

nectivity and modularity showing similar developmental pat-

terns. The participation coefficient showed significant age-

related changes along with the A-P axis. Furthermore, the

increasing number of modules and highlighted regional differ-

ences, particularly in sensorimotor and visual cortices, sug-

gested a fine-grained and flexible organization of functional

modules during development.

Predicting cognitive and language development at 1.5
years from neonatal functional connectomes
We further investigated whether the development of connec-

tome segregation and integration during early life underlies later

neurocognitive growth. Using a support vector regression (SVR)

model with 10-fold cross-validation, we predicted neurodeve-

lopmental outcomes assessed at 1.5 years of age (mean age:

19:3± 2:22 months) from network predictors at birth (mean

scan age: 41:3± 1.75 postconceptional weeks). All are term in-

fants from the dHCP dataset (n = 321). Network predictors

included mean FCS, clustering coefficient, nodal efficiency,

modularity, and within-module FC. Covariates, including scan

age, the interval between birth and scan, age at neurocognitive

assessment, sex, and mean frame-wise displacement (mFD)

were regressed out. To quantify the prediction accuracy, we

calculated the Pearson correlation between the actual and pre-

dicted neurocognitive scores and assessed the significance

using permutation tests (n = 10,000). Our analysis revealed

that certain functional connectomemeasures at birth are predic-

tive of later neurocognitive development. Specifically, the mean

FCS (r = 0:12; p = 0:018), nodal efficiency (r = 0:10; p =

0:034), and modularity (r = 0:10; p = 0:035) at birth could

significantly predict cognitive scores at 1.5 years of age, as

shown in Figures 4A and 4B. The prediction accuracies for clus-
8 Cell Reports 43, 114168, May 28, 2024
tering coefficient and within-module FC showed marginal signif-

icance. All measureswere found to significantly predict language

scores at 1.5 years of age (Figures 4A and 4C). The prediction ac-

curacies for language scores using mean FCS, clustering coeffi-

cient, nodal efficiency, modularity, and within-module FC were

r = 0:15 ðp = 0:004Þ, r = 0:14 ðp = 0:008Þ, r = 0:11 ðp =

0:023Þ, r = 0:12 ðp = 0:019Þ, and r = 0:15 ðp = 0:004Þ,
respectively. However, voxel-level analyses of FCS, clustering

coefficient, nodal efficiency, and participation coefficient did

not yield significant predictions for neurodevelopmental out-

comes. For the motor score, none of these brain measures can

significantly predict the outcome.

Our results highlight the potential of early postnatal network-

based neuroimaging markers in predicting cognitive and lan-

guage development and provide a window to explore the neural

underpinnings of early development.

Distinct spatial transcriptomic pattern of functional
connectivity development
Changes in functional connectivity serve as a basis for the

development of functional segregation and integration. To

investigate the potential molecular mechanisms underlying

functional segregation and integration, we used the develop-

mental gene expression dataset, BrainSpan Atlas,34,35 to

examine the gene expression differences between brain re-

gions that showed significant and non-significant age-related

FCS changes. We included the transcriptomics data of genes

obtained from donors aged between 28 postmenstrual weeks

and 3 years, excluding genes contributed by fewer than six do-

nors at different ages. We included a subset of 26,874 genes

(Figure 5A) derived from 105 samples, of which 61 samples

were categorized as ‘‘significant (sig)’’ and 44 samples were

categorized as ‘‘non-significant (non-sig)’’. Compared to the

‘‘non-sig’’ regions, a total of 5,219 genes showed higher

expression levels, and 5,471 genes showed lower expression

levels (all p< 0:05, false discovery rate [FDR] corrected) in the

‘‘sig’’ regions. We highlighted the top 10 and bottom 10 genes

with the largest absolute z values quantifying the most signifi-

cant differences in the transcription levels between the ‘‘sig’’

and ‘‘non-sig’’ regions (Figure 5B). The top 10 genes are

BCL11A, AC010931.2, PRKCB, NGEF, KCNH4, EPHB6,

ACTN2, PEX5, TRPV6, and AC133680.1. The bottom 10 genes

are ZIC1, TCF7L2, LINC00341, RP11-57H14.2, SLC6A9,

SPECC1, KIF6, SYT9, CCDC48, and TPPP3.

Next, we performed Gene Ontology (GO) enrichment analysis

on these genes with significant expression level differences for

all the three ontology categories: biological process, molecular

function, and cellular component. As shown in Figure 5C, we

found that these genes were enriched in biological processes

including cellular component organization or biogenesis, phos-

phorus metabolic process, phosphate-containing compound

metabolic process, and regulation of neuron differentiation (all

p< 0:05, FDR corrected). As for their molecular function, these

genes are primarily associated with binding activities (all

p< 0:05, FDR corrected). Moreover, they are active in cellular

components related to synapses, cell projections, intracellular

membrane-bound organelles, and plasma membrane-bound

cell projection parts (all p< 0:05, FDR corrected).



Figure 4. Predicting cognitive and language development at 1.5 years of age using neonatal functional connectomes

(A) Prediction accuracies, calculated as the Pearson correlation between the actual and predicted neurocognitive scores, and their corresponding p values were

arranged in a matrix. Color intensity represents the level of prediction accuracy.

(B) Prediction of cognitive scores at 1.5 years of age using neonatal mean FCS, nodal efficiency, and modularity, respectively.

