
Neurobiology of Disease

Probabilistic Diffusion Tractography and Graph Theory
Analysis Reveal Abnormal White Matter Structural
Connectivity Networks in Drug-Naive Boys with Attention
Deficit/Hyperactivity Disorder

Qingjiu Cao,1,2* Ni Shu,3* Li An,1,2 Peng Wang,1,2 Li Sun,1,2 Ming-Rui Xia,3 Jin-Hui Wang,3 Gao-Lang Gong,3

Yu-Feng Zang,4,5 Yu-Feng Wang,1,2 and Yong He3

1Institute of Mental Health, Peking University, and 2Key Laboratory of Mental Health, Ministry of Health, Beijing 100191, China, 3State Key Laboratory of
Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China, and 4Center for Cognition and Brain Disorders, Affiliated Hospital,
Hangzhou Normal University, and 5Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 310015, Zhejiang, China

Attention-deficit/hyperactivity disorder (ADHD), which is characterized by core symptoms of inattention and hyperactivity/impulsivity,
is one of the most common neurodevelopmental disorders of childhood. Neuroimaging studies have suggested that these behavioral
disturbances are associated with abnormal functional connectivity among brain regions. However, the alterations in the structural
connections that underlie these behavioral and functional deficits remain poorly understood. Here, we used diffusion magnetic reso-
nance imaging and probabilistic tractography method to examine whole-brain white matter (WM) structural connectivity in 30 drug-
naive boys with ADHD and 30 healthy controls. The WM networks of the human brain were constructed by estimating inter-regional
connectivity probability. The topological properties of the resultant networks (e.g., small-world and network efficiency) were then
analyzed using graph theoretical approaches. Nonparametric permutation tests were applied for between-group comparisons of these
graphic metrics. We found that both the ADHD and control groups showed an efficient small-world organization in the whole-brain WM
networks, suggesting a balance between structurally segregated and integrated connectivity patterns. However, relative to controls,
patients with ADHD exhibited decreased global efficiency and increased shortest path length, with the most pronounced efficiency
decreases in the left parietal, frontal, and occipital cortices. Intriguingly, the ADHD group showed decreased structural connectivity in the
prefrontal-dominant circuitry and increased connectivity in the orbitofrontal-striatal circuitry, and these changes significantly corre-
lated with the inattention and hyperactivity/impulsivity symptoms, respectively. The present study shows disrupted topological organi-
zation of large-scale WM networks in ADHD, extending our understanding of how structural disruptions of neuronal circuits underlie
behavioral disturbances in patients with ADHD.

Introduction
Attention-deficit/hyperactivity disorder (ADHD), which is char-
acterized by inattention and hyperactivity/impulsivity, is one of

the most common childhood neuropsychiatric disorders. Neuro-
imaging studies suggest that these behavioral abnormalities could
arise from aberrant brain connectivity (Konrad and Eickhoff,
2010). For instance, dysfunction in the dorsal frontoparietal net-
works that subserve cognitive control are closely related to the
core symptoms of the inattention domain; the dysfunctions of
the orbitofrontal cortex and ventral striatum structures that sub-
serve the processes of reward and motivation play a central role in
the core symptoms of hyperactivity/impulsivity (Durston et al.,
2011; Liston et al., 2011). However, these studies mainly focused
on disturbances in the functional circuits of ADHD; the altera-
tions in the structural circuits that underlie the behavioral and
functional deficits remain poorly understood.

Diffusion MRI is a promising noninvasive technique for as-
sessing the microstructural characteristics of white matter (WM)
tracts. Specifically, diffusion MRI tractography can reconstruct
the major WM tracts faithful to the known WM anatomy, allow-
ing mapping of the brain’s structural connectivity in vivo (Basser
et al., 2000). Using diffusion MRI, several groups have shown
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ADHD-associated disruption of structural connectivity in spe-
cific WM tracts, involving the prefrontal, parietal, occipital, and
subcortical WM (Ashtari et al., 2005; Casey et al., 2007; Makris et
al., 2008; Pavuluri et al., 2009). These findings provide crucial
support for the hypothesis that structural connectivity is dis-
rupted in ADHD.

Despite these advances in research, it remains unclear as to
whether the topological organization of WM networks is abnor-
mal in patients with ADHD. Recent work on brain connectivity
has suggested that human whole-brain WM networks can be
reconstructed using diffusion MRI deterministic or probabilistic
tractography (Hagmann et al., 2008; Gong et al., 2009a,b; van den
Heuvel and Sporns, 2011). Graph theory analysis revealed that
the resultant WM networks exhibit many nontrivial topological
properties, such as small worldness and highly connected hubs.
Moreover, the topological organization of WM networks is dis-
rupted under pathological conditions, for example, Alzheimer’s
disease (Lo et al., 2010), schizophrenia (van den Heuvel et al.,
2010; Zalesky et al., 2011), and multiple sclerosis (Shu et al.,
2011). Recently, three studies have used resting-state functional
MRI (R-fMRI) to show disruption of topological properties in
the whole-brain functional networks in ADHD (Wang et al.,
2009a; Cocchi et al., 2012; Tomasi and Volkow, 2012). However,
no study has reported ADHD-related alterations of the topolog-
ical organization of WM networks.

Here, we used diffusion MRI probabilistic tractography and
graph theory to investigate the topological organization of whole-
brain WM networks in drug-naive boys with ADHD and in
healthy comparison subjects. Previous studies have suggested
that stimulants can significantly influence the brain’s structure
and function in ADHD (Bush et al., 2008; Shaw et al., 2009); by
using drug-naive subjects in the present study, we can exclude the
effects of stimulants. In the present study, we sought to determine
(1) whether patients with ADHD would show disrupted topolog-
ical efficiency and abnormal nodal/connectional properties in the
whole-brain WM networks; and (2) if so, whether these topolog-
ical changes would significantly correlate with the behavioral/
clinical characteristics of ADHD.

