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Structural Insights into Aberrant Topological Patterns of
Large-Scale Cortical Networks in Alzheimer’s Disease

Yong He, Zhang Chen, and Alan Evans
McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4

Recent research on Alzheimer’s disease (AD) has shown that cognitive and memory decline in this disease is accompanied by disrupted
changes in the coordination of large-scale brain functional networks. However, alterations in coordinated patterns of structural brain
networks in AD are still poorly understood. Here, we used cortical thickness measurement from magnetic resonance imaging to inves-
tigate large-scale structural brain networks in 92 AD patients and 97 normal controls. Brain networks were constructed by thresholding
cortical thickness correlation matrices of 54 regions and analyzed using graph theoretical approaches. Compared with controls, AD
patients showed decreased cortical thickness intercorrelations between the bilateral parietal regions and increased intercorrelations in
several selective regions involving the lateral temporal and parietal cortex as well as the cingulate and medial frontal cortex regions.
Specially, AD patients showed abnormal small-world architecture in the structural cortical networks (increased clustering and shortest
paths linking individual regions), implying a less optimal topological organization in AD. Moreover, AD patients were associated with
reduced nodal centrality predominantly in the temporal and parietal heteromodal association cortex regions and increased nodal
centrality in the occipital cortex regions. Finally, the brain networks of AD were about equally as robust to random failures as those of
controls, but more vulnerable against targeted attacks, presumably because of the effects of pathological topological organization. Our
findings suggest that the coordinated patterns of cortical morphology are widely altered in AD patients, thus providing structural
evidence for disrupted integrity in large-scale brain networks that underlie cognition. This work has implications for our understanding

of how functional deficits in patients are associated with their underlying structural (morphological) basis.
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Introduction

Alzheimer’s disease (AD) is a progressive, neurodegenerative dis-
ease characterized by the decline of cognitive and memory func-
tions. Current theories of AD have posited that the decline arises
from alterations in functional integration of distributed brain
systems or from structural disconnection between regions be-
cause of white matter damage (for review, see Delbeuck et al.,
2003). Evidence from previous neurophysiological and neuroim-
aging studies has shown AD-associated abnormalities not only in
the functional connection of several specific brain regions, in-
volving the prefrontal (Horwitz et al., 1987; Grady et al., 2001,
2003), hippocampus (Celone et al., 2006; Wang et al., 2006),
cingulate (Greicius et al., 2004), and visual regions (Horwitz et
al., 1995; Bokde et al., 2006), but also in the functional integration
of the entire brain networks (Stam et al., 2006, 2007). There is also
growing evidence to suggest AD-related abnormalities in the
structural integrity of white matter such as corpus callosum, su-
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perior longitudinal fasciculus, and cingulum (Rose et al., 2000,
Medina et al., 2006). In the current study, we focus on a specific
issue that remains to be addressed relevant to alterations in the
coordinated patterns of large-scale structural brain networks that
are constructed using brain morphological features from struc-
tural magnetic resonance imaging (MRI).

Recent studies have suggested that there are coordinated vari-
ations in brain morphology (e.g., volume and thickness of gray
matter) between regions of functionally or anatomically con-
nected systems, such as the frontoparietal (Wright et al., 1999),
frontotemporal (Lerch et al., 2006), visual system (Andrews et al.,
1997), and symmetrically interhemispheric regions (Mechelli et
al., 2005). The notion of morphological coordination has been
widely used to study correlated evolution in mammalian brain
structures (Barton and Harvey, 2000; Clark et al., 2001) or infer
structural connectivity between brain regions in humans (Bull-
more et al., 1998; McAlonan et al., 2005; Lerch et al., 2006; Boh-
botetal., 2007). The advances in the brain morphological studies
have provided a new avenue of research toward large-scale topo-
logical organization of the entire human cortex. In our previous
study, using graph theoretical network analysis (GRETNA), we
demonstrated that coordinated variations in the thickness of the
human cerebral cortex at a macroscale (regional level) is neither
regular nor random but “small world” in nature (He et al.,
2007b).

The small world, characterized by a high degree of clustering



He et al. @ Structural Cortical Networks in AD

and short path length linking individual network nodes (Watts
and Strogatz, 1998), is an attractive model for the description of
complex brain networks because it not only supports both spe-
cialized and integrated information processing (Sporns et al.,
2004) but also minimizes wiring costs while maximizing the effi-
ciency of information propagation (Kaiser and Hilgetag, 2006;
Achard and Bullmore, 2007). Moreover, it provides a quantita-
tive insight into relevant network parameters that have profound
effects on the dynamic performances of a network such as the
speed of information transfer and robustness against pathologi-
cal attacks by disease (Bassett and Bullmore, 2006). Recently,
using electroencephalogram (EEG) recording, Stam et al. (2007)
have reported the loss of small-world characteristics in functional
brain networks in AD, implicating disruptive system integrity
associated with specific cognitive states caused by the disease. Yet
no studies reported AD-related changes in coordinated patterns
of large-scale structural brain networks.

Here, we hypothesize that AD patients would show alterations
in the coordination of large-scale structural brain networks, us-
ing interregional correlation of cortical thickness as a particular
metric of the structural basis underlying brain dynamics. We
expected that the abnormalities in the patients with AD would be
associated with alterations in cortical thickness correlations,
small-world parameters, nodal centrality, and network robust-
ness because all reflect the precise coordination of cortical mor-
phology in the brain.