(C) Prediction of language scores at 1.5 years of age using neonatal mean FCS, clustering coefficient, nodal efficiency, modularity, and within-module FC,

respectively. The scatterplot visualizes the correlation between the actual and predicted neurocognitive scores. The histogram displays the distribution of

prediction accuracies derived from the permutation test.
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We further performed gene set enrichment analysis to

examine whether typical neurodevelopmental processes and

key neuronal metabolic pathway-related genes were signifi-

cantly enriched at the top or bottom of our ranked gene list (Fig-

ure 5B). The eight gene sets selected based on previous work

covered typical neurodevelopmental processes,22 including

dendrite development, synapse development, neuronal differ-

entiation, neuronal migration, axon development and myelina-

tion, and key neuronal metabolic pathways, including AG28

and oxidative phosphorylation.40 As shown in Figure 5D, we

found that the genes related to neuronal metabolic pathways
were significantly enriched at the top of our ranked gene list

(AG: normalized enrichment score [NES] = 6.18, p = 0:0003;

oxidative phosphorylation: NES = 2.13, p = 0:0024). The

genes related to dendrite and synapse development were

significantly enriched at the top our ranked gene list (dendrite

development: NES = 2.07, p = 0:0024; synapse development:

NES = 3.31, p = 0:0003). The genes related to neuron differen-

tiation and migration showed significant enrichment at the top

of our ranked gene list (neuron differentiation: NES = 4.18,

p = 0:0003; neuron migration: NES = 3.16, p = 0:0003).

In addition, the genes related to axon development and
Cell Reports 43, 114168, May 28, 2024 9



Figure 5. Distinct spatial transcriptomic pattern of FCS development

(A) The gene expression matrix of samples was assigned as the ‘‘significant (sig)’’ and ‘‘non-significant (non-sig)’’ regions.

(B) The selected genes with significant expression differences between ‘‘sig’’ and ‘‘non-sig’’ regions. Positive z values indicate a higher transcription level in the

‘‘sig’’ regions than in the ‘‘non-sig’’ regions, while negative z values indicate a lower transcription level in the ‘‘sig’’ regions than the ‘‘non-sig’’ regions.

(C) TheGeneOntology (GO) enrichment analysis on these geneswith significant expression level differences for the three ontology categories: biological process,

molecular function, and cellular component.

(D) Gene set enrichment analysis revealed whether the genes related to typical neurodevelopmental processes and key neuronal metabolic pathways were

significantly enriched at the top or bottom of our ranked gene list. The selected gene sets were involved in six typical neurodevelopmental processes (dendrite

development [103 genes], synapse development [104 genes], neuron differentiation [103 genes], neuron migration [101 genes], axon development [101genes],

and myelination [105 genes]) and two main neuronal metabolic pathways (AG [116 genes] and oxidative phosphorylation [82 genes]). The normalized enrichment

scores and their corresponding p values are shown on the top of the subplots.

GO, Gene Ontology; NES, normalized enrichment score.
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myelination were significantly enriched at the bottom of

our ranked gene list (axon development: NES = �5.96, p =

0:0003; myelination: NES = �4.95, p = 0:0003). All p values

were adjusted for multiple comparisons using FDR.41

DISCUSSION

The investigation of functional segregation or integration at early

stages has been the subject of several studies. However, these

studies have relied on small sample sizes and limited imaging

data, either during the perinatal13 or postnatal period.18,20,21

Consequently, the dynamic and complex early functional brain

development has not been adequately characterized. To

address this gap, our study utilized two high-quality datasets

with comprehensive coverage of both the perinatal (28–45 post-

menstrual weeks) and postnatal (0–36 months) periods. Our

analysis revealed a priority development of local segregation

and hub relocation from the primary to the higher-order cortex,

driven by the development of FCS within systems. We found

that regional developmental trajectories of functional segrega-

tion and integration diverged in a continuous manner across

the anterior-posterior axis. We also showed that early connec-

tome growth is predictive of later cognitive and language

development. The underlying mechanism driving such a

developmental pattern is involved in the regulation of genes

related to typical neurodevelopmental processes and metabolic

pathways.

Building on our previouswork focusing on the third trimester,13

in the present study, we observed distinct growth patterns of

FCS across various regions, aligning with the timelines of synap-

togenesis and synaptic pruning. For different cortical areas, syn-

aptogenesis occurs rapidly around the time of birth but peaks at

different ages.42,43 For example, the visual cortex experiences

rapid synapse formation between 3 and 4 months and reaches

maximum density between 4 and 12 months, whereas synapse

density in the prefrontal cortex increases more gradually and

peaks after the first year of life.42 After birth, a process known

as pruning, which refines neural connections, becomes

more active. Pruning is particularly pronounced in sensory and

motor cortices immediately after birth, followed by association

cortices.44 Positron emission tomography (PET) imaging sup-

ports these findings, as glucose uptake rates in different brain re-

gions change with age, with the sensorimotor cortex activity be-

ing highest in newborns and significant increases observed in

the occipital cortices by 3months of age.45 Themolecular mech-

anisms driving these developmental patterns involve genes crit-

ical for synapse formation and neuronal activity, such as SYT9

and EphB6. SYT9 plays a vital role in synaptic transmission

and neuronal communication,46 which is essential for the rapid

network formation in the early stages. EphB6, a member of the

ephrin receptor family, promotes cell adhesion and migration,47

a process that is thought to be essential for the formation and

maintenance of neural circuits. These imaging-based findings

align with the developmental trajectory predicted by changes

in synaptic density and activity and provide awindow into the dy-

namic processes that shape early brain development.

The development of functional connectivity within specific

systems largely accounts for the observed changes in FCS.
Fair et al. suggested that the most efficient way for children to

respond to processing demands is to use more ‘‘local’’ level in-

teractions as compared to adults.48 When performing identical

tasks on lexical processing tests, a large number of visual re-

gions are activated in children, but strong visual activation is

much more restricted in adults.49 In particular, we found that

the distribution of hubs shifted from primary regions to higher-or-

der cortices. Hubs are predominantly found in the primary areas,

which are critical for early survival during the perinatal period.

