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a b s t r a c t

Spatial patterns of functional connectivity derived from resting brain activity may be used to elucidate
the topological properties of brain networks. Such networks are amenable to study using graph theory,
which shows that they possess small world properties and can be used to differentiate healthy subjects
and patient populations. Of particular interest is the possibility that some of these differences are related
to alterations in the dopamine system. To investigate the role of dopamine in the topological organi-
zation of brain networks at rest, we tested the effects of reducing dopamine synthesis in 13 healthy
subjects undergoing functional magnetic resonance imaging. All subjects were scanned twice, in a
resting state, following ingestion of one of two amino acid drinks in a randomized, double-blind manner.
One drink was a nutritionally balanced amino acid mixture, and the other was tyrosine and phenylal-
anine deficient. Functional connectivity between 90 cortical and subcortical regions was estimated for
each individual subject under each dopaminergic condition. The lowered dopamine state caused the
following network changes: reduced global and local efficiency of the whole brain network, reduced
regional efficiency in limbic areas, reduced modularity of brain networks, and greater connection be-
tween the normally anti-correlated task-positive and default-mode networks. We conclude that dopa-
mine plays a role in maintaining the efficient small-world properties and high modularity of functional
brain networks, and in segregating the task-positive and default-mode networks.

This article is part of the Special Issue Section entitled ‘Neuroimaging in Neuropharmacology’.
� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The study of whole brain spontaneous neuronal activity has
recently emerged as a tool to uncover the structure of large-scale
brain networks. Regional measurements of slow (<0.1 Hz) spon-
taneous fluctuations in the blood oxygen level-dependent (BOLD)
functional Magnetic Resonance Imaging (fMRI) signal disclose
patterns of correlation that reveal functional neuronal networks
(Biswal et al., 1995; Lowe et al., 1998; Greicius et al., 2003; Fox et al.,
2005). Whole brain exploratory techniques (Kiviniemi et al., 2003;
Beckmann et al., 2005; De Luca et al., 2006) and seed-based ap-
proaches (Lowe et al., 1998; Cordes et al., 2001) have been used for
detecting functional connectivity on a voxel-wise basis. Region of
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interest (ROI)-based analysis is a useful technique for describing
functional connectivity within the framework of graph theory
(Salvador et al., 2005; Achard et al., 2006; He et al., 2009b; Bullmore
and Sporns, 2009). This approach is based on extracting averaged
BOLD signals from a number of anatomically defined cortical and
subcortical regions, computing a suitable correlation measure be-
tween every pair of ROI-averaged signals, and using graph theory to
make inferences about the properties of the resulting neural
networks.

Patterns in functional connectivity derived from spontaneous
brain activity may be used for segregating healthy and patient
populations (Fox and Raichle, 2007; Supekar et al., 2008; Liu et al.,
2008), or for studying the effect of modulatory neurotransmitters,
such as dopamine (Achard and Bullmore, 2007; Kelly et al., 2009a,
2009; Helmich et al., 2010). One motivation for focusing on the
dopamine system is the number of psychiatric and neurological
diseases (Honey et al., 2003; Honey and Bullmore, 2004) and the
wide range of cognitive tasks (e.g. Nagano-Saito et al., 2008) in

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:alain.dagher@mcgill.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuropharm.2013.12.021&domain=pdf
www.sciencedirect.com/science/journal/00283908
http://www.elsevier.com/locate/neuropharm
http://dx.doi.org/10.1016/j.neuropharm.2013.12.021
http://dx.doi.org/10.1016/j.neuropharm.2013.12.021
http://dx.doi.org/10.1016/j.neuropharm.2013.12.021


F. Carbonell et al. / Neuropharmacology 84 (2014) 90e100 91
which it is implicated. Another motivation derives from studies
showing that dopamine can affect spontaneous oscillations of basal
ganglia neurons (Walters et al., 2000), as well as correlation of
neuronal activity both within basal ganglia (Pessiglione et al., 2005)
and between basal ganglia and cortex in animals (Costa et al., 2006)
and humans (Meyer-Lindenberg et al., 2007; Nagano-Saito et al.,
2008). These studies suggest that large-scale networks that involve
basal ganglia could be disrupted by alterations in dopamine
function.

The aim of the current study was to investigate the effects of
lowered dopamine transmission on resting state functional con-
nectivity of healthy subjects, assessed using graph theory. We used
the acute phenylalanine/tyrosine depletion (APTD) technique,
which decreases dopamine synthesis and reduces both baseline
dopamine levels and stimulated dopamine release in humans
(Montgomery et al., 2003; Leyton et al., 2004). Our previous fMRI
studies used the APTD technique to detect dopamine-related
changes in activation and/or connectivity during specific cogni-
tive tasks (Nagano-Saito et al., 2008, 2012; Coull et al., 2012). In
contrast, we use here a ROI-based approach to study how dopa-
mine depletion impairs functional connectivity, network efficiency
and modularity by using BOLD signals collected during the resting
state.

2. Materials and methods

2.1. Subjects

Seventeen healthy right-handed subjects (mean age, 23.6 � 4.4 years; range,
19e34, eleven males) participated in this study, however three (one male and two
females) had to be eliminated from the final analysis because one fell asleep during
scanning, and two regurgitated the amino acid drink. One data set was removed for
excessive motion, leaving a total of 13 subjects. No subject had a history of neuro-
logic psychiatric disorder. Only non-smokers and social smokers (less than 5 ciga-
rettes per day) participated. All subjects gave informed consent to the protocol,
which was reviewed and approved by the Research Ethics Boards of the Montreal
Neurological Institute.

2.2. Dopamine depletion

The acute dopamine precursor depletion technique has been previously
described by Leyton et al. (2000). Subjects were tested twice, on separate days at
least 3 days apart. The day before each test session, subjects ate a low-protein diet
provided by the investigators and fasted from midnight. On the test days, subjects
arrived at 9:00 A.M. and had blood samples drawn to measure plasma amino acid
concentrations (Leyton et al., 2000). They then ingested one of two amino acid
drinks in a randomized, double-blind manner. One drink was a nutritionally
balanced 100 g amino acid mixture (BAL), and the other was tyrosine and phenyl-
alanine deficient (APTD) but otherwise identical. Eight subjects received BAL on the
first day, and nine subjects received APTD first. After ingestion of the amino acid
drink, around 9:40 A.M., subjects remained awake in a quiet room before per-
forming simple reaction time tasks, which started at 12:30 P.M. in the same room.
This was followed by functional magnetic resonance imaging (fMRI) starting at
1:30 P.M. At the end of the fMRI test session, at 3:00 P.M., subjects had a second
blood sample drawn to measure plasma amino acid concentration.