Materials and Methods
Participants
Thirty boys with ADHD (8 –14 years) and 30 healthy control boys (8 –14
years) participated in the study. None of the boys in the ADHD group
had ever taken a stimulant or other medication to treat inattention prob-
lems. The boys in the group with ADHD were recruited from the outpa-
tients at the Peking University Institute of Mental Health, and their
ADHD diagnosis was made according to a semi-structured diagnostic
interview, the Schedule for Affective Disorders and Schizophrenia for
School-Age Children-Present and Lifetime Version [Diagnostic and Sta-
tistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria;
Kaufman et al., 1997]. The parents of the children in the ADHD group
scored their children using the ADHD Rating Scale-IV (RS-IV), which
contains all the inattention and hyperactivity/impulsivity symptoms of
ADHD according to DSM-IV: “never” is rated as 1, “occasionally” is
rated as 2, “often” is rated as 3, and “always” is rated as 4 (DuPaul et al.,
1998). The exclusion criteria included the following: (1) left-handedness
or ambidexterity, as assessed by the Chinese Handedness Inventory (Li,
1983); (2) a previous event involving head trauma with loss of conscious-
ness; (3) a history of neurological illness, significant head trauma, or
other severe diseases; (4) a history of emotional disorders, affective dis-
orders, Tourette syndrome, or any other Axis I psychiatric disorder; (5)
severe language development delay or communication problems, deter-
mined from clinical history, parental interview, and observation of the
children; and (6) a full-scale intelligence quotient (IQ) under 80, as mea-
sured by the Wechsler Intelligence Scale for Chinese Children-Revised

(Gong and Cai, 1993). Of the 30 boys with ADHD, 15 (50%) met the
criteria for combined type and 15 (50%) met the criteria for predomi-
nantly inattentive-type. Notably, 11 (37%) of the boys with ADHD also
had oppositional defiant disorder, and none of the boys with ADHD had
conduct disorder. The control boys were recruited from a local primary
school. The exclusion criteria for the controls were the same as for the
ADHD group except for the ADHD diagnosis. After a detailed explana-
tion of the entire study procedure, all boys agreed to participate in the
study and written informed consent was obtained from their parents or
guardians. This study was approved by the Research Ethics Review Board
of the Institute of Mental Health, Peking University, and by the Insti-
tutional Review Board of the State Key Laboratory of Cognitive Neu-
roscience and Learning, Beijing Normal University. Table 1 presents
the demographic information and clinical characteristics of all the
participants.

Image acquisition
MRI data were acquired using a Siemens TRIO 3T scanner in the Imaging
Center for Brain Research, Beijing Normal University. Participants lay
supine with their head snugly fixed by straps and foam pads to minimize
head movement. T1-weighted, sagittal 3D magnetization-prepared rapid
acquisition gradient echo sequences that covered the entire brain [128
slices, slice thickness � 1.33 mm, repetition time (TR) � 2530 ms, echo
time (TE) � 3.39 ms, inversion time � 1100 ms, flip angle � 7°, acqui-
sition matrix � 256 � 256, field of view (FOV) � 256 � 256 mm 2,
average � 1] were acquired. Diffusion tensor images (DTIs) were ac-
quired using a single-shot echoplanar imaging sequence with coverage of
the whole brain [49 axial slices, slice thickness � 2.5 mm with no inter-
slice gap, TR � 7200 ms, TE � 104 ms, flip angle � 90°, 64 diffusion
directions with b � 1000 s/mm 2, and an additional image without diffu-
sion weighting (i.e., b � 0 s/mm 2), acquisition matrix � 128 � 128,
FOV � 230 � 230 mm 2, average � 1].

Data preprocessing
The data preprocessing included eddy current and motion artifact cor-
rection of DTI data, calculation of the diffusion tensor, and estimation of
the probabilistic distribution of fiber orientations from each voxel.
Briefly, eddy current distortions and motion artifacts in the DTI dataset
were corrected by applying affine alignment of each diffusion-weighted
image to the b � 0 image. After this process, the diffusion tensor elements
were estimated by solving the Stejskal and Tanner equation, and then the
reconstructed tensor matrix was diagonalized to obtain three eigenvalues
(�1, �2, �3) and eigenvectors. The probabilistic distribution of fiber ori-
entations from each voxel was estimated with a two-tensor model (Beh-
rens et al., 2003, 2007). All these procedures were performed using the
FMRIB Diffusion Toolbox (FSL, version 4.1; http://www.fmrib.ox.ac.
uk/fsl).

Network construction
Nodes and edges are the two basic elements of a network. In the present
study, we defined all of the network nodes and edges using the following
procedures.

Network node definition. The procedure of defining the nodes has been
previously described (Gong et al., 2009b) and was performed here us-
ing SPM8 (http://www.fil.ion.ucl.ac.uk/spm). Briefly, individual T1-
weighted images were coregistered to the b � 0 images in the DTI space.
The transformed T1 images were then nonlinearly transformed to the
ICBM152 T1 template in the MNI space. The inverse transformations
were used to warp the automated anatomical labeling (AAL) atlas

Table 1. Demographic, clinical, and brain size properties of all participants

Control (n � 30) ADHD (n � 30) p value

Age (years) 10.3 � 1.6 (8 –14) 10.3 � 1.9 (8 –14) 0.94
IQ 121.7 � 14.0 (84 –144) 107.1 � 14.4 (85–142) �0.001**
Inattention scores 17.5 � 3.9 (9 –26) 27.5 � 3.9 (20 –35) �0.001**
Impulsivity scores 15.6 � 3.9 (9 –24) 23.9 � 10.0 (12–59) �0.001**
Total intracranial volume (L) 1.40 � 0.1 (1.18 –1.62) 1.34 � 0.1 (1.13–1.52) 0.044*

All controls and ADHD patients were boys and were matched for age. Values are mean � SD (range). All variables
were compared between groups with two-sample t test. *p � 0.05; **p � 0.001.
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(Tzourio-Mazoyer et al., 2002) from the MNI space to the DTI native
space. Discrete labeling values were preserved by the use of a nearest-
neighbor interpolation method. Using this procedure, we obtained 90
cortical and subcortical regions (45 for each hemisphere; Table 2), each
representing a node of the network (Fig. 1).

WM tractography. To reconstruct the whole-brain WM tracts, we per-
formed probabilistic tractography using the FMRIB Diffusion Toolbox
(FSL, version 4.1; http://www.fmrib.ox.ac.uk/fsl). The probabilistic trac-
tography was applied by sampling 5000 streamline fibers per voxel. For
each sampled fiber, a sample direction was first drawn from the local
direction distribution at the seed voxel, then we moved 0.5 mm in the
sample direction to a new position, and finally, a new sample direction
from the local distribution was obtained at this new position. For a seed
region, 5000 � n fibers were sampled; n is the number of voxels in the
region. The number of fibers passing through a given region divided by
5000 � n is calculated as the connectivity probability from the seed
region to the given region.

In the present study, each brain region was selected as the seed region,
and its connectivity probability to each of the other 89 regions was cal-
culated. Notably, the probability from i to j is not necessarily equivalent
to the probability from j to i because the tractography is dependent on the
seeding location. However, these two probabilities are highly correlated
across the brain regions for all subjects (all Pearson r � 0.97, p � 10 �20).
Thus, we defined the unidirectional connectivity probability Pij between
region i and region j by averaging these two probabilities. For each sub-
ject, the estimation of the local connectivity distribution took �24 h, and
the probabilistic tractography for the 90 seed regions took �70 h using a
single-core CPU. In the present study, all the processing steps were per-
formed in parallel using an SGE-capable system with 60 processor cores.