However, during the transition from the perinatal to the postnatal

period, the primary sensorimotor cortex experiences a decrease

in FCS, causing it to relinquish its hub position. By 2 years of age,

the default mode system, which is spatially distributed across

the cortex, emerges as hubs, replacing the dorsal attention

and visual cortices. Our results highlight that the brain’s func-

tional network is reorganized from a local proximity-based

pattern to a more functional distribution pattern during the first

1,000 days.

Human brain networks show dominant short-range connec-

tions alongside a few long-range connections, predominantly

linked to hub regions, governed by a trade-off between mini-

mizing cost and maximizing topological efficiency. An increase

of short- to medium-distance connections was found before

the age of 1 year, which may largely benefit the specialization

of local communities. Thereafter, a decrease in both short- to

medium-range connections and the local clustering coefficient

may reflect rapid increases of synaptic density after birth, peak-

ing at 1–2 years of age and decreasing in later childhood.50 Long-

range connections, which are primarily involved in global infor-

mation integration, developed later in the early postnatal period,

suggesting the development of local segregation followed by

global integration at this time. The delay in the emergence of

long-range connections compared to short- to medium-range

connections could be due to the completion of connection for-

mation in existing neurons, where axonal growth cones have to

travel longer distances to find unoccupied space on target neu-

rons.51 Previous studies have shown that cerebral blood flow,

which is an adequate surrogate for cerebral metabolism, corre-

lated more strongly with long-range FCS than short-range

FCS,52 suggesting that long-range connections are more closely

to blood/energy supplies to facilitate their greater involvement in

neural processes.53 We conclude that the early developmental

mechanism of the human brain appears to prioritize the local

connectivity of brain regions necessary for survival by allocating

limited energy.

The developmental trajectories of both segregation and inte-

gration measures showed spatial heterogeneity along the A-P

axis of the cortex, which is considered to be an immature S-A

axis.38 From infancy to adulthood, functional segregation and

integration mature along the S-A axis.54 Our results fill existing

gaps by revealing the developmental pattern of functional

segregation and integration during the first 1,000 days of life.

Cortical patterning is influenced by thalamocortical inputs and

transcription factors expressed along the anterior-medial to pos-

terior-lateral axis.55 Alignment of developmental programs with

the neuroaxis is a fundamental aspect of early cortical develop-

ment. The spatial and temporal regulation of developmental pro-

grams during embryonic and early postnatal development is
Cell Reports 43, 114168, May 28, 2024 11
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governed by major organizational axes. Neurobiological events

may contribute to the underlying mechanisms. Spatiotemporal

gradients between and within brain subdivisions occur in almost

all aspects of neural development, including neurogenesis,

maturation of cellular processes, synaptogenesis, and myelina-

tion.56–58 Postmortem and anatomical MRI studies show that

myelination progresses in an A-P direction, following the general

pattern of maturation of neural circuits.59–61 There is also an A-P

gradient in the timing of neurogenesis across the cortex.62

Changes in metabolic activity, as observed by PET imaging,

show spatial and temporal patterns similar to myelination and

neurogenesis.63

During the third trimester, the brain undergoes significant

development, including rapid neuronal growth, synaptogenesis,

and the beginning of functional network formation.3 This period

sets the stage for the sensory and cognitive abilities that will

continue to develop after birth. The transition from birth to early

childhood represents a significant phase of adaptability and

plasticity in the brain, with the neonatal period acting as a critical

point that strongly influences the direction and pace of postnatal

neurodevelopment. The cognitive prediction findings in this

study highlight that the functional connectome patterns estab-

lished at birth are key indicators of cognitive and language out-

comes in early childhood, consistent with previous studies.64–66

These patterns are dynamic, shaped by prenatal development

and modulated by postnatal experiences and environmental ex-

posures. The influences of experience and environment could

partly explain why the associations between imaging markers

and outcomes are moderate. Functional segregation and inte-

gration are key processes that allow the brain to organize its net-

works for efficient information processing and integration. The

balance between segregation, in which brain areas are localized

to perform specialized tasks, and integration, in which different

regions work together to form a unified network, is vital for so-

phisticated cognitive functions. Initially, the brain prioritizes func-

tional segregation to establish specialized centers for critical

tasks, such as language comprehension and sensory input.

Over the first 1,000 days, the brain’s functional network shifts

from a pattern based on local proximity to a more distributed

pattern, highlighting that the timing of connectome development

is crucial for the growth and emergence of cognitive abilities.

Limitations of the study
Several limitations need to be addressed. First, to examine the

developmental patterns of the functional connectome at the sys-

tems level, we adapted the adult-specific Yeo’s 7 network atlas

to the 6-month-old infant brain using a non-linear registration.

This approach neglects the inability of the adult-based atlas to

capture the extensive structural and functional changes that

occur during early life. In the future, it will be important to charac-

terize system-level development by developing fine-grained,

age-progressive functional brain atlases during the first

1,000 days. Second, previous studies have shown the effects

of preterm birth on brain development and later cognitive

growth.67–69 The inclusion of data from preterm infants in our

study was a pragmatic decision, motivated by the significant

challenges associated with the acquisition and processing of in

utero imaging data during the critical third trimester. Although
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this inclusion provides the closest practical approximation, it

complicates the interpretation of typical brain development.

Third, the dHCP and BCP datasets are among the most exten-

sive collections of neuroimaging data available, primarily con-

sisting of samples from European and American populations.