Materials and Methods

Subjects

One hundred and ninety-eight right-handed subjects were selected from
the Open Access Series of Imaging Studies (OASIS) database (http://
www.oasis-brains.org) (Marcus et al., 2007). Data from nine subjects
(one healthy elder adult and eight AD subjects) were excluded from the
analysis because of failure of imaging processing. The included subjects
were classified into healthy elders (n = 97) and early-stage AD patients
(n = 92) by using the Clinical Dementia Rating (CDR) scale (Morris,
1993; Morris et al., 2001). Sixty-four of the 92 AD patients who had a
CDR score of 0.5 were assigned to the very mild category, whereas the
other 28 who had a CDR score of 1 were assigned to the mild category.
The AD patients (female/male, 54:38) ranged in age from 62 to 96 (mean
age, 76.65; SD, 7.13). The healthy controls (female/male, 71:26) ranged in
age from 60 to 94 (mean age, 75.93; SD, 9.03). Cognitive function of all
subjects was evaluated using the Mini Mental State Examination
(MMSE) (Folstein et al., 1975). The AD and control groups had an aver-
age MMSE score of 24.38 (range, 14-30) and 28.95 (range, 25-30), re-
spectively. For the details of clinical and demographic data for all sub-
jects, see Marcus et al. (2007).

Image acquisition

For each subject, three to four individual T1-weighted magnetization
prepared rapid gradient-echo (MP-RAGE) images were acquired ona 1.5
T Vision scanner (Siemens, Erlangen, Germany) within a single session.
Head movement was minimized by cushioning and a thermoplastic face
mask. The images were motion corrected and averaged to create a single
image with high contrast-to-noise. The MP-RAGE parameters were em-
pirically optimized for gray—white contrast (repetition time, 9.7 ms; echo
time, 4.0 ms; inversion time, 20 ms; delay time, 200 ms; flip angle, 10°%
orientation, sagittal; resolution, 256 X 256 matrix; slices, 128; thickness,
1.25 mm).

Measurements of cortical thickness

Our methods to automatically measure cortical thickness have been de-
scribed previously (MacDonald et al., 2000; Kim et al., 2005). Briefly, the
native MRI were first registered into stereotaxic space (Talairach and
Tournoux, 1988) using a linear transformation (Collins et al., 1994).
Simultaneously, the images were corrected for nonuniformity artifacts
using the N3 algorithms (Sled et al., 1998). The registered and corrected
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images were further segmented into gray matter, white matter, CSF, and
background using an advanced neural net classifier (Zijdenbos et al.,
2002). The inner and outer gray matter surfaces with a total of 81,920
polygons (40,962 vertices) each were then automatically extracted from
each magnetic resonance (MR) volume using the constrained Laplacian-
based automated segmentation with proximities (CLASP) algorithm
(MacDonald et al., 2000; Kim et al., 2005). Cortical thickness was thus
defined as the distance between linked vertices on the inner and outer
surfaces (Lerch and Evans, 2005). Two representative cortical thickness
maps are shown in Figure 1 A. The CLASP algorithm has been validated
using both manual measurements (Kabani et al., 2001) and simulation
approaches (Lerch and Evans, 2005; Lee et al., 2006) and applied to recent
AD studies (Lerch et al., 2005; Singh et al., 2006).

Construction of structural cortical networks

We developed a procedure to construct structural cortical networks
based on cortical thickness measurements from MRI (He et al., 2007b).
First, individual cortical thickness maps were parcellated using the auto-
mated nonlinear image matching and anatomical labeling (ANIMAL)
package (Collins et al., 1995; Robbins et al., 2004). By registering each
subject’s MR images to a presegmented volumetric template using non-
linear deformations, the labels of brain regions were transformed to the
cortical surface by assigning the value of the voxel label to each vertex on
the surface. An average cortical parcellation with 27 regions for each
hemisphere was generated by finding the anatomical label with the high-
est occurrence at each vertex (see Fig. 1 B; supplemental Table 1, available
at www.jneurosci.org as supplemental material). Cortical thickness for
each region was measured as the average thickness of all vertices defined
as belonging to that region. The interregional correlation matrix C;; (i,
j=1,2,...N, here N = 54) of each group (see Fig. 1C, left for the control
group and right for the AD group) was then obtained by calculating the
partial correlation coefficients across individuals between the cortical
thicknesses of every pair of regions. The partial correlations between any
two cortical regions represent their conditional dependences by partial-
ling out the effects of the other 52 regions defined in the ANIMAL tem-
plate (Horwitz et al., 1987; Salvador et al., 2005). Before the correlation
analysis, a linear regression was performed at every cortical region to
remove the effects of age and gender; the resulting residuals were used to
substitute for the raw cortical thickness values. Finally, the partial corre-
lation matrix of each group was thresholded into a binarized matrix A;; =
[a;], where a;; was 1 if the absolute value of the correlation C;; between
regions i and j was larger than a given correlation threshold and 0 other-
wise. These binary matrices capture the underlying topological organi-
zation of the human structural cortical networks. Notably, it is also pos-
sible to use the continuous weighting (e.g., true correlation values)
between regions to study the network properties (Barrat et al., 2004; Jiang
et al., 2004), but it would lead to complicated statistical descriptions in
the following network analysis. The current study therefore confined
itself to a simpler binary graph theoretical analysis.