Network edge definition. To define the network edges, we computed
wij � Pij as the weight between brain regions i and j. For each subject, a
90 � 90 symmetric weighted network was constructed. To remove spu-
rious connections, we applied a threshold range between 0.01 and 0.1 at
intervals of 0.0025. Specifically, two brain regions were considered un-
connected if the mean connectivity probability across the subjects was
�2 SDs below a given threshold [e.g., mean (Pij) � 2SD (Pij) � thresh-
old]. For a given threshold value, this scheme leads to the same number
and position of the connections across subjects. Under the threshold, the
corresponding network sparsities range from 6% to 24%. The largest
component sizes of individual networks remained at 90 across the spar-
sity range.

Network analysis
For the weighted WM networks at each threshold, we calculated both
global and regional network metrics. The global metrics included: net-
work strength (Sp), global efficiency (Eglob), local efficiency (Eloc), short-
est path length (Lp), clustering coefficient (Cp), and small-world
parameters (� and �; Rubinov and Sporns, 2010). For regional charac-
teristics, we considered the nodal efficiency metric (Achard and Bull-
more, 2007). Furthermore, we calculated the area under the curve (AUC)
for each network metric, which provides a summarized scalar for topo-
logical organization of brain networks independent of a single threshold
selection. The integrated AUC metric has been applied in previous stud-
ies of brain networks (Achard et al., 2006; Gong et al., 2009a; He et al.,
2009). To further localize specific region pairs in which WM connectivity
was altered in patients with ADHD, we used a network-based statistic
(NBS) approach (Zalesky et al., 2010a). All network analysis was per-
formed using the GRETNA software (http://www.nitrc.org/projects/
gretna/). The definitions of these network properties are briefly described
below.

Network strength. For a network (graph) G with N nodes and K edges,
we calculated the strength of G as follows:

Sp	G
 �
1

N �
i�G

S	i
, (1)

where S(i) is the sum of the edge weights wij linking to node i. The
strength of a network is the average of the strengths across all of the nodes
in the network.

Small-world properties. Small-world network parameters (Cp and Lp)
were originally proposed by Watts and Strogatz (1998). In this study, we
investigated the small-world properties of the weighted brain networks.
The weighted clustering coefficient of a node i, C(i), which was defined as
the likelihood that the neighborhoods were connected with each other
(Onnela et al., 2005), is expressed as follows:

C	i
 �
2

ki	ki � 1
 �
j,k

	w� ij w� jk w� ki

1/3, (2)

where ki is the degree of node i, and w� is the weight, which is scaled by the
mean of all weights to control each participant’s cost at the same level.
The clustering coefficient is zero, C(i) � 0, if the nodes are isolated or

Table 2. Cortical and subcortical regions of interest defined in the study

Index Regions Abbreviation Index Regions Abbreviation

(1,2) Precental gyrus PreCG (47,48) Lingual gyrus LING
(3,4) Superior frontal gyrus, dorsolateral SFGdor (49,50) Superior occipital gyrus SOG
(5,6) Superior frontal gyrus, orbital part ORBsup (51,52) Middle occipital gyrus MOG
(7,8) Middle frontal gyrus MFG (53,54) Inferior occipital gyrus IOG
(9, 10) Middle frontal gyrus, orbital part ORBmid (55,56) Fusiform gyrus FFG
(11,12) Inferior frontal gyrus, opercular part IFGoperc (57,58) Postcentral gyrus PoCG
(13,14) Inferior frontal gyrus, triangular part IFGtriang (59,60) Superior parietal gyrus SPG
(15,16) Inferior frontal gyrus, orbital part ORBinf (61,62) Inferior parietal, but supramarginal and angular gyri IPL
(17,18) Rolandic operculum ROL (63,64) Supramarginal gyrus SMG
(19,20) Supplementary motor area SMA (65,66) Angular gyrus ANG
(21,22) Olfactory cortex OLF (67,68) Precuneus PCUN
(23,24) Superior frontal gyrus, medial SFGmed (69,70) Paracentral lobule PCL
(25,26) Superior frontal gyrus, medial orbital ORBsupmed (71,72) Caudate nucleus CAU
(27,28) Gyrus rectus REC (73,74) Lenticular nucleus, putamen PUT
(29,30) Insula INS (75,76) Lenticular nucleus, pallidum PAL
(31,32) Anterior cingulate and paracingulate gyri ACG (77,78) Thalamus THA
(33,34) Median cingulate and paracingulate gyri DCG (79,80) Heschl gyrus HES
(35,36) Posterior cingulate gyrus PCG (81,82) Superior temporal gyrus STG
(37,38) Hippocampus HIP (83,84) Temporal pole: superior temporal gyrus TPOsup
(39,40) Parahippocampal gyrus PHG (85,86) Middle temporal gyrus MTG
(41,42) Amygdala AMYG (87,88) Temporal pole: middle temporal gyrus TPOmid
(43,44) Calcarine fissure and surrounding cortex CAL (89,90) Inferior temporal gyrus ITG
(45,46) Cuneus CUN

The regions are listed in terms of a prior template of an AAL atlas (Tzourio-Mazoyer et al., 2002).
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have just one connection (i.e., ki � 0 or ki � 1). The clustering coefficient
Cp of a network is the average of the clustering coefficient over all nodes,
which indicates the extent of local interconnectivity or cliquishness in a
network (Watts and Strogatz, 1998).

The path length between any pair of nodes (e.g., node i and node j) is
defined as the sum of the edge lengths along this path. For weighted
networks, the length of each edge was assigned by computing the recip-
rocal of the edge weight, 1/wij. The shortest path length Lij, is defined as
the length of the path for node i and node j with the shortest length. The
shortest path length of G is computed as follows:

Lp	G
 �
1

N	N � 1
 �
i�j�G

Lij, (3)

which quantifies the ability for information to be propagated in parallel.

To examine the small-world properties, the
Cp and Lp of the brain networks were compared
with those of random networks. In this study,
we generated 100 matched random networks,
which had the same number of nodes and
edges, and degree distribution as the real net-
works (Maslov and Sneppen, 2002). Of note,
we retained the weight of each edge during the
randomization procedure such that the weight
distribution of the network was preserved. Fur-
thermore, we computed the normalized Cp,
� � Cp

real/Cp
rand, and the normalized Lp, � �

Lp
real/Lp

rand, where Cp
rand and Lp

rand are the mean
Cp and the mean Lp of 100 matched random
networks. A real network would be considered
small world if � � 1 and � � 1 (Watts and
Strogatz, 1998). In other words, a small-world
network has not only the higher local intercon-
nectivity but also the approximately equivalent
shortest path length compared with the ran-
dom networks.