Thus, the generalizability of our study to the broader population

needs to be further validated by includingmore participants from

a wider range of ethnic and cultural contexts. Fourth, the accel-

erated longitudinal design of the BCP and dHCPdatasets cannot

fully account for individual differences. A previous study sug-

gested that cross-sectional data may not capture the nuanced

developmental changes as accurately as a purely longitudinal

dataset.70 Recognizing this limitation, we emphasize the critical

need for purely longitudinal data, with initiatives such as the

forthcoming Healthy Brain and Child Development (HBCD) initia-

tive being crucial for a deeper understanding of brain develop-

mental trajectories.
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Further information and requests for resources and data should be directed to and will be fulfilled by the lead contact, Yong He (yong.

he@bnu.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The dHCP and BCP datasets are publicly available. Accession numbers are listed in the key resources table.

d All original code has been deposited at Zendo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants
This study used two publicly available longitudinal imaging datasets, the dHCP and the BCP, focusing on the perinatal and postnatal

periods.

The BCP dataset was rigorously screened to ensure that participants met specific health criteria. Details of these criteria are

discussed in detail in ref. 33. Briefly, the BCP dataset excludes any child born before 37 weeks of gestation, with a birth weight
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of less than 2000 g, or who suffered significant delivery complications such as neonatal hypoxia or required a prolonged stay in the

NICU (more than two days). Other exclusion criteria were as follows: 1) adoption; 2) having a first-degree relative diagnosed with

autism, intellectual disability, schizophrenia, or bipolar disorder; 3) presence of significant medical or genetic conditions influ-

encing growth, development, or cognition; 4) contraindications for undergoing MRI scans; and 5) maternal pre-eclampsia,

placental abruption, positive maternal HIV status, maternal use of alcohol or illicit drugs during pregnancy, and the inability of care-

givers to consent in English.

The inclusion criteria for the dHCP dataset focused primarily on: 1) pregnant women with fetal age estimated from the last men-

strual period and confirmed, if possible, by an early ultrasound scan at 20–42 weeks’ gestation; and 2) live infants aged between 23

and 44 weeks gestational age, estimated from the mother’s last menstrual period and confirmed, if possible, by an early ultrasound

scan. Exclusion factors for the dHCP dataset included: 1) mothers or infants with any contraindications to MRI, such as the presence

of metallic implants (e.g., orthopedic devices or non-MRI-compatible clips for patent ductus arteriosus closure); 2) preterm infants

deemed too fragile to undergo the duration of the scan, despite fully supportive neonatal care, as determined by the attending pe-

diatric doctor in consultation with the infant’s medical team; and 3) language barriers that could impede proper communication about

the study or the consent process.

Neurocognitive assessments
Neonates from the dHCPwere assessed with the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) at around

1.5 years of age, adjusted for prematurity (19:3± 2:22months). The BSID-III includes five distinct scales designed to comprehensively

assess different domains of development, including cognitive, language, and motor scales for the infants. Specifically, the cognitive

scale of the BSID-III focuses on assessing sensorimotor development, concept formation, memory, basic problem-solving, and

reasoning skills.81 Meanwhile, the language scale includes two subscales that assess receptive and expressive communication,

gauging the child’s capacity to understand spoken language, follow instructions, and use language effectively to identify or describe

objects and people. The motor scale assesses both gross and motor skills, such as visual tracking, reaching for objects, maintaining

balance, and the capability to perform actions such as jumping.81 The neurocognitive assessments were carried out by a certified

neurodevelopmental psychologist.

MRI quality control procedure
BCP structural MRI quality control

Initially, we downloaded the BCP dataset (https://nda.nih.gov/edit_collection.html?id=2848), comprising 343 infants with 812 scans.

Subsequently, we conducted a comprehensive quality control and data cleaning process for the structural images, encompassing

the following steps (Figure S1A).

1. Scan Dates and Ages Verification for Longitudinal Data:

i) Identified 9 infants with two scans at both month 0 and 1, where the two scans within each pair were identical. We removed the

scans labeled as 1 month, assuming they were intended to represent 0 months based on the file name. ii) Found 16 scans with incor-

rectly labeled ages. Detailed information is provided in Table S1. Due to uncertainty about the correct ages, 6 scans were discarded.

2. Structural MRI Verification:

Eliminated 9 scans without released structural images, as these scans lacked either T1-weighted (T1w) or T2-weighted (T2w)

images.

3. "qc_outcome" Label Verification:

We employed the ‘‘qc_outcome’’ label that was provided in the released document as an initial quality control. If recorded as fail-

ure, the scan was eliminated, resulting in a total elimination of 7 scans.

4. Radiological Review:

Three experienced neuroradiologists specializing in pediatric MRI visually examined each scan. Infants with abnormal structures of

potential clinical or analysis significance, such as cysts, cerebellum abnormalities, and perivascular spaces, were excluded. Conse-

quently, 51 scans were excluded.

5. Head Motion Score Assessment:

Two experienced researchers assessed the head motion for each scan using a four-level scale (3-none, 2-mild, 1-moderate, and

0-severe). The four examples of the four-level scale can be found in Figure S1B. Scans with a head motion score below 2 were

excluded, leading to the exclusion of 41 scans.
Cell Reports 43, 114168, May 28, 2024 17
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6. Signal Interference Check:

Identified a situation where signals from the baby’s hand interfered with signals from the brain. Consequently, 2 scans were

excluded.

In conclusion, the final BCP structural images comprised 296 infants with 687 scans after rigorous quality control and data

cleaning.

BCP task-free functional MRI quality control
There were 292 infants with 587 task-free functional MRI scans released. The data quality control process involved several key steps.

1. Volume Consistency Check:

For the BCP dataset, the standard volume count for an fMRI scan is 420. Scans that had incomplete volumes were identified and

excluded, resulting in the removal of 8 scans.

2. Structural MRI Verification:

Each functional MRI scan was cross-checked to ensure the existence of a corresponding structural MRI. A total of 60 scans which

lacked structural images were eliminated.

