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SUMMARY

The human cortex exhibits remarkable morphometric similarity between regions; however, the form and 
extent of lifespan network remodeling remain unknown. Here, we show the spatiotemporal maturation of 
morphometric brain networks, using multimodal neuroimaging data from 33,937 healthy participants aged 
0–80 years. Global architecture matures from birth to early adulthood through enhanced modularity and small 
worldness. Early development features cytoarchitecturally distinct remodeling: sensory cortices exhibit 
increased morphometric differentiation, paralimbic cortices show increased morphometric similarity, and as-

sociation cortices retain stable hub roles. Morphology-function coupling peaks in early adolescence and then 
decreases, supporting protracted functional maturation. These growth patterns of morphometric networks 
are correlated with gene expression related to synaptic signaling, neurodevelopment, and metabolism. 
Normative models based on morphometric networks identify person-specific, connectivity-phenotypic devi-

ations in 1,202 patients with brain disorders. These data provide a blueprint for elucidating the principle of 
cortical network reconfiguration and a benchmark for quantifying interindividual network variations.

INTRODUCTION

Cortical morphology represents the fundamental structural ar-

chitecture of the cerebral cortex. 1 The morphometric features

of cortical structures, including cortical thickness (CT), surface 

area (SA), and folding, undergo complex, genetically regulated, 

and regionally heterogeneous growth processes across the hu-

man lifespan. 2–7 However, cortical growth is not confined to a
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single region but exhibits morphometric similarity between re-

gions, thereby forming an interconnected network. 8–10 At the 

microscopic level, the homophily wiring principle provides a 

theoretical basis for the relationship between cortical morpho-

metric similarity and axonal projection. 10–12 Histological studies 

of several species, such as Caenorhabditis elegans, 13 mice, 14 

cats, 15,16 and macaques, 17,18 have shown that neurons or 

cortical regions sharing similar cytoarchitectural features tend 

to be axonally connected. Recent technological advances 

have facilitated the investigation of person-specific morpho-

metric networks in terms of single or multiple structural fea-

tures. 9,10 Specifically, several intriguing models for network 

reconstruction have been proposed, including the morphometric 

similarity network method, which estimates the pairwise correla-

tions between structural feature vectors, 19 and the morpho-

metric inverse divergence (MIND) method, which estimates 

the pairwise divergence between the multivariate distributions 

of multiple structural features. 20 These person-specific, 

morphology-based brain networks at the macroscale have also 

been shown to effectively recapitulate cortical cytoarchitectural 

classes, tract-tracing axonal connectivity, and gene co-expres-

sion profiles. 9,10 Despite these advances, however, the form 

and extent of the growth of cortical morphology networks across 

the human lifespan remain largely unknown. 

Previous studies have reported age-related alterations in 

cortical morphometric networks on the basis of single or multiple 

structural features derived from magnetic resonance imaging 

(MRI) data. 8,9 While these studies have provided valuable insights 

into the development and degeneration of morphological organi-

zation at specific ages or growth stages, they have several
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important limitations. First, the majority of previous studies have 

been limited to narrow age windows, such as fetal ages, 21 

neonatal ages, 22 childhood and adolescence, 23–25 and adult-

hood. 26–28 Several recent studies have sought to cover a broad 

age range, such as the entirety of adulthood 26–28 or the period 

from childhood to late adulthood, 29,30 but they lack data from early 

years of life, which are particularly important for cortical network 

development. Moreover, the restricted sample sizes employed 

in these studies (typically below 2,000) present a substantial chal-

lenge for robustly estimating the lifespan growth of morphometric 

networks. Second, previous findings regarding age-related alter-

ations in cortical morphometric networks have indicated notable 

inconsistencies. For example, increased connections in cortical 

morphometric networks have been observed in the paralimbic 

cortices (insula and cingulate) during the fetal period, 21 adoles-

cence, 23 and adulthood, 26 whereas other studies have reported 

the opposite pattern. 22,30 With respect to the statistical modeling 

of network phenotypes, some researchers have reported linear 

trajectories with increasing age, 21–23,25 whereas others have iden-

tified nonlinear trajectories. 24,26,27,29 The inconsistencies among 

these studies could be attributed, at least in part, to the heteroge-

neity of the study cohorts, imaging platforms, acquisition proto-

cols, data processing, and statistical models. Therefore, a robust 

mapping of lifespan changes in cortical morphometric networks 

necessitates a substantial sample size of individuals from birth 

to old age, as well as the use of advanced techniques and 

methods, such as rigorous quality control, harmonized data pro-

cessing methods, biologically validated methods of network con-

struction, standardized statistical modeling, and comprehensive 

validation analyses.

Once lifespan growth models of morphometric brain networks 

are established, critical questions remain that require further 

investigation. One such question is how morphometric networks 

coordinate with the functional connectome across the human 

lifespan. Structural brain networks provide a critical anatomical 

substrate that shapes functional networks. 31,32 Morphometric 

similarity networks (assessed via the MIND method) approximate 

axonal connectivity networks, 19,20 offering a plausible alternative 

to structural connectome. Notably, Dorfschmidt et al. 23 reported 

divergent morphology-function coupling patterns during adoles-

cence: paralimbic regions exhibit increased coupling, whereas 

neocortical regions show reduced coupling, promoting functional 

modular diversity. However, no studies have yet examined 

lifespan changes in morphology-function coupling in the cortical 

networks from birth to late adulthood. Another important but unre-

solved question is the biological basis of morphometric network 

maturation, particularly links to metabolic demands and transcrip-

tomic signatures. Finally, the potential clinical utility of the 

morphometric network as a reference model for quantifying indi-

vidual heterogeneity in patients with neuropsychiatric disorders 

remains unvalidated, although lifespan growth charts of single 

morphometric features have been well established. 4,33

Here, we address these important questions by collecting a 

large, multimodal neuroimaging dataset comprising data from 

33,937 healthy participants age 0–80 years, collected from 141 

scanning sites worldwide. We first constructed person-specific, 

morphology-based brain networks using the state-of-the-art 

MIND method 20 because of its unique advantages over other

methods in terms of technical reliability, biological validity, and 

developmental sensitivity. 10,20 We then mapped the normative 

growth patterns of the morphometric brain networks at the global, 

class, and regional levels and morphology-function coupling 

across the lifespan, with a particular focus on key developmental 

milestones. We also examined the biological relevance of network 

growth by linking it to brain metabolism and gene expression pro-

files. Finally, the potential clinical value of the normative models of 

the morphometric networks was validated for three representative 

brain disorders (1,202 patients): Alzheimer’s disease (AD), major 

depressive disorder (MDD), and autism spectrum disorder 

(ASD). Overall, this study elucidates the lifespan growth patterns 

of morphometric brain networks and their functional significance, 

biological underpinnings, and clinical relevance.

RESULTS

After rigorous quality control, 34 we ultimately included the 

following data samples (Figure 1A; Table S1): (1) the structural im-

ages of 33,937 healthy participants (aged 0–80 years), employed 

to delineate the lifespan growth patterns of morphometric brain 

networks (aim I, Figure 1B); (2) a subsample of 32,887 healthy par-

ticipants (aged 0–80 years) with both structural and functional im-

ages for investigating morphology-function coupling across the 

lifespan (aim II, Figure 1C); (3) positron emission tomography 

(PET)-based brain imaging data from 165 participants (aged 

20–82 years) 35 and gene expression data from 6 donors (aged 

24–57 years), 36 employed to investigate biological relevance 

of lifespan growth of morphometric brain networks (aim III, 

Figure 1D); and (4) the structural images of 1,202 patients with 

brain disorders, encompassing 180 patients with AD, 622 patients 

with MDD, and 400 patients with ASD, which were used to validate 

the clinical relevance of the network-based normative models (aim 

IV, Figure 1E). The detailed demographics and imaging protocols 

of the datasets are presented in Table S2.

For each participant, we first extracted five cortical 

morphology features (CT, SA, gray matter volume [Vol], mean 

curvature [MC], and sulcal depth [SD]) (see STAR Methods). 

Each individual’s cortical surface was subsequently partitioned 

into 318 parcels of similar volume size via a modified Desikan-

Killiany atlas 37 (referred to as DK-318) and an age-specific sur-

face registration strategy (see STAR Methods). Each morpho-

metric feature was further standardized across all vertices 

(Z score) to ensure the removal of global mean effects and the 

alignment of all features to a common scale. Finally, we gener-

ated a 318 × 318 within-participant morphometric network by 

estimating the pairwise divergence between the multivariate 

distributions of the 5 features 20 (Figure 1B). To investigate the 

lifespan normative growth of the networks, we applied a 

generalized additive model for location, scale, and shape 

(GAMLSS), 38,39 with network phenotype as the dependent vari-

able, age as a smoothing term, sex and the Euler number as co-

variates, and scanner site as a random effect.

Global-level growth of morphometric brain networks 

across the lifespan

To characterize the global growth patterns of morphometric net-

works, two measures were initially considered: the global
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variance and the global mean. The lifespan growth curve of the 

global variance (standard deviation) of the networks exhibited 

a nonlinear increase from birth to early adolescence (peaking 

at 13.9 years; 95% bootstrapped confidence interval [CI] [12.5, 

15.7]), followed by a relatively stable plateau (Figure 2A). This

indicated an overall increase in the degree of diversity in morpho-

metric similarity during early development. Furthermore, the 

morphometric network exhibited a decrease in global mean 

strength (indicating increased overall morphometric differentia-

tion) during infancy and childhood, reaching a minimum in early

A

B

C

D

E

Figure 1. Flowchart of the data analysis

(A) Age distribution of participants at each site.

(B) Overview of the lifespan growth mapping of the morphometric network (the MIND method).

(C) The functional network for each participant was constructed and then used to estimate morphology-function coupling.

(D) The metabolic and gene expression data were used to explore the potential biological basis of morphometric network growths.

(E) Characterization of individual deviations in morphometric network metrics for patients with a given disorder (orange dots) and controls (blue dots). Case-

control differences and clinical predictions were then conducted on individual deviation patterns.
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adolescence (12.4 years; 95% bootstrapped CI [10.8, 13.7]; 

Figure 2B). The inter-individual variability of these two global 

measures was greatest at the time of birth, followed by a rapid 

decline until adulthood (Figure S1; see STAR Methods). To 

examine the influence of connection distance on global growth, 

we divided the connections into three categories according to 

the inter-regional Euclidean distance: short (shortest 15%, 

blue), middle (15%–60%, green), and long (longest 40%, orange) 

(Figure 2C). The mean strength of the long-range connections 

exhibited a growth pattern similar to the global mean of the 

network. The short-range connections demonstrated the 

greatest strength across all three categories, with a notable in-

crease during the first three decades of life. The middle-range 

connectivity strength remained relatively stable throughout the 

lifespan.

It is important to consider the topological refinements of the 

networks, which facilitate a balance between structural segrega-

tion and integration. To investigate the topological reorganiza-

tion of the morphometric brain networks across the human life-

span, we binarized individual networks at 10% connection 

density and calculated the modularity (Q) and small-world mea-

sures (Gamma, Lambda, and Sigma). Specifically, modularity 

quantifies the extent to which a network is divided into discrete 

modules, whereas Gamma and Lambda represent the degree 

of local clustering (which quantifies network segregation) and 

characteristic path length (which quantifies network integration), 

respectively, relative to those for random networks. A network is 

considered small-world when Sigma (Gamma/Lambda) > 1. As 

shown in Figure 2D, both the modularity (peaking at 31.6 years; 

95% bootstrapped CI [30.5, 33.1]) and Gamma (peaking at 33.6

A B C

D

Figure 2. Normative growth of the morphometric network at the global level

(A) Normative growth curve (top) and growth rate (bottom) of the global variance of the morphometric network. The solid line (median) represents the 50% centile, 

and the dotted lines represent the 5%, 25%, 75%, and 95% centiles. The growth rate is assessed with the first derivative of the median line, with 95% CIs (shaded 

in gray) estimated by bootstrapping with 1,000 resamples.

(B) Normative growth curve and growth rate of the global mean of the morphometric network.

(C) Normative growth curve and growth rate of mean MSS across different distance bins.

(D) Normative growth curves and growth rates of modularity, Gamma, Lambda, and Sigma.
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years; 95% bootstrapped CI [32.5, 35.2]) values gradually 

increased from birth to early adulthood, which is in accordance 

with the lifespan growth observed for the short-range connec-

tions (Figure 2C). Lambda increased until early adolescence 

(peaking at 12.3 years; 95% bootstrapped CI [11.2, 13.1]), which 

is compatible with the lifespan growth observed for the long-

range connections (Figure 2C). Finally, prominent small-world 

properties were observed in the morphometric brain networks 

across the lifespan, with all Sigma values exceeding 1.63. None-

theless, Sigma gradually increased from birth to early adulthood, 

reaching a peak at 34.2 years (95% bootstrapped CI [32.9, 36.0]), 

followed by a slight decline (Figure 2D). Collectively, these re-

sults highlight a continuous, global optimization of network 

segregation and integration of the morphological connectome 

across the lifespan, particularly from birth to early adulthood.