Network efficiency. The global efficiency of G
measures the global efficiency of the parallel
information transfer in the network (Latora
and Marchiori, 2001), which can be computed
as follows:

Eglob	G
 �
1

N	N � 1
 �
i�j�G

1

Lij
, (4)

where Lij is the shortest path length between
node i and node j in G.

The local efficiency of G reveals how much
the network is fault tolerant, showing how ef-
ficient the communication is among the first
neighbors of node i when it is removed. The
local efficiency of a graph is defined as follows:

E loc	G
 �
1

N �
i�G

Eglob	Gi
, (5)

where Gi denotes the subgraph composed of
the nearest neighbors of node i.

Regional nodal characteristics. To determine
regional nodal characteristics of the WM net-
works, we computed the regional efficiency
Enodal(i) (Achard and Bullmore, 2007):

Enodal 	i
 �
1

N � 1 �
i�j�G

1

Lij
, (6)

where Lij is the shortest path length between
node i and node j in G. Enodal(i) measures the
average shortest path length between a given

node i and all of the other nodes in the network. Node i was considered a
brain hub if Enodal(i) was at least 1 SD greater than the average nodal
efficiency of the network (i.e., Enodal(i) � mean � SD).

NBS analysis. To localize specific pairs of brain regions in which struc-
tural connectivity was altered in ADHD, we used a recently developed
NBS approach (Zalesky et al., 2010a). Briefly, we first detected signifi-
cantly nonzero connections within groups, which are the same across
subjects. The NBS approach was then conducted within the connections
as follows. A primary threshold ( p � 0.01) was first applied to the t
statistic (two-sample one-tailed t tests) computed for each link to define
a set of suprathreshold links, among which any connected components
and their size (number of links) were then determined. To estimate the
significance for each component, the null distribution of connected com-
ponent size was empirically derived using a nonparametric permutation

Figure 1. A flowchart for the construction of the WM structural network by diffusion MRI data. A, Individual T1-weighted
images were used to segment the brain into 90 cortical and subcortical regions according to the AAL template (see Materials and
Methods). B, For each region, the connectivity probability with other brain regions was estimated using diffusion MRI tractogra-
phy. The yellow to red colors represent the resulting probability (yellow � red) from the left precuneus (marked as blue) to the
other voxels. C, The individual structural connectivity matrix was created by considering the connection probability between two
regions. D, The individual matrix was thresholded under a range of probability values (0.01�0.1, which corresponds to a sparsity
range of 6 –24%), and the resultant WM networks were presented in anatomical space. The nodes are located according to their
centroid stereotaxic coordinates. For more details, see Materials and Methods.
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approach (10,000 permutations). For each permutation, all subjects were
randomly reallocated into two groups, and the t statistic (two-sample
one-tailed t test) was computed independently for each link. Then, the
threshold ( p � 0.05) was used to generate suprathreshold links among
which the maximal connected component size was recorded. Finally, for
a connected component of size M found in a right grouping of controls
and patients, the corrected p value was determined by finding the pro-
portion of the 10,000 permutations for which the maximal connected
component was larger than M. Notably, several previous diffusion MRI
studies have suggested significant associations of age, IQ, and brain size
with the topological properties of whole-brain WM networks (Gong et
al., 2009a; Li et al., 2009; Yan et al., 2011). Thus, the effects of age, IQ, and
brain size were removed by a regression analysis before the statistical
analysis of the connections (see Statistical analysis). This NBS method
has recently been used to identify abnormal brain connectivity circuitry
in schizophrenia (Zalesky et al., 2011) and depression (Zhang et al., 2011;
Bai et al., 2012). For a detailed description, see Zalesky et al. (2010a).

Statistical analysis
Between-group differences. Two-sample t tests were used to test the
between-group differences in age, IQ, brain size, and scores of ADHD
symptom severity. To determine the statistical significance of group dif-
ferences in network metrics, a nonparametric permutation method
(10,000 permutations) was used (He et al., 2008). Briefly, for each net-
work metric, we first computed the between-group difference in the
mean AUC value. To test the null hypothesis that the observed group
difference could occur by chance, we then randomly reallocated all the
AUC values into one or the other of the two groups and recomputed the
difference in the mean AUC values between the randomized groups. This
randomization procedure was repeated 10,000 times, and the 95th per-
centile points of these distributions were used as the critical values for a
one-tailed test of the null hypothesis with a probability of type I error of
0.05. Before the permutation tests, the effects of age, IQ, and brain size
were removed by the following multiple linear regression analysis.

Y � �0 � �1 � age � �2 � IQ � �3 � brain size,

(7)

where Y was a dependent variable indicating each network metric and the
independent variables included age, IQ, and brain size. Likewise, permu-
tation tests (10,000 permutations) were used to determine the signifi-
cance levels of altered components in the NBS analysis.

Relationships between network metrics and clinical variables. For those
network metrics with significant group differences, we examined the
relationships between the metrics and the clinical variables in the ADHD
group by performing multiple linear regression analyses (dependent
variables: network metrics; independent variables: inattention or hyper-
activity/impulsivity score measured by ADHD RS-IV). Age, IQ, and
brain size were also treated as confounding covariates.

Validation analysis
Pediatric template. In the present study, we used the ICBM152 T1 tem-
plate for spatial normalization. Such an adult template could lead to the
misregistration of the images in the pediatric population. To assess
whether our main results were affected by the use of the adult template,
we used a pediatric T1 template (7.5–13.5 years of age; Fonov et al., 2011)
for imaging normalization. We then repeated the whole-brain network
construction and analysis procedures, including the WM tractography,
network edge definition, and graphic analysis, followed by the statistical
comparisons between the two groups. Additionally, for each network
metric derived from two templates, we also computed the correlations
across subjects for each group.

High-resolution brain network analysis. Several studies have suggested
that graphic metrics of whole-brain networks are dependent on the res-
olution of the network (i.e., network size) (Wang et al., 2009b; Zalesky et
al., 2010b). In addition to the coarse parcellation scheme using 90 nodes,
we also used a high-resolution (�1000 parcels) parcellation (H-1024) by
randomly subdividing the AAL atlas into 1024 regions with equal size
(Hagmann et al., 2008; Zalesky et al., 2010b). Similar to the low-

resolution AAL networks, the connectivity probability between regions
was defined as the weight of the network edge, which results in a sym-
metric 1024 � 1024 matrix for each participant. The sparsities of H-1024
networks under probability thresholds of 0.01– 0.1 (at intervals of 0.005)
ranged from 1.6% to 8.4%. Then, we repeated all the network analyses
and statistical comparisons to determine the between-group differences
in the graphic metrics. Probabilistic tracking of 1024 seed regions took
�200 h per subject using a single-core CPU.