3. Head Motion Evaluation:

We evaluated head motion through the mean frame-wise displacement and the proportion of volumes with frame-wise displace-

ment greater than 0.5mm. The frame-wise displacement was calculated as the sumof the absolute values of the derivatives of the six

translational and rotational parameters.82 The mean frame-wise displacement (mFD) was computed as head motion parameter for

each fMRI scan. The threshold for significant head motion was defined as an mFD greater than 0.5 and more than 40% of volumes

being outliers. This criterion aimed to balance data retention with quality control. Based on these parameters, 42 scans were found

ineligible due to excessive head motion.

4. Preprocessed Scans Inspection:

A thorough visual inspection was conducted on all preprocessed, task-free functional MRI scans. Those showing issueswith regis-

tration or other preprocessing steps were excluded from further analysis. After careful inspection, 19 scans were excluded.

Consequently, the final BCP dataset comprised 458 task-free fMRI scans from 222 infants.

dHCP dataset quality control

We downloaded the dHCP dataset release 332 from (https://biomedia.github.io/dHCP-release-notes/download.html), comprising of

887 scans from 783 neonates. The data quality control process involved several key steps.

1. Radiology Score Exclusion:

Scans from neonates with high radiology scores (>2), indicative of structural or signal irregularities with potential clinical signifi-

cance or significance for analysis, were excluded. This decision was made by a specialist perinatal neuroradiologist, culminating

in the exclusion of 218 scans.

2. ‘‘qc_fmri_comment’’ Evaluation:

We analyzed the ‘‘qc_fmri_comment’’ column available in the released document (https://github.com/BioMedIA/dHCP-release-

notes/blob/master/supplementary_files/combined.tsv). Scans without reportable fMRI QC issues or with remarks irrelevant to our

study’s objectives (e.g., missing surface data; failed fMRI recon) were kept. This criterion led to the exclusion of 81 scans.

3. Head Motion Evaluation:

We excluded fMRI scans showing significant head motion, defined by a mean frame displacement greater than 0.5 mm or when

over 40%of the volumes exhibited frame displacement. This threshold aligns with the standards utilized in the BCP dataset, resulting

in 93 scans being excluded.

4. Preprocessed Scans Inspection:

Scans exhibiting registration or other preprocessing issues were excluded, affecting 23 scans.

In total, the two combined datasets included 665 infants with 930 fMRI scans. Specifically, the dHCP dataset included 443 infants

(202 females) aged 28–45 post-menstrual weeks. The BCP dataset included 222 infants (119 females) aged 0–3 years. The distribu-

tion of participant age and longitudinal visits is shown in Figures S2A and S2B, respectively.
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METHOD DETAILS

Image acquisition
MRI images from the dHCP dataset were acquired on a 3T Philips Achieva scanner at St. Thomas Hospital, London. A neonate-dedi-

cated head coil consisting of 32 channel was used.83 T2-weighted images were obtained using a Turbo Spin Echo (TSE) sagittal

sequence with the following parameters: TR/TE = 12000/156ms, SENSE factor 2.11 (axial) and 2.60 (sagittal). For task-free fMRI,

a multiband (MB) 9 3 accelerated echo-planar imaging technique was employed for 15min, with following parameters: TE/TR =

38/392ms, 2300 volumes, and an acquired spatial resolution of 2.15 mm isotropic. Additionally, single-band reference scans were

also acquired, utilizing bandwidth-matched readout, along with spin echo acquisitions in both anterior-posterior/posterior-anterior

(AP/PA) phase encoding directions.

MRI images from the BCP dataset were collected using a 3T Siemens Prisma MRI scanner equipped with a Siemens 32 channel

head coil at the University of North Carolina at Chapel Hill and University of Minnesota.33 T1-weighted images (208 sagittal slices)

were acquired through a 3D magnetization-prepared rapid gradient echo (3D-MPRAGE) sequence with the following parameters:

TR/TE/TI = 2400/2.24/1600ms, flip angle = 8, acquisition matrix = 3203 320, and resolution = 0.8 mm isotropic. T2-weigthed images

(208 sagittal slices) were acquired using turbo spin-echo sequences (turbo factor = 314, echo train length = 1166ms) with the

following parameters: TR/TE = 3200/564ms, flip angle = VAR, and resolution = 0.8mm isotropic. The fMRI scans were acquired using

a blood oxygenation level-dependent (BOLD) contrast-sensitive gradient echo echo-planar sequence with the following parameters:

TR/TE = 800/37ms, flip angle = 80, field of view (FOV) = 2083 208 mm, 72 axial slices per volume, resolution = 2 mm isotropic, total

volumes = 420. Single-band reference scans and AP/PA scans with opposite phase encoding directions were also acquired.

MRI preprocessing
The BOLD fMRI images were preprocessed using Analysis of Functional NeuroImages (AFNI, Version AFNI_17.0.08)72 and FMRIB

Software Library (FSL 6.0.1).73 For the BCP dataset, we conducted the following steps: (i) removal of the first 10 volumes; (ii) reor-

ientation for consistency across dataset; (iii) head motion correction. The fMRI volumes linearly registered to its corresponding sin-

gle-band EPI reference image (SBRef) when available. In the absence of an SBRef, the initial volume was used for linear registration,

followed by registration to the mean of these initially registered fMRI volumes. Headmotion parameters did not significantly correlate

with scan age (mFD: r =�0.04, p = 0.28). (iv) distortion correction; Geometric distortions were corrected using the posterior-anterior/

anterior-posterior flipped scan pairs. (v) normalization. Specifically, images were first linearly aligned to their corresponding high-res-

olution T1/T2-weighted images (T1w: older than 6 months, T2w: younger than 6 months). Subsequently, they underwent nonlinearly

registration to age-specific templates71 using ANTs SyN diffeomorphic registration,74 and then linear registration to the common

