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The structural and functional connectomes interact and depend 
on each other to jointly maintain the functioning of the brain and fur-
ther support cognitive processing. Elucidating the complex interplay 
between the structural connectome (SC) and functional connectome 
(FC) is one of the central challenges in network neuroscience. While 
previous studies have consistently reported SC-FC coupling or SC 
constraints on FC [1–3], they typically analyzed these networks in 
isolation. Interdependent network theory [4] provides an important 
mathematical framework for studying network interactions, reveal-
ing nontrivial properties such as overabundant network  motifs or
subgraphs [5], core hub regions [6], core-periphery structures [7], 
and assortative mixing patterns [8] in the multilayer SC-FC connec-
tome. However, how the SC and FC layers are topographically coordi-
nated by different nodes in the interdependent connectome and how 
such multilayer coordination contributes to cognitive processes 
remain to be elucidated. Moreover, the neurobiological basis of the 
interdependent SC-FC connectome remains unknown. It is particu-
larly important to answer these questions to better understand the 
organizational principles of interdependence in the unified SC-FC 
connectome and to elucidate the underlying biological mechanisms 
that govern the connectome. 

Brain modularity is a fundamental topological property in both 
structural and functional domains, yet the correspondence 
between modular organizations across these network types 
remains poorly understood. To address this issue, we leveraged 
multimodal resting-state functional magnetic resonance imaging 
(MRI) and diffusion MRI data from 1012 healthy participants from 
the Human Connectome Project (HCP) S1200 dataset [9] (For 
details, see Supplementary Materials). Using a surface-based mul-
timodal parcellation atlas [10] with 360 cortical areas, for each 
individual we constructed FC networks based on Pearson correla-
tions between the time series of all pairs of nodes and SC network 
using the probabilistic diffusion tractography. We then modeled 
the interplay between the SC and FC in a multiplex framework that 
establishes interlayer connections based on direct correspondence 
between identical nodes. This process resulted in a two-layer inter-
dependent SC-FC network for each individual, represented by a 
supra-adjacency matrix where the diagonal blocks represent the 
intralayer connections and the off-diagonal blocks correspond to 
the interlayer connections. We applied multilayer modularity 
detection algorithm [11] to simultaneously analyze both layers, 
generating consistent community labels and enabling direct com-
parison of SC-FC modular organization. The difference in modular 
architecture between SC and FC layers was quantified using multi-
layer modular variability [12], where higher values (e.g., node A in 
Fig. 1a) indicate greater differences in the module structures to 
which nodes belong in the SC and FC layers. 