Results
There was no significant difference in age between the ADHD
and control groups (p � 0.9). However, patients with ADHD
exhibited significantly lower IQ scores (p � 0.001), higher inat-
tention scores (p � 0.001), and higher hyperactivity/impulsivity
scores (p � 0.001). Additionally, we observed that the boys with
ADHD had a significantly smaller brain size (p � 0.044) com-
pared with the controls (Table 1).

Alterations in the global properties of WM networks
in ADHD
Both the ADHD patients and controls showed a small-world or-
ganization of WM networks characterized by � � 1 and � � 1
(Fig. 2). However, compared with controls, the ADHD patients
had significantly decreased Eglob and increased Lp and � in the
WM networks over a wide range of thresholds (Fig. 2). Addition-
ally, we observed increased Eloc and Cp in the ADHD networks
over several thresholds (Fig. 2). Moreover, the ADHD patients
showed significantly decreased AUC values of Eglob (p � 0.038),
increased Lp (p � 0.029) and increased � (p � 0.046) in the WM
networks (Table 3). There were no significant differences be-
tween groups in the other network metrics (Fig. 2; Table 3).

Alterations in the regional properties of WM networks
in ADHD
First, we identified the hub regions of the WM networks for each
group. The nodes were considered brain hubs if their nodal effi-
ciencies were at least 1 SD greater than the average nodal effi-
ciency of the network. We found that the ADHD and control
groups showed highly similar hub distributions, with core re-
gions mainly in the medial frontal and parietal cortices (Fig.
3A,B; Table 4). This finding is largely consistent with previous
WM network studies in healthy adults (Hagmann et al., 2008;
Gong et al., 2009a,b; van den Heuvel and Sporns, 2011). Further
statistical analysis revealed that patients with ADHD had reduced
nodal efficiency in the left parietal (supramarginal gyrus, inferior
parietal cortex, postcentral gyrus, and angular gyrus), left frontal
(orbital middle frontal gyrus), and left occipital cortices (lingual
gyrus; p � 0.05, uncorrected; Fig. 3C; Table 5).

Decreased prefrontal-dominant component in ADHD
Using the NBS analysis, we found that ADHD patients showed
significantly decreased WM connections in the left prefrontal-
dominant component under most of the thresholds (mainly
composed of the left dorsolateral parts of the superior frontal
gyrus, the precentral gyrus and the orbital parts of the superior
and middle frontal gyri; p values � 0.05 at multiple probability
thresholds, corrected; Fig. 4A). The strengths, percentages, and
frequencies of these decreased WM connections across thresh-
olds are shown in Table 6.

Increased orbitofrontal-striatal component in ADHD
Using the NBS analysis, we also showed that ADHD patients
exhibited significant (or trends toward significant) increases in

10680 • J. Neurosci., June 26, 2013 • 33(26):10676 –10687 Cao, Shu et al. • Abnormal White Matter Structural Connectivity Networks



WM connections in the orbitofrontal-striatal component under
most of the thresholds (mainly composed of the striatum struc-
tures including the caudate and putamen and the medial orbital
parts of the superior frontal gyrus; p � 0.015 at the threshold of
0.01 and p � 0.10 at several other thresholds, corrected; Fig. 4B).
The strengths, percentages, and frequencies of these increased
WM connections across thresholds are shown in Table 6.

Relationships between network metrics and
ADHD symptoms
Under multiple probability thresholds, we found that the mean
NBS connectivity strength of the decreased prefrontal-dominant
component was negatively correlated with the inattention score
in the ADHD patients (p � 0.035; Fig. 4A). At the probability
threshold � 0.01 (sparsity � 24%), the mean NBS connectivity
strength of the increased orbitofrontal-striatal component was
positively correlated with the hyperactivity/impulsivity score in
ADHD patients (p � 0.032; Fig. 4B). There were no significant
correlations between the other network metrics and ADHD
symptoms.

Validation results
The effects of the pediatric template
While using the pediatric T1 template for spatial normalization,
the results were highly consistent with those obtained from the
adult ICBM152 template. Compared with the controls, the
ADHD patients showed significantly decreased AUC values of
Eglob (p � 0.043) and significantly increased Lp (p � 0.031) and �

(p � 0.048); there were no significant group differences in the
other network metrics. Reduced nodal efficiencies in the ADHD
patients were primarily located in the left parietal cortex (supra-
marginal gyrus, inferior parietal cortex, postcentral gyrus, angu-
lar gyrus, and paracentral lobule) and left insula (p � 0.05,
uncorrected). NBS analysis revealed a significantly decreased
prefrontal-dominant component and an increased orbitofrontal-
striatal component in the ADHD group (p � 0.05, corrected).
Additionally, for each group we also observed strong correlations
in both the global network properties (Sp: ADHD, r � 0.97 and
control, r � 0.97; Eglob: ADHD, r � 0.78 and control, r � 0.82;
Eloc: ADHD, r � 0.84 and control, r � 0.86; Lp: ADHD, r � 0.77
and control, r � 0.79; Cp: ADHD, r � 0.90 and control, r � 0.94;
all p values �10�5) and the nodal efficiency (ADHD, mean r �
0.87; control, mean r � 0.86; all p values �10�5) between the two
templates across the subjects.

The effects of high-resolution parcellation
In contrast to the results of low-resolution AAL networks, we
found no significant between-group differences in the global net-
work properties for the H-1024 networks (p � 0.05). For nodal
analysis, the regions with decreased efficiency in ADHD were
located in the left parietal cortex (paracentral lobule, inferior
parietal cortex, supramarginal gyrus, and postcentral gyrus) and
the right supplementary motor area, while increased efficiencies
were mainly distributed in the prefrontal cortex (bilateral medial
superior frontal gyri, right middle and inferior frontal gyri, right
anterior cingulate gyrus, and right precentral gyrus), the left

Figure 2. Differences in topological properties of WM structural networks between ADHD patients and controls. Global metrics of WM structural networks were quantified in controls and ADHD
patients with different probability thresholds. Data points marked with a star indicate a significant group difference ( p � 0.05) in the global network metric under the threshold. Both ADHD patients
and controls showed a small-world organization of WM networks characterized by a �� 1 and �� 1. However, compared with controls, ADHD patients had significantly decreased Eglob, increased
absolute Lp, and � in the WM networks for most of thresholds considered. HC, Healthy controls. The fitted values mean the residuals of original values of network metrics after removing the effects
of age, IQ, and brain size.