Graph theoretical approaches

Threshold selection. The network (graph) G was represented by a bina-
rized matrix A; with N nodes and K edges, where nodes and edges indi-
cate cortical regions and undirected links corresponding to its nonzero
elements, respectively. It was noted that, when the same correlation
threshold was applied to the correlation matrices of the AD and control
groups, the resulting graphs would comprise different number of edges
because of the discrepancies in the low-level correlations (see Fig. 1C, left
vs right). Thus, between-group difference in network parameters would
not purely reflect the alterations in the topological organization. To con-
trol this effect, we thresholded the correlation matrix C;; of each group
into a binarized matrix with a fixed sparsity S (see Fig. 1D, left for the
control group and right for the AD group) defined as the total number of
edges K in a graph divided by the maximum possible number of edges
N(N — 1)/2. Setting a sparsity-specific threshold ensures that the graphs
of both groups have the same number of edges or wiring cost (Achard
and Bullmore, 2007; Stam et al., 2007). However, because there is cur-
rently no definitive way to select a single threshold, we therefore thresh-
olded each correlation matrix repeatedly over a wide range of sparisty
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(6% = S= 40%) and then estimated the properties of the resulting
graphs at each threshold value. This enabled us to compare the small-
world parameters between the two groups as a function of sparsity inde-
pendently of the precise selection of threshold. The range of sparsity was
chosen here to allow small-world network properties to be properly es-
timated and the number of spurious edges in each network minimized as
indicated in previous studies (Achard and Bullmore, 2007; He et al.,
2007b).

Small-world analysis. Small-world measures of a network (clustering
coefficient, C,, and characteristic path length, L ) were originally pro-
posed by Watts and Strogatz (1998). Briefly, the C, is the average of the
clustering coefficients over all nodes in a network, where the clustering
coefficient C; of a node i is defined as the number of existing connections
among the neighbors of the node divided by all their possible connec-
tions. C, quantifies the extent of local cliquishness or local efficiency of
information transfer of a network (Watts and Strogatz, 1998; Latora and
Marchiori, 2001). The Lp of a network is the average minimum number
of connections that link any two nodes of the network. However, this
original definition of L, is problematic in networks that comprise more
than one component because there exist nodal pairs that have no con-
necting path. To avoid this problem, L, was measured here by using a
“harmonic mean” distance between pairs proposed by Newman (2003)
(i.e., the reciprocal of the average of the reciprocals). L, quantifies the
ability of parallel information propagation or global efficiency (in terms
of I/LP) ofanetwork (Latora and Marchiori, 2001). A real network would
be considered small world if it meets the following criteria: y = C;fal/
C;a"d >land A = LI',“‘I/L;,H“d ~ 1 (Watts and Strogatz, 1998), where the
crnd and L' are the mean clustering coefficient and characteristic
path length of matched random networks that preserve the same number
of nodes, edges, and degree (the degree k; of a node i is the number of
connections to that node) distribution as the real network (Maslov and
Sneppen, 2002; Sporns and Zwi, 2004).

Nodal centrality. In this study, we also investigated nodal characteris-
tics of the cortical networks. To address this issue, we considered the
“betweenness centrality” of the nodes in the networks. The betweenness
B, of anode i is defined as the number of shortest paths between any two
nodes that run through node 7 (Freeman, 1977). We measured the nor-
malized betweenness as b; = B,/(B), where (B) was the average between-
ness of the network. b; is a global centrality measure that captures the
influence of a node over information flow between other nodes in the
network and it was calculated here by using the MatlabBGL package
(http://www.stanford.edu/~dgleich/programs/matlab_bgl/). The hubs
of the cortical networks are the regions with high values of b,. Group
differences in b; reflect the effects of the disease on the global roles of
regions in the cortical networks.

Network robustness. Network robustness, characterized by the degree
of tolerance against random failures and targeted attacks, is usually asso-
ciated with the stability of a complex network. In the present study, we
investigated the robustness (tolerance) of the cortical networks by the
removals of nodes and edges (Albert et al., 2000; Kaiser and Hilgetag,
2004; Achard et al., 2006). To address the nodal failure tolerance, we first
randomly removed one node from the networks and then measured the
changes in the size of the largest connected component. After this, we
continued selecting and removing additional nodes from the networks at
random and recomputed this measure. This procedure was also applied
to the edge failure tolerance assessment in which the links in the networks
were randomly selected and removed. To evaluate the attack tolerance,
we repeated the above processes but removed the nodes and links in
decreasing order of their betweenness, respectively [the betweenness of
an edge is the number of shortest paths between pairs of other nodes that
pass through the edge (Girvan and Newman, 2002); links with high edge
betweenness values can be regarded as the pivotal links of a network]. The
simulation procedures were performed for the networks of both control
and AD groups, and a comparison of the results was further investigated.

Statistical analysis

Correlation differences. To test whether interregional correlation of cor-
tical thickness was significantly different between the AD patients and
controls, correlation coefficients obtained above were further converted
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into z values by using Fisher’s r-to-z transform. This transformation
generated values that were approximately normally distributed. A Z sta-
tistic was then used to compare these transformed z values to determine
the significance of the between-group differences in correlations (Cohen
and Cohen, 1983). To adjust for the multiple comparisons, a false dis-
covery rate (FDR) procedure was performed at a g value of 0.05
(Genovese et al., 2002).

Topological parameters differences. To determine statistical significance
of the differences in network parameters between groups, a nonparamet-
ric permutation test method was applied (Bullmore et al., 1999). First, Cp’
L,,and b; of the networks at a given sparsity were computed separately for
the AD and control groups. To test the null hypothesis that the observed
group differences could occur by chance, we then randomly reallocated
each subject’s set of regional cortical thickness measures to one or the
other of the two groups and recomputed the partial correlation matrix
for each randomized group. We then obtained corresponding binarized
matrix using the same sparsity threshold as in the real brain networks.
Next, we calculated the network parameters for each randomized group
and obtained their differences between the randomized groups. This
randomization procedure was repeated 1000 times and the 95 percentile
points of each distribution were used as the critical values for a one-tailed
test of the null hypothesis with a probability of type I error of 0.05. The
procedure was repeated at every sparsity threshold value of the brain
networks. In the present study, we also assessed between-group differ-
ences in the areas under the C, and L, curves.