2.3. Data acquisition and preprocessing

Subjects were scanned at the Montreal Neurological Institute (MNI) using a 3T
Siemens (Erlangen, Germany) Magnetom Trio MRI scanner. The study consisted of
acquisition of two sets of echoplanar T2*-weighted images with blood oxygenation
level-dependent (BOLD) contrast (echo time, 30 ms; flip angle, 90�) and a high-
resolution, T1-weighted, three-dimensional volume acquisition for anatomical
localization (1 mm3 voxel size). Only the first set of BOLD acquisitions was used in
this study. The second set consisted of a cognitive task described elsewhere
(Nagano-Saito et al., 2012). The first acquisition comprised the resting state fMRI.
Each participant was asked to lie quietly at rest with eyes closed during acquisition.
One hundred and seventy seven whole brain volumes were acquired continuously
every 2.04s for a total of 361s. Volumes contained 35 slices of 4 mm thickness
(matrix size, 64� 64 pixels; voxel size, 4� 4� 4mm3). The datawere pre-processed
using the standard-stereotaxic fMRI preprocessing pipeline implemented in the
neuroimaging analysis kit (NIAK, Bellec et al., 2012). The first 5 volumes of each run
were discarded to minimize saturation effects. Each dataset was corrected for inter-
slice difference in acquisition time and rigid body motion. The whole dataset was
then submitted to the CORSICA procedure (Perlbarg et al., 2007) for removal of
structured physiological noise, and a band pass filter was applied in the range [0.01e
0.1] Hz. For each subject, the mean motion-corrected time-averaged functional
volume was co-registered with the individual T1 scan (Collins et al., 1994), which
was in turn non-linearly transformed to the Montreal Neurological Institute (MNI)
non-linear template using the CIVET pipeline (Zijdenbos et al., 2002). The functional
volumes were re-sampled in MNI space at 2 mm isotropic resolution and not
spatially smoothed before regional parcellation of each cerebral hemisphere into 45
anatomical regions of interest (Supplementary Table S1), according to the Automatic
Anatomical Labelling atlas (Tzourio-Mazoyer et al., 2002).

2.4. Statistical analysis of functional networks

For each voxel time course (BOLD data) we use a resting state version of the
model proposed in Worsley et al. (2002) and implemented in the fMRIStat package
(http://www.math.mcgill.ca/keith/fmristat/):

BOLDðtÞ ¼ ConfoundsðtÞ þ LinearDriftðtÞ þ eðtÞ; (1)

where Confounds(t) represents the matrix of the six parameters resulting from the
rigid body motion correction, the average white matter and the average cerebro-
spinal fluid time courses. LinearDrift(t) is a linear polynomial for reducing variance
due to temporal linear trend in the BOLD signal, and the error e(t)wasmodeled as an
order-8 auto-regressive process (AR(8)model) (see Discussion). The residuals of this
regression constituted the time series employed in the ROI-based connectivity
analysis. Regional mean time series were calculated for each subject by averaging
the fMRI time series over all voxels in each of the 90 parcelated anatomical regions.
For each individual data set, the Pearson correlation coefficient was estimated be-
tween each pair of the 90 mean time series, resulting in a symmetric 90 � 90 cor-
relation matrix.

Then, for each of the two conditions (BAL and APTD) we computed a common
(group-based) 90 � 90 correlation matrix R based on a random effects model over
the individual functional networks (Field, 2001). Each individual correlation matrix
Rij was converted to a standard normal metric by means of the Fischer r-to-Z
transformation:

Zij ¼ 1
2
log

 
1þ Rij
1� Rij

!
;

whereRij denote the individual correlation matrices for condition i ¼ 1,2 (i ¼ 1 ¼ BAL
and i ¼ 2 ¼ APTD) and subject j ¼ 1,..., NSub. According to the properties of the
Fischer r-to-Z transformation, each Zij is approximately normally distributed with
zero mean and variance equal to 1/(df�3), where df are the residual degrees of
freedom of the model. Indeed, having approximately Gaussian distributions facili-
tates the between-condition comparisons of correlation matrices under the
framework of the General Linear Model.

The transformed correlation matrices Zij were then used to generate a weighted
average (group-based) Z

i
in which each individual Zij is weighted by the inverse of

the corresponding individual adjusted variances wi
rand (Field, 2001):

Z
i ¼

PNSub
j¼1

Zi
j

wi
randPNSub

j¼ 1
1

wi
rand

¼
PNSub

j¼1 Zij
NSub

:

Here, each individual adjusted variance is given by the sum of a within-
subject variance component 1/(df�3) and a between-subject variance component

s2i . That is, wi
j ¼ 1=ðdf � 3Þ þ s2i ; with s2i ¼

�
1� NSubþ df � 3ð Þ

PNSub
j¼1 Zij � Z

i
� �2�

= df � 3ð Þ NSub� 1ð Þ: In this way, we have generated a random

effects model to define the adjusted individual variance of the Z-transformed vari-
ables Zij . Thus, in contrast to classical fixed effects modeling (variance ¼ 1/(df�3)),

the adjusted variance term includes an additional between-subjects variance
component. This typically yields more conservative tests for group-based statistics
(Field, 2001).

Finally, in order to define group-based correlationmatrices, the averagematrices

Z
i

were converted back to r-scale by the Z-to-r transformation

Ri ¼
�
e2Z

i

� 1
�
=
�
e2Z

i

þ 1
�
(Field, 2001).

The statistical comparison between the two conditions was carried out by using

a paired T test over thewhitened (adjusted variance-corrected) variables Zij=
ffiffiffiffiffiffiffiffiffiffiffiffi
wi

rand

q
.

This T test was implemented within a General Mixed-Effects Linear Model, which
allowed us to consider individual differences in variances as well as to remove sex
and age effects as modeled covariates. Our implementation of the general mixed-
effects model uses the restricted maximum likelihood (REML) estimation method
(Pinheiro and Bates, 2000). In particular, we employed the Matlab code provided in
the SurfStat toolbox (http://www.math.mcgill.ca/keith/surfstat) (Worsley et al.,
2009). In order to detect significant differences in correlation patterns between
the two conditions (BAL and APTD), the resulting T Statistical Parametric Map (SPM)
was submitted to a False Discovery Rate (FDR) (Benjamini and Yekutieli, 2001)
thresholding criterion to account for multiple comparisons.

http://www.math.mcgill.ca/keith/fmristat/
http://www.math.mcgill.ca/keith/surfstat
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2.5. Network properties

We computed network efficiency measures to quantify the small-world
behavior of our functional brain networks (Latora and Marchiori, 2001). These
measures are indicative of how efficiently information can be propagated over the
network (Achard and Bullmore, 2007) and can be evaluated at different network
scales to yield global, local and regional efficiency. These measures have a number of
conceptual and technical advantages compared to the standard small-world pa-
rameters (characteristic path length (L) and clustering coefficient (C)) (Latora and
Marchiori, 2001). Indeed, the quantities 1/L and C can be seen as first approxima-
tions of network efficiency, evaluated at global and local scale, respectively (Latora
and Marchiori, 2001).

Suppose that an N-dimensional correlation matrix R has been thresholded at a
value r to create an adjacency matrix A, where the entry aij of A is defined as either 1,
if
��Rij�� > r, or 0 otherwise. This adjacency matrix defines an unweighted graph

(network) G comprising N nodes, connected by undirected edges corresponding to
the nonzero entries of A. Then, for such a graph G, the wiring cost K is defined as the
ratio between the number of edges in the graph and the total number of possible
edges (i.e. N(N � 1)/2). Notice that, for each node, one can also compute the nodal
contribution to the wiring cost value as the ratio between the actual number of
edges connected to that node and the total number of possible edges. More gener-
ally, for any pre-defined two subsets of nodes, one can also compute the wiring cost
contribution of their interaction by taking the ratio between the number of edges
connecting the two subsets and the total number of possible edges in the network.