Cytoarchitectonic class-level growth of morphometric 

brain networks across the lifespan

Prior research has indicated that morphometric similarity with 

MIND recapitulates the well-known cortical cytoarchitectonic 

classes. 20 Here, we examined whether seven cortical cytoarch-

itectonic classes 40 exhibit distinct lifespan growth patterns. We 

found that almost all intra- and inter-class connectivities pre-

sented nonlinear patterns of change across the lifespan, marked 

by substantial growth from birth to adolescence and partly 

continuing into early adulthood (Figures 3 and S2A). 

Intra-class connectivity

Both the primary sensory (PS) and primary/secondary sensory 

(PSS) classes, which contain dense granule cells and exhibit clear 

laminar differentiation, presented a nonlinear decrease in morpho-

metric similarity from birth to late childhood, suggesting increased 

morphometric differentiation within these classes. In contrast, the 

lateral frontal, parietal, and temporal association cortices (AC2), 

predominantly composed of pyramidal cells, presented a 

nonlinear increase in morphometric similarity from birth to early 

adolescence, whereas the paralimbic cortices, comprising the 

insular (IC) and limbic (LB) cortices with less-differentiated cortical 

layers, presented a more prolonged increase until early adulthood. 

The default-mode regions (AC1) presented a slight decrease in 

morphometric similarity from birth to early adulthood, and the pri-

mary motor (PM) exhibited a relatively stable pattern across the 

lifespan.

Inter-class connectivity

The sensory classes (PS and PSS) exhibited a nonlinear 

decrease in morphometric similarity with multiple brain classes 

(PM, AC1, AC2, and LB) from birth to late childhood and adoles-

cence. In contrast, the paralimbic cortical areas (insula and 

cingulate) showed a nonlinear increase in morphometric similar-

ity with multiple brain classes (PM, AC1, and AC2) from birth to 

adolescence.

We also showed the growth patterns of intra- and inter-class 

connectivity for the three distance bins (Figure S3). Moreover, 

the Z scores, derived by comparing each participant’s intra-class 

and inter-class connectivity to the null distribution, revealed 

growth patterns that closely resembled those of the original con-

nectivity curves (Figure S4). Collectively, the morphometric net-

works exhibited distinct nonlinear growth patterns with respect 

to cortical cytoarchitectonics, predominantly characterized by

morphometric differentiation of the sensory classes (PS and 

PSS) and morphometric strengthening of the transmodal areas 

(AC1, AC2, IC, and LB) from birth to early adulthood.

Regional-level growth of morphometric brain networks 

across the lifespan

We further investigated the regional growth patterns of the 

morphometric networks. For a given region, we calculated its 

morphometric similarity strength (MSS) as the average morpho-

metric similarity with all other regions. Figure 4A (top) shows the 

cortical maps of the fitted MSS at several representative ages. 

The pairwise spatial correlations among these age-specific 

MSS maps were calculated, followed by a hierarchical clustering 

analysis (Figure 4B). Four main clusters were identified: cluster 

I comprised MSS maps from birth to infancy (0–2 years, red), 

cluster II included MSS maps during early childhood (2.5–6 

years, green), cluster III included MSS maps from late childhood 

to adolescence (8–25 years, cyan), and cluster IV comprised 

MSS maps in adulthood (30–80 years, purple).

The growth rate maps of regional MSS (Figure 4A, middle) re-

vealed the most pronounced changes occurring from birth to 

early childhood. Specifically, the MSS exhibited a pronounced 

nonlinear increase in the paralimbic cortices, including the anterior 

cingulate cortex and IC, and a marked decrease in several sen-

sory areas (PS and PSS). Although there were rapid increases in 

MSS in the paralimbic cortices during early development, these 

regions did not develop into network hubs over the lifespan 

(MSS < mean + SD) (Figure 4A, bottom). In contrast, the frontal 

and parietal association cortices (AC1 and AC2), which exhibited 

minimal changes in MSS (Figure 4A, middle), were identified 

as network hubs across the lifespan (MSS > mean + SD, 

Figures 4A, bottom, and 4C). The growth rates of the intra- and in-

ter-class MSS were also estimated for a given region, demon-

strating spatial patterns analogous to those observed for the 

global MSS (Figure S2B).

Finally, principal-component analysis (PCA) was performed to 

identify the spatial variation in regional MSS growth curves 

across the cortex. The first component (PC1), which accounted 

for 70.7% of the variance (Figure 4D, left), represents the prin-

cipal growth axis of the morphometric network. The axis is 

anchored by sensorimotor areas (including the PS, PSS, and 

PM) at one end and transmodal areas (including frontal and pa-

rietal association regions and paralimbic regions) at the other. Di-

vision of the PC1 map into 20 equal bins, with the average growth 

rate calculated for all regions within each bin, served to further 

confirm the existence of distinct growth patterns between 

sensorimotor and transmodal regions over the human lifespan 

(Figure 4D, right).

Sex differences in the lifespan growth of morphometric 

brain networks

Understanding sex-related variations in morphometric networks 

is crucial for learning more about individual differences in brain 

development and aging. To depict sex-specific growth patterns 

in morphometric networks, we included sex as a covariate to es-

timate normative growth curves across the lifespan. Sex differ-

ences in the morphometric brain networks were observed at 

the global, cytoarchitectonic, and regional levels (as detailed in
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the STAR Methods and Figure S5). Specifically, the global vari-

ance and global mean of the networks were both greater in

males than in females (p = 3.74 × 10 − 105 and 5.6 × 10 − 39 ,

respectively; Figure S5A). Compared with males, females pre-

sented greater intra-class connectivity in the LB class (p =

3.1 × 10 − 16 , false discovery rate [FDR] corrected) and lower 

intra-class connectivity in the PS, PSS, PM, AC2, and insula 

(all p < 0.012, FDR corrected). Moreover, females presented 

greater inter-class connectivity between the IC and all other clas-

ses and between PS areas and multiple classes (LB, AC1, and

Figure 3. Normative growth rates of the morphometric network at the cytoarchitectonic class level

A negative growth rate indicates a decrease in morphometric similarity with age and vice versa. When the growth rate changes from negative to zero, the mean 

morphometric similarity reaches its lowest value (blue dots). When the growth rate changes from positive to zero, the mean morphometric similarity reaches its 

maximum value (orange dots). The gray shading around the growth rate represents the 95% CIs.
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AC2) than males (all p < 0.05, FDR corrected; Figure S5B). In 

contrast, females presented smaller inter-class connectivity be-

tween the AC2 and multiple classes (PSS, PM, AC1, and LB) than 

males (all p < 0.05, FDR corrected; Figure S5B). At the regional 

level, we also observed widespread sex differences in MSS, 

with females showing greater MSS in the insula, anterior cingu-

late, and postcentral regions, whereas males showing greater 

MSS in the lateral prefrontal cortex, angular gyrus, and occipital 

regions (p < 0.05, FDR corrected; Figure S5C).

Lifespan growth patterns of morphology-function 

coupling

Morphometric similarity highly correlated with functional 

connectivity during childhood, 41 adolescence, 23,42 and adult-

hood, 43,44 but the lifespan changes in morphology-function 

coupling remain unknown. By analyzing structural MRI and 

task-free fMRI data from 32,887 healthy participants (aged 0– 

80 years), we explored morphology-function coupling changes 

throughout the lifespan. We first constructed the functional 

connectome for each participant (see STAR Methods) 34 and 

calculated the regional functional connectivity strength (FCS) 

as the total connectivity between a given region and the rest of 

the brain. We found that the regional FCS showed a prolonged 

growth trajectory from birth to early adulthood (Figure 5A), 

compared with the pronounced changes observed in regional 

MSS from birth to late childhood (Figure 4A, middle). Notably, 

sensory regions (e.g., PS and PSS) with a pronounced decrease 

in the regional MSS displayed an increase in the FCS during early

A

B C

D

Figure 4. Normative growth of regional-level MSS

(A) Surface maps of normative growth, growth rate, and hub regions for the regional-level MSS at representative ages. The hub regions were defined as regions 

with MSS values exceeding the mean plus the standard error.

(B) Hierarchical clustering analysis of pairwise correlations based on regional MSS. The resulting dendrogram is partitioned into four clusters.

(C) Hub distribution across seven cytoarchitectonic classes.

(D) Explanation ratio of regional-level MSS curves derived from PCA. The first component accounts for 70.7% of the total variance, representing the lifespan 

dominant growth axis of morphometric similarity. We then divided the lifespan growth axis into 20 equal bins and calculated the average growth rate for all regions 

within each bin.
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A

B C

D

E

F

Figure 5. Normative growth of morphology-function coupling

(A) Normative growth rate of the regional FCS.

(B) Normative growth curves of regional MSS (black lines) and regional FCS (red lines) in example brain regions. The green and blue shades indicate the 

developmental windows for MSS and FCS, respectively.

(C) Normative growth curve and growth rate of global coupling.

(D) Surface maps of normative growth (top) and the growth rate (bottom) for regional coupling.

(legend continued on next page)
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development (Figure 5B). Conversely, paralimbic regions (e.g., 

the anterior cingulate cortex) with a pronounced increase in 

regional MSS showed a notable decrease in FCS. These results 

reflect the distinct spatiotemporal growth patterns of morpho-

metric and functional networks.

We further quantified global and regional morphology-function 

coupling by calculating edgewise correlations between morpho-

metric and functional matrices and regional connectivity profile 

correlations, respectively (Figure 1C). Global coupling increased 

from birth to early adolescence (peak at 12.3 years; 95% boot-

strapped CI [10.5, 13.6]) (Figure 5C), reflecting increased struc-

tural constraints on functional maturation, and then declined until 

late adulthood (lowest point at 69.8 years; 95% bootstrapped CI 

[68.0, 73.1]) (Figure 5C), indicating progressive decoupling. 

Regionally, several sensory areas (e.g., the visual cortex) with 

low MSSs (Figure 4A, top) displayed strong coupling at birth, 

and this degree of coupling continued to increase until early 

adolescence (Figure 5D). Conversely, several association areas 

(e.g., AC2) with high MSSs showed weak coupling across the 

lifespan (Figure 5D). Significant lifespan negative correlations 

were observed between the MSS and coupling maps (r: − 0.29 

to − 0.50, p spin < 0.05, FDR corrected; Figure 5E) and the 

corresponding growth rate maps (r: − 0.10 to − 0.69, p spin < 0.05, 

FDR corrected; Figure 5F). These results suggest that stronger 

morphology-function coupling in low-level sensory areas 

facilitates functional specialization, whereas weaker coupling in 

high-order association areas enables functional flexibility.

Lifespan growth patterns of morphology-metabolism 

coupling

The brain network is inextricably linked to metabolism. 45,46 To 

gain insight into the lifespan association between the morpho-

metric network and brain metabolism (Figure 1D), we assessed 

PET-based brain imaging data from 165 participants (aged 

20–82 years). 35 The preprocessed data included four metabolic 

measures for each region, namely, aerobic glycolysis (AG), cere-

bral blood flow (CBF), the cerebral metabolic rate of glucose 

use (CMRGlc), and oxygen consumption (CMRO 2 ). Owing to 

the substantial challenges in obtaining PET data from early life 

stages, our analysis was limited to the age range of 20–80 

years. We observed significant spatial correlations among meta-

bolic measures across the lifespan (p spin < 0.05, FDR corrected), 

including CMRGlc-CMRO₂ (r: 0.84–0.96), CMRGlc-CBF (r: 0.86– 

0.93), and CMRO₂-CBF (r: 0.91–0.96). We also observed signifi-

cant AG-CMRGlc correlations before the age of 60 (r: 0.42–0.65). 

For a given region, a normative growth model was first estab-

lished for each metabolic measure via GAMLSS, with age treated 

as a smoothing term and sex as a covariate. Figure 6A shows the 

cortical maps of the fitted metabolic measures, illustrating re-

gion-specific metabolic decreases with age. The regional MSS 

maps of morphometric brain networks were then spatially corre-

lated with each of the four metabolic maps at each correspond-

ing age point (a total of 6,000 points, as detailed in the STAR 

Methods). The MSS maps showed positive correlations with 

the spatial maps of both the AG (r: 0.30–0.61, p spin < 0.05, FDR 

corrected) and CMRGlc (r: 0.32–0.41, p spin < 0.05, FDR cor-

rected) throughout adulthood, whereas no significant results 

were observed for the other two measures (Figures 6B and 

6C). These results indicate that the frontal and parietal associa-

tion cortices, which presented a greater degree of morphometric 

similarity, as indicated by larger MSSs, tended to require a 

greater metabolic supply for the AG and CMRGlc.

Lifespan growth patterns of morphology-transcriptome 

coupling

To explore the potential biological basis of morphometric 

network growth, we examined their spatial relationships with 

the gene expression profiles obtained from the Allen Human 

Brain Atlas 36 (Figure 1D). Given that changes in the regional 

MSS growth rate were most pronounced during the first decade 

of life, we focused our analysis on this key developmental period. 