Results

Interregional correlations of cortical thickness

The interregional cortical thickness correlation matrices of the
normal controls and AD groups are shown in Figure 1C. The
correlation patterns of both groups were complex but had some
common features such as strong interhemispheric intercorrela-
tions between bilaterally homologous regions that were consis-
tent with previous brain morphological studies using cortical
thickness (He et al., 2007b) and gray matter density (Mechelli et
al., 2005) in normal subjects. Statistical analysis further revealed
significant between-group correlation differences (p < 0.05,
FDR-corrected) in various pairs of cortical regions (Table 1). For
instance, decreased interhemispheric positive correlations be-
tween the bilateral postcentral gyrus (PoCG) and between the
bilateral superior parietal lobe (SPL) were observed in the AD
patients compared with the controls. In addition, AD patients
were also found to show increased positive correlations in various
pairs of cortical regions involved in the lateral parietal, temporal,
and frontal cortices [supramarginal gyrus (SMG), inferior tem-
poral gyrus (ITG), superior temporal gyrus (STG), and middle
frontal gyrus (MFG)] as well as the medial frontal gyrus (MdFG)
and cingulate (CING) regions. Additionally, we also noted sev-
eral abnormal negative correlations in the AD patients (Table 1).

Small-world structural cortical networks

Small-world model

Previous studies have demonstrated the small-world topology in
large-scale structural brain networks in humans (Hagmann et al.,
2007; He et al., 2007b) and nonhuman primates (Hilgetag et al.,
2000; Sporns and Zwi, 2004). In a small-world network, the
shortest path length between any pair of nodes is approximately
equivalent to a comparable random network, but the nodes of the
network have greater local interconnectivity than a random net-
work (Watts and Strogatz, 1998). In the current study, we also
examined the small-world attributes of cortical networks in the
normal elder subjects and AD patients. As expected, both net-
works (Fig. 2, left for the control group and right for the AD
group) demonstrated small-world architectures as they had an
almost identical path length (A =~ 1, black lines) but were more
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Figure 1. Aflowchart for the construction of structural cortical networks. A, Two representative cortical thickness maps (left
for a control subject and right for an AD subject) were obtained from anatomical MRI by computational neuroanatomy. The color
barindicating the range of thickness is shown on the right. B, The entire cerebral cortex was segmented into 54 cortical areas that
were displayed on the average cortex (left for the lateral surface and right for the medial surface), each color representing an
individual region. C, The correlation matrices were obtained by calculating partial correlations between regional thickness across
subjects within each group (left for the control group and right for the AD group). The color bar indicating the partial correlation
coefficient between regions is shown on the top. D, The correlation matrices of C were thresholded into the binarized matrices
(left for the control group and right for the AD group) by a sparsity threshold of 13%. Such a threshold ensures that the networks
of both of the groups have the same number of nodes and links (i.e., the two networks have the same wiring cost). NC, Normal
controls. For details, see Materials and Methods.
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locally clustered (y > 1, gray lines) over a
wide range of sparsity (6% = S = 40%) in
comparison with the matched random net-
works, consistent with the previous stud-
ies. Using computational modeling simu-
lation approaches, Sporns et al. (2000)
suggest the emergence of small-world to-
pology when networks are evolved for high
complexity of dynamic behavior defined as
an optimal balance between local special-
ization and global integration. Our find-
ings thus provide additional support for
the hypothesis that the human brain has
evolved into a complex but efficient neural
architecture to maximize the power of in-
formation processing (Sporns et al., 2004;
Kaiser and Hilgetag, 2006).

AD-related alterations

One of the key questions we posed was
whether AD patients with cognitive im-
pairment would be associated with alter-
ations of small-world parameters in the
cortical networks. As shown in Figure 3,
both clustering coefficient, C, (Fig. 34, in-
set), and characteristic path length, L, (Fig.
3B, inset), in the AD networks were larger
than those of the controls over a wide range
of sparsity. Statistical analysis further re-
vealed significant differences ( p < 0.05) in
the C, values at 12% < S < 15% and 27%
< § < 40% (Fig. 34, arrows) and L, values
at 12% < § < 14% and 22% < S < 34%
(Fig. 3B, arrows). Moreover, AD patients
demonstrated significantly larger area un-
derthe C, (p=0.03) (Fig.4A)and L, (p =
0.05) (Fig. 4B) curves. These results imply
that the small-world parameters were sig-
nificantly altered in the structural cortical
networks of AD patients. Our finding of
AD-related increases in paths was consis-
tent with a recent brain functional network
study in AD using EEG measurement
(Stam et al. 2007). However, the previous
study did not detect significant changes in
clustering coefficients in AD patients. The
discrepancies could be attributable to dif-
ferent network modality (functional vs
structural), network size (21 vs 54), and
population size (28 vs 189) applied in two
studies. Nonetheless, all evidence points to
that AD patients are probably related to the
loss of small-world characteristics in the
large-scale brain systems.

Regional nodal characteristics

To investigate the nodal characteristics, the
cortical networks were constructed at a
specific sparsity threshold of 13%. This
threshold ensures that all regions are in-
cluded in the cortical networks while min-
imizing the number of false-positive paths
(Fig. 5). Such a constraint might optimize
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interregional correlation strengths and
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Table 1. Abnormal cortical correlations in AD patients compared with controls

therefore be biologically plausible (Bassett
et al., 2006).