The global efficiency Eglb is defined as in Latora and Marchiori (2001):

EglbðGÞ ¼ 1
NðN � 1Þ

X
isj˛G

1
dij

;

where dij is the shortest path length between nodes i and j in G. The local efficiency
Eloc is calculated as (Latora and Marchiori, 2001):

ElocðGÞ ¼ 1
N

X
i˛G

EglbðGiÞ;

where Gi denotes the sub-graph of the neighbors of node i. Note that path length
refers to the number of edges between two nodes and not to physical distance.

A small world network is onewith Eglb less than a random graph but greater than
a regular lattice and Eloc greater than a comparable random graph (Watts and
Strogatz, 1998; Achard and Bullmore, 2007). Here, the comparable random net-
works were generated according to the random re-wiring procedure described in
Maslov and Sneppen (2002). In particular, we retained the degree of each node
during the rewiring process such that the degree distribution of the entire network
is preserved. For comparison purposes, we generated 100 of these random networks
per subject and dopaminergic condition and calculated their mean Eglb and Eloc as
described earlier.

Two different measures were used here for determining the relative importance
of each node within the network: regional efficiency and betweenness. The regional
efficiency Ereg for a given node i is defined as (Achard and Bullmore, 2007):

EregðiÞ ¼ 1
N � 1

X
isj˛G

1
dij

:

Regional efficiency is therefore a measure of each node’s connectedness with
every other node. A node with high regional efficiency can be called a hub.
Betweenness is a centrality measure that detects those nodes with high occurrence
on the shortest paths between other nodes, which is defined as (Freeman, 1977):

BðiÞ ¼ 2
ðN � 1ÞðN � 2Þ

X
jsisk˛G
jsk

sjkðiÞ
sjk

;

where sjk denotes the number of shortest paths from j to k, and sjk(i) is the number
of shortest paths from j to k that pass through node i.

As discussed below, the choice of the correlation threshold r has a major impact
on the adjacency matrix A. A common approach is to threshold the correlation
matrix in order to achieve a desired wiring cost value K, which is equal to the total
number of edges in the graph divided by the maximum number of edges (He et al.,
2009a). This allows analysis over the entire range of cost values [0, 1] and yields
definitions of integrated efficiency measures. Hence, we define the integrated
regional efficiency for node i over the cost interval [K1, K2] 3 [0, 1] as

ZK2

K1

Eregði; KÞdK

K2 � K1
;

where the term Eregði; KÞ means that regional efficiency has been considered as a
function of the wiring cost K. In a similar way we can define integrated measures of
global efficiency, local efficiency and betweenness. Integrated measures serve to
summarize network behavior over a particular cost interval, for instance, the in-
terval over which the network satisfies the small-world property.

For each cost value in the range [0, 1] we used a paired t-test for the comparison
of the values logðE1j =1� E1j Þ and logðE2j =1� E2j Þj ¼ 1; :::; NSubj, where for each j, E1j
and E2j represent either any of the efficiency parameters Eglb, Eloc or Ereg corre-
sponding to the BAL and APTD conditions, respectively. Note that we used a logit
model due to the efficiency parameters’ values varying between 0 and 1. FDR
(Benjamini and Yekutieli, 2001) thresholding was employed to account for multiple
comparisons over the interval [0, 1].

2.6. Modular organization

Another important network property is modularity (Newman and Girvan,
2004). It has been shown that fMRI resting state networks have an intrinsic
modular organization. By definition, the number of connections within modules is
greater than the expected number of connections in an equivalent network with
edges placed at random (Meunier et al., 2009; He et al., 2009b). The modularity Q(G)
for a network partition G ¼ {G1,., GM} into M modules is given by (Newman and
Girvan, 2004):

QðGÞ ¼
XM
i¼1

2ei
NðN � 1Þ �

�
di

NðN � 1Þ
�2

;

where ei denotes the number of edges between nodes in module i and di is the sum
of the degrees of all nodes in module i. The module identification process consists in
finding a partition that maximizes the modularity function Q(G). Several algorithms
have been developed for this purpose (see Fortunato (2010) for a review). Here, we
followed the spectral bisection algorithm as proposed by Newman (2006). The
spectral bisection algorithm has been shown to produce better results than other
competitive methods with shorter computational times (Newman, 2006). However,
it has been recently shown (Good et al., 2010) that the modularity function Q(G)
typically admits an exponential number of distinct high scoring sub-optimal solu-
tions and usually lacks a clear global maximum (optimal solution). We address this
issue by employing an additional fine-tuning approach (Newman, 2006), which
consists of a greedy strategy based on iterative re-distribution of each single node
from a module to either another existing module or to a new module in order to
minimize the modularity function in each re-allocation.

In this way, meaningful modular partitions can be obtained for both individual
and group-based functional networks. An important concern is the stability of the
resulting group-based modular partitions. A bootstrapping approach has been
recently suggested for identifying stable functional modules produced by hierar-
chical clustering techniques (Bellec et al., 2010). Here we followed a similar
approach for constructing stable group-based modular partitions. For each dopa-
minergic condition, we generated B ¼ 500 bootstrapped group-based correlation
matrices. To generate each matrix we replaced individual matrices with randomly
chosenmatrices from the set of all individual correlationmatrices and calculated the
corresponding group-based correlation matrix. We then calculated the modular
partitions for each of these 500 bootstrapped group-based correlation matrices and
selected that modular partition achieving the maximal modularity value.

Finally, we used a permutation test for the statistical comparison of the group-
based modular partitions corresponding to each dopaminergic condition. This
approach requires a measure of similarity or agreement between any pair or
modular partitions (either group-based or individual partitions). Here, we followed
an information theoretic approach, by using the concept of normalized variation of
information (Karrer et al., 2008) in order to define a distance measure between
network partitions (see Appendix). Then, the normalized variation of information
was used as the statistic of interest for the following permutation test. The per-
mutation test was designed to determine whether the observed difference between
the two group-based modular partitions was large enough to reject the null hy-
pothesis that the two dopaminergic conditions produce identical modular parti-
tions. A random permutation is created by switching the condition labels BAL and
APTD for a random number of subjects. For each of 1000 such permutations, we
calculated the group-based correlation coefficients for each randomized sample and
computed the corresponding modular decompositions. Then the set of the corre-
sponding 1000 normalized variation of information differences were taken as the
approximate distribution of all possible differences under the null hypothesis that
the modular partition is not determined by the dopaminergic condition. A p-value
was then calculated based on the proportion of random permutations where the
normalized variation of information was greater or equal to the actual difference
observed between the two group-based modular partitions.
3. Results

3.1. Tyrosine depletion

APTD reduced the plasma concentration of amino acid pre-
cursors of dopamine. On arrival at the lab plasma tyrosine levels
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were 52.5 (SD: 11.5) and 54.6 (12.2) micromol/l on BAL and APTD
days, respectively. After fMRI scanning, they were 128.4 (42.3) and
11.1 (3.5) micromol/l, respectively. For phenylalanine, the initial
levels were 48.1 (9.1) and 50.2 (6.4) micromol/l for BAL and APTD,
respectively, and 78.6 (38.2) and 9.4 (3.3) micromol/l, respectively,
after the fMRI sessions. Repeated-measures ANOVA indicated a
significant condition difference between BAL and APTD and a
condition by time interaction for both tyrosine and phenylalanine
(all p < 0.001).