Table 3. Group comparisons of AUC values of global network properties

Sp Eglob Eloc Lp Cp � �

Control 42.76 � 1.37 17.41 � 0.24 29.18 � 0.25 80.90 � 1.06 15.81 � 0.28 46.60 � 0.45 204.12 � 2.52
ADHD 42.60 � 1.82 17.26 � 0.23 29.19 � 0.24 81.62 � 1.01 15.92 � 0.24 46.86 � 0.45 204.67 � 3.20
p value 0.39 0.038* 0.45 0.029* 0.13 0.046* 0.30

Permutation tests were used to determine the differences in the global network properties between groups (see Materials and Methods). Values were the fitted AUC values (mean � SD) of global network properties in each
group. *p � 0.05.
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parahippocampus gyrus, and the right su-
perior occipital gyrus (p � 0.05, uncor-
rected; Fig. 5A). Using NBS analysis, both
significantly decreased and increased
components across thresholds were iden-
tified (p values � 0.05, corrected). The
decreased component was mainly in-
volved in the WM connections of the left
dorsal prefrontal cortex, the left precen-
tral and postcentral gyri, the left insula,
and the left paracentral lobule; and the in-
creased component was mainly composed
of the striatum structures (bilateral cau-
date and putamen), the bilateral superior
and middle frontal gyri, and occipital
regions (Fig. 5B). Furthermore, we
found that the mean NBS connectivity
strength of the decreased component
was negatively correlated with the inatten-
tion score in the ADHD patients under
multiple thresholds (p values � 0.05; Fig.
5B). Collectively, high-resolution net-
work analysis revealed some compatible
results of regional (decreased nodal effi-
ciency in the left parietal cortex in ADHD)
and NBS analyses compared with low-
resolution network analysis. However, sev-
eral results of global network properties and
regional alterations (e.g., increased nodal ef-
ficiency in high-resolution analysis) were
different. A possible reason for this is that
the topological organization of brain net-
works is largely dependent on spatial scales:
a high-resolution network analysis could
provide more detailed information about
the network changes (Wang et al., 2009b;
Zalesky et al., 2010b).

Discussion
We used probabilistic diffusion tractogra-
phy and graph theory to investigate the
topological organization of the WM net-
works in drug-naive boys with ADHD and
in healthy controls. Although both groups
exhibited efficient small-world properties
in their WM networks, ADHD patients
had decreased global efficiency and
increased path length compared with
the controls, with the most significant
changes were in the left frontal, parietal,
and occipital regions. Furthermore,
ADHD patients exhibited decreased net-
work connectivity, primarily in the left
prefrontal cortex and insula, and in-
creased connectivity, primarily in the medial orbitofrontal cortex
and striatum, and these changes were significantly correlated
with the inattention and hyperactivity/impulsivity scores of the
ADHD group. Together, our study provides empirical evidence
for the disruption of topological organization in WM networks in
ADHD.

ADHD patients and controls showed small-world properties
of the WM networks, characterized by high local clustering and
short path length, which are in accordance with previous WM

network studies in healthy adults (Hagmann et al., 2008; Gong et
al., 2009b). Our results suggest that the key aspects of the brain’s
structural organization are conserved throughout the develop-
ment process and support the view that small-world networks
can tolerate developmental alteration or disease (He et al., 2009;
Supekar et al., 2009). Despite the common small-world topology,
the ADHD patients showed decreased global efficiency and in-
creased path length. Given that the small-world topology reflects
an optimal balance between global integration and local special-

Figure 3. Distribution of hub regions in the WM structural networks of the control and ADHD groups and nodes with decreased
efficiency in ADHD patients. A, B, 3D representations of the hub distributions in the control (A) and ADHD (B) groups. The hub nodes
are shown in yellow with node sizes indicating their nodal efficiency values. C, The disrupted nodes in ADHD patients are shown in
blue with node sizes indicating the significance of between-group differences in the regional efficiency. The regions were mapped
onto the cortical surface at the axial and sagittal views. Notably, the networks shown here were constructed by averaging the WM
connection matrices of all subjects in each group at a sparsity of 10%. The nodal regions are located according to their centroid
stereotaxic coordinates. The edge widths represent the connection weights between nodes. The brain graphs were visualized by
using BrainNet Viewer software (http://www.nitrc.org/projects/bnv/). HC, Healthy controls. For the abbreviations of nodes, see
Table 2.
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ization (Sporns et al., 2000), our findings suggest that ADHD
children exhibited a less optimized topological organization in
their WM networks. The results are supported by a recent
R-fMRI study reporting a tendency for reduced global efficiency
of brain functional networks in ADHD patients (Wang et al.,
2009b). Notably, several studies suggest that the maturation of
the healthy human brain follows a “local to distributed” principle
(Fair et al., 2009; Dosenbach et al., 2010). Given that the global-
efficiency and path-length metrics of the networks are usually
associated with integrated information processing, our findings
of decreased global efficiency and increased path length in ADHD
patients may reflect a delayed structural maturation.

We observed decreased nodal efficiency in ADHD patients,
primarily in several frontal (left orbital part of the middle frontal
gyrus), parietal (left supramarginal gyrus, left inferior parietal
lobe, left postcentral gyrus and left angular gyrus), and occipital
regions (left lingual gyrus). These regions are key nodes of the
attention networks and exhibit structural and functional abnor-
malities in ADHD (Bush et al., 2005; Seidman et al., 2005). For
instance, several neuroimaging studies have shown decreased
gray matter volume or thickness (Hesslinger et al., 2002; Makris
et al., 2007), disrupted functional activity (Lee et al., 2005), and
disrupted WM integrity (Konrad et al., 2010) in the orbitofrontal
region in ADHD. The slower cortical development in this region
has also been linked to ADHD (Shaw et al., 2011). Decreased
efficiency in the parietal regions is compatible with several fMRI
studies that show aberrant activity in the attention system in
ADHD (Smith et al., 2006; Tamm et al., 2006; Cao et al., 2008).
Specifically, Tamm et al. (2006) reported decreased activation of
the left supramarginal and angular gyri in ADHD while perform-

ing attention tasks. Previously, we showed decreased activation of
the left inferior parietal lobe in ADHD in an alerting task (Cao et
al., 2008). The observed ADHD-related decreases in nodal effi-
ciency in the lingual gyrus are largely compatible with our previ-
ous R-fMRI work (Wang et al., 2009a). Importantly, we provide
structural evidence for the changes that might underlie these
functional deficits. Notably, the regions showing ADHD-related
decreases in nodal efficiency were located in the left hemisphere.
Previous fMRI studies have reported decreased left-hemispheric
activity in working memory tasks in ADHD (Valera et al., 2005;
Kobel et al., 2009), providing support for our findings. This ab-
errant laterality could be associated with abnormal brain devel-
opment in ADHD patients (Cohen et al., 2000).