Partial least squares (PLS) regression 47 was used to relate the 

transcriptional profiles to the regional MSS growth rate maps 

(Figure 7A). The associations between gene expression and 

the MSS growth rate were significant from 0 to 8 years, with 

the first component explaining 20.8%–48.7% of the variance 

in the MSS growth rate maps across representative ages (all 

p spin < 0.05, FDR corrected; Figure 7B). The scores of the first 

component were positively correlated with the Z map of the 

regional MSS growth rate (r: 0.46–0.70, all p spin < 0.05, FDR cor-

rected; Figure 7C). Gene Ontology (GO) enrichment analysis of 

the positively weighted genes (Z > 5) revealed significant enrich-

ment in biological processes related to synaptic signaling and 

transmission, neuron projection development, and metabolic 

processes, particularly during the infancy and early childhood 

(p < 0.05, FDR corrected; Figure 7D; Table S3). Negatively 

weighted genes were enriched for GO biological processes, 

such as metal ion transport and monoatomic cation transmem-

brane transport (p < 0.05, FDR corrected; Table S3).

Clinical relevance of morphometric network-based 

normative models

While MRI normative models using single structural 4,48,49 or func-

tional 50–52 features have shown potential clinical value, morpho-

metric network-based models remain underexplored. We vali-

dated such models using AD (N AD = 180, aged 51–80 years), 

MDD (N MDD = 622, aged 11–77 years), and ASD (N ASD = 400, 

aged 5–59 years)—disorders linked to network dysfunction 53 

across distinct lifespan stages (Figure 1E; Table S1). For each 

cohort, we computed individual Z score deviations in morpho-

metric networks at global, cytoarchitectonic class, and regional 

scales in patients and matched healthy controls (HCs). To avoid 

site-related confounders, half of the HCs (n HC-test = 649, stratified 

by age, sex, and site) and all patients were included in the test set,

(E) Spatial correlations between the MSS and coupling maps. The scatterplots depict the MSS-coupling correlations at representative ages (0, 20, and 60 years), 

with a linear fit (central line in black) and a 95% CI (gray shading).

(F) Spatial correlations between the MSS rate and coupling rate maps.

For both (E) and (F), the correlation coefficients were calculated at each corresponding age point (at intervals of 0.01 years) and compared with those obtained 

from 1,000 spin tests. The purple dots indicate significant correlations (p spin < 0.05, FDR corrected).
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whereas the remaining 33,288 HCs (n train = 33,937–n HC-test ) 

formed the training set for the normative models (Figure S6A). 

This split ensured unbiased estimation of site effects within clinical 

groups. This process was repeated 100 times to assess stability, 

yielding highly robust normative curves (mean r > 0.95) and patient 

deviation Z scores (average r > 0.95 and average mean squared 

error [MSE] < 0.09 for all metrics; see Figures S6B and S6C;

Tables S4 and S5). For each cohort, patient deviations were aver-

aged across 100 repetitions, with extreme deviations defined as 

|z| > 2.6.

Analyses revealed substantial individual heterogeneity in 

morphometric network deviations across disorders. In AD 

patients, 71% of patients showed extreme negative deviations 

in at least one metric, whereas 53% exhibited extreme

A B

C

Figure 6. Normative growth of morphology-metabolism coupling

(A) Surface maps of normative growth for the regional-level AG, CMRGlc, CMRO 2 , and CBF.

(B) Spatial correlations between the regional-level MSS maps of morphometric brain networks and regional-level metabolic maps at each corresponding age 

point (with intervals of 0.01 years). The observed correlations coefficients were compared with those obtained from 1,000 spin tests. The purple dots indicate 

significant correlations (p spin < 0.05, FDR corrected), whereas the gray dots denote nonsignificant correlations (p spin > 0.05, FDR-corrected).

(C) The scatterplots depict the Pearson correlation between the regional-level MSS and metabolic measures at representative ages, with a linear fit (central line in 

black) and a 95% CI (gray shading).
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positive deviations (Figure S6D). The corresponding rates were 

comparatively lower in MDD patients (32% negative and 36% 

positive) and ASD patients (33% negative and 24% positive) 

(Figure S6D). All patient groups displayed significantly more 

extreme deviations than the HCs (Figures 8A and 8B). Specif-

ically, AD patients presented increased total, positive, and 

negative extreme deviations (p FDR < 0.05 in 100% of repetitions), 

MDD patients showed similar results (total/positive/negative de-

viations: p FDR < 0.05 in 100%, 98%, and 78% of the repetitions), 

and ASD patients presented increased total/negative deviations 

(p FDR < 0.05 in 98% and 60% of repetitions, respectively) 

without significant positive deviations with respect to the HCs 

(Figure 8B). Notably, extreme deviations were highly heteroge-

neous across individuals: ≤13% of AD patients and ≤4% of 

MDD/ASD patients deviated for any single measure (Figure 8C). 

Machine learning approaches based on support vector 

regression (SVR) linked network phenotypic deviations to 

clinical scores (Figure 8D). AD patients’ spatial deviation patterns 

predicted mini-mental state examination scores (r = 0.37, 

p perm < 0.001), while MDD deviations predicted the total Hamil-

ton depression rating scale (HDRS) score (r = 0.11, p perm = 

0.007). ASD was not significantly associated with total repetitive 

restrictive behavior (RRB) scores (r = 0.06, p perm = 0.24). These 

results highlight the potential clinical utility of morphometric 

network-based normative modeling in capturing disorder-spe-

cific heterogeneity, particularly in AD and MDD patients.

Sensitivity analyses

We validated lifespan growth patterns of the morphometric brain 

networks through seven sensitivity analyses as follows (see 

STAR Methods): (1) sample variability, bootstrapping analysis 

with 1,000 resamples; (2) reproducibility, using a split-half anal-

ysis; (3) site effects, using a leave-one-site-out (LOSO) analysis; 

(4) balanced resampling (strategy I), balancing age distribution 

(1,000 times); (5) balanced resampling (strategy II), balancing 

the participant number and site number per age group (1,000 

times); (6) parcellation effects, using a 219-region atlas analysis; 

and (7) feature stability, using the removal of individual features. 

Notably, almost all network growth curves from these sensitivity 

analyses showed strong correlations with the primary results,

A B

C D

Figure 7. Normative growth of morphology-transcriptome coupling

(A) Gene expression profiles across brain nodes. We examined spatial associations between regional-level MSS growth rates and regional-level gene expression 

profiles using PLS regression, and we identified the top genes with positive or negative weights for the significant component.

(B) Explained ratios for the first component obtained from the PLS regression analysis. The observed explained ratios (red dots) were compared with those 

obtained from 1,000 null models (blue boxes).

(C) Scatterplots depicting the Pearson correlation between transcriptional profiles and the Z statistic of the growth rate of regional-level MSS at representative 

ages, with a linear fit (central line in black) and 95% CI (gray shading).

(D) Significant enrichment of GO biological processes was observed for the top genes with high weights (Z > 5) for the first PLS component. Here, we show the 

union of the 10 most significantly enriched terms identified across representative ages from 0 to 8 years.
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regardless of global, class, and regional scales (Table S6). Spe-

cifically, for sensitivity analyses (1)–(6), we observed highly 

consistent growth trajectories of all metrics with the primary re-

sults (r = 0.80–1.00). For sensitivity analysis (7), we also showed

similar growth trajectories with the primary results across scales: 

global variance (r = 0.67–0.97); global mean (r = 0.91–0.97); 

global morphology-function coupling (r = 0.98–1.00); class-level 

connectivity (r = 0.89–0.98); and regional MSS (r = 0.97–1.00) and

A

B

C

D

Figure 8. Clinical relevance of morphometric network-based deviations in three brain disorders

(A) Case-control differences in the extreme deviation number between HCs and patients with AD, MDD, and ASD for a single random repetition. ***p < 0.001, 

**p < 0.01, *p < 0.05.

(B) Distribution of p values for the case-control differences in the number of extreme deviations across 100 repetitions for the three brain disorders.

(C) Percentages of patients with extreme deviations at the global, class, and regional levels.

(D) Predictive accuracy for the clinical scores of the individual deviation patterns.
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coupling (r = 0.94–1.00) maps, except for global and class-level 

metrics when the CT feature was removed. High spatiotemporal 

consistency across methodologies demonstrated that the life-

span growth patterns of morphometric networks are robust to 

analytical variability.

DISCUSSION

Using multimodal neuroimaging data from 33,937 healthy 

participants (0–80 years), we mapped the spatiotemporal trajec-

tories of cortical morphometric networks. From birth to early 

adulthood, sensory cortices showed increasing morphometric 

differentiation, whereas paralimbic cortices (e.g., cingulate/in-

sula) exhibited increasing morphometric similarity. These 

morphometric networks showed dynamic interactions with func-

tional maturation and brain metabolism and were linked to gene 

expression profiles related to synaptic signaling, neurodevelop-

ment, and metabolism processes. Normative models derived 

from morphometric networks captured individual heterogeneity 

in three brain disorders and predicted clinical outcomes. 

Collectively, our study establishes a normative framework of 

cortical morphometric networks across the human lifespan and 

reveals their associations with functional, metabolic, and tran-

scriptomic profiles. This work also bridges morphology-based 

network modeling with clinical translation, advancing precision 

approaches in brain disorder research.

Using the MIND method, 20 which integrates multiple cortical 

features, we constructed a morphometric brain network and 

further investigated its lifespan growth patterns. Global network 

similarity declined from birth to early adolescence, whereas 

global variance increased, indicating increased cortical architec-

tural diversification. Morphometric network topology was 

dynamically reorganized into early adulthood, paralleling pro-

longed functional network maturation until the fourth decade of 

life. 34,54 At birth, morphometric networks exhibited established 

modularity and small-world properties—critical for efficient infor-

mation processing—which intensified until the third decade of 

life. These findings align with fetal morphometric network 

studies, which indicated that small-world topology emerges in 

the late second trimester and strengthens prenatally, 21 a pattern 

that is persistent across developmental stages such as infancy, 

childhood, adolescence, and adulthood. 19,27,55,56 Similarly, 

functional networks display a small-world topology at birth, 57,58 

with a gradual increase in global system segregation over the 

first three decades of life. 34 This parallel optimization in morpho-

metric and functional networks highlights the ongoing refine-

ment of the segregation-integration balance, supporting efficient 

communication during development.

Sensory and paralimbic cortices exhibit opposing lifespan 

growth trajectories in morphometric networks. Sensory connec-

tivity strength decreases from birth to early adolescence, 

whereas paralimbic connections strengthen progressively 

into adulthood. These findings extend previous adolescent-

focused research by Dorfschmidt et al. 23 Three key factors 

may explain these divergent patterns. First, paralimbic regions, 

which serve as transitional structures between the older, simpler 

allocortex (e.g., three-layered hippocampus) and the six-layered 

neocortex, 59,60 may gradually align with neocortical organization

during development, thus enhancing morphometric similarity. 

Second, paralimbic areas demonstrate greater plasticity 

than sensory areas, as characterized by lower myelination and 

higher synaptic density. 60 While sensory cortices complete 

myelination and synaptic pruning earlier, 61,62 paralimbic regions 

continue these processes longer, 63 amplifying developmental 

divergence. Third, at the macroscale, morphometric networks 

are organized along a principal gradient spanning from the 

sensory cortex to the IC. 29,64,65 This inherent organizational 

axis may naturally support these contrasting growth patterns. 

Notably, increased morphometric differentiation between iso-

cortical and paralimbic regions during childhood is correlated 

with improved cognitive performance, 66 suggesting that this 

developmental divergence supports healthy cognition.

The intrinsic organization of the brain is closely linked to 

metabolic processes. 45,46 Here, we observed that morphometric 

connectivity strength is spatially correlated with the AG and 

CMRGlc. AG supports rapid ATP production 67 and synaptic 

plasticity 68 via nonoxidative glucose metabolism. The high-level 

AG is located primarily in association areas 69 that also serve as 

morphometric network hubs. These areas facilitate complex in-

formation integration and higher cognition, 70 aligning with prior 

evidence connecting high-level AG to both structural and func-

tional network hubs. 65,69,71 Thus, morphometric networks 

reflect, at least in part, functional network organization. In sup-

port of our findings, global structure-function coupling gradually 

increases during infancy and childhood 57,72 and peaks in early 

adolescence before it decreases. 23,73 Early regional coupling in-

creases in sensory areas may reflect enhanced neural synchro-

nization and stimulus responsiveness, 72,74 whereas adolescent 

decoupling enables flexible dynamics for advanced cognition. 73 

Notably, we found that regional MSS is negatively correlated 

with morphology-function coupling strength. Morphometric con-

nectivity is often considered a proxy for monosynaptic connec-

tions between brain regions of the same cytoarchitectonic class, 

whereas functional connectivity is commonly used to represent 

polysynaptic pathways. 23 When morphometric connectivity is 

stronger, inter-regional information transfer may more heavily 

rely on direct physical connections, reducing the need for 

morphology-function coupling. Conversely, when morphometric 

connectivity is weaker, the brain may rely more heavily on 

complex functional integration to compensate for structural 

limitations, thereby increasing morphology-function coupling. 

Elucidating the biological basis of morphometric brain networks 

is crucial for understanding their lifespan maturation dynamics. 

Growing evidence indicates that inter-regional morphometric sim-

ilarity reflects a variety of biological properties, such as axonal 

connectivity, gene expression similarity, cytoarchitecture and 

chemoarchitecture, synchronized maturation, and experience-

dependent plasticity. 8,19,20,75–78 With respect to the MIND 

method, the derived morphometric brain networks demonstrated 

striking alignment with cortical cytoarchitecture and transcrip-

tional similarity, forming a biologically meaningful and reliable 

framework. 20 Despite these advances, the developmental biolog-

ical basis of morphometric networks remains unclear. By 

integrating morphometric network growth with gene expression 

profiles, we provide insights into their biological underpinnings. 