The ratio of plasma tyrosine to large neutral amino acids, a
measure of brain tyrosine availability, was unchanged during the
BAL session (mean � SD: 0.103 � 0.008 before drinking the solu-
tion, 0.100 � 0.03 after scanning, 3% change, P ¼ 0.67) but reduced
significantly after APTD (0.107 � 0.02 before drinking the solution,
0.008 � 0.004 after scanning, 92% reduction, p < 0.0001).

3.2. Functional connectivity

The common (group-based) functional connectivity network
was computed for each dopaminergic condition (BAL and APTD).
Both networks are shown as 90� 90 correlation matrices in the top
row of Fig. 1. The 90 ROIs (left and right hemispheres of 45
anatomical regions) were arranged according to the anatomical
organization presented in Supplementary Table S1. In this Table,
each ROI was allocated to one of six pre-defined modules (frontal
lobe, limbic lobe, occipital lobe, parietal lobe, temporal lobe and
sub-cortical areas). Here, a module was defined as the set of ROIs
that belong to the same pre-defined anatomical region.

For both conditions, we observed amarkedly bilateral symmetry
in the resulting connectivity network such that many of the
strongest links in each network correspond to connections be-
tween contra-lateral homologous regions. This is evidenced as high
correlation values on the 2nd diagonal (diagonal just above the
Fig. 1. Top row: Group-based correlation matrices for conditions BAL and APTD. There is str
regions of dense local connectivity while long-range connections are found between fron
differences in correlations between conditions BAL and APTD and anatomical classification o
Highest positive t values (BAL > APTD) correspond to short-range connections among regio
The most significant negative t values (APTD > BAL) correspond to connections within the
main diagonal) of the group-based correlation matrices. We can
also observe that the occipital cortex is a region of dense local
connectivity whereas the strongest long range connections are
evident between the frontal lobe and the temporal and parietal
lobes.

Fig. 1 also shows the T SPM corresponding to the null hypothesis
of no differences in correlation between the two dopaminergic
conditions. Significant pairs of correlations were obtained by
thresholding the T SPM at FDR threshold t ¼ 3.301 (a ¼ 0:05).
Significant positive T values (in red) identify pairs of regions
showing greater correlation strength in the BAL condition relative
to APTD.

Table 1 shows the distribution of all statistically significant dif-
ferences between BAL and APTD, according to the modular
decomposition provided in Supplementary Table 1. The diagonal/
off diagonal entries of this table correspond to the percent (relative
to all statistically significant T’s) of significant T’s found within/
between modules.

The greatest significant positive (BAL > APTD) differences (14%)
correspond to short-range correlations within the frontal lobe.
Another 7% of the significant positive T values correspond to cor-
relations between regions in the frontal lobe and the limbic lobe. A
number of significant positive T values also correspond to intra-
lobe connections within temporal (4%) and limbic lobes (2.5%).
Some other significant positive differences correspond to occipi-
taleparietal (4%), frontaleoccipital (5%) and frontal-temporal con-
nections (3%).

In contrast, significant negative T values (blue color in Fig. 1) are
associated with greater correlation in the APTD condition. The
more evident significant negative T values correspond to connec-
tions within the frontal lobe (13.5%) and frontaleparietal (13%)
connections. The limbic lobe also produced many significant dif-
ferences (APTD > BAL). Indeed, intra limbic lobe connections
ong network symmetry for both conditions. The occipital cortex and parietal cortex are
tal cortex and lateral-temporal and parietal cortex. Bottom row: Statistical t SPM for
f the significant values. The t map was thresholded at FDR level t ¼ 3:301 (a ¼ 0:05).
ns within the frontal lobe and between regions connecting frontal and temporal lobes.
default mode network.



Table 1
Distribution of all statistically significant connectivity differences between BAL and
APTD. BAL condition increases the strength of short-range connections within
frontal lobe as well as frontalelimbic connections. APTD also increases some frontal
lobe connections as well as frontaleparietal connections. APTD-related connectivity
enhancement was also seen in the limbic lobe. A detailed view of the significant
negative differences (APTD > BAL) revealed that most of them correspond to con-
nections within the Default Mode Network.

Region Frontal Parietal Occipital Temporal Limbic Sub-cortical

Differences in connections (%) BAL > APTD
Frontal 14.3 1.6 4.8 3.2 7.1 1.6
Parietal 0.8 4.0 1.6 1.6 0.0
Occipital 0.0 0.0 0.8 0.0
Temporal 4.0 1.6 0.0
Limbic 2.4 0.0
Sub-Cortical 0.8
Differences in connections (%) BAL < APTD
Frontal 13.5 12.7 1.6 3.2 4.0 1.6
Parietal 3.2 0.0 0.0 0.0 0.0
Occipital 0.0 2.4 0.0 0.0
Temporal 0.0 0.0 0.0
Limbic 4.0 3.2
Sub-cortical 0.8
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produced 4% of all significant differences while another 4% and 3%
of differences corresponded to frontalelimbic and subcorticale
limbic connections, respectively. A more detailed view of these
significant differences (APTD > BAL) revealed that most of them
correspond to connections within a set of regions that includes the
medial prefrontal cortex, left inferior parietal lobule, dorsal
cingulate gyrus, posterior cingulate gyrus and precuneus. This set of
regions is commonly referred to as the Default Mode Network
(DMN) (Raichle et al., 2001; Greicius et al., 2003) because they
routinely exhibit greater activity during the resting state than
during performance of attention-demanding cognitive tasks. There
Fig. 2. Top row: Group average of local and global efficiencies for each condition as a function
local and global efficiencies are greater in the BAL condition than in the APTD condition ove
differences in efficiency between conditions BAL and APTD. Significant statistical difference
0.225], and [0.04, 0.13], respectively. See Supplementary Fig. 2 for similar plots with correla
were also an additional number of connections showing signifi-
cantly greater correlations in APTD than in BAL between regions
belonging to the DMN and a set of regions commonly referred to as
the Task Positive Network (TPN) (Fox et al., 2005, 2006). In contrast
to the DMN, the TPN is a network of regions exhibiting activity
increases during performance of attention-demanding cognitive
tasks and includes areas such as fusiform gyrus, inferior occipital
gyrus, lateral frontal cortex, lingual gyrus, cuneus, calcarine cortex
and supplementary motor area. Finally, it is worth mentioning that
a few significant negative differences (APTD> BAL) were also found
among pairs of regions within the TPN.
3.3. Network analysis

The global and local efficiencies were calculated for each func-
tional network in both dopaminergic conditions at all cost values in
the interval K¼ [0, 1]. As expected, for K¼ 1 both networks are fully
connected, while, as K decreases towards 0, the networks become
sparser.

Similarly, for each cost value, a corresponding random network
with the same node degree and number of edges was generated for
each network. Fig. 2 shows, for both conditions, the average global
and local efficiency (across subjects) as a function of cost.

Note that the small world regime is observed in the interval
K ¼ [0.05, 0.3]. That is, for cost values in the range K ¼ [0.05, 0.3],
both networks show global efficiency values smaller than the cor-
responding random network and local efficiency values greater
than the random one. Importantly, in the cost range corresponding
to a small world regime, the efficiency values are greater in the BAL
condition than in the APTD condition. This is evidenced in the
bottom panels of Fig. 2, which show the FDR-corrected p-values
resulting from the statistical comparison of the BAL versus APTD
difference for global and local efficiency, respectively, versus cost.
of wiring cost. A small world regime is evident in the wiring cost range [0.05, 0.3]. Both
r the small-world range of wiring costs. Bottom row: p-value associated to a T test for
s in global efficiency and local efficiency were found in the wiring cost intervals [0.055,
tion rather than cost as the threshold criterion.