Correlation, r

Hub regions

To identify the hub regions, we examined
normalized nodal betweenness centrality,
b;, of each cortical region in both networks
(see Materials and Methods). In the con-
trol group, 11 regions including 8 hetero-
modal or unimodal association cortex re-
gions, 2 paralimbic cortex regions, and 1
primary motor cortex region were identi-
fied as the hubs because of large values in b,
[b; > 1.5 (i.e., the betweenness value of a
node is >1.5 times the average between-
ness of the network)] (Table 2; supple-
mental Fig. 1A, available at www.

Regions Regions NC AD Zscore
Decreased positive correlations in AD
Right postcentral gyrus Left postcentral gyrus 0.63 0.04 477
Right superior parietal lobule Left superior parietal lobule 0.57 0.01 432
Increased positive correlations in AD
Right supramarginal gyrus Left lateral occipitotemporal gyrus —0.34 0.45 5.66
Left supramarginal gyrus Left cuneus —0.26 0.42 4.83
Left supramarginal gyrus Left superior temporal gyrus —0.17 0.48 473
Left medial frontal gyrus Left cingulate region —=0.11 0.47 417
Right middle frontal gyrus Right cingulate region —0.17 0.41 412
Right inferior temporal gyrus Right cingulate region —0.07 0.48 4.07
Decreased negative correlations in AD
Right superior parietal lobule Left superior occipital gyrus —0.49 0.08 420
Increased negative correlations in AD
Right postcentral gyrus Left cingulate gyrus 0.21 —0.57 5.80
Right medial front-orbital gyrus Right occipital pole 0.18 —0.42 4.20
Right precentral gyrus Right cingulated gyrus 0.00 —0.53 3.98

jneurosci.org as supplemental material).
In the AD group, 14 regions including 9
heteromodal or unimodal association cor-
tex regions and 5 paralimbic cortex re-
gions were identified as the hubs (Table 3;
supplemental Fig. 1B, available at www.
jneurosci.org as supplemental material). These identified hubs
were predominately located in regions of heteromodal and uni-
modal association cortex [SMG, STG, middle temporal gyrus,
middle frontal gyrus, and lingual gyrus (LG)] (Tables 2, 3) receiv-
ing convergent inputs from multiple other cortical regions
(Mesulam, 1998), suggesting their pivotal roles in the human
structural cortical networks. The findings are in accordance with
several previous studies in which these recently evolved associa-
tion cortex regions have been identified as critical nodes in both
structural and functional brain networks in humans (Achard et
al., 2006; He et al., 2007b) and nonhuman primates (Sporns and
Zwi, 2004; Honey et al., 2007).

AD-related alterations

We next examined AD-related changes in the betweenness cen-
trality of cortical regions. Compared with the controls, the AD
patients showed significant centrality decreases in the hetero-
modal regions of the lateral temporal and parietal cortex [STG
and angular gyrus (ANG)] and increases in the unimodal associ-
ation cortex [LG and lateral occipitotemporal gyrus (LOTG)]
and paralimbic regions (CING) (Fig. 6 A, Table 4). The involved
regions were highlighted in the topographic maps of the networks
for both the control (Fig. 6 B, left) and AD (Fig. 6 B, right) groups.
Additionally, we also noted that the betweenness values of the
bilateral cortical regions were highly correlated in the normal
subjects (Pearson’s r = 0.50, p = 0.007) but not in the AD pa-
tients (Pearson’s r = 0.13, p = 0.52). Additional statistical anal-
ysis revealed a decreased trend in correlation coefficient of the
patients (Zscore = 1.47; p = 0.07) (supplemental Fig. 2, available
at www.jneurosci.org as supplemental material). The result was
consistent with previous neuroimaging studies showing in-
creased structural and functional asymmetry in AD patients
(Grady et al., 1986; Haxby et al., 1990). Together, our findings
suggest that the roles of regions in managing information flows
over the cortical networks were profoundly affected in AD
patients.

Reduced network robustness in AD patients
Figure 7 illustrates the network robustness of both the control
and AD groups in response to the random failures and targeted

The rvalues indicate partial correlation coefficients of cortical thickness between regions within either the AD patients or controls. Correlation coefficients in
bold indicate significant interregional association of cortical thickness within group (p << 0.05, FDR-corrected). To determine the significance of between-
group differences in correlation, a Z statistic was used in this study (see Materials and Methods). All Z scores are significant (p << 0.05, FDR-corrected). Note
that only pairs of regions were listed if (1) they were significantly nonzero in either the AD, control group, or both at p << 0.05 (FDR-corrected), and (2) they
showed significantly between-group differences at p << 0.05 (FDR-corrected). NC, Normal controls.
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Figure 2.  Small-world properties of structural cortical networks. The graphs show the

changesinthe y(C,’fa'/(,’f”", graylines) and A (L{fa'/L,'f"d, black lines) in the structural networks
of both the control (left panel) and AD (right panel) groups as a function of sparisty thresholds.
At a wide range of sparsity, both networks have y > 1 (i.e., the real networks show high
clustering compared with 1000 rewiring random networks) and A ~ 1 (i.e., the real networks
show approximately equivalent path length compared with 1000 rewiring random networks),
whichimplies prominent small-world properties (see Materials and Methods). Note that, as the
values of sparsity thresholds increase, the -y values decrease rapidly, but the A values only
change slightly. The black arrows point to a range of sparsity in which the small-world proper-
ties are estimable because the average degrees of networks are larger than log(N) (V is the
number of node regions) (Watts and Strogatz 1998; Achard et al., 2006; He et al., 2007b). N,
Normal controls.