We observed aberrant structural connectivity in two network
components in ADHD patients. The first component with de-
creased connections was primarily composed of the prefrontal
cortex and insular cortex. The prefrontal cortex is mainly in-
volved in attention, motivation, and executive functions (Bush,
2011), and has rich reciprocal interconnections (Durston et al.,
2011). Several models of ADHD have emphasized the pivotal role
of the prefrontal cortex and its relevant connections in the
pathophysiology of ADHD (Barkley, 1997; Sonuga-Barke,
2005; Durston et al., 2011). Numerous diffusion MRI studies
have demonstrated abnormal structural connectivity in the
prefrontal-related circuitry in ADHD and suggest that a dis-
rupted myelination mechanism underlies the abnormalities
(Casey et al., 2007; Pavuluri et al., 2009; Silk et al., 2009).
Importantly, we observed a significant correlation between
the WM connection strength within the prefrontal component
and the inattention score in ADHD patients, suggesting that
the aberrant prefrontal-related circuitry is likely to underlie
the behavioral symptoms of inattention.

The second component with increased WM connections in
ADHD was primarily involved in the medial orbitofrontal re-
gions and striatal structures. Several previous DTI studies have
reported increased fractional anisotropy (FA) in frontal WM re-
gions (Silk et al., 2009; Li et al., 2010; Peterson et al., 2011; Tamm
et al., 2012) and striatum structures (Peterson et al., 2011; Tamm
et al., 2012) in ADHD patients, which provides crucial support
for our findings. However, this finding creates a paradox as de-
creased WM connection probability or FA values are usually as-
sociated with disease pathology, Tamm et al. (2012) argued that
the atypical increased WM connections in brain disorders might
reflect changes in the underlying histology such as fiber diameter,
fiber density, extracellular volume fraction, interaxonal spacing,
and crossing of fiber pathways. They further argued that in-
creased frontostriatal connections in ADHD might reflect de-
creased fiber crossing and branching along these pathways.
Notably, the result was also compatible with a recent R-fMRI
study showing higher functional connectivity in these regions in
ADHD (Tomasi and Volkow, 2012). The medial orbitofrontal
gyrus and striatum have reciprocal interconnections that sub-
serve the inhibitory functions and reward processing (Barkley,
1997; Durston et al., 2011) and play a crucial role in ADHD
pathophysiology (Teicher et al., 2000). Thus, the increased con-
nections of these regions may underlie the symptoms of hy-
peractivity/impulsivity in ADHD patients.

A recent R-fMRI study reported abnormal network compo-
nents in a nonclinical, drug-naive sample of high-functioning
ADHD (Cocchi et al., 2012). Although several regions compris-
ing the components (e.g., superior frontal gyrus, medial orbito-
frontal gyrus and precentral gyrus) partly overlapped with our
results, the connections among these regions were different ex-

Table 4. Hub regions of WM networks in control and ADHD groups

Control ADHD

Hub regions Class Enodal /mean Hub regions Class Enodal /mean

SFGdor.R Association 1.13 SFGdor.R Association 1.14
SFGdor.L Association 1.12 PCUN.R Association 1.11
PCUN.L Association 1.10 SFGdor.L Association 1.11
PCUN.R Association 1.10 PCUN.L Association 1.10
CUN.R Association 1.10 CUN.R Association 1.09
SMA.R Association 1.09 SFGmed.R Association 1.09
IPL.L Association 1.09 MFG.R Association 1.08
SMA.L Association 1.08 PCG.R Paralimbic 1.08
INS.L Paralimbic 1.08 SMA.R Association 1.08
CUN.L Association 1.07 ROL.L Association 1.08
MFG.L Association 1.07 INS.L Paralimbic 1.07
SOG.L Association 1.07 SFGmed.L Association 1.07
MFG.R Subcortical 1.06 REC.L Paralimbic 1.06

The hub regions were identified if Enodal(i) was at least 1 SD greater than the mean nodal efficiency of the network
i.e., Enodal(i) � mean � SD�. The hubs are sorted by the mean normalized nodal efficiency (divided by the mean of
all nodes) in each group. The cortical regions are classified as primary, association and paralimbic (Mesulam, 1998).
The Enodal represents the AUC value of the nodal efficiency across thresholds.

Table 5. Brain regions with significant group effects in nodal efficiency

Regions Category

Enodal

p value (uncorrected)Control ADHD

SMG.L Parietal 18.18 � 0.82 17.53 � 0.71 0.011
IPL.L Parietal 18.84 � 0.91 18.13 � 0.90 0.017
ORBmid.L Frontal 21.91 � 1.02 21.23 � 0.94 0.030
PoCG.L Parietal 18.60 � 1.03 17.95 � 0.87 0.032
ANG.L Parietal 16.05 � 0.81 15.52 � 0.81 0.034
LING.L Occipital 15.46 � 0.92 14.93 � 0.79 0.046

Permutation tests were used to determine the differences in nodal efficiency of WM networks between groups ( p �
0.05, uncorrected) (see Materials and Methods). The values of Enodal represent the fitted AUC values (mean � SD) of
the nodal efficiency of each group.
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Table 6. The strengths, percentages, and frequencies of increased or decreased NBS structural connections across thresholds

ADHD � control ADHD � control

Connection Control ADHD Percentage (frequency) Connection Control ADHD Percentage (frequency)

SFGdor.L-PreCG.L 0.084 (�0.015) 0.072 (�0.017) 100% (20) CAU.L-ORBsupmed.L 0.028 (�0.023) 0.040 (�0.024) 100% (19)
SFGdor.L-ORBmid.L 0.049 (�0.019) 0.040 (�0.018) 100% (20) CAU.R-ORBsupmed.L 0.020 (�0.017) 0.029 (�0.018) 100% (19)
MFG.L-ORBmid.L 0.070 (�0.020) 0.062 (�0.012) 100% (20) CAU.R-PUT.R 0.063 (�0.018) 0.076 (�0.017) 100% (19)
ORBsup.L-ORBmid.L 0.288 (�0.035) 0.277 (�0.026) 100% (20) OLF.R-PUT.R 0.017 (�0.014) 0.026 (�0.014) 89% (17)
ORBsup.L-INS.L 0.034 (�0.011) 0.026 (�0.009) 50% (10) CAU.R-SFGmed.L 0.013 (�0.010) 0.021 (�0.014) 74% (14)
ORBmid.L-INS.L 0.015 (�0.010) 0.009 (�0.006) 35% (7) CAU.R-IFGoperc.R 0.007 (�0.006) 0.011 (�0.009) 37% (7)
ORBmid.L-TPOsup.L 0.015 (�0.009) 0.011 (�0.009) 35% (7) REC.R-PUT.R 0.010 (�0.005) 0.013 (�0.008) 37% (7)
MFG.L-ORBinf.L 0.013 (�0.006) 0.009 (�0.005) 30% (6) LING.R-PUT.R 0.004 (�0.003) 0.005 (�0.005) 11% (2)
ORBsup.L-MTG.L 0.010 (�0.006) 0.006 (�0.005) 25% (5) SFGdor.R-ORBmid.R 0.024 (�0.012) 0.032 (�0.018) 5% (1)
ANG.L-MTG.L 0.167 (�0.039) 0.150 (�0.032) 25% (5) ORBmid.R-ORBsupmed.L 0.003 (�0.003) 0.004 (�0.005) 5% (1)
ORBsup.L-ITG.L 0.006 (�0.005) 0.004 (�0.003) 10% (2) INS.R-PoCG.R 0.024 (�0.014) 0.031 (�0.016) 5% (1)
PCL.R-THA.R 0.033 (�0.016) 0.030 (�0.015) 5% (1) INS.R-SPG.R 0.003 (�0.002) 0.005 (�0.004) 5% (1)
SFGdor.R-ORBsup.L 0.004 (�0.004) 0.003 (�0.002) 5% (1) SOG.R-IOG.R 0.031 (�0.021) 0.037 (�0.017) 5% (1)
SFGdor.R-THA.R 0.059 (�0.018) 0.049 (�0.014) 5% (1) SOG.R-STG.R 0.006 (�0.005) 0.010 (�0.007) 5% (1)
ORBsup.L-SFGmed.R 0.005 (�0.004) 0.004 (�0.003) 5% (1) PoCG.R-CAU.R 0.003 (�0.002) 0.005 (�0.004) 5% (1)