Table 2
T and corresponding p-values of regions showing statistically significant differences
in regional efficiency and betweenness. Positive t values indicate a greater effect in
BAL compared to APTD. Abbreviations: IFGoperc: inferior frontal gyrus (opercular),
AMYG: amygdala, ORBmid: Orbitofrontal cortex (middle), ORBsupmed: orbito-
frontal cortex (superior medial), PCUN: precuneus, MFG: middle frontal gyrus,
ORBsup: orbitofrontal cortex (superior), ITG: inferior temporal gyrus, L: left, R: right.

Regional efficiency Betweenness

Region T p Region T p

IFGoperc_R 5.113 0.0001 ITG_R �2.835 0.0075
AMYG_R 2.821 0.0077 IFGoperc_R 2.187 0.0246
ORBmid_R 2.593 0.0117 ORBmid_R 1.895 0.0412
ORBsupmed_R 2.162 0.0257 ORBsupmed_R 1.806 0.0481
PCUN_R 2.152 0.0262
MFG_R 2.042 0.0366
ORBsup_L 1.943 0.0379
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These significant statistical differences in global and local efficiency
were found in the cost intervals K ¼ [0.055, 0.225] and K ¼ [0.04,
0.13], respectively. At no cost value was either efficiency measure
greater in APTD than BAL. The integrated global efficiency in cost
interval K ¼ [0.055, 0.225]was of 0.444 and 0.420 for BAL and APTD
conditions, respectively. Analogously, values for the integrated local
efficiency in cost interval K ¼ [0.04, 0.13] were of 0.648 and 0.611,
respectively.

The regional efficiency and betweenness of each region were
calculated for each individual functional network in both dopami-
nergic conditions and all cost values in the interval K¼ [0, 1]. Table 2
shows regions with the strongest differences in integrated regional
efficiency and integrated betweenness for the small-world cost
range K ¼ [0.05, 0.3] (see abbreviations in Supplementary Table S1).
Several regions belonging to the limbic system (orbitofrontal cor-
tex, amygdala) show higher regional efficiency in the BAL condition
than in the APTD condition. The overall connectivity of these re-
gions with all other brain areas is reduced in the low dopamine
Fig. 3. Average of the population modularity for each condition BAL and APTD and p-value
modularity values are present in the BAL condition.
state. No regions showed greater regional efficiency in APTD. Only
the right inferior temporal gyrus showed greater betweenness in
APTD.
3.4. Modularity analysis

The modularity of each individual functional network was
calculated for both dopaminergic conditions at all cost values
K ¼ [0, 1]. Fig. 3 shows the average modularity values across
subjects.

For both dopaminergic conditions, the resulting modularity
values are higher than the values expected for the corresponding
random networks, revealing a modular organization of brain net-
works. However, a higher modular functional organization is ach-
ieved for the BAL condition, which is corroborated by the FDR-
corrected p-values resulting from the statistical comparison. This
result indicates that the low dopamine state disrupts the modular
organization of the brain at rest. The average number of modules
resulting from the modular decomposition of each network is also
shown in Fig. 3. Note that despite significantly higher modularity
values in the BAL condition, no statistical differences were found
between the numbers of modules produced in each condition;
although there was a trend towards a greater number of modules in
BAL (see below).

Fig. 4 represents the modular decomposition corresponding to
group-based network in the BAL condition at cost value K ¼ 0.15,
which is a representative (midpoint) wiring cost value of the small
world regime. Each color corresponds to a different module in the
network. Edges within a module are plotted with the color of the
module, while edges between modules are plotted in gray.

This modular decomposition produced 6 different modules with
the following distribution (modularity score, Q ¼ 0.48). Module I
(red) comprises 21 regions mostly from bilateral occipital lobe as
well as a few regions from frontal, temporal and parietal lobe.
for the test corresponding to the difference in modularity between conditions. Higher



Fig. 4. Anatomical representation of the modularity analysis for the group-based connectivity network in the BAL condition at wiring cost K ¼ 0.15. Nodes in each of the modules
and edges within them are plotted with a single color, while edges between modules are plotted in black. Abbreviations in the Supplementary Table. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Module II (blue) is composed of 15 regionsmostly from frontal lobe.
Module III (green) includes 17 regions such as Heschl’s gyrus, the
insula, the superior temporal gyrus, the supramarginal gyrus and
regions from the inferior frontal lobe. Module IV (cyan) contains 14
regions and includes the precentral and postcentral gyrus as well as
the paracentral lobule, the supplementary motor area, the angular
gyrus and the precuneus. Module V (magenta) consists of the basal
ganglia: caudate, putamen and globus pallidus. Finally, Module VI
(orange) contains 17 regions including the hippocampus, para-
hippocampal gyrus, amygdala and middle/superior temporal pole.
A modular decomposition (modularity score, Q ¼ 0.47) was also
carried out for the group-based functional network corresponding
to the APTD condition at K ¼ 0.15. This analysis produced only 5
modules (Fig. 5) although their composition was different from the
one obtained for the BAL condition. The most evident difference
consisted in assigning regions from the basal ganglia subnetwork
(Module V in BAL condition) to different modules. Additionally, it
seems that most of the regions corresponding to former Module VI
in BAL condition are now split; some regions formed a single
module (Module V, in magenta) in APTD condition, while the other
regions were re-allocated to different modules. In short, APTD
appeared to disrupt the integrity of the basal ganglia and limbic
modules. Also, auditory and motor regions formed a single module
in the APTD condition (cyan in Fig. 5).

The differences observed between the compositions of modules
in the two dopaminergic conditions did not reach statistical
significance at a ¼ 0.05. The normalized variation of information
between the two group-based modular partitions was equal to
0.33, which corresponds to a p-val of 0.09 when performing a
permutation test.

4. Discussion

4.1. Alterations in functional connectivity

We describe four main effects of lowered dopamine synthesis
on resting state brain networks. First, dopamine precursor deple-
tion reduced short-range connections within frontal lobe and
reduced connectivity between frontal lobe and posterior associa-
tion areas. Dopamine precursor depletion also augmented con-
nectivity between the DMNand the TPN. Second, the lowdopamine
state decreased the global and local efficiency of brain networks,
within a range of costs compatible with small-world topology.
Third, dopamine depletion reduced regional efficiency within the
limbic system (amygdala and orbitofrontal cortex). Finally, lowered
dopamine reduced brain modularity, dispersed the basal ganglia
module that is normally present at rest, reassigning its component
regions to other modules, and caused auditory andmotor networks
to become a single module.