attack. Although the structural cortical network of AD patients
was approximately as robust to the random failures as that of
controls, it was considerably more vulnerable to targeted attacks.
We found that the size of the largest connected component was
reduced more noticeably in the network of AD patients than in
the controls when atleast 10% of the most central nodes and links
were attacked (Fig. 7, right). Furthermore, when 25% of the most
central nodes were attacked in both networks, the size of the
largest component reduced 40% in the network of AD patients
(Fig. 7A, right arrow); whereas in contrast, the network of con-
trols only reduced 25% (Fig. 7A, left arrow). Similarly, whereas
25% of the most central links were attacked, the size of the largest
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Figure3.  Between-group differences in clustering coefficient (C,) and path length (L,) as a

function of sparsity. A, The graph shows the differences (red circles) in the C, between the
controls and AD patients as a function of sparsity thresholds. The gray lines represent the mean
values (open circles) and 95% confidence intervals of the between-group differences obtained
1000 permutation tests at each sparsity value. The arrows indicate significant ( p << 0.05)
difference in C, between the two groups. Note that AD patients (dotted lines) show larger (,
valuesin the brain networks than controls (solid lines) overa wide range of thresholds (inset). B,
The graph shows the differences (red circles) in the L, between the controls and AD patients as
a function of sparsity thresholds. The gray lines represent the mean values (open circles) and
95% confidence intervals of the between-group differences obtained 1000 permutation tests at
each sparsity value. The arrowsindicate significant ( p <<0.05) difference in L, between the two
groups. Note that AD patients (dotted lines) show larger L, values in the brain networks than
controls (solid lines) over a wide range of thresholds (inset). NC, Normal controls.
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Figure 4.  Between-group differences in areas under the clustering coefficient ((:UC) and

path length (L)) curves. A, The graph shows the differences (black square) in the C'“ be-
tween the controls and AD patients. The black lines represent the mean values (open circles) and
95% confidence intervals of the between-group differences obtained 1000 permutation tests.
Note that the AD patients show larger (2 values in the brain networks compared with the
controls ( p = 0.03). B, The graph shows the differences (black square) in the L,’f”c between the
controls and AD patients. The black lines represent the mean values (open circles) and 95%
confidence intervals of the between-group differences obtained 1000 permutation tests. Note
that the AD patients show larger L,’,‘Uc values in the brain networks compared with the controls
(p=0.05).Forthe C,and L, curves of the controls and AD groups, see the insets of Figure 3. NC,
Normal controls.
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Figure 5.  The size of the largest connected component of structural cortical networks. The
graph shows the largest component size of the networks in the control (gray line) and AD group
(black line) as a function of sparsity threshold. As the threshold increases, the largest compo-
nent sizes of both groups tend to increase. The arrow indicates that the lowest sparsity thresh-
old (13%) in which both of the networks included all connected nodes (i.e., 54 regions) defined
in the brain template.

component reduced 20% in the network of AD patients (Fig. 7B,
right arrow) but it remained nearly unchanged in the control
group (Fig. 7B, left arrow). These results suggest that the struc-
tural cortical networks of AD patients exhibited topological vul-
nerability to targeted attack as a consequence of pathological
organization.

Discussion

The present study, for the first time, demonstrates AD-related
changes in the coordination of large-scale structural brain net-
works by using cortical thickness data from MRI. Our main find-
ings are as follows: (1) that the observed data revealed AD-related
abnormalities in morphological correlations among selective
subsets of cortical regions, (2) that the global topological organi-
zation of cortical networks in AD patients were disrupted as in-
dicated by altered small-world parameters, (3) that the regional
characteristic (centrality) was profoundly affected in AD pa-
tients, and (4) that the structural cortical network of AD showed
reduced topological stability while against targeted attack. To-
gether, these findings strongly suggest that the widely distributed
cortical networks are altered in AD patients, thus providing
structural (morphological) evidence to support the concept of
AD that the core aspects of the pathophysiology of this disease are
associated with disruptive alterations in the coordination of
large-scale brain networks that underlie high-level cognition.

Neurobiological basis of correlative variation in regional
cortical thickness

The thickness of the cerebral cortex represents the size, density,
and arrangement of cells (Parent and Carpenter, 1995). In this
study, interregional correlations in cortical thickness were used
to construct structural brain networks. Previous work from our
laboratory has demonstrated that interregional coordinated vari-
ations in cortical thickness are approximately associated with the
known neuroanatomical pathways in the human brain (Lerch et
al., 2006; He et al., 2007b). Other morphological covariations
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(e.g., gray matter volume) were also re-
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Table 2. Regions showing high betweenness in cortical networks of normal subjects

ported in regions of functionally or ana-  Regions Class Normalized betweenness, b; Degree, k;
;cl)r’nll;a;;)’f li/(l):c?lzclfieitsﬁ t)e;r(l)i) éjﬁgg}rl?gi zi Eight lateral fronto»or.bital gyrus Paralimb?c 3.26 "
. . eft lateral fronto-orbital gyrus Paralimbic 2.90 1
al., .2007). Alth(?ugh the.prease neurob}o- Right lingual gyrus Association 239 10
logical mechanism behind them remains  gignt angular gyrus Association 219 12
unclear, it was argued (Mechelli et al., |eftangular gyrus Association 212 1
2005) that the morphological coordina-  Left superior temporal gyrus Association 1.98 13
tion in circumscribed regions may result  Right superior temporal gyrus Association 1.96 12
from the mutually trophic effects (Ferrer  Left middle temporal gyrus Assodiation 1.92 1
et al., 1995) or environment-related plas- Left middle frontal gyrus As§ociation 1.82 9
ticity (Maguire et al., 2000). Recent studies  Left precentral gyrus Primary 1.6 ?
Left supramarginal gyrus Association 1.55 "

have also demonstrated disrupted coordi-

nation of the brain morphology in various
neuropsychiatric ~ disorders, such as
schizophrenia (Bullmore et al., 1998;
Wright et al., 1999; Mitelman et al., 2005),

The hub regions (b; > 1.5) in the structural cortical network of the normal subjects group were listed in a descending order of their normalized betweenness,
b;. The regions were classified as primary, association, and paralimibic as described by Mesulam (1998). k; denotes the degree of region i. For statistical
properties of all regions included in the cortical network, see supplemental Table 2 (available at www.jneurosci.org as supplemental material).