Gene enrichment analysis revealed that early growth in terms of
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MSS is associated with biological processes involved in synaptic 

signaling and transmission, neuron projection development, and 

metabolism. These processes are likely to contribute to morpho-

metric network development through multiple mechanisms, 

including promoting axon guidance and elongation, 79 and sup-

porting the metabolic demands of axonal growth. 80 Previous 

case-control research in MDD has suggested that disruption of 

morphometric networks is linked to similar synaptic signaling 

pathways. 81 These findings underscore the importance of these 

biological processes in regulating normative development and 

disease-related alterations in morphometric brain networks. 

Studying the trajectories of morphometric networks across 

the human lifespan could unveil critical timelines for cortical 

organization and create a normative reference to quantify 

individual deviations in brain disorders. Growing evidence 

highlights disrupted inter-regional communication and global 

network dysfunction as key contributors to neuropsychiatric 

conditions. 82–84 By constructing lifespan growth curves, we 

assessed how individual connectivity metrics deviate from pop-

ulation norms, demonstrating the potential clinical applicability 

of connectome-based models. We analyzed morphometric 

network heterogeneity across AD, MDD, and ASD patients at 

the global, cytoarchitectonic, and regional levels. While ≤13% 

of patients showed extreme deviations in single metrics, 

neurodegenerative disorders exhibited greater overlap in 

morphometric network-based deviations than did psychiatric 

conditions. Connectome-based models showed stronger clin-

ical symptom prediction for AD patients than MDD/ASD patients, 

aligning with prior findings of widespread morphometric abnor-

malities in AD patients 85,86 versus subtler, more heterogeneous 

alterations in MDD/ASD patients, with reduced detection sensi-

tivity. 87,88 Neurodegenerative patterns’ severity likely enhances 

network-based predictive capacity, whereas the variability of 

psychiatric disorders challenges morphology-focused ap-

proaches. In future work, growth charts and their derived hetero-

geneity metrics must be validated in clinical practice while re-

stricting homogeneous cohorts to gain subtyping insights or 

expanding to larger, diverse cohorts to gain transdiagnostic in-

sights. 4,89,90 Despite these challenges, this framework could 

evolve into a lifespan-based assessment tool for early diagnosis, 

disease monitoring, and personalized intervention.

Several limitations warrant further consideration. First, while 

our large cohort was ideal for performing robust analyses, an 

imbalanced age distribution, particularly the sparsity of data for 

infancy and late adulthood, may bias the growth models. Valida-

tion analyses harmonizing age/site effects partially addressed 

this issue, but future studies require expanded datasets 

targeting underrepresented age groups. Second, geographic 

bias persists as the data primarily originated from Europe, North 

America, Asia, and Australia. The inclusion of diverse popula-

tions with varied socioeconomic/cultural backgrounds would 

enhance generalizability. Third, the cross-sectional design could 

lead to the underestimation of the lifespan trajectories of 

morphometric brain networks. 91 Longitudinal data with a dense 

temporal sampling interval are needed to precisely map morpho-

metric network maturation. Fourth, PET metabolic data were 

restricted to adults because of ethical/practical barriers in pedi-

atric imaging. Lifespan PET datasets tracking metabolism,

neurotransmitter receptors, and transporters could aid in better 

elucidating the neurobiological drivers of development. Finally, 

in our morphology-function coupling analysis, a morphometric 

correlation approach was used rather than diffusion MRI tractog-

raphy 57,72 —the conventional structural network approach. 

While tractography struggles in cases with crossing fibers and 

long-range connections, 92 morphometric networks provide 

complementary insights into structure-function relationships. 

Methodological pluralism (e.g., integrating graph theory 73,74 

and nonlinear dynamics 93,94 ) will advance this field.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants

In this study, we aggregated 3T structural MRI data from multisite neuroimaging datasets and included corresponding task-free fMRI 

data where available. The original multimodal neuroimaging dataset consisted of the data of 45,833 participants aged 0 to 80 years

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

dhcpSym surface atlases Bozek et al. 120 https://brain-development.org/brain-

atlases/atlases-from-the-dhcp-project/ 

cortical-surface-template/

UNC 4D infant cortical surface atlases Li et al. 121 https://bbm.web.unc.edu/tools/

fs_LR_32k surface atlas Glasser et al. 122 https://balsa.wustl.edu/

Allen Human Brain Atlas datasets Hawrylycz et al. 36 https://human.brain-map.org/static/

download

Brain charts of morphometric brain 

networks

This paper https://github.com/Xinyuan-Liang/ 

Cortical_Similarity_Networks_Lifespan 

(Zenodo: https://doi.org/10.5281/zenodo. 

15662487)

Software and algorithms

MRIQC Esteban et al. 123 https://github.com/nipreps/mriqc

QuNex Li et al. 124 https://gitlab.qunex.yale.edu/

HCP pipeline Glasser et al. 122 https://github.com/Washington-University/

HCPpipelines/releases

ABCD-HCP pipeline Feczko et al. 125 https://github.com/DCAN-Labs/abcd-hcp-

pipeline

dHCP structural pipeline Makropoulos et al. 126 https://github.com/BioMedIA/dhcp-

structural-pipeline

dHCP functional pipeline Fitzgibbon et al. 127 https://git.fmrib.ox.ac.uk/seanf/dhcp-

neonatal-fmri-pipeline

iBEAT pipeline Wang et al. 128 https://github.com/iBEAT-V2/iBEAT-V2.0-

Docker

MSM Robinson et al. 129 https://github.com/ecr05/MSM_HOCR

FreeSurfer Fischl 130 https://surfer.nmr.mgh.harvard.edu/

FSL Smith et al. 131 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

Connectome Workbench Glasser et al. 132 https://www.humanconnectome.org/

software/connectome-workbench

MATLAB Mathworks https://www.mathworks.com/products/

matlab.html

SPM Wellcome Trust Centre for 

Neuroimaging (UCL)

https://www.fil.ion.ucl.ac.uk/spm/

software/spm12

GRETNA Wang et al. 133 https://www.nitrc.org/projects/gretna

BrainNet Viewer Xia et al. 134 https://www.nitrc.org/projects/bnv

cifti-matlab Glasser et al. 122 https://github.com/Washington-University/

cifti-matlab

LIBSVM Chang and Lin 135 https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

MIND calculation code Sebenius et al. 20 https://github.com/isebenius/MIND

Python Python Software Foundation https://www.python.org

R R Foundation https://www.r-project.org

GAMLSS Stasinopoulos and Rigby 39 https://www.gamlss.com/

ggplot2 Wickham 136 https://ggplot2.tidyverse.org/

Abagen Markello et al. 137 https://github.com/rmarkello/abagen

Original code This paper https://github.com/Xinyuan-Liang/ 

Cortical_Similarity_Networks_Lifespan 

(Zenodo: https://doi.org/10.5281/zenodo. 

15662487)
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from 183 sites across 30 different datasets. For participants who underwent imaging scans across multiple sessions, only the scan 

from a single session was selected for inclusion. The demographic details of the participants and the parameters used for the imaging 

scans across different sites are detailed in Tables S1 and S2, respectively. All participants and/or their legal guardians provided writ-

ten informed consent. The recruitment procedures were approved by the local ethics committees corresponding to each dataset.

METHOD DETAILS

Image quality control

To ensure that the scans were of appropriate quality, we implemented a four-step quality control framework that combined auto-

mated evaluation techniques and expert manual review to assess all the structural and functional images thoroughly. 34 The overview 

of the quality control process for structural and functional MR images are provided at https://github.com/Xinyuan-Liang/Cortical_ 

Similarity_Networks_Lifespan.

(i) Quality control of the raw imaging data

We first performed a preliminary quality assessment to exclude scans with acquisition issues. We performed initial quality control of 

the dHCP, HCP-Development, HCP-Ageing, HCP-Young Adult, and ABCD datasets according to their provided standard criteria for 

image quality and recommended inclusion criteria. For the BCP dataset, each scan was reviewed in detail by two experienced pe-

diatric neuroradiologists. For the other datasets, we used the MRI Quality Control (MRIQC) tool to conduct automated evaluations, 

generating quality metrics for each T1-weighted (T1w), T2-weighted (T2w) and functional MRI image. In each dataset, structural im-

ages were disqualified if they were identified as outliers—exceeding 1.5 times the interquartile range (IQR) in terms of at least three of 

the following quality metrics: the entropy-focus criterion (EFC), foreground-background energy ratio (FBER), coefficient of joint vari-

ation (CJV), contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and Dietrich’s SNR (SNRd). Functional images were similarly 

excluded if flagged as outliers in terms of three or more of the following metrics: the AFNI’s outlier ratio (AOR), AFNI’s quality index 

(AQI), DVARS_std, DVARS_vstd, SNR, and temporal signal-to-noise ratio (tSNR).

(ii) Determination of whether to pass the entire processing pipeline

After the initial quality check, the images were submitted to the subsequent preprocessing stages. These stages are detailed in the 

’Data preprocessing pipeline’ section below. Scans that failed to progress through the entire processing pipeline were excluded.

(iii) Surface quality control and head motion control

For structural scans, surface quality was evaluated via the Euler number, a mathematical descriptor that quantifies the topological 

complexity of a surface. The Euler number is computed as 2-2n, with n denoting the number of topological defects such as holes or 

handles. Previous studies have demonstrated that the Euler number can serve as a reliable and quantitative measure for identifying 

structural images unsuitable for analysis. 4,138,139 A higher Euler number signifies fewer topological defects, indicative of high-quality 

cortical surface reconstruction. Images were considered outliers and excluded if the Euler number fell below 1.5 times the interquar-

tile range from the study-specific distribution (Q1–1.5*IQR). We further excluded participants from all datasets with Euler numbers 

less than -217 to ensure that the brain surface reconstruction was of sufficient quality, consistent with the criteria used in previous 

studies. 138,140 For functional images, scans with large head motion artifacts (mean frame displacement (FD) > 0.5 mm or more than 

20% of frames with FD > 0.5 mm) were excluded, along with scans with fewer than 100 final time points or a percentage of final time 

points to relative original time points <90%.

(iv) Visual double-check

To further validate that the remaining scans were of high quality, we implemented a detailed visual QC process. (a) A visual QC team 

was assembled, consisting of five anatomically trained experts: X.Y.L., L.L.S., C.X.P., Q.W., and Q.Y. Each participant performed QC 

of one 2D picture generated for the structural scan. If functional scans were available, two additional 2D pictures were produced for 

these scans. (b) X.Y.L. and L.L.S. undertook the first round of visual inspection for both structural and functional datasets, noting the 

IDs of scans with quality issues. (c) The pictures were then equally distributed to Q.W., Q.Y., and C.X.P. for further evaluation. The 

participant IDs corresponding to images with any quality defects were recorded.

The final participant exclusion list was generated by combining these records. The QC team held detailed discussions to ensure 

consistent application of the exclusion criteria. The criteria for excluding structural MRI data focus on detecting artifacts and assess-

ing the quality of cortical segmentation, surface reconstruction, and surface registration. For participants with T2w images, those 

whose images presented with abnormal myelination distributions (as measured by the T1/T2 ratio) were also excluded. The functional 

MRI data were assessed in terms of brain coverage, alignment of individual data with structural data and the standard space, and the 

accuracy of volume-to-surface mapping; participants whose images displayed any of these issues were excluded. A comprehensive 

tutorial on visual QC procedures 34 is available at https://github.com/sunlianglong/BrainChart-FC-Lifespan/blob/main/QC/ 

README.md.

These strict procedures ensured that scans containing imaging artifacts or errors could be detected and excluded, increasing the 

reliability and precision of the neuroimaging dataset. Following this procedure, the final sample included 33,937 healthy participants 

and 1,202 patients (180 patients with AD, 622 patients with MDD, and 400 patients with ASD) with high-quality structural images. A 

subset of these individuals, including 32,887 healthy participants and 1,202 patients, had corresponding high-quality functional 

images.
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Data processing

(i) Structural data preprocessing

Owing to the substantial variability in the structure and function of the human brain across the lifespan, employing a unified structural 

preprocessing pipeline across all datasets would be significantly challenging, 34 particularly for datasets corresponding to the peri-

natal and infancy periods, when the anatomical characteristics are substantially different from those in adulthood. 141 Given the lack of 

a uniform applicable preprocessing pipeline for all stages of life, it was essential to adapt specific methods for datasets focusing on 

early development while maintaining consistency in preprocessing approaches across other age groups.