For each individual, we identified multilayer connectome modules 
and computed multilayer modular variability in the SC-FC connec-
tome (Fig. 1b). Details on other network topological measures and 
their relationships with multilayer modular variability are provided 
in the Supplementary Materials. The group-level multilayer modular 
variability showed substantial spatial heterogeneity across the cortex, 
with greater variability predominantly in the lateral prefrontal and 
parietal regions, dorsal medial prefrontal cortex, and lateral temporal 
regions and less variability in the sensorimotor, visual, and ventral 
medial prefrontal cortex (Fig. 1c). Furthermore, we investigated 
whether the spatial pattern of group-level multilayer modular
d func-
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Fig. 1. Spatial topography and its test–retest reliability and heritability of multilayer modular variability in the interdependent SC-FC connectome. (a), Schematic of SC-FC 
connectome construction and multilayer modular variability (MV) calculation. (b), Multilayer modular variability at individual-level. (c), The spatial topography of group-
level multilayer modular variability and its correlations with the functional connectivity gradient (d) and evolutionary expansion of cortical surface area (e). (f), Similarity of 
multilayer modular variability of intra-individual and inter-individual. (g), Spatial topography of intraclass correlation and its correlation with multilayer modular variability. 
(h), Correlation of multilayer modular variability between two half-split subgroups. (i), Similarity of multilayer modular variability among monozygotic, dizygotic and 
siblings pairs. (j), Spatial distribution of multilayer modular variability heritability. Bar plots show values in four hierarchical systems, with colored bars indicating cortical 
systems differing from null model. In scatter plots, gray shading represents 95 % confidence interval, upper-left histograms show null-model r values, and red dotted lines 
indicate empirical r values. Each dot represents the mean value of node across participants. To better visualize the scatter plots, the raw values were scaled using a rank-based 
inverse Gaussian transformation. Pri, primary cortex; Uni, unimodal cortex; Hete, heteromodal cortex; Para, paralimbic cortex. MZ, monozygotic; DZ, dizygotic. * P < 0.05, ** 
P < 0.01, *** P < 0.001. 
variability represents cortical hierarchical organization. First, we 
stratified the 360 cortical regions into four hierarchies illustrating a 
transition from primary sensory regions to the transmodal cortex. 
The heteromodal system (Spin test P value (Pspin) < 0.001) exhibited 
greater variability, while the primary (Pspin = 0.0003) and unimodal 
(Pspin < 0.001) systems exhibited less variability (Fig. 1c). Second, 
we found that the topographic organization of group-level multilayer 
modular variability correlated with a well-established macroscale 
connectome gradient architecture from unimodal to transmodal 
(r = 0.56, Pspin < 0.0001, confidence interval (CI) = [0.48, 0.62], two-
tailed; Fig. 1d). Given that greater variability was observed in the 
association regions that are thought to be phylogenetically late-
evolving regions, we examined its relationship with cortical evolu-
tionary expansion. We found a significant positive correlation 
(r = 0.51, Pspin < 0.001, CI = [0.39, 0.61], two-tailed; Fig. 1e), where 
highly expanded transmodal areas exhibited greater variability than 
conserved sensory areas. These results suggest that the modular 
topography of multilayer SC-FC connectome varies along the 
primary-to-transmodal axis and reflects cortical evolutionary 
expansion. 

We further assessed the reliability, reproducibility, and heri-
tability of multilayer SC-FC connectome. Using the HCP Test-
Retest dataset (42 participants, aged 30.4 ± 3.33 years, 30 females), 
we calculated the Pearson correlation of multilayer modular vari-
ability across test–retest sessions and found significantly higher
2

intraindividual similarity (r: 0.69 ± 0.123, nonparametric permuta-
tion test P value (Pperm) < 0.0001) compared to interindividual sim-
ilarity (r: 0.48 ± 0.065; Fig. 1f). Furthermore, for each brain node, 
we performed the intraclass correlation (ICC) analysis to estimate 
its test–retest reliability of the multilayer modular variability. This 
analysis revealed highest test–retest reliability in dorsolateral pre-
frontal and inferior parietal cortex (ICC > 0.6), with the hetero-
modal system showing greater reliability than null model 
(Pspin < 0.001) and the paralimbic system showing lower reliability 
(Pspin = 0.0039; Fig. 1g). The ICC map correlated with group-level 
modular variability (r = 0.23, Pspin < 0.0003, CI = [0.13, 0.32], two-
tailed; Fig. 1g). We also performed reproducibility analysis using 
random split-half sampling procedure (1000 repetitions) in which 
the HCP S1200 dataset was divided into two cohorts (Subgroup 1 
and 2). The group-level multilayer modular variability showed 
high correlation between subgroups (r: 0.994–0.999, P < 0.0001; 
Fig. 1h). Finally, using twin and family data (268 monozygotic 
twins, 140 dizygotic twins, 107 singletons, and 494 nontwins), 
we showed higher similarity in multilayer modular variability 
among monozygotic twins (r: 0.26 ± 0.204) compared to dizygotic 
twins (r: 0.10 ± 0.217, Pperm < 0.0001) and siblings (r: 0.10 ± 0.196, 
Pperm < 0.0001; Fig. 1i). Heritability analysis (For details, see Sup-
plementary Materials) revealed that genetic factors exerted a 
regionally variable influence on multilayer modular variability, 
with higher heritability in the somatosensory, lateral temporal,
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medial prefrontal, and parietal regions and lower heritability in the 
lateral frontal and parietal regions and visual cortices (Fig. 1j). Sim-
ilarly, primary system showed higher heritability compared to null 
models (Pspin = 0.016; Fig. 1j).