Table 3. Regions showing high betweenness in cortical networks of AD patients

autism (McAlonan et al., 2005), and

obsessive-compulsive disorder (Pujol et
al., 2004). All these processes are the likely
driving forces behind alterations in correl-
ative patterns of cortical thickness in AD.

Abnormal interregional correlations of
cortical thickness in AD

We observed several abnormal interre-
gional cortical thickness correlations in
AD patients (Table 1). Decreased positive
correlations were found between the bilat-
eral parietal regions (PoCG and SPL).

Regions Class Normalized betweenness, b; Degree, k;
Right lateral fronto-orhital gyrus Paralimbic 3.39 13
Right cingulate region Paralimbic 3.00 18
Left lingual gyrus Association 2.87 13
Left lateral occipitotemporal gyrus Association 233 8
Right lingual gyrus Association 231 10
Left middle temporal gyrus Association 2.25 5
Right superior occipital gyrus Association 2.06 9
Left medial fronto-orbital gyrus Paralimbic 1.94 5
Right medial fronto-orbital gyrus Paralimbic 1.91 12
Left superior temporal gyrus Association 1.81 7
Left uncus Paralimbic 1.81 7
Left supramarginal gyrus Association 1.57 6
Left inferior frontal gyrus Association 1.55 9
Right middle frontal gyrus Association 1.52 12

Studies in monkeys (Seltzer and Pandya,
1983) and humans (Huang et al., 2005)

have demonstrated that the bilateral pari-
etal regions are connected through the
midbody (PoCG) and posterior body and
splenium (SPL) of the corpus callosum
(CC). Several electrophysiological and neuroimaging studies
found that the AD patients had (1) impaired functional couplings
between bilateral homologous regions (Horwitz et al., 1987;
Wada et al., 1998), and (2) reduced size or integration of white
matter in the midbody, posterior body, and splenium of the CC
(Pantel et al., 1999; Sydykova et al., 2007). Thus, our findings are
compatible with the previous studies of AD. The decreases could
be attributed to lack of mutually trophic influences of anatomical
connectivity (CC) between the regions.

Interestingly, we found that AD patient exhibited increased
positive correlations among several “default” (Raichle et al.,
2001) regions [e.g., medial frontal and parietal (MPFC and
CING), and lateral parietal and temporal (SMG, ITG, and STG)
regions]. It has been suggested that these regions may be directly
connected. Several recent resting-state functional MRI (fMRI)
studies have shown that these regions are temporally coherent in
intrinsic or spontaneous brain activity in both humans (Greicius
et al,, 2003; Fox et al., 2005) and monkeys (Vincent et al., 2007).
Moreover, these “default” regions have also been found to be
mainly involved in episodic memory process (Greicius et al.,
2003) and show AD-related breakdown of brain activities, such as
the amyloid deposition, metabolic and spontaneous activity dis-
ruption (Greicius et al., 2004; Buckner et al., 2005; Celone et al.,
2006). In addition, these regions were also found to show focal
thinning in AD patients (supplemental Fig. 3 and supplemental
Table 4, available at www.jneurosci.org as supplemental mate-
rial). One could thus speculate that increased correlations of cor-

The hub regions (b;> 1.5) in the structural cortical network of the AD group were listed in a descending order of their normalized betweenness, b;. The regions
were classified as primary, association, and paralimibic as described by Mesulam (1998). k; denotes the degree of region /. For statistical properties of all
regions included in the cortical network, see supplemental Table 3 (available at www.jneurosci.org as supplemental material).

tical thickness among the “default” regions may reflect a correl-
ative cortical shrinking because of shared vulnerability to an
insult, as preferentially affected by the pathological process of this
disease.

We also noted abnormal negative correlations in the AD pa-
tients. Although the phenomenon of negative morphological
correlations has been observed in normal subjects (Mechelli et al.,
2005; Bohbot et al.,, 2007), and patients with schizophrenia
(Mitelman et al., 2005) and autism (McAlonan et al., 2005), it
remains unclear as to what they precisely reflect. One hypothesis
is that the abnormalities are related to weakened or strengthened
interregional inhibitory trophic relationship because of a direct
influence between the regions or an indirect modulation from a
third party, leading to a reorganization of brain systems (McAlo-
nan et al., 2005; Mitelman et al., 2005).

Altered small-world configurations in structural cortical
networks in AD

We also found significant small-world alterations (i.e., increased
path length and clustering coefficient in the structural networks
of AD patients). Short paths in brain networks assure effective
integrity or rapid transfers of information between and across
remotely regions that are believed to constitute the basis of cog-
nitive processes (Sporns and Zwi, 2004). The AD-related in-
creases in paths might thus reflect disrupted neuronal integra-
tions among distant regions that were associated with impaired
cognitive functions (measured with MMSE scores). In this study,
AD patients were also found to show increased clustering in the
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tially affected at the onset of AD before sen-
sory or motor regions (for review, see Del-
beuck et al., 2003). Gomez-Isla et al. (1997)

STG that paralleled the chronological evo-
lution of dementia and correlated with the

A Betweenness
v] 2z

) -
1

NC<AD d

| N N T T T T N T T T T T

neurofibrillary tangles formation. Other
| researchers also observed AD-related re-