PoCG.R-STG.R 0.015 (�0.005) 0.019 (�0.006) 5% (1)
SPG.R-HES.R 0.003 (�0.004) 0.006 (�0.005) 5% (1)
SPG.R-STG.R 0.014 (�0.008) 0.019 (�0.009) 5% (1)
HES.R-TPOsup.R 0.007 (�0.005) 0.015 (�0.011) 5% (1)

Mean (�SD) values for the connection strength (probability) in each group are reported. The percentage and frequency values represent the emerging percentage and times of the WM connections under the thresholds in which the NBS
components were statistically significant. For the abbreviations of the regions, see Table 2.

Figure 4. Connected networks that show decreased or increased structural connections in ADHD patients and their relationships with clinical characteristics in patients. A, The ADHD patients
showed decreased (blue curve) NBS components under a series of probability thresholds (0.01– 0.1). The region pairs show decreased structural connections in ADHD patients across several
probability thresholds ( p values � 0.05, corrected). The corresponding sparsities of the network are 24%, 10%, and 7% under the thresholds of 0.01 (a), 0.05 (b), and 0.08 (c), respectively. These
connections formed a single connected network, primarily involving prefrontal and insula regions, and the strength of the component was negatively correlated with the inattention score in ADHD
patients. B, The ADHD patients showed significantly, or trending toward significantly, increased (red curve) NBS components under a series of probability thresholds (0.01– 0.1). The region pairs
show increased structural connections in ADHD patients across several probability thresholds ( p�0.015 at the threshold of 0.01 and p�0.061 at the threshold of 0.05, corrected) These connections
formed a single connected network, primarily involving striatum structures and orbitofrontal regions, and the strength of the component was positively correlated with the impulsivity score in ADHD
patients at the threshold of 0.01 (network sparsity � 24%). Of note, the correlation was not significant if two outlier points with the highest scores were removed by Shepherd’s 	 correlation
(Schwarzkopf et al., 2012). In the 3D surface view of the components, the edge widths represent the significance of between-group differences in the connection strength. The nodes and connections
were mapped onto the cortical surfaces using BrainNet Viewer software (http://www.nitrc.org/projects/bnv/). For detailed information regarding the WM connections in the significant NBS
components, see Table 6. HC, Healthy controls. For the abbreviations of nodes, see Table 2.
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cept for decreased orbitofrontal–temporal connectivity. These
discrepancies could be due to different imaging modalities (fMRI
vs DTI) and different subject characteristics (e.g., age and gender)
in the two studies.

Several issues need to be addressed. First, we used the proba-
bilistic tractography method to map whole-brain WM connec-
tivity, which has advantages in tracking specific WM tracts
relating to fiber crossing compared with deterministic tractogra-
phy methods (Behrens et al., 2007). However, such a probability-
based approach could introduce spurious WM connections that
are biologically not connected. The use of a wide probability
threshold partly overcame this issue and suggested that our re-

sults were not dependent on an arbitrarily chosen threshold. Sec-
ond, the whole-brain network studies based on MRI data could
be sensitive to motion artifacts, especially for the drug-naive
ADHD patients. We took several steps to reduce these effects,
which included the use of a strap and foam pad during the scan,
visually checking the quality of raw images and the head-motion
correction of DTI data. However, the potential effects of imaging
artifacts still need to be further evaluated. Third, the results for
regional efficiency were not corrected for multiple comparisons;
therefore, they should only be considered an exploratory analysis.
Nonetheless, the results of reduced nodal efficiency in the left
parietal cortex in ADHD were highly consistent from different

Figure 5. Regional alterations and NBS results in the high-resolution (H-1024) networks. A, The nodes with decreased and increased efficiencies in ADHD patients are shown in blue and red,
respectively, with node sizes indicating the significance of between-group differences in the regional efficiency. B, The ADHD patients showed decreased (blue curve) and increased (red curve) NBS
components under a series of probability thresholds (0.01– 0.1). Top, The region pairs show decreased structural connections in ADHD patients across several probability thresholds ( ps � 0.05,
corrected). These connections formed a single connected network, primarily involving the left dorsal prefrontal cortex, the left precentral and postcentral gyri, the left insula and the left paracentral
lobule, and the strength of the component was negatively correlated with the inattention score in ADHD patients. Bottom, the region pairs show increased structural connections in ADHD patients
across several probability thresholds ( p values � 0.05, corrected). These connections formed a single connected network, primarily involving the striatum structures, the bilateral superior and
middle frontal gyri, and occipital regions. The corresponding sparsities of the network are 3.8%, 3.1%, and 2.7% under the probability thresholds of 0.035, 0.045, and 0.055, respectively. HC, Healthy
controls.
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templates and different network resolutions. To increase statisti-
cal power, future studies need to be conducted using a large sam-
ple of ADHD patients. Fourth, we used diffusion MRI data to
construct whole-brain WM networks. The brain networks can
also be studied using both structural and functional MRI data
(Achard et al., 2006; He et al., 2007). The combination of these
multimodal neuroimaging techniques would increase our under-
standing of how structural disruptions in neuronal circuits are
associated with functional deficits in ADHD patients. Finally, we
used the nonparametric permutation approach as the basis of the
network analysis; this method is relatively insensitive to the out-
liers and does not require the traditional assumption of normal
distribution. However, the nonparametric statistical inferences
are not generalizable to population-level conclusions about
ADHD. Moreover, this study only included boys with ADHD;
including girls with ADHD in future studies is important to ex-
plore gender effects on the brain networks.
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