Next, we investigated the relationship between SC-FC interac-
tion and neurocognitive flexibility. Based on Yeo et al.’s cognitive 
components [13], we calculated the neurocognitive flexibility of 
each node by averaging the number of cognitive components of 
all voxels within that node. We found a significant correlation 
between group-level multilayer modular variability and neurocog-
nitive flexibility (r = 0.27, Pspin = 0.004, CI = [0.17, 0.36], two-tailed; 
Fig. 2a). After categorizing brain nodes into four flexibility levels 
(Low: 0–1, moderate: 1–2, good: 2–3, high: ≥ 3 components) based 
on cognitive component count, high flexibility nodes exhibited 
high multilayer modular variability (Kruskal-Wallis test, Bonfer-
roni correction, P < 0.001; Fig. 2a). This suggests that nodes with 
higher multilayer modular variability tend to participate in multi-
Fig. 2. Cognitive and molecular associations of multilayer modular variability in the
variability and neurocognitive flexibility, shown via violin plot for nodes with low to hi
modular variability and cognitive measures. First PLS latent variable (LV1) shows optimal
explained). For LV1, the multilayer modular variability score and cognition score wer
Significant loadings of brain regions and cognition terms (1000 bootstrap repetitions). Co
details in Table S2 (online). (d), Left panel depicts the correlation between receptors/trans
of the elastic net regression. Radar Chart displays significant predictive features with regr
multilayer modular variability and gene expression. LV1 component captures domina
showing a significant correlation with multilayer modular variability. Detailed metho
analysis results from gene list (details in Table S3 (online)). Each dot in scatter plots of (a
(b), dots represent individual participant scores on the latent components of brain and 
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ple cognitive components, contributing to higher cognitive flexibil-
ity. We further investigated the relationship between multilayer 
modular variability and individual’s cognitive function. Using mul-
tivariate partial least squares (PLS) analysis, we examined this rela-
tionship in the primary and transmodal cortices. Specifically, we 
first stratified the cerebral cortex into low-order area (Primary 
and unimodal regions, 176 regions in total) and high-order trans-
modal area (Heteromodal and paralimbic regions, 184 regions in 
total). PLS analysis revealed no significant relationship in the 
low-order cortex, while in transmodal cortex, the first latent vari-
able (LV1) significantly (Pperm < 0.0008) captured 46% of the covari-
ance between multilayer modular variability and cognition 
(Fig. 2b). Under the LV1, the multilayer modular variability score 
was correlated with the cognition score (r = 0.24, Pperm = 0.001, 
CI = [0.19, 0.30], two-tailed; Fig. 2b). This correlation was deter-
mined by the brain regions and cognitive terms contributing most 
to the LV. Therefore, we computed the loadings to determine the
 interdependent SC-FC connectome. (a), Correlation between multilayer modular 
gh flexibility. (b), Partial least squares (PLS) analysis between individual multilayer 
 linear combination of brain regions covarying with cognitive scores (46% covariance 
e correlated. Detailed methods are presented in Supplementary Methods 2.8. (c), 
gnitive processes shown in left panel’s dashed box with color coding. Full cognitive 
porters and multilayer modular variability. Scatter plot shows the prediction results 
ession coefficients (b). (e), Multivariate PLS regression analysis between group-level 
nt covariation between regional modular variability and transcriptomic patterns, 
ds are presented in Supplementary Methods 2.10. (f), Gene ontology enrichment 
), (d) and (e) represents the mean value of node across participants. In scatter plot of 
cognitive measurements. 
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degree of contribution of each variable and assessed its reliability 
(1000 bootstrap repetitions). For multilayer modular variability, 
regions with large positive loadings were mainly in the inferior 
parietal cortex, temporal-parietal-occipital junction, and anterior 
cingulate cortex, whereas regions with large negative loadings 
were mainly in the medial prefrontal, posterior cingulate, and lat-
eral temporal cortices (Fig. 2c). Cognitive terms showed predomi-
nantly positive loadings, particularly in self-regulation, cognition 
total composite, and cognition crystallized composite cognitive 
processes (Fig. 2c and Table S2 online). These results demonstrated 
that greater multilayer modular variability in brain regions with 
positive loadings was associated with better high-level cognitive 
performance.