For participants aged 2 years and above (except those in the ABCD dataset), we used the HCP structural preprocessing pipeline 

(v4.4.0-rc-MOD-e7a6af9) 122 containerized through the QuNex platform (v0.93.2). 124 This pipeline consists of three stages. (a) 

PreFreeSurfer Stage. This initial phase included several preprocessing procedures, such as brain extraction, denoising, and bias field 

correction for both T1w and T2w (if available) MRI data. (b) FreeSurfer Stage. This stage focuses on generating cortical surfaces from 

the normalized structural image, including segmentation of brain tissues and the creation of pial, white, and mid-thickness surfaces, 

followed by alignment to the standard fsaverage atlas. (c) PostFreeSurfer Stage. The final stage involves converting the processed 

data into HCP format (CIFTI), aligning volumetric data to the MNI standard space through nonlinear registration, and mapping surface 

data to the standard fs_LR_32k space via spherical registration and surface downsampling. For participants in the ABCD dataset, the 

T1w imaging data were processed with FreeSurfer software, following the same procedures as the FreeSurfer Stage of the HCP pipe-

line. To obtain regional morphometric measurements at the individual level, the parcellation atlas in the standard fsaverage space 

were registered back to each participant’s surface space.

For participants aged 0–24 months, we used the iBEAT V2.0 pipelines. 128 Compared with alternative approaches, this pipeline is 

optimized for preprocessing early-age neuroimaging data with advanced algorithms and shows superior performance in tissue seg-

mentation and cortical reconstruction. 128 The iBEAT V2.0 pipeline involves (a) inhomogeneity correction for T1w/T2w images; (b) skull 

stripping and cerebellum removal. For participants with incomplete cerebellum removal, we performed frame-by-frame manual cor-

rections. (c) tissue segmentation; (d) cortical surface reconstruction; (e) topological correction of the white matter surface; and

(f) reconstruction of the inner and outer cortical surfaces. The individual cortical surfaces derived from the iBEAT structural pipelines 

were aligned to the adult fs_LR_32k standard space through a three-step registration process. Initially, the individual surfaces were 

subsequently aligned to their corresponding monthly age templates. 142 These monthly templates were subsequently aligned to the 

12-month template, which in turn was aligned to the fs_LR_32k surface template. We then transformed the parcellation atlas from the 

fsaverage standard space to the fs_LR_32k space. On the basis of the registration information obtained from the process described 

above, the parcellation atlas in the standard fs_LR_32k space was first registered back to the corresponding monthly age templates 

and then to each participant’s surface space to obtain regional morphometric measurements at the individual level (Figure S2). 

For participants from the dHCP dataset (postmenstrual age range of 37 to 42 weeks and full-term infants, defined as 0 years in this 

study), we applied the dHCP structural pipelines, 126 which is specifically designed to handle the unique characteristics of neonatal 

MRI data. This HCP-style pipeline includes several steps: (a) bias correction and brain extraction from motion-corrected, recon-

structed T2w images; (b) tissue segmentation; (c) cortical reconstruction of the white matter surface; (d) correction of surface topol-

ogy; (e) creation of pial and mid-thickness surfaces; (f) generation of inflated surfaces from the white matter surface; and (g) surface 

registration through spherical projection. The specific steps for surface registration were as follows. First, individual surfaces were 

registered to specific templates corresponding to the individual’s postmenstrual age. 143 Second, 37-39 postmenstrual weeks tem-

plates and 41-42 postmenstrual weeks templates were registered to the 40-week template. Third, the 40-week template was then 

registered to the fs_LR_32k surface template from adulthood. We then transformed the parcellation atlas from the fsaverage stan-

dard space to the fs_LR_32k space. On the basis of the registration information obtained from the process described above, the 

parcellation atlas in the standard fs_LR_32k space was registered back to each participant’s native space. The overview of the of 

the surface registration strategy are provided at https://github.com/Xinyuan-Liang/Cortical_Similarity_Networks_Lifespan.

(ii) Functional data preprocessing in volumetric space

For individuals aged two years and older, we implemented the HCP functional preprocessing pipelines. 122 The fMRIVolume stage 

included the following steps. (a) Slice timing correction. This step was performed for single-band acquisitions to correct temporal 

misalignments; however, it was not required for multiband acquisitions. (b) Motion correction. EPI images are aligned to the sin-

gle-band reference image via 6 degree-of-freedom (DOF) FLIRT registration. When single-band imaging data were not available, 

the first fMRI frame served as the reference. The motion parameters, including translations, rotations, and their derivatives, were re-

corded. These parameters, with demeaned and linearly detrended parameters, were used to perform subsequent nuisance regres-

sion analyses. (c) EPI distortion correction. Geometric distortion correction was conducted via either the opposite-phase encoded 

spin-echo images (when LR-RL or AP-PA encoded acquisitions were available) or the regular (gradient-echo) fieldmap images (when 

fieldmap acquisitions were available). If neither image was available, this step was skipped. (d) Anatomical registration. The fMRI im-

ages were aligned to the corresponding T1w image using 6 DOF FLIRT with boundary-based registration (BBR). (e) Intensity normal-

ization. The fMRI data, masked by the final brain mask from the PostFreeSurfer structural pipeline, were finally normalized to a 4D 

whole-brain average of 10,000. To mitigate the computational burden of fMRI processing of the large ABCD dataset, we chose to 

use the community-shared, preprocessed data released through the ABCD-BIDS Community Collection 125 (ABCD collection 

3165; https://github.com/ABCD-STUDY/nda-abcd-collection-3165). The multimodal neuroimaging data were preprocessed using 

the ABCD-HCP pipeline, a variant of the HCP pipeline adapted to better suit the ABCD dataset. Modifications to the ABCD-HCP
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structural pipeline include structural volume registration algorithms and bias field correction methods. Notably, the fMRIVolume 

stage remained unchanged. Further details of these modifications can be found in the online document (https://collection3165. 

readthedocs.io/en/stable/pipelines/).

For participants aged 0–24 months, we adapted HCP-style procedures to preprocess volumetric fMRI data. (a) Motion correction. 

The functional images were aligned to the single-band reference image using 6 DOF FLIRT registration. When a single-band refer-

ence was not available, we used mean functional images (with all frames aligned to the first frame) as the reference. (b) Distortion 

correction. Distortion correction was applied using opposite-phase encoding (AP-PA) spin-‒echo images. This step was only 

performed for participants with available images. (c) EPI to anatomical registration. The fMRI reference image was registered to 

the corresponding anatomical image (T1w or T2w image) using 6 DOF FLIRT registration.

For participants of postmenstrual age from 37 to 42 weeks, we applied the dHCP functional pipeline. 127 Building on the foundation 

of the HCP pipeline and the FSL FEAT pipeline, this pipeline is designed specifically for neonatal fMRI analysis. The key components 

of the pipeline included the following steps. (a) Fieldmap preprocessing. This step involves calculating the susceptibility distortion 

field based on the opposite-phase encoded spin‒echo images and subsequent alignment of this field to the functional data. (b) 

Registration. This step includes BBR of the fieldmap magnitude to the T2w image, BBR of the single-band reference image to the 

T2w image with incorporation of field map-based distortion correction, and 6 DOF FLIRT registration of the first volume of the 

functional multiband EPI to the single-band reference image. (c) Susceptibility and motion correction. This step includes slice-to-vol-

ume motion correction, motion-by-susceptibility distortion correction, and estimation of motion nuisance regressors. These steps 

resulted in distortion-corrected and motion-corrected 4D multiband EPI images in the T2w native volumetric space.

The objective of the fMRISurface stage of the HCP functional pipeline to map the volume time series data onto the standardized 

CIFTI gray ordinate space. For participants whose images were preprocessed by the dHCP and iBEAT pipelines, we followed the 

same steps of the HCP fMRISurface pipeline to ensure precise representation of cortical BOLD signals on the surface. This involves 

segregating the fMRI volumetric data into left and right hemispheres and applying a partial-volume weighted, ribbon-constrained 

volume-to-surface mapping technique 122 to map data accurately onto each participant’s mid-thickness surface. The time series 

data were subsequently transformed from the individual’s native space to the fs_LR_32k standard space via surface registration 

transformations derived from the structural preprocessing stage.

(iii) Functional data postprocessing

For the ABCD dataset, we applied the ABCD-HCP functional pipeline, which uses DCANBOLDProcessing software (https:// 

collection3165.readthedocs.io/en/stable/pipelines/) to minimize spurious variance that is unlikely to reflect neural activity. For the 

other datasets, we uniformly postprocessed the preprocessed fMRI data with SPM12 (v6470) and GRETNA (v2.0.0) with a uniform 

pipeline. Specifically, the following steps were applied to the time series data for each vertex in the fs_LR_32k space (59,412 vertices 

in total): linear trend removal, regression of nuisance signals (24 head motion parameters, white matter signals, cerebrospinal fluid 

signals, and global signals), and temporal bandpass filtering (0.01–0.08 Hz). To mitigate the effects of head motion, we further im-

plemented motion censoring by discarding volumes with a FD greater than 0.5 mm and their adjacent volumes (one before and 

two after). To maintain the temporal continuity of the fMRI time series, we subsequently filled these censored frames using a linear 

interpolation. These interpolated data were retained in the time series prior to the construction of the functional connectivity matrices. 

Surface-based smoothing was then conducted with a 6-mm full width at half-maximum (FWHM) kernel.

(iv) Microarray gene expression data preprocessing

Regional gene expression data were obtained from the Allen Human Brain Atlas (http://human.brain-map.org). 36 Since samples from 

the right hemisphere were available for only two of the six donors (mean age: 42.50 ± 13.38 years; one female), analyses were 

restricted to the left hemisphere. The regional microarray expression data were preprocessed using the abagen toolbox (https:// 

github.com/netneurolab/abagen). 137,144 Microarray gene expression data were preprocessed following standard procedures, en-

compassing probe reannotation, background noise filtering, selection of the most stable probe per gene, spatial assignment of tissue 

samples to brain regions (using the DK-318 atlas), normalization across donors using a scaled robust sigmoid function, and averaging 

across samples and donors. Only genes with differential stability values greater than 0.1 were retained for subsequent analyses. The 

full preprocessing details are available in our previous study. 102 After preprocessing, a gene expression matrix (156 brain 

regions × 8470 gene expression levels) was generated.

Construction of morphometric networks and functional networks

To construct the individual morphometric and functional networks, we first parcellated the cerebral cortex into 318 cortical regions 

(219 of which were used for validation) on the basis of the randomly modified Desikan-Killiany atlas. The detailed construction method 

is described below.

(i) Morphometric brain networks

We estimated the individual morphometric network via the state-of-the-art MIND method. 20 Specifically, for each participant, we ob-

tained five morphological features through surface reconstruction: surface area (SA), cortical thickness (CT), gray matter volume 

(Vol), mean curvature (MC) and sulcal depth (SD). Each feature was standardized (Z score) across all vertices. The morphometric 

similarity between each pair of regions was estimated by calculating the regional multivariate Kullback-Leibler (KL) divergence of 

these five vertex-level features. By leveraging a k-nearest neighbor approach, the multivariate KL divergence can be efficiently esti-

mated from vertex-level morphometric measures, thus circumventing the challenges of estimating probability density functions in
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high dimensional spaces. For example, the KL divergence from region a to region b was represented by ̂ D KL (P a ‖ P b ). The symmetric

KL divergence was obtained using the following function.

D̂(P a ; P b ) = max( ̂D KL (P a ‖ P b ); 0) + max( ̂  D KL (P b ‖ P a ); 0)

Finally, the morphometric similarity value between region a and region b was estimated as follows: 

MIND (a; b) =
1

1+ ̂D(P a ;P b )

(ii) Functional brain networks

We first averaged the post-processing time courses of all vertices within each region. The individual functional networks were then 

estimated by calculating the pairwise Pearson correlation coefficients between regional time courses, which were then subjected to 

Fisher’s r-to-z transformation. The resulting Z score matrix was used as the individual functional connectome for further analysis.

Morphometric similarity strength analysis

For each participant, the global variance of the morphometric networks was quantified by calculating the standard deviation of all 

connections (i.e., morphometric similarity), and the global mean of the networks was obtained by averaging the values of all connec-

tions. Intra-class connectivity was defined as the average of all pairwise morphometric similarities among regions within the same 

cytoarchitectonic class, whereas inter-classes connectivity was defined as the average of all pairwise connections between regions 

in one class and regions in other classes. The regional MSS was calculated as the average of the connections with all other regions. 

To investigate the influence of the distance effect on the morphometric networks, for each participant, all connections within each 

hemisphere were divided into three categories on the basis of inter-regional Euclidean distance. The approximate anatomical 

distance of each pair of regions was determined by calculating the Euclidean distance between the centroids of the two regions; 

interhemispheric connections were not included because of the large discrepancy between the actual axonal projection length 

and the Euclidean distance between regions in the two hemispheres. 45 The connections were categorized into three bins: short, mid-

dle, and long. Short connections comprised the shortest 15%, middle connections included those between 15% and 60%, and long 

connections included the longest 40%. For each bin, the mean of all connections was calculated to investigate the growth pattern of 

the distance-dependent morphometric similarity.