The tyrosine depletion treatment used here transiently de-
creases dopamine synthesis (Palmour et al., 1998; McTavish et al.,
1999b; Leyton et al., 2000) and reduces baseline (tonic)



Fig. 5. Anatomical representation of the modularity analysis for the group-based connectivity network in the APTD condition at wiring cost K ¼ 0.15. Nodes in each of the 5 modules
and edges within them are plotted with a single color, while edges between modules are plotted in black. Comparison with Fig. 4 shows that dopamine depletion changes the
modularity structure in the functional network. The basal ganglia module present in the BAL condition (magenta color in Fig. 4) is no longer evident in this dopamine depletion
condition, while the separate auditory (green in Fig. 4) and sensorimotor (cyan in Fig. 4) modules are now grouped as one (cyan here). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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dopamine levels and stimulated (phasic) dopamine release in
humans (Montgomery et al., 2003; Leyton et al., 2004). It is esti-
mated that the reduction in tonic striatal dopamine is on the order
of 10e20% (Montgomery et al., 2003) while the reduction in phasic
dopamine is approximately 30% (McTavish et al., 1999b; Leyton
et al., 2004). The treatment impairs performance on tasks depen-
dent on frontal lobe function and working memory (Harmer et al.,
2001; Gijsman et al., 2002; Harrison et al., 2004) to a degree that
correlates with the level of striatal dopamine depletion as
measured by positron emission tomography (Mehta et al., 2005).
Though dopamine is also a precursor for norepinephrine, accu-
mulating microdialysis, cFos, and neuroendocrine studies suggest
that APTD does not decrease norepinephrine neurotransmission
(Sheehan et al., 1996; McTavish et al., 1999b, 1999a; Masurier et al.,
2004).

The correlation analysis showed that dopamine precursor
depletion increased functional connectivity between regions
included in the DMN and those associated with the TPN. For
example, during APTD, the PCC, a DMN region, was reassigned to a
module that included the TPN regions dorsolateral and ventrolat-
eral prefrontal cortex (Fig. 5). In addition, we found that the low-
ered dopamine state reduced connections within the TPN, most
notably affecting the frontal lobes. DMN and TPN are typically anti-
correlated (Fox et al., 2009, 2005), both at rest and during cognitive
tasks, and the degree of anti-correlation appears to predict aspects
of task performance (Kelly et al., 2008). The reduced segregation of
TPN and DMN regions seen here during APTD, and the reduced
intra-TPN connectivity, may account for cognitive or attentional
deficits in states of low dopamine transmission. Consistent with
this interpretation, Kelly et al. (2009) reported that L-dopa, a
dopamine precursor, reduced resting state functional connectivity
between the striatum and regions associated with the DMN, while
increasing connectivity between striatum and TPN. Dang et al.
(2012a,b) recently demonstrated that this “anti-coupling” was
dependent on intrinsic dopamine synthetic activity as measured by
[18F]Fluoro-L-m-Tyrosine positron emission tomography. Similarly,
we previously showed that APTD led to reduced frontal (TPN) e

striatal connectivity and impaired DMN deactivation during per-
formance of the Wisconsin Card Sorting task (Nagano-Saito et al.,
2008). This has implications for cognitive deficits in diseases
associated with impaired dopamine signaling: poor DMN deacti-
vation or impaired TPN/DMN segregation is described in Parkin-
son’s disease (Delaveau et al., 2010), attention deficit hyperactivity
disorder (Castellanos et al., 2008), and schizophrenia (Whitfield-
Gabrieli et al., 2009). All these results point to a role of dopamine
in maintaining segregation of the TPN and DMN during cognitive
tasks, possibly via an influence on the striatum, which has exten-
sive anatomical connections to both TPN and DMN. Further sup-
porting a striatal locus for this effect of dopamine is a recent study
showing that homozygous carriers of the 10-repeat allele of the
dopamine transporter DAT1 demonstrate impaired TPN-DMN
segregation at rest compared to 9-allele carriers (Gordon et al.,
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2012). 10/10 homozygotes have lower tonic dopamine levels in the
striatum. This is also consistent with our finding that APTD dis-
perses the striatal module.

It is also possible that the previously observed inter-individual
variability in this anti-correlation (Kelly et al., 2008) is a reflec-
tion of dopaminergic neurotransmission, which also shows inter-
individual variability (e.g. Gordon et al., 2012). More generally,
the proposed flexible coupling of TPN, DMN, and dorsal attentional
modules as a function task requirements (Spreng et al., 2010) may
also be under dopaminergic control.

Consistent with a role for dopamine in segregating functional
networks during task performance, we also found a reduction in
modularity in the low dopamine state. High modularity values
imply that the within-module connections are greater than in an
equivalent random network. Our analysis of the group-based net-
works disclosed a modular organization similar to that obtained by
Meunier et al. (2009) and He et al. (2009b). Although the reduction
in the number of modules in APTD only showed a trend towards
statistical significance, we observed an effect of dopamine on the
distribution of modules. In particular, APTD appeared to disrupt the
organization of the striatal and limbic modules, which receive the
greatest dopamine innervation of any brain region. Modularity is an
intrinsic feature of small-world networks (Meunier et al., 2009),
and likely underpins parallel information processing.

We also found significantly greater global and local efficiency for
BAL relative to APTD, which shows that dopamine precursor
depletion impairs the low-cost high-efficiency arrangement of
brain functional networks. Our results are consistent with those of
Achard and Bullmore (2007), who showed that a single dose of
sulpiride, a dopamine antagonist, also impairs efficiency in brain
functional networks.

Finally, dopamine precursor depletion reduced the regional ef-
ficiency of a number of limbic and paralimbic regions, namely
orbitofrontal cortex and amygdala. This implies that connections
between these regions, which receive significant dopaminergic
innervation, and the rest of the brain were made less efficient by
dopamine depletion.

These findings demonstrate that dopamine plays a role in the
large-scale coordination of efficient brain network function. This
may account in part for the cognitive impairment that accompanies
dopaminergic dysfunction in conditions like Parkinson’s disease,
attention deficit hyperactivity disorder, and schizophrenia.

4.2. Methodological considerations

We used a fairly simple approach to generate graphs based on
pairwise correlations within the resting state BOLD time series.
Since anti-correlations between regions also imply a form of
mutual influence and may reasonably be used in graph generation
(Fornito et al., 2013), we chose not to make distinction between
positive and negative correlations. That is, we took the absolute
correlation value to generate our graphs, a not uncommon
approach (Achard et al., 2006; Achard and Bullmore, 2007). In any
case, the top panels of Fig. 1 demonstrate that there were no sta-
tistically significant anti-correlations in our dataset. It is also worth
mentioning that the global average signal (Fox et al., 2005) was not
included as a confounding variable in our analysis. It is a matter of
ongoing debate whether resting state anti-correlations are a mea-
sure of intrinsic slow fluctuations of brain activity or mostly
spurious correlations introduced by removing the global average
signal (Murphy et al., 2009; Fox et al., 2009). While global average
signal removal may introduce false positive anti-correlations, fail-
ure to do so could obscure true correlations of neural origin (Chang
and Glover, 2009). Since we do not know the effect of our dopa-
minergic manipulations on global resting state fluctuations, we
considered it prudent not to include the global average signal in our
model. We attempted to control for physiological noise using the
CORSICA algorithm and by including WM and CSF time-courses as
confounds. The dopaminergic effects on DMN and TPN functional
connectivity may represent reduced anti-correlation between
these two sets of region in the lowered dopamine state, but these
results should be interpreted with caution.