6-month template. By pairwise registration between all age-specific templates, the target template with the least deformation

was selected as the common template. The Jacobin determinant of the pairwise deformation was shown in Figure S3A. The aligned

functional data were normalized using the transformation estimated from the two registration steps mentioned above, maintaining

2 mm isotropic voxels. (vi) spatial smoothing with a Gaussian kernel (full width at half-maximum of 4 mm). (vii) linear trend removal;

(viii) nuisance regression; Nuisance regressors, including the Friston’s 24 motion parameters, white matter signal, cerebrospinal fluid

signal, and global signal, as well as the scrubbing parameters (volumes with displacement greater than 0.5 mm from the previous

volume), were regressed out of the time series. (ix) temporal band-pass filtering (0.01–0.1 Hz). For the dHCP dataset, we used the

downloaded distortion and motion corrected 4D images (func/sub-{subid}_ses-{sesid}_task-rest_desc-mcdc_bold.nii.gz) for pre-

processing. The steps from normalization (v) to temporal band-pass filtering (ix) were applied, using the same protocol as described

for the BCP dataset.

Functional connectivity matrix construction
In this study, we constructed the functional correlationmatrices at a voxel level considering no proper parcellation during this specific

age range. The gray matter mask (53499 voxels in total) was predefined by applying a threshold to the gray matter probability tem-

plate of 6 months. Pearson’s correlation was calculated between the BOLD time series of every pair of voxels within the gray matter

mask. To enhance the normal distribution of correlation coefficients, Fisher’s z transformation was utilized, and the positive values of

all correlations were used to determine the correlation for each participant. Notably, any connectivity that terminated within 10mmof

the center of each voxel was assigned zero to prevent potential shared signals between neighboring voxels.

Functional connectivity strength analysis
To explore age effects on functional connectivity, we computed voxel-wise functional connectivity strength (FCS) values for an over-

all description. Specifically, the FCS for each voxel was obtained by averaging the correlations between that voxel and all other voxels

in the brain. To examine developmental effects on nodal FCS, we conducted a voxel-wise analysis using a generalized additivemixed

model (GAMM). This model has flexibility to investigate both linear and nonlinear relationships between variables and age (see devel-

opmental effects analysis). We set the significance threshold for nodal FCS at p < 0.001 at the voxel level with Gaussian random field

(GRF) correction at the cluster level of p < 0.05.84 The fitted FCS values were mapped onto the brain surface to visualize develop-

mental changes. To illustrate the diverse patterns of developmental trajectories, we categorized all regions with significant FCS

development into four distinct clusters. This categorization was done based on the similarity of developmental trajectories of FCS
Cell Reports 43, 114168, May 28, 2024 19
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within each cluster. To determine themost suitable number of clusters, we relied on indices from the NbClust packages.85 According

to the distribution of optimal cluster number (Figure S3B), we categorized the regions with significant FCS development into four

distinct patterns and showed their developmental trajectories of mean FCS values. To further investigate whether the local or global

functional connectivity predominately influences the FCS development, we investigated the age effects of functional connectivity us-

ing the GAMM. The functional connectivity was computed as the Pearson’s correlation between the average time series of voxels

within each cluster and the time series from all voxels.

Hubs were identified as regions with high FCS values (> mean +1.5 std) and were outlined on the fitted age-specific FCSmaps. To

explore the distribution of hubs across different functional systems, we mapped the Yeo’s atlas36 on the 6-month infant brain. First,

we nonlinearly registered theMNI152 template to the BCP 24-month template using ANTs SyN algorithm. Then, we linearly registered

it to the 6-month template. The combined deformation was applied to Yeo’s 7 network atlas in MNI152 space. We computed the

voxel number of hubs in each functional system at different ages and presented them in the bar plot. We also computed the hub voxel

ratio as the voxel number in each functional system to the total hub voxel number. The age-related changes of the hub voxel ratio in

each functional system were fitted with GAMM respectively.

To further explore the distance effects on age-related connectivity changes, FCS was calculated at different distance bins. This

involved calculating the Euclidean distance, Dij, as an approximate anatomical distance of functional connectivity between voxel i

and voxel j, and dividing the whole brain’s functional connectivity maps into three bins, 10–30 mm, 30–50 mm, and >50 mm. For

each voxel, we calculated FCS for each distance bin. We then performed voxel-wise GAMM analysis to explore the age effects

on distance-dependent FCS, while correcting for multiple comparisons within the corresponding gray matter mask due to varying

voxel numbers in different distance bins. To further investigate the developmental trajectory of FCS across different distance

bins, we performed a principal component analysis (PCA) on all individual’s FCS within each distance bin. This approach considered

the entire brain’s developmental trajectory rather than focusing on a single voxel property. Using GAMM, we fitted the loading co-

efficient trajectory of the first principal component, which reflected the global trajectory of FCS across all voxels. We computed

the first-order difference value of the loading coefficient trajectory to evaluate the developmental rate of FCS changes in different

distance bins. Furthermore, we identified the peak age of FCS (first-order difference value = 0).

Graph theory measures analysis
Functional brain networks were constructed by applying a 5% density threshold to the correlation matrices and binarizing them.