Graph-theory analysis

To analyses the graph theoretical metrics of the morphometric networks, first, we binarized the individual networks by applying a 

10% density threshold. The graph theory measures, including the modularity and small-world measures (Gamma (γ), Lamda (λ), 

and Sigma (σ)), are defined below. All analyses were performed with GRETNA software. 133

Modularity

Modularity reflects the degree to which a network can be divided into distinct modules. Nodes within the same module are more 

densely connected with each other than with nodes in other modules. 145 To characterize the modular structure of each morphometric 

network, we calculated the modularity index Q. For a given partition p of the network, Q was defined as:

Q(p) = 
∑ N m

i = 1

[ 
l i
L
− 

(
d i
2L

) 2 
]

where N m is the number of modules, L is the total number of connections in the network, l i is the number of connections between 

nodes within the module i, and d i is the sum of the node degrees in module i. The maximum modularity index was generated through 

a spectral optimization algorithm. 145

Small-world properties

A small-world network is characterized by high local among-node clustering and short average path lengths. 146,147 The degree of 

clustering in a network is quantified by the clustering coefficient. The clustering coefficient (C i ) of node i is defined as the ratio of 

the actual number of connections (e i ) between its neighbors to the maximum possible number of connections between them, which 

is given by k i (k i − 1)/ 2; then the clustering coefficient of a network (C p ) is the average of the clustering coefficients across all nodes. 

The shortest path characterizes the optimal route for information transfer between nodes in a network. For nodes i and j, the shortest 

path (L ij ) is defined as the path with the minimum number of edges connecting them. The shortest path length (L p ) represents the 

average shortest path length of the network between all pairs of nodes within the network. The C p and L p values of the brain networks 

were then compared with those of random networks. Specifically, we generated 100 random networks with same nodes, edges, and

degree distributions as the empirical networks. 148 γ was defined as γ = C real 
p =C rand

p , and λ was defined as λ = L real 
p =L rand

p . The

small-worldness (σ) was defined as σ = γ=λ, which is greater than 1 for small-world networks.

Lifespan associations of morphometric networks and functional networks

We first estimated lifespan growth patterns of functional connectivity strength using GAMLSS models in which age was included as a 

smoothing term, sex and mean FD were included as covariates, and the scanner site was included as a random effect. Then, we
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obtained individual global morphology-function coupling by calculating Pearson’s correlation coefficient between the upper triangle 

edges of the morphometric brain network and the functional network. For each region, we estimated regional morphology-function 

coupling by calculating Pearson’s correlation coefficient between the morphometric similarity profiles and the functional connectivity 

profiles. Age-related changes in coupling were subsequently analyzed with normative models by setting age as a smoothing term, 

sex, the Euler number, and in-scanner head motion (mean FD) as covariates, and the scanner site as a random effect. Additionally, we 

calculated the mean regional coupling and its growth rate within each cytoarchitectonic class at each time point.

To further explore the potential associations between morphometric similarity and functional connectivity, we computed Pearson 

correlations at each time point (with intervals of 0.01 years): between the regional MSS maps and regional coupling maps and be-

tween their growth rate maps. We employed a spatial permutation test ("spin test") 25,149 to assess the significance of the correlation 

and applied the FDR correction for multiple comparisons.

Lifespan associations between morphometric networks and brain metabolism

To understand the relationship between morphometric network and brain metabolic demands, we employed the regional metabolic 

data from a previous study. 35 PET-based measurements of brain metabolism, including the AG, CBF, CMRGlc, and CMRO 2 , were 

from 165 cognitively normal adults aged 20 to 82 years. We analyzed age-related changes in brain metabolism measures through 

normative GAMLSS models by setting age as a smooth term, and sex as a covariate. Regional curves of metabolism measures 

were modeled for 34 bilateral cortical regions, as defined by the Desikan-Killiany parcellation. Given that the study 35 only provides 

metabolic data for 34 cortical regions, for comparison, we resampled the MSSs from the 318 parcellations to the Desikan-Killiany 

parcellation and averaged the values of the left and right hemispheres. We subsequently computed Pearson’s correlation coefficients 

between the spatial distributions of MSS and each metabolic measure at each time point (with intervals of 0.01 years). We employed a 

spatial permutation test ("spin test") 25,149 to assess the significance of the correlation and applied the FDR correction for multiple 

comparisons.

Lifespan associations between morphometric networks and gene expression profiles

We used PLS regression analysis to explore the associations between the transcriptional profiles (8470 genes from 156 cortical re-

gions in the left hemisphere) and the MSS growth rate maps at each representative age. Gene expression data were used as predictor 

variables, and the Z-map of the MSS growth rate was set as the response variable. We employed a spatial autocorrelation-corrected 

permutation test (‘‘spin’’ test) to determine whether the variance explained by each PLS component was significantly greater than 

that expected by chance. For each significant component, we performed bootstrapping to estimate the variability of gene weights 

and computed Z scores by dividing each weight by its bootstrap-derived standard error. Genes with positive weights (Z > 5) or nega-

tive weights (Z < − 5) were then input into the Metascape website (https://metascape.org/gp/index.html#/main/step1) to identify en-

riched Gene Ontology terms. We identified the following genes with positive and negative weights at each time point: 2,160 and 2,025 

genes at 0 months, 2,119 and 1,982 genes at 1 year, 2,095 and 1,943 genes at 2 years, 2,027 and 1,878 genes at 3 years, 1,950 and 

1,777 genes at 4 years, 1,698 and 1,519 genes at 6 years, and 918 and 734 genes at 8 years, respectively. Significant enrichment was 

determined on the basis of the following thresholds: (1) a P value cutoff of 1×10⁻⁵ for the advanced parameter settings, and (2) a false 

discovery rate-adjusted p value (p FDR ) < 0.05.

Clinical relevance of morphometric network-based normative models in brain disorders

To ascertain the clinical relevance of the established morphometric normative models, we included participants with one of three 

brain disorders. All quality control, image preprocessing, and network analysis procedures were identical to those used for the 

morphometric network-based normative modeling. The final analyses included the data from 568 HCs and 400 patients with ASD 

from the ABIDE dataset (13 sites), 535 HCs and 622 patients with MDD from the DIDA-MDD dataset (5 sites), and 187 HCs and 

180 patients with AD from the MCADI dataset (5 sites).

(i) Individual deviation Z scores

The standard protocol for normative model 48 emphasizes the importance of incorporating some control samples from the same im-

aging sites as the patients in the testing set. This is done to verify that the observed case-control differences are not due to performing 

analyses with controls in the training set and cases in the testing set. 48,49 This approach also allows estimation of site effects within 

the case-control datasets. To establish the normative models for all three disorders using the same set of healthy participants, all the 

HCs in the three case-control datasets were randomly divided in half (n HC-train = 641; n HC-test = 649), stratified by age, sex, and site. 

Lifespan normative models were reconstructed with the training set (n train = 33,288), which consisted of the data of half of the HCs 

(n HC-train = 641) and all samples from other datasets that did not include patient data (n = 32,647). The testing set, comprising the data 

of the other half of the HCs (n HC-test = 649) and the patient cases, was used as a completely independent set to determine the de-

viation scores. Specifically, the individual quantile scores were first estimated relative to the normative curves. The deviation Z scores 

were subsequently derived via quantile randomized residuals, 150 an approach that transforms quantiles of the fitted JSU distribution 

into standard Gaussian-distribution Z scores. This process was repeated 100 times, generating 100 new models and 100 sets of de-

viation scores for both the patients and the healthy controls in the testing set. Our subsequent analysis was based on these indepen-

dently derived deviation scores in the HCs (HC test ) and cases (patients with the three brain disorders). Notably, these disease-related 

deviations were obtained based on the sex-stratified normative growth model.
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(ii) Stability of deviation scores across 100 repetitions

To quantitatively assess the similarity between the estimated growth curves in 100 distinct normative models and the curves in 

the main results, we sampled 80 points at 1-year intervals for each growth curve and calculated Pearson’s correlation coefficients 

between the corresponding curves (Figure S6B; Tables S4 and S5). The curves of all the metrics demonstrated a high degree of sim-

ilarity to the curve of the main results (mean r > 0.95, mean MSE < 8.6×10 -8 ). To evaluate the stability of the individual deviations, we 

computed the pairwise Pearson’s correlation coefficients and MSEs of the deviation scores among 100 distinct models. The results 

indicated a high degree of stability in the estimates of the individual deviations for patients within specific disease cohorts (mean 

r > 0.97, mean MSE < 0.09 for all metrics).

(iii) Individual heterogeneity of deviations

Extreme deviations were defined as z > |2.6| (corresponding to a p < 0.005), which is consistent with the criteria used in previous 

studies. 49,151 The numbers of total, positive, and negative extreme deviation metrics were calculated for each patient. To quantify 

the percentage of extreme deviations within each disease group, we averaged the 100 sets of deviation scores for patients in 

each group and assessed the extreme deviations for each metric. The percentage map of extreme deviations indicated substantial 

individual heterogeneity within each disease group.

(iv) Case-control differences between patients and their matched HCs

The numbers of total, positive, and negative extreme deviation metrics of the patients were compared to those of 

their matched HCs. For each metric, the significance of the median differences between the patients and HCs was 

assessed with the Mann-Whitney U test. p values were adjusted for multiple comparisons with Benjamini-Hochberg 

FDR correction across all possible pairwise tests (p < 0.05). For each metric, the case-control difference 

analysis was repeated 100 times. The proportion of tests that passed the significance threshold out of the 100 comparisons 

is reported.

(v) Predictions of clinical scores on the basis of network-based deviations

Using SVR with a linear kernel, we sought to assess the ability of the morphometric network-based deviations to predict 

the clinical scores of patients. Each participant’s deviation pattern was averaged across 100 repetitions. A two-fold cross-vali-

dation framework was implemented to estimate the prediction accuracy. Each fold alternately served as the training or test 

set. To mitigate the impact of features with greater numeric ranges, we normalized each feature in the training set 

and applied the resulting parameters to the testing set. The final predictive performance was quantified with Pearson’s 

correlation coefficients between the predicted and observed clinical scores. The statistical significance of the prediction 

accuracy was evaluated through the nonparametric permutation (1,000 times). During each permutation, the observed 

scores of the patients were randomly shuffled prior to implementing SVR and cross-validation. This process yielded a null 

distribution of the correlation coefficients, and the p value was computed. The codes for the prediction analysis were modified 

from Cui and Gong 152 (https://github.com/ZaixuCui/Pattern_Regression_Matlab) and libsvm software (www.csie.ntu.edu.tw/ 

∼cjlin/libsvm/).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

Statistical analyses were performed with R (v4.2.0) and MATLAB (R2018b). Significance was defined as a p value 

< 0.05, with FDR-corrected p values used for multiple comparisons. Tests used are detailed in corresponding 

figure legends and results.

Normative growth modeling of the morphometric brain network

In line with the recommendations of the World Health Organization, 38 GAMLSS models were used to establish normative reference 

curves of the brain network phenotypes. 4,34,153 The growth rate of each network phenotype was obtained by calculating the first 

derivatives of the corresponding normative growth curve.

(i) Model distributions

We assessed a set of GAMLSS distribution families, each with three or four parameters (i.e., μ; σ; v; τ). 153 To determine the most 

suitable distribution, we fitted GAMLSSs with different distributions to three global brain phenotypes, including the global variance 

of the morphometric network, the global mean of the morphometric network, and the whole-brain morphology‒function coupling. 

The optimal distribution was evaluated on the basis of global brain phenotypes, as they are likely to be more reliable and less noisy 

than regional-level phenotypes. 4,34,153 The optimal distribution was identified as the model with the lowest Bayesian Information 

Criterion (BIC) among the converged models. Although the optimal distribution differed across different phenotypes, the 

Johnson’s Su (JSU) distribution generally demonstrated better fit performance than the other distributions across all three pheno-

types (Figure S7A). This distribution was also shown to be the most appropriate for brain functional phenotypes in our previous 

study. 34
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(ii) GAMLSS fitting

We used a GAMLSS with a JSU distribution to estimate the normative growth curves for each phenotype in healthy participants. The 

JSU distribution has four parameters, including the median (μ), coefficient of variation (σ), skewness (υ), and kurtosis (τ). For each 

morphometric network metric (denoted by y), the model was defined as follows:

y = JSU (μ; σ; v; τ);
μ = f μ ( age ) + β 1μ( sex ) + β 2μ(Euler number) + z μ ( site );

σ = f σ ( age ) + β σ ( sex ); 

v = β v
τ = β τ

Where the morphometric network metric is the dependent variable, with age included as a smoothing term, sex and the 

Euler number as covariates, and scanner site as a random effect. To evaluate the effectiveness of the GAMLSS models in 

correcting for site effects, we performed one-way ANOVA analyses on three global network features from the ABCD cohort—a 

demographically harmonized multisite dataset. As shown in Figure S8, the uncorrected data exhibited significant site-related 

differences across all three features (all p Anova < 10⁻¹⁶), whereas the GAMLSS models effectively mitigated these site effects (all 

p Anova > 0.05).

In line with the methods in a previous study, 34 for each phenotype, we fitted GAMLSSs with three degrees of freedom (df = 3-5) for 

the B-spline basis functions in the location (μ) parameters. For the scale (σ) parameters, the degree of freedom was set as the default 

value (df = 3). We included only an intercept term for the ν and τ parameters. 4,34,153 For each model, the maximum number of iteration 

cycles was set to 200, and the default convergence criterion (log-likelihood difference = 0.001) was used. The optimal model for each 

metric was identified as that which presented with the lowest BIC value among all the converged models. This flexible statistical 

modeling approach allowed us to map age-related growth patterns in network phenotypes, represented by the μ parameter, and 

to capture inter-individual variability in these phenotypes over time, represented by the σ parameter. All metrics successfully 

converged in our study.