To elucidate the neurobiological underpinnings of the coupled 
SC-FC connectome, we analyzed associations with neurotransmit-
ter systems [14] and gene expression [15]. (i) We first obtained 
cortical distribution data of 19 neurotransmitter receptors/trans-
porters from nine neurotransmitter systems [14]. Then, we calcu-
lated the average density of each receptor/transporter of each 
cortical region, finding significant correlations between group-
level multilayer modular variability and MOR (r = 0.38, 
Pspin < 0.0001, CI = [0.28, 0.46], two-tailed, with FDR correction), 
CB1 (r = 0.29, Pspin < 0.0002, CI = [0.20, 0.38], two-tailed), 5-HT4 
(r = 0.20, Pspin = 0.0087, CI = [0.10, 0.30], two-tailed) and a4b2 
(r = 0.20, Pspin = 0.0042, CI = [0.10, 0.30], two-tailed) receptors 
(Fig. 2d and Fig. S2a online) Using the multivariate elastic net 
regression model (k = 0.011; Fig. S2b online), we found that recep-
tor and transporter distributions could predict modular variability 
pattern (r = 0.59, Pspin < 0.0001, CI = [0.52, 0.66], two-tailed; Fig. 2d 
and Fig. S2c online). 11 receptors/transporters contributed to the 
prediction model (Fig. 2d), with MOR, 5-HT4, and a4b2 having the 
highest contributions. The robustness of these findings was further 
validated using LASSO regression (Fig. S3 online; for details, see 
Supplementary Results 3.3). Together, our results highlighted the 
tight link between the interdependent SC-FC connectome and mul-
tiple neurotransmitter systems. (ii) Using regional microarray 
expression data from the Allen Human Brain Atlas (AHBA) dataset 
(6 donor brains) [15], we investigated whether the multilayer 
module configuration was associated with gene expression pro-
files. PLS regression analysis revealed that the LV1, explaining 
21.25% of multilayer SC-FC modular variability (Pspin = 0.02; 
Fig. S4 online), significantly correlated group-level multilayer mod-
ular variability with regional gene expression (r = 0.46, Pspin = 0.02, 
CI = [0.31, 0.59], two-tailed; Fig. 2e). The LV1 component repre-
sented a gene expression profile with high expression mainly in 
the lateral frontal and parietal cortices but low expression in the 
sensorimotor and visual cortices. We then performed Gene Ontol-
ogy (GO) enrichment analysis on genes associated with the tran-
scriptome features of the LV1 component. Genes ranked by 
weight from most positive to most negative were enriched in bio-
logical processes related to chemical synaptic transmission and 
cellular components related to synapse part, plasma membrane, 
neuron part, transport vesicle, and secretory vesicle (FDR-
corrected, all q < 0.05; Fig. 2f and Table S3 online). No significant 
enrichment was observed for molecular function. These patterns 
reflect adaptive mechanisms in higher-order cognitive regions, 
where complex neural connections and flexible SC-FC relationships 
support functional diversity. The high expression of genes involved 
in neural signal transmission enables dynamic SC-FC adjustments, 
ultimately leading to higher variability in cross-layer modular 
organization. We also performed GO enrichment analysis on inver-
sely ranked genes (Table S4 online). Collectively, these results 
revealed a potential molecular basis for the multilayer module 
organization in the interacting SC-FC connectome. 

Our results are highly robust to confounding factors such as 
head motion, connectivity thresholds, network construction meth-
4

ods, prediction model, and parcellation schemes (Figs. S5–S12, 
Table S5, Fig. S3, Fig. S13 online). Collectively, our results provide 
insights into the nontrivial interdependencies of SC and FC, high-
lighting their cognitive significance and the molecular mechanisms 
underlying the connectome of connectomes (For a detailed discus-
sion, see Supplementary Materials). Future studies could further 
investigate whether and how the interactive SC-FC connectome 
changes with disease, in particular identifying the nodes responsi-
ble for communication between these two networks and whether 
these nodes undergo role changes in patients with brain disorders. 
It would also be interesting to investigate the age-related changes 
in the interdependent relationship between the SC and FC. 
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