These analyses of voxel-wise brain networks were executed using our Parallel Graph-theoretical Analysis (PAGANI) toolbox

(https://www.nitrc.org/projects/pagani_toolkit/).76,77 Graph theoretical metrics, including the clustering coefficient and nodal effi-

ciency, were employed to assess functional segregation and integration. Specifically, the clustering coefficient is the fraction of tri-

angles around a node and quantifies the extent to which a node’s neighbors in the graph are interconnected. The nodal efficiency

measures how efficiently a node communicates with other nodes, calculated as the average shortest path length of the node in

the network. The GAMM model was utilized to investigate the age effect on the mean clustering coefficient and the mean nodal ef-

ficiency at both global and voxel levels. For the nodal analysis, we set the significance threshold at p < 0.001 at the voxel level, with

Gaussian random field (GRF) correction at the cluster level of p < 0.05. To further examine the changes in functional segregation and

integration across the cortex, we performed data-driven PCA on the clustering coefficient and nodal efficiency at the voxel-level

respectively, as shown in Figure 2B. The aim of this PCA was to identify the spatial axis that account for the greatest variance in

how the measure changed with age. This approach considered the entire developmental trajectory of the measure, rather than

focusing on a single age-related property. The first principal component generated by this PCA comprised voxel loadings that

captured variations in maturational profiles across a low-dimensional embedding. To visually depict the developmental trajectories

of the measures along the spatial axis, we divided the axis into 10 decile bins and calculated the average measures across all voxels

within each bin. Subsequently, the GAMM model was employed to fit the average measure changes with age.

Module analysis
To deepen our understanding of the developmental patterns of functional connectomes at the system level, we investigated the

modular organization of brain networks. To conduct modular analysis, we applied the Louvain algorithm implemented in the

PAGANI Toolkit, known for its speed and accuracy in detecting communities within large networks,39 to individual brain networks.

The algorithm works by identifying modules that maximize the modularity measure Q value through a two-stage iterative process.

Modularity measures the extent to which a network can be divided into densely connectedmodules or communities that have sparse

connections to other modules. The process begins with maximizing local modularity by reallocating each node to the community

where it contributes the most to increasing modularity. Next, a network of hypernodes representing the previously identified com-

munities is formed, setting the stage for another round of optimization. The completion of the algorithmic process provides two

key outputs: the modularity, Q, which offers a numerical representation of the modular portioning of the network, and a vector de-

tailing the community membership for each node. These results form the basis for the subsequent calculation of the participant co-

efficient, which provides insights into the modular structure of the network and the role of the nodes within it. The participation co-

efficient measures the diversity of a node’s connections across modules. Additionally, we calculated the within-module functional

connectivity and between-module functional connectivity to quantify functional segregation and integration. Thewithin-module func-

tional connectivity represents the average connectivity between any two voxels within the same module, while the between-module
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functional connectivity represents the average connectivity between any two voxels in different modules. To explore the age effects

on within-/between-module functional connectivity and the nodal participation coefficient, we employed the GAMM. For the nodal

participation coefficient, we set the significance threshold at p < 0.001 at the voxel level, with Gaussian random field (GRF) correction

at the cluster level of p < 0.05. Furthermore, wemapped the fitted participation coefficient at various ages onto the surface to observe

developmental changes. To capture the spatial axis of participation coefficient changes across voxels, we performed the same PCA

process to the nodal participation coefficient measure as mentioned above. We divided the loadings into 10 decile bins based on the

loadings of the first PC and calculated the average participation coefficient for all voxels within each bin. Finally, we used the GAMM

to fit the average measures’ changes with age.

To investigate the functional module assignment changes across ages, we utilized a slidingwindow approach formodule detection

in group functional networks, as shown in Figure 3D. The functional connectivity matrices were divided into age windows, progress-

ing from the youngest to the oldest. The age window was centered from 28 weeks to 184 weeks (3 years old) with a step of 2 weeks.

The initial agewindow ranged from 28weeks to 29weeks, and the final window stretched from 183weeks to 184weeks. This process

yielded 113 overlapping sub-grouped functional brain networks. Within each window, we computed the average functional connec-

tivity matrices to obtain the group functional brain networks, and subsequently conductedmodule detection in each group functional

network using the Louvain algorithm. To address the lack of correspondence in module division across different time windows, we

adjusted the module labels to align them as closely as possible. The window with the highest number of modules was chosen as the

reference window, and the module index in other windows was reassigned according to the extent of overlap with the module in the

reference window. This method only modified the module labels without changing the module partition. The module assignment

across various ages was then visualized using a Sankey plot, as shown in Figure 3E. Additionally, we calculated the flexibility of mod-

ule assignment across age windows. Nodal flexibility represents the number of times of a node changes its community assignment

across age windows, normalized by the total number of possible changes (total number of age windows - 1).

Prediction analysis of neurocognitive outcomes
Given the critical role of early brain development in shaping later cognitive growth, our study aimed to explore how connectome-

based neuroimaging measures predict later neurocognitive outcomes. The BCP dataset has a continuous age distribution, whereas

the dHCP dataset has collected neuroimaging data at birth and neurocognitive data at subsequent follow-up. Taking this into ac-

count, we used the neuroimaging data from full-term dHCP neonates to predict their neurocognitive scores recorded at 1.5 years

of age. The cohort consisted of 321 neonates with paired neuroimaging and neurocognitive data, including assessments of cognitive,

language and motor skills. Neuroimaging predictors included global mean FCS, mean clustering coefficient, mean nodal efficiency,

modularity and within-module FC, all of which showed significant age-related changes. To predict the individual neurocognitive

scores, we used the support vector regression (SVR) model with a linear kernel function regressing out covariates such as scan

age, the interval between birth and scan, age at neurocognitive assessment, sex and mFD. We evaluated the performance of the

regression model using 10-fold cross-validation, where the dataset was divided into ten parts, ensuring that each segment served

as the validation set once over ten cycles, while the remaining data formed the training set. To determine the accuracy of our pre-

dictions for each neurocognitive outcome, we compared the actual scores and the predicted scores using Pearson correlation. In

particular, we conducted a permutation test 10,000 times with randomly shuffled neurocognitive scores to determine whether the

predictive performance exceeded chance levels. Analyses were also performed at the voxel level including FCS, clustering coeffi-

cient, and nodal efficiency.