(iii) Model evaluation

To evaluate the goodness of fit, we initially employed two standard diagnostic methods to check the model residuals. First, we gener-

ated four statistical plots: residuals against the fitted values of μ, residuals against the index, a kernel density estimate of the residuals, 

and a normal quantile-quantile (Q-Q) plot. The residuals behave well across all models (Figure S7B), reflected by their even distribu-

tion around the zero line when plotted against both the fitted μ values and the observation index. Additionally, the kernel density es-

timate suggested that the residuals were approximately normally distributed, and the Q-Q plot showed a nearly straight line with a 

zero intercept and a slope of one. Second, we used the detrended transformed Owen’s plots (DTOP) 154 to assess the adequacy of 

the GAMLSSs. This method creates a nonparametric confidence interval for the true distribution. As shown in the DTOP plots in 

Figure S7B, the zero horizontal line was contained within the confidence interval, indicating that the residuals followed a normal 

distribution.

In addition, to further quantitatively assess model fitting, we divided the data into training and test sets. All healthy participants were 

randomly split into two halves, stratified by age and scanner site. For the morphometric metrics, one subgroup consisted of 17,071 

individuals and the other consisted of 16,866 individuals, whereas for morphology-function coupling metrics, the subgroups 

comprised 16,445 and 16,442 individuals, respectively. The groups alternately served as the training and testing sets. Normative 

models were established with the training set, and out-of-sample metrics were calculated in the testing set. The R-squared (R 2 ) 

of the central tendency was first calculated. The centile calibration was subsequently evaluated via randomized Z scores. 150 Ideally, 

if the modeled distribution closely matches the observed distribution, the randomized Z scores should conform to a normal distribu-

tion. We assessed their normality with the Shapiro-Wilk test, 155 where W values near 1 indicate a better fit to normality. We found that 

the Shapiro-Wilk W values were consistently above 0.99 for all phenotypes. Additionally, we examined skewness and kurtosis, with 

skewness values close to 0 reflecting more symmetrical residuals and kurtosis values near 0 indicating a well-behaved distribution 

with light tails 156 (Figure S7C).

(iii) Sex differences across the lifespan

To evaluate sex differences in the phenotypes of the morphometric networks, we obtained the μ coefficients, T values, and p values 

for the sex variable using the summary function in R. To avoid the influence of brain volume, the total intracranial volume (TIV) was also 

included as a covariate in the GAMLSS in this analysis. We measured spatial correlations between the brain maps from the refitted 

models and the maps from the main results at each corresponding time point (with intervals of 0.01 years). High correlations were 

observed, with all correlation coefficients exceeding 0.98 across the lifespan. Next, the μ coefficients represent the adjusted 

mean effect of sex on the morphometric network phenotypes after accounting for age, the Euler number, and TIV as control variables, 

and the scanner site as a random effect.

Sensitivity analysis of the normative models

To evaluate the robustness of the lifespan growth patterns, we employed the following analyses.
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(i) Bootstrap resampling analysis

To assess the robustness and determine the confidence intervals of each lifespan growth curve, we conducted 1,000 bootstrap re-

sampling analyses, stratified by age and sex to preserve the distribution characteristics of the original participants. For each pheno-

type’s 50th percentile growth curve, we generated 1,000 replicates and calculated the 95% confidence intervals (CIs) on the basis of 

the mean and standard deviation across all iterations.

(ii) Split-half replication analysis

To evaluate the replicability of the GAMLSSs across independent datasets, we employed a split-half strategy. All healthy participants 

were randomly split into two halves, stratified by age and scanner site. For mapping the growth of the morphometric network, one half 

consisted of 17,071 individuals and the other of 16,866 individuals, whereas for mapping the growth of morphometric‒function 

coupling, the subgroups comprised 16,445 and 16,442 individuals, respectively. Lifespan normative growth patterns were then inde-

pendently assessed within each subgroup.

(iii) Leave-one-site-out (LOSO) analysis

To test whether the lifespan growth curves were influenced by data from specific sites, we performed LOSO analyses. We iteratively 

excluded one site from the dataset and re-estimated the GAMLSSs. The 95% CIs for the LOSO normative growth curves and growth 

rates were calculated on the basis of the mean and standard deviation across all iterations. The resulting CIs were narrow, indicating 

that the robustness of our main results was high.

(iv) Balanced resampling analysis (strategy I)

To determine whether the changes in the morphometric network-based metrics were influenced by the imbalance in sample size 

across different age groups, we adopted a balanced resampling strategy, ensuring that the number of participants was relatively 

consistent across age groups. All participants were divided into 16 age groups with 5-year intervals, and the number of participants 

in each group was recorded. Given that most metrics in our study exhibited significant changes during the first 30 years of life, we 

defined the baseline for balanced resampling on the basis of the minimum number of participants (n participant ) in the first six age bins 

(0-30 years). All other age groups were randomly sampled according to this standard. Within each age group, we further divided par-

ticipants into five sub-bins at 1-year intervals and ensured that the number of participants in each sub-bin was as equal as possible 

during resampling. If the number of participants in a given age bin was less than n participant , all participants in this bin were selected. 

After resampling, data for 12,414 individuals were used to calculate morphometric metrics, and data for 8,071 individuals were used 

to calculate morphology‒function coupling. The distribution of participants after resampling is shown in Tables S7 and S8. This re-

sampling procedure was repeated 1,000 times, and the GAMLSS models were refitted for each iteration. We then calculated the 95% 

CIs on the basis of the mean and standard deviation across all iterations. Additionally, we assessed the correlations between the 

1,000 median (50th) centile curves and the median centile curve derived from the entire cohort.

(v) Balanced resampling analysis (strategy II)

To determine whether the changes in the morphometric network-based metrics were influenced by the imbalance in sample size and 

the number of scanner sites across different age groups, we adopted a balanced resampling strategy, ensuring that the number of 

participants and sites was relatively consistent across age groups, which aligns with our previous study. 34 All participants were 

divided into 16 age groups with 5-year intervals, and the number of participants and scanning sites for each age group were re-

corded. Given that most metrics in our study exhibited significant changes during the first 30 years of life, we defined the baseline 

for balanced resampling on the basis of the minimum number of participants (n participant ) and the minimum number of sites (n site ) in the 

first six age bins (0–30 years). All other age groups were randomly sampled according to this standard. If the number of participants in 

a particular age bin was less than n participant , data from the top n site centers with the most participants were selected. After resampling, 

11,114 individuals were included for calculating morphometric metrics, and 7,555 individuals were included for calculating 

morphology‒function coupling. The distribution of participants and sites after resampling is shown in Tables S7 and S8. This resam-

pling procedure was repeated 1,000 times, and the GAMLSS models were refitted for each iteration. We then calculated the 95% CIs 

on the basis of the mean and standard deviation across all iterations. Additionally, we assessed the correlations between the 1,000 

median (50th) centile curves and the median centile curve derived from the entire cohort.

(vi) Cortical parcellation validation

To investigate whether the lifespan growth curves were stable under different parcellation resolutions, 157 we replicated the growth 

curves using all healthy participants by parcellating their cortex into 219 cortical brain regions. GAMLSS models for each metric were 

then re-estimated at the global, cytoarchitectonic-class, and regional levels.

(vii) Leave-one-feature-out analysis

To assess the MIND stability of the morphometric similarity estimation, we reconstructed the morphometric network for each partic-

ipant by removing one feature at a time. We re-estimated the growth curves of each four-feature network using the data from all 

healthy participants and then assessed the spatial correlations between the four-feature and original five-feature MSS maps.

ADDITIONAL RESOURCES

ABCD: data used in the preparation of this article were obtained from the Adolescent Brain Cognitive Development (ABCD) Study 
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Figure S1. Inter-individual variability in the global variance and global mean of the morphometric 
networks, related to Figure 2. (A) Inter-individual variability curves for global variance in the morphometric 
networks. (B) Inter-individual variability curves for global mean in the morphometric networks. The solid line 
(median) represents the 50% centile, with 95% confidence intervals (shaded in gray) estimated through 
bootstrapping with 1,000 resamples. yr, year. 
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Figure S2. Normative growth of intra- and inter-class connectivity across the lifespan, related to Figures 
3 and 4. (A) Normative growth curves of the morphometric networks at the cortical cytoarchitectonic class 
level across the human lifespan. The solid line (median) represents the 50% centile, and the dotted lines 
represent the 5%, 25%, 75%, and 95% centiles. (B) Surface maps of the growth rate of regional-level intra- 
and inter-class MSS. m, month; yr, year; PS, primary sensory cortex; PSS, primary/secondary sensory cortex; 
PM, primary motor cortex; AC1, association cortex I, AC2, association cortex II; LB, limbic region; IC, insular 
cortex; MSS, morphometric similarity strength. 
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Figure S3. Lifespan growth curves and growth rates of the morphometric networks at the 
cytoarchitectonic class level across different distance bins, related to Figure 3. The plot shows the growth 
curves and rates for the 50th percentile of intra- and inter-class mean connectivity are shown. PS, primary 
sensory cortex; PSS, primary/secondary sensory cortex; PM, primary motor cortex; AC1, association cortex I; 
AC2, association cortex II; LB, limbic region; IC, insular cortex. 
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Figure S4. Normative growth curves of the Z scores relative to the null distribution at the cortical 
cytoarchitectonic class level across the human lifespan, related to Figure 3.To establish the baseline for 
MSS at the cytoarchitectonic class level, we shuffled the node labels for each participant's morphometric 
network while preserving spatial autocorrelation. This process generated 10,000 random morphometric 
networks, from which we derived the null distribution for both intra-class and inter-class connectivity. Each 
participant's connectivity was expressed as Z scores relative to these null distributions. The solid line (median) 
represents the 50% centile, and the dotted lines represent the 5%, 25%, 75%, and 95% centiles. yr, year; PS, 
primary sensory cortex; PSS, primary/secondary sensory cortex; PM, primary motor cortex; AC1, association 
cortex I, AC2, association cortex II; LB, limbic region; IC, insular cortex. 
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Figure S5. Sex differences in the morphometric brain networks, related to STAR Methods. (A) Sex-
stratified growth curves for the global variance of the morphometric network (left panel) and the global mean 
of the morphometric network (right pane;). The solid line represents the 50% centile, with the two surrounding 
dotted lines represent the 5% and 95% centiles. (B) Sex differences (T values) in the morphometric network at 
the cortical cytoarchitectonic class level. Blue indicates greater connectivity strength in females than in males, 
while red indicates greater connectivity strength in males than in females. Asterisks denote a significance level 
at PFDR < 0.05 (P = 0.016, FDR corrected). (C) Sex differences in the morphometric network at the regional 
level. Statistically significant differences are shown in blue or red (P = 0.038, FDR corrected). yr, year; PS, 
primary sensory cortex; PSS, primary/secondary sensory cortex; PM, primary motor cortex; AC1, association 
cortex I, AC2, association cortex II; LB, limbic region; IC, insular cortex; M, male; F, female.  



6 
 

 
 

Figure S6. Normative modeling and deviation analysis across clinical groups, related to STAR Methods. 
(A) Schematic overview of normative modelling for patients. (B) Similarity between the curves estimated from 
100 repeatedly constructed normative models using different sets of healthy controls and the curves from the 
main analysis. (C) Similarity between the deviation scores from 100 repeatedly constructed normative models 
and the deviation scores from the main analysis in AD patients, MDD patients, and ASD patients. Both the 
normative curves and the patients' deviation scores exhibited a high degree of stability across the 100 
repetitions (average r > 0.95 and average mean squared error [MSE] < 0.09 for all metrics). (D) Bar plots show 
the percentage of participants with extreme deviations across different numbers of morphometric network 
phenotypes in AD (left panel), MDD (middle panel), and ASD (right panel). 
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Figure S7. Model selection, evaluation, and goodness of fit for normative modeling, related to STAR 
Methods. (A) Selection of model distribution. (B) Model evaluation. Kernel density plots of residuals, Q-Q 
plots, and detrended transformed Owen's plots are shown for three global brain phenotypes. (C) Goodness of 
fit of normative model. R-squared (R2), skewness, and kurtosis values of the normative model of intra- and 
inter-class morphometric similarity, the regional-level MSS, and regional-level coupling. MSS, morphometric 
similarity strength. 
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Figure S8. Effectiveness of GAMLSS in correcting for site effects, related to STAR Methods. Box plots 
illustrating site-related differences before (top panels) and after GAMLSS-based correction (bottom panels) in 
three global network features. Each box represents the distribution of values in a given site.  
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Supplementary Tables 
 

Table S1. Sample description, related to Figure 1. 

Research aims Dataset Modality N (subjects) N 
(sites) 

Age range 
(years) Sex (F) 

Aim 1: Mapping of 
morphometric brain network 
over the human lifespan 

All set 
(healthy) sMRI 33,937 141 0-80 53.7% 

Aim 2: Mapping of 
morphology‒function 
coupling over the human 
lifespan 

Subset 
(healthy) 

sMRI, 
fMRI 32,887 131 0-80 53.9% 

Aim 3: Clinical relevance of 
normative models of 
morphometric brain networks 

Training set 
(healthy) sMRI 33,288 141 0-80 53.8% 

Testing set 
(healthy) sMRI 649 23 6-80 45.9% 

AD sMRI 180 5 51-80 58.9% 

MDD sMRI 622 5 11-77 59.2% 

ASD sMRI 400 13 5-59 14.3% 

AD, Alzheimer’s disease; MDD, major depressive disorder; ASD, autism spectrum disorder; fMRI, functional 
MRI; sMRI, structural MRI; F, female. 
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Table S4. Stability of growth curves and deviation scores according to Pearson’s correlation coefficient 
based on 100 normative models, related to STAR Methods. 