The choice of a suitable statistical model for the error term in
fMRI signals is also of particular importance for estimating func-
tional connectivity in resting state studies (Lund et al., 2006).
Typical resting state fMRI time series have a slowly decaying
autocorrelation structure (long memory processes). Whitening
serially correlated data is the most efficient approach prior to
estimating correlation parameters (Friston et al., 2000). Several
models and whitening strategies have been proposed. For instance,
the so-called 1/f model (Zarahn et al., 1997; Achard et al., 2006;
Achard and Bullmore, 2007) assumes that the spectral density
function of resting state fMRI BOLD signals behaves like the func-
tion 1/f. Under this assumption, wavelets filters have been used to
decorrelate time series and a wavelets correlation coefficient
(Percival and Walden, 2000) has been defined to estimate func-
tional connectivity (Achard et al., 2006; Achard and Bullmore,
2007). The wavelets correlation coefficient provides a scale by
scale decomposition of the usual correlation coefficient between
time series. Hence, it allows focusing on the functional connectivity
between brain regions with underlying activity in a pre-defined
frequency interval or wavelet scale (Achard and Bullmore, 2007).
However, the wavelets correlation coefficient is a relatively new
concept and its distributional properties have not been fully stud-
ied (see Appendix A in Achard et al., 2006). Evidently, this limita-
tion constrains useful classical inferential procedures over samples
of independent correlation coefficients (i.e. group-based correla-
tion coefficients analysis). Another general class of models for noise
in fMRI time series is given by the AR(p) process, where p denotes
the order of the auto-regressive model (Bullmore et al., 1996;
Worsley et al., 2002; Penny et al., 2003). A detailed comparison
between both types of model was carried out in Friston et al.
(2000), where it was shown that low order AR(p) models fail to
reproduce long range serial correlations (i.e. low frequency oscil-
lations). On the other hand, it was also shown that the 1/f model is a
good approximation for intermediate correlations but fails to
model the long-range correlations as well as a high order AR(p)
(Friston et al., 2000). In this work, we used an AR(8) model for
describing the intrinsic autocorrelation structure in our fMRI data.
This choice was based on the observations that the last AR coeffi-
cient was very close to zero for all data samples. Indeed, the last AR
coefficient in a AR(p) model is called pth partial autocorrelation
coefficient andmeasures the excess correlation at lag pwhich is not
accounted by an AR(p � 1) model (Chatfield, 2004). A value of the
pth partial autocorrelation coefficient close to zero is a good indi-
cator that p is a correct order for modeling temporal autocorrela-
tion. More precisely, values inside the range �2=

ffiffiffi
T

p
are not

significantly different from zero at the a ¼ 0:05 level, where T
denotes the number of time instants. Here, we estimated partial
autocorrelation coefficients by fitting AR(p) processes of succes-
sively higher order p, with p varying from 1 to 16. We verified that
for all data samples the partial autocorrelation coefficients beyond
p ¼ 8 were not significantly different from zero.

Another important issue when describing functional connec-
tivity is the thresholding step. Individual and group-based corre-
lation matrices need to be thresholded to generate the adjacency
matrices that define the functional networks. Two different
thresholding approaches have been used. The first approach, used
here, sets the same cost threshold value 0 < K < 1 for all individual
connectivity networks. This normalizes each individual network
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with respect to the number of nodes and edges and allows an ex-
amination of relative network efficiency (He et al., 2009a), while
limiting the number of spurious links at a group level. However, this
approach risks allowing spurious (false positive) network connec-
tions. For instance, at an equal cost value, an overall reduction in
correlation values would produce a higher proportion of spurious
edges in the lower correlation network than in the higher corre-
lation network. To overcome this limitation, a second thresholding
strategy has been also used. Here all individual correlation matrices
are thresholded at the same correlation value 0 < r < 1 (Achard
et al., 2006). A conservative correlation threshold r close to 1 gen-
erates a sparse connectivity network structure, where the signifi-
cant links should be interpreted as the strongest ones in the
network. On the other hand, values of r close to 0 lead to densely
connected networks, with a considerable number of spurious links.
This thresholding approach allows the determination of absolute
efficiency in each individual network, which is amenable to further
statistical comparison between subjects and across groups.
Supplementary Figs. 1 and 2 show the effect of this second
thresholding approach on our data. Supplementary Fig. 1 shows, for
both conditions, the average (across subjects) wiring cost values as
a function of the correlation threshold r. Although not statistically
significant different, the wiring cost values are greater in the APTD
condition than in the BAL condition. This figure also shows the
integrated (in the interval [0 1]) wiring cost contribution of our six
pre-defined modules (see Supplementary Table 1) as well as their
interactions. Notice that the wiring cost contribution to the inter-
action of these 6 modules does not significantly change across
dopaminergic condition. Supplementary Fig. 2 shows, for both
conditions, the average (across subjects) global and local efficiency
as a function of the correlation value. As for the cost-thresholded
networks, there is statistically greater global and local efficiency
during BAL than APTD for correlation values within the small-world
range. The results showed in these two supplementary figures
confirm that our findings in this paper do not depend on chosen
thresholding approach.
Acknowledgments

Supported by a Center of Excellence in Commercialization and
Research (CECR) grant from Industry Canada, and by the Canadian
Institutes for Health Research. FC was supported by a CECR
fellowship.
Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.neuropharm.2013.12.021.
References

Achard, S., Bullmore, E., 2007. Efficiency and cost of economical brain functional
networks. PloS Comput. Biol. 3 (2), e17.

Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E., 2006. A resilient, low-
frequency, small-world human brain functional network with highly connected
association cortical hubs. J. Neurosci. 26 (1), 63e72.

Beckmann, C.F., DeLuca, M., Devlin, J.T., Smith, S.M., 2005. Investigations into
resting-state connectivity using independent component analysis. Phil. Trans. R.
Soc. B Biol. Sci. 360 (1457), 1001e1013.

Bellec, P., Lavoie-Courchesne, S., Dickinson, P., Lerch, J.P., Zijdenbos, A.P., Evans, A.C.,
2012. The pipeline system for Octave and Matlab (PSOM): a lightweight
scripting framework and execution engine for scientific workflows. Front.
Neuroinform. 6, 7.

Bellec, P., Rosa-Neto, P., Lyttelton, O.C., Benali, H., Evans, A.C., 2010. Multi-level
bootstrap analysis of stable cluster in resting-state fMRI. NeuroImage 51, 1126e
1139.

Benjamini, Y., Yekutieli, D., 2001. The control of the false discovery rate in multiple
testing under dependency. Ann. Stat. 29 (4), 1165e1188.
Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in
the motor cortex of resting human brain using echo-planar MRI. Mag. Reson.
Med. 34 (4), 537e541.

Bullmore, E., Brammer, M., Williams, S.C.R., Rabe-Hesketh, S., Janot, N.,
David, A., Mellers, J., Howard, R., Sham, P., 1996. Statistical methods of
estimation and inference for functional MR image analysis. Mag. Reson.
Med. 35 (2), 261e277.

Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis
of structural and functional systems. Nat. Rev. Neurosci. 10 (3), 186e198.

Castellanos, F.X., Margulies, D.S., Kelly, C., Uddin, L.Q., Ghaffari, M., Kirsch, A.,
Shaw, D., Shehzad, Z., Di Martino, A., Biswal, B., Sonuga-Barke, E.J., Rotrosen, J.,
Adler, L.A., Milham, M.P., 2008. Cingulate-precuneus interactions: a new locus
of dysfunction in adult attention-deficit/hyperactivity disorder. Biol. Psychiatry
63, 332e337.