Gene expression analysis
To explore the underlying molecular mechanisms of functional connectome development, we utilized the developmental gene

expression dataset, BrainSpan Atlas,34,35 to study the gene expression differences between brain regions that exhibited significant

and non-significant age-related changes in FCS. The BrainSpan Atlas encompasses transcriptomic data—including 52376 genes—

from 524 brain samples taken from 42 individuals ranging in age from eight post-conceptional weeks to 40 postnatal years. This data-

set covers 11 neocortical areas and 5 additional regions. The brain regions included in our investigation are listed in Table S4

(excluding the cerebellar cortex). We focused on the transcriptomic data of genes obtained from donors aged between 28 post-

menstrual weeks and 3 years. This included a total of 105 samples from 9 donors. We categorized 61 samples as ‘significant

(sig)’ and 44 samples as ‘non-significant (non-sig)’ according to Table S4. To ensure robust results, genes contributed by fewer

than six donors at different ages were excluded, leaving a subset of 26874 genes derived from the 105 samples.

The expression level for each gene was z-scored across all samples. We tested the difference in expression level for each gene

between significant (‘‘sig’’ samples) and non-significant (‘‘non-sig’’ samples) regions using the one-sided Wilcoxon rank-sum test.

Multiple comparisons were corrected using the false discovery rate (FDR), with a q-value of less than 0.05.41 Genes with significant

expression differences were subjected to Gene Ontology (GO) enrichment analysis using the Gorilla tool (http://cbl-gorilla.cs.

technion.ac.il/).78 The genes with significant expression differences were used as the target gene list and all 26874 genes were as

the background list. All three ontology categories, including biological process, molecular function, and cellular component, were

examined. Specifically, GO terms with p-value less than 10�5 and FDR less than 0.05 are reported in the main results. We summa-

rized the long lists of GO terms and removed redundant GO terms using the online tool REVIGO (http://revigo.irb.hr/).
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Gene set enrichment analysis (GSEA)79,80 was then used to assess whether genes associated with typical neurodevelopmental

processes and neuronal metabolic pathways were overrepresented at the extremes (top or bottom) of the gene list ranked by the

effect size of expression differences between ‘sig’ and ‘non-sig’ samples. Specifically, we evaluated eight gene sets based on pre-

vious works covering typical neurodevelopmental processes22 including dendrite development (103 genes), synapse development

(104 genes), neuron differentiation (103 genes), neuron migration (101 genes), axon development (101 genes) and myelination

(105 genes), as well as major neuronal metabolic pathways including aerobic glycolysis (116 genes)28 and oxidative phosphorylation

(82 genes).40 For each gene set, we obtained an enrichment score (ES) representing the degree of enrichment. The ESwas calculated

by going through the ranked gene list, increasing a running-sum statistic when encountering a gene in the previous gene set and

decreasing it when encountering genes not in the previous gene set. The statistical significance of the ES was estimated using per-

mutation tests by shuffling the phenotype labels 10,000 times. To account for differences in gene set size, we compared the enrich-

ment score with those estimated by permutation tests and derived a normalized enrichment score (NES). The NESwas calculated as

the actual ES divided by the mean ESs against all permutations of the dataset. Enrichment analysis was performed using the clus-

terProfiler package (https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html) and visualized using the gseaplot2

function in the enrichplot package (https://bioconductor.org/packages/release/bioc/html/enrichplot.html).

QUANTIFICATION AND STATISTICAL ANALYSIS

Developmental effects analysis
To investigate the developmental effects, we fitted a generalized additive mixed model (GAMM), which is flexible to examine both

linear and nonlinear relationships between variables and age. This model included age as a smooth term, with subject ID as a random

effect, and sex, mFD, and site as linear covariates to control for potential confounding factors. We used the cubic splines as the basis

set for the smooth term, which provide computational efficiency and are suitable when data are sparse at the boundaries, and the

restrictedmaximum likelihood (REML) approach for the selection of smoothing parameters, which allows unbiased estimation of vari-

ance components in random effects models.86 The smoothing term for age produces a spline, modeled by weighted basis functions,

that represents the developmental trajectory for each metric. To select the appropriate basis function complexity (k), we compared

the Bayesian information criterion (BIC) values of global variable fitting models when k = 3 and k = 4 (Table S4). It was found that the

majority of variables had lower BIC values at k = 3 compared to k = 4, and it was evident that for other variables, the BIC values

showed little difference between k = 3 and k = 4. Consequently, we chose k = 3 to limit the flexibility of the smooth term, although

the exact value of k needs to informed by model diagnostics to optimally balance fit and parsimony for all variables. All ages are in

weeks.

When examining sex differences, we aimed to determine whether the effect of age varied by sex. To do this, we specified two

GAMMs: one including an interaction term between age and sex, and the other excluding this interaction. Both models included

the subject ID as a random effect, with sex, mFD, and site as linear covariates. We then performed an analysis of variance (ANOVA)

to compare the two models. The purpose of this comparison was to assess whether the inclusion of the interaction term significantly

improved the fit of the model.

To evaluate the effectiveness of the GAMM in mitigating site effects, we conducted a residual-based analysis. After fitting the

GAMM model, we extracted the residuals, which represent the differences between the observed values and the values predicted

by the model. We then performed an ANOVA with the residuals as the independent variable and the site as a factor to test whether

there was a significant difference in the mean residuals between the two sites. Ideally, if site effects are adequately controlled, the

residuals should not be significantly different between the two sites. As can be seen in Figure S5, the residuals obtained from the

models fitted for these metrics showed no significant differences between the two sites, indicating that the models have effectively

controlled for site-specific effects.
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