Metric 
Similarity of 

growth curves 
Similarity of 

deviation score 
in AD 

Similarity of 
deviation score 

in MDD 

Similarity of 
deviation score 

in ASD 
R 

(mean) 
R 

(std) 
R 

(mean) 
R 

(std) 
R 

(mean) 
R 

(std) 
R 

(mean) 
R 

(std) 
Global variance of the connectome 1 7.4E-04 0.99 0.005 0.99 0.002 0.98 0.003 

Global mean of the connectome 1 3.2E-04 0.99 0.004 1 0.002 0.98 0.004 

Within the PS system 1 1.3E-04 0.99 0.005 1 0.002 0.98 0.003 

Within the PSS system 1 1.2E-04 0.99 0.005 0.99 0.002 0.98 0.004 

Within the PM system 1 1.5E-03 0.98 0.006 1 0.002 0.98 0.004 

Within the AC1 system 1 4.1E-04 0.99 0.005 1 0.002 0.99 0.003 

Within the AC2 system 1 2.7E-04 0.99 0.004 1 0.002 0.99 0.003 

Within the LB system 1 9.1E-05 0.99 0.005 0.99 0.003 0.98 0.004 

Within the IC system 1 6.1E-05 0.98 0.006 0.99 0.002 0.98 0.004 

Between the PM and PS systems 1 9.1E-05 0.99 0.005 1 0.002 0.98 0.004 

Between the PM and PSS systems 1 1.5E-04 0.99 0.004 1 0.002 0.98 0.004 

Between the PM and LB systems 1 2.4E-04 0.98 0.005 0.99 0.002 0.98 0.003 

Between the PM and AC1 systems 1 7.4E-05 0.98 0.005 1 0.002 0.98 0.003 

Between the PM and AC2 systems 1 3.3E-04 0.99 0.004 1 0.001 0.98 0.003 

Between the PM and IC systems 1 6.2E-05 0.98 0.006 1 0.002 0.98 0.004 

Between the PS and PSS systems 1 3.2E-04 0.98 0.006 0.99 0.002 0.98 0.004 

Between the PS and LB systems 1 2.7E-04 0.99 0.003 0.99 0.002 0.98 0.004 

Between the PS and AC1 systems 1 1.7E-04 0.99 0.003 0.99 0.002 0.98 0.004 

Between the PS and AC2 systems 1 1.3E-04 0.99 0.003 0.99 0.002 0.98 0.004 

Between the PS and IC systems 0.99 1.7E-03 0.99 0.003 1 0.002 0.97 0.006 

Between the PSS and LB systems 1 5.4E-04 0.99 0.005 0.99 0.002 0.98 0.004 

Between the PSS and AC1 systems 1 9.0E-05 0.99 0.003 1 0.002 0.98 0.004 

Between the PSS and AC2 systems 1 6.9E-05 0.99 0.005 1 0.002 0.98 0.004 

Between the PSS and IC systems 1 2.0E-03 0.99 0.004 1 0.001 0.97 0.006 

Between the LB and AC1 systems 1 3.8E-04 0.99 0.005 1 0.002 0.98 0.004 

Between the LB and AC2 systems 1 2.3E-04 0.99 0.004 1 0.001 0.98 0.003 

Between the LB and IC systems 1 1.2E-04 0.99 0.004 0.99 0.002 0.98 0.004 

Between the AC1 and AC2 systems 1 7.7E-04 0.99 0.003 1 0.002 0.99 0.003 

Between the AC1 and IC systems 1 1.4E-04 0.99 0.004 1 0.001 0.98 0.004 

Between the AC2 and IC systems 1 1.6E-04 0.99 0.004 1 0.001 0.98 0.004 
Abbreviations: PS, primary sensory cortex; PSS, primary/secondary sensory cortex; PM, primary motor cortex; AC1, association 
cortex I; AC2, association cortex II; LB, limbic region; IC, insular cortex. 
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Table S5. Stability of growth curves and deviation scores according to the mean squared error (MSE) 
based on 100 normative models, related to STAR Methods. 

Metric 
Similarity of 

growth curves 

Similarity of 
deviation score 

in ASD 

Similarity of 
deviation score 

in MDD 

Similarity of 
deviation score 

in AD 
MSE 

(mean) 
MSE 
(std) 

MSE 
(mean) 

MSE 
(std) 

MSE 
(mean) 

MSE 
(std) 

MSE 
(mean) 

MSE 
(std) 

Global variance of the connectome 2.8E-10 1.7E-10 0.06 0.017 0.01 0.005 0.04 0.007 

Global mean of the connectome 2.4E-9 1.1E-9 0.05 0.015 0.01 0.005 0.04 0.01 

Within the PS system 9.4E-9 4.0E-9 0.05 0.015 0.02 0.006 0.04 0.008 

Within the PSS system 7.6E-9 2.9E-9 0.06 0.02 0.01 0.004 0.05 0.009 

Within the PM system 2.5E-9 2.4E-9 0.06 0.017 0.01 0.004 0.04 0.007 

Within the AC1 system 1.6E-9 1.3E-9 0.06 0.019 0.01 0.005 0.04 0.008 

Within the AC2 system 2.1E-9 1.4E-9 0.05 0.014 0.01 0.005 0.03 0.007 

Within the LB system 5.4E-9 4.5E-9 0.06 0.019 0.02 0.006 0.04 0.008 

Within the IC system 4.4E-9 2.9E-9 0.06 0.018 0.02 0.006 0.05 0.009 

Between the PM and PS systems 1.0E-8 3.7E-9 0.05 0.018 0.01 0.004 0.04 0.008 

Between the PM and PSS systems 1.1E-8 3.6E-9 0.05 0.014 0.01 0.005 0.05 0.009 

Between the PM and LB systems 4.3E-9 3.2E-9 0.06 0.017 0.02 0.006 0.04 0.007 

Between the PM and AC1 systems 1.3E-9 1.2E-9 0.05 0.015 0.01 0.004 0.04 0.007 

Between the PM and AC2 systems 2.8E-9 1.8E-9 0.04 0.013 0.01 0.004 0.04 0.007 

Between the PM and IC systems 4.7E-9 2.7E-9 0.06 0.019 0.01 0.005 0.04 0.006 

Between the PS and PSS systems 9.1E-9 3.3E-9 0.06 0.017 0.02 0.006 0.05 0.01 

Between the PS and LB systems 7.5E-9 3.1E-9 0.04 0.011 0.02 0.006 0.05 0.011 

Between the PS and AC1 systems 8.0E-9 3.4E-9 0.04 0.013 0.02 0.005 0.04 0.01 

Between the PS and AC2 systems 1.0E-8 4.1E-9 0.04 0.012 0.02 0.005 0.05 0.01 

Between the PS and IC systems 1.3E-8 3.9E-9 0.04 0.011 0.01 0.005 0.07 0.015 

Between the PSS and LB systems 4.6E-9 1.9E-9 0.06 0.022 0.02 0.006 0.05 0.01 

Between the PSS and AC1 systems 8.3E-9 2.1E-9 0.04 0.014 0.01 0.004 0.05 0.009 

Between the PSS and AC2 systems 8.1E-9 2.0E-9 0.05 0.016 0.01 0.004 0.05 0.011 

Between the PSS and IC systems 4.5E-9 1.7E-9 0.05 0.016 0.01 0.004 0.06 0.013 

Between the LB and AC1 systems 1.9E-9 1.7E-9 0.06 0.019 0.01 0.005 0.04 0.008 

Between the LB and AC2 systems 2.2E-9 1.6E-9 0.05 0.015 0.01 0.005 0.04 0.008 

Between the LB and IC systems 8.4E-9 5.7E-9 0.05 0.018 0.01 0.004 0.04 0.009 

Between the AC1 and AC2 systems 1.4E-9 9.1E-10 0.05 0.014 0.01 0.005 0.04 0.008 

Between the AC1 and IC systems 3.5E-9 1.9E-9 0.06 0.018 0.01 0.004 0.04 0.008 

Between the AC2 and IC systems 4.1E-9 2.3E-9 0.06 0.018 0.01 0.005 0.04 0.008 
Abbreviations: PS, primary sensory cortex; PSS, primary/secondary sensory cortex; PM, primary motor cortex; AC1, association 
cortex I; AC2, association cortex II; LB, limbic region; IC, insular cortex. 
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Table S6. Similarity between the lifespan normative growth curves from the sensitivity analyses and the 
main results, related to STAR Methods. 

Sensitivity analysis 

Global-level metrics Class-level 
metrics Regional-level metrics 

Global 
variance of 

the 
morphometric 

networks 

Global mean of 
the morphometric 

networks 

Global 
morphology-

functional 
coupling 

Class-level 
MSS Regional MSS 

Regional 
morphology-

functional 
coupling 

(i) Bootstrap resampling 0.97 0.99 0.99 0.99 1.00 1.00 

(ii) Split-half subgroup 1 0.99 1.00 1.00 0.99 1.00 1.00 

(ii) Split-half subgroup 2 0.96 0.99 1.00 0.99 1.00 1.00 

(iii) Leave-one-site-out 1.00 1.00 1.00 1.00 1.00 1.00 

(iv) Balanced resampling 
(strategy I) 0.99 0.98 0.99 0.99 1.00 1.00 

(v) Balanced resampling 
(strategy II) 0.83 0.96 0.94 0.95 1.00 0.99 

(vi) Cortical parcellation 
validation (DK-219) 0.80 0.95 0.98 0.95 — — 

(vii) Leave-one-feature-
out (removed CT) 0.30 -0.63 0.98 0.53 0.97 0.94 

(vii) Leave-one-feature-
out (removed SA) 0.97 0.97 0.98 0.89 1.00 1.00 

(vii) Leave-one-feature-
out (removed Vol) 0.74 0.94 1.00 0.98 1.00 1.00 

(vii) Leave-one-feature-
out (removed MC) 0.67 0.91 1.00 0.95 0.99 0.99 

(vii) Leave-one-feature-
out (removed SD) 0.70 0.92 1.00 0.95 0.99 0.99 

Note: For global- and class-level metrics, in the bootstrap resampling, leave-one-site-out, and balanced resampling analyses, we 
calculated the average similarity between the curves generated from multiple resamplings and the main result curve. For regional-
level metrics, we calculated the average correlation between the brain maps from a single random sample and the maps from the 
main results in the bootstrap resampling and balanced resampling analyses. For the leave-one-site-out analysis, we calculated the 
average correlation coefficient between the brain maps of the sample after removal of the largest site (UKB1) and the brain maps 
from the main results. Notably, normative growth curves of global morphometric network metrics and surface maps of regional-
level metrics for each sensitivity analysis are available at https://github.com/Xinyuan-
Liang/Cortical_Similarity_Networks_Lifespan. MSS, morphometric similarity strength; CT, cortical thickness; SA, surface area; 
Vol, gray matter volume; MC, mean curvature; SD, sulcal depth. 
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Table S7. Distribution of samples and sites before and after balanced resampling, related to STAR 
Methods. 

Age (year) 
Before resampling After resampling 

Samples Sites Strategy I Strategy II 
Samples Samples Sites 

[0,5] 944 15 907 816 15 
(5,10] 4625 55 907 816 15 
(10,15] 4415 64 907 816 15 
(15,20] 1875 53 907 816 15 
(20,25] 2277 47 907 816 15 
(25,30] 907 37 907 816 15 
(30,35] 635 28 635 602 15 
(35,40] 457 29 457 406 15 
(40,45] 2526 23 907 816 15 
(45,50] 3062 25 907 816 15 
(50,55] 3466 28 907 816 15 
(55,60] 3937 37 907 816 15 
(60,65] 3142 37 907 816 15 
(65,70] 1231 53 907 816 15 
(70,75] 283 45 283 207 15 
(75,80] 155 41 155 107 15 
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Table S8. Distribution of samples and sites before and after balanced resampling (morphology‒function 
coupling), related to STAR Methods. 

Age (year) 
Before resampling After resampling 

Samples Sites Strategy I Strategy II 
Samples Samples Sites 

[0,5] 552 5 552 552 5 
(5,10] 4321 48 552 552 5 
(10,15] 4213 60 552 552 5 
(15,20] 1750 49 552 552 5 
(20,25] 2250 44 552 552 5 
(25,30] 907 37 552 552 5 
(30,35] 635 28 552 477 5 
(35,40] 457 29 457 272 5 
(40,45] 2526 23 552 552 5 
(45,50] 3062 25 552 552 5 
(50,55] 3466 28 552 552 5 
(55,60] 3937 37 552 552 5 
(60,65] 3142 37 552 552 5 
(65,70] 1231 53 552 552 5 
(70,75] 283 45 283 126 5 
(75,80] 155 41 155 56 5 
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