= duction of functional connectivity in the
ef regions (Bokde et al., 2006; Wang et al.,
2006). Thus, we speculated that these re-

[ reported AD-related neuronal loss in the

rdrdrdrdrdedrJdrdrdede e Je e oo e o0 e e o e 0 —

00@00@0@00000@4

gional abnormalities may cause a segrega-
tion of different brain systems and yield a
disruptive integration of large-scale brain
networks. However, we also observed AD-
related increases in nodal centrality in sev-
eral unimodal association cortex regions
(e.g., LGand LOTG). Previous studies have
suggested that these regions usually retain
their functional capacity in the early stages
of AD (Grady et al., 1988; Mentis et al.,
1996). There is also additional evidence for
AD-related increases in activation (Back-
man et al., 2000; Prvulovic et al., 2002; He
et al., 2007a) and functional connectivity

AD
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Figure 6.  AD-related changes in nodal betweenness centrality. A, The graph shows the differences (green square) in normal-

ized betweenness b, for each region between the controls and AD patients. The gray circles and bar lines represent the mean
values and 95% confidence intervals of the between-group differences obtained from 1000 permutation tests, respectively.
Significant decreases in b; in the AD patients were found in the right ANG (a), left ANG (b), and right STG (c), and significant
increasesin the left LOTG (d), left LING ( ), and right cingulate (h). B, Regions showing significant AD-related changes in b, were
mapped to anatomical space in the controls (left) and AD (right) groups. Regions showing AD-related decreases are colored in
cyan and regions showing AD-related increases are colored in red. The black lines represent the links of the networks. Note that
these results were obtained from the brain networks with a sparsity of 13%. NC, Normal controls. For the abbreviations of regions,

see supplemental Table 1 (available at www.jneurosci.org as supplemental material).

cortical networks, suggesting a stronger local specialization.
Given that the small-world model reflects an optimal balance
between local specialization and global integration as described
previously, the longer paths combined with higher clustering in
the AD networks indicate a disturbance of the normal balance
and make their networks more in favor of a regular configura-
tion. It has been suggested that regular lattices have reduced sig-
nal propagation speed and synchronizability compared with
small-world networks (Strogatz, 2001). Therefore, the AD-
related changes in small-world parameters reported here may
reflect a less optimal topological organization, thus providing
implications for the understanding of the relationship between
network topology and neuropathological state of disease.

Altered nodal centrality in structural cortical networks in AD

The AD networks were also found to show significantly decreased
nodal centrality in several heteromodal association cortex re-
gions (e.g., STG and ANG). Evidence from monkeys has demon-
strated that STG and ANG have wide anatomical connections to
the temporolimbic and neocortical association areas located in
the prefrontal and parietal cortices (Seltzer and Pandya, 1994;
Pandya, 1995) and the anterior temporal and prefrontal regions
(Mesulam, 1998), respectively. Functional neuroimaging studies
in humans have also suggested that these regions tend to have
long-distance connections (Achard et al., 2006) and are preferen-

(Horwitz et al., 1995; Grady et al., 2003) in
these regions, which has been characterized
as compensatory recruitment of cognitive
resources to maintain task performance.
One could therefore speculate those in-
creased regional centrality in AD might
represent a compensatory process for the
reduced centrality in other regions de-
scribed previously. Overall, our results
demonstrated AD-related changes in the
nodal ability to manage information flow
of cortical networks.

Topological vulnerability in structural cortical networks

in AD

Recent studies have demonstrated that small-world brain net-
works with embedded hubs exhibit surprising resilience to ran-
dom failures and targeted attacks (Kaiser and Hilgetag, 2004;
Achard et al., 2006). Assuming that dynamic behavior of a net-
work is strongly associated with its fundamental topological or-
ganization, it seems reasonable to suppose that the alterations in
network parameters would reflect the disruptions in the general
performance of the network such as stability and robustness. This
hypothesis was supported by our findings that the AD networks
were extremely vulnerable to targeted attacks on its pivotal nodes
and links compared with controls. The reduced topological sta-
bility might be attributed to pathological cortical organization in
AD such as the aberrant cortical couplings, small-world architec-
ture, and nodal centrality shown previously.

Relationships between structural and functional

brain networks

A question of interest is whether the current findings of AD-
related alterations in structural cortical networks can be related to
functional deficits in patients. In the mammalian neocortex,
Honey et al. (2007) have found that the spontaneous neuronal
dynamics can be structured at multiple temporal scales, suggest-
ing a tight association between structural and functional net-
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works. In the human brain, we recently
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Table 4. Regions showing AD-related changes in the betweenness centrality

demonstrated that structural cortical net-
works (He et al., 2007b) share many com-

Normalized betweenness, b;

. Regions NC AD pvalue
mon topological features (e.g., small- —
world topology and hub nodes) with DecrgasednodglcentralltymAD
Right superior temporal gyrus 1.96 0.06 0.04
spontaneous low-frequency (<<0.08 Hz)

. . Left angular gyrus 212 0.01 0.05
functional networks derived from fMRI Right angular gyrus 219 0.10 0.05
data (Achard et al., 2006). One could Increased nodal centrality in AD
therefore speculate that the AD-related al- Right cingulate gyrus 0.03 3.00 0.01
terations in structural networks shown Leftlateral occipitotemporal gyrus 023 233 0.04
here are likely to underlie functional im- Left lingual gyrus 043 287 0.04

pairments associated with this disease. To-
gether, the present study strongly suggests
that coordinated changes in structural fea-
tures (cortical thickness) and their internal A
topologies are biologically meaningful,

thus potentially opening up a new window

into our understanding of cortical organi-
zation in AD.
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