Chang, C., Glover, G., 2009. Effects of model-based physiological noise correction on
default mode network anti-correlations and correlations. Neuroimage 47 (4),
1448e1459.

Chatfield, C., 2004. The Analysis of Time Series: an Introduction, sixth ed. Chapman
& Hall/CRC.

Collins, D.L., Neelin, P., Peters, T.M., Evans, A.C., 1994. Automatic 3D intersubject
registration of MR volumetric data in standardized Talairach space. J. Comput.
Assist. Tomogr. 18 (2), 192e205.

Cordes, D., Haughton, V.M., Arfanakis, K., Carew, J.D., Turski, P.A., Moritz, C.H.,
Quigley, M.A., Meyerand, M.E., 2001. Frequencies contributing to functional
connectivity in the cerebral cortex in resting-state data. Am. J. Neuroradiol. 22
(7), 1326e1333.

Costa, R.M., Lin, S.C., Sotnikova, T.D., Cyr, M., Gainetdinov, R.R., Caron, M.G.,
Nicolelis, M.A.L., 2006. Rapid alterations in corticostriatal ensemble coordina-
tion during acute dopamine-dependent motor dysfunction. Neuron 52 (2),
359e369.

Coull, J.T., Hwang, H., Leyton, M., Dagher, A., 2012. Dopamine precursor depletion
impairs timing in healthy volunteers by attenuating activity in putamen and
SMA. J. Neurosci. 32 (47), 16704e16715.

Dang, L.C., O’Neil, J.P., Jagust, W.J., 2012a. Dopamine supports coupling of attention-
related networks. J. Neurosci. 32, 9582e9587.

Dang, L.C., Donde, A., Madison, C., O’Neil, J.P., Jagust, W.J., 2012b. Striatal dopamine
influences the default mode network to affect shifting between object features.
J. Cog. Neurosci. 24, 1960e1970.

Delaveau, P., Salgado-Pineda, P., Fossati, P., Witjas, T., Azulay, J.P., Blin, O., 2010.
Dopaminergic modulation of the default mode network in Parkinson’s disease.
Eur. Neuropsychopharmacol. 20, 784e792.

De Luca, M., Beckmann, C.F., De Stefano, N., Matthews, P.M., Smith, S.M., 2006. fMRI
resting state networks define distinct modes of long-distance interactions in
the human brain. NeuroImage 29 (4), 1359e1367.

Field, A.P., 2001. Meta-analysis of correlation coefficients: a Monte Carlo compari-
son of fixed-and random-effects methods. Psychol. Methods 6 (2), 161e180.

Fortunato, S., 2010. Community detection in graphs. Phys. Reports 486, 75e184.
Fornito, A., Zalesky, A., Breakspear, M., 2013. Graph analysis of the human con-

nectome: promise, progress, and pitfalls. Neuroimage 80, 426e444.
Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.,

2005. The human brain is intrinsically organized into dynamic, anticorrelated
functional networks. Proc. Natl. Acad. Sci. 102 (27), 9673e9678.

Fox, M.D., Corbetta, M., Snyder, A.Z., Vincent, J.L., Raichle, M.E., 2006. Spontaneous
neuronal activity distinguishes human dorsal and ventral attention systems.
Proc. Natl. Acad. Sci. 103 (26), 10046e10051.

Fox, M.D., Raichle, M.E., 2007. Spontaneous fluctuations in brain activity observed
with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8 (9), 700e711.

Fox, M.D., Zhang, D., Snyder, A.Z., Raichle, M.E., 2009. The global signal and observed
anticorrelated resting state brain networks. J. Neurophysiol. 101 (6), 3270e
3283.

Freeman, L.C., 1977. A set of measures of centrality based on betweenness. Soci-
ometry 40 (1), 35e41.

Friston, K.J., Josephs, O., Zarahn, E., Holmes, A.P., Rouquette, S., Poline, J.B., 2000. To
smooth or not to smooth? Bias and efficiency in fMRI time-series analysis.
NeuroImage 12 (2), 196e208.

Gijsman, H.J., Scarna, A., Harmer, C.J., McTavish, S.F.B., Odontiadis, J., Cowen, P.J.,
Goodwin, G.M., 2002. A dose-finding study on the effects of branch chain amino
acids on surrogate markers of brain dopamine function. Psychopharmacologia
160 (2), 192e197.

Good, B.H., de Montjoye, Y.A., Clauset, A., 2010. The performance of modularity
maximization in practical contexts. Phys. Rev. E 81 (4), 046106.

Gordon, E.M., Stollstorff, M., Devaney, J.M., Bean, S., Vaidya, C.J., 2012. Effect of
dopamine transporter genotype on intrinsic functional connectivity depends on
cognitive state. Cereb. Cortex 22, 2182e2196.

Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., 2003. Functional connectivity in
the resting brain: a network analysis of the default mode hypothesis. Proc. Natl.
Acad. Sci. 100 (1), 253e258.

Harmer, C.J., McTavish, S.F.B., Clark, L., Goodwin, G.M., Cowen, P.J., 2001. Tyrosine
depletion attenuates dopamine function in healthy volunteers. Psycho-
pharmacologia 154 (1), 105e111.

Harrison, B.J., Olver, J.S., Norman, T.R., Burrows, G.D., Wesnes, K.A., Nathan, P.J.,
2004. Selective effects of acute serotonin and catecholamine depletion on
memory in healthy women. J. Psychopharmacol. 18 (1), 32e40.

He, Y., Dagher, A., Chen, Z., Charil, A., Zijdenbos, A.P., Worsley, K.J., Evans, A.C.,
2009a. Impaired small-world efficiency in structural cortical networks in

http://dx.doi.org/10.1016/j.neuropharm.2013.12.021
http://dx.doi.org/10.1016/j.neuropharm.2013.12.021
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref1
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref1
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref2
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref2
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref2
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref2
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref3
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref3
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref3
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref3
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref4
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref4
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref4
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref4
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref5
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref5
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref5
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref6
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref6
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref6
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref7
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref7
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref7
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref7
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref8
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref8
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref8
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref8
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref8
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref9
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref9
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref9
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref10
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref10
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref10
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref10
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref10
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref10
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref11
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref11
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref11
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref11
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref12
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref12
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref13
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref13
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref13
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref13
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref14
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref14
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref14
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref14
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref14
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref15
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref15
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref15
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref15
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref15
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref16
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref16
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref16
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref16
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref17
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref17
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref17
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref18
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref18
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref18
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref18
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref19
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref19
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref19
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref19
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref20
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref20
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref20
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref20
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref21
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref21
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref21
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref22
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref22
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref23
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref23
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref23
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref24
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref24
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref24
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref24
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref25
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref25
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref25
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref25
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref26
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref26
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref26
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref27
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref27
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref27
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref28
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref28
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref28
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref29
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref29
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref29
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref29
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref30
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref30
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref30
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref30
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref30
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref31
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref31
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref32
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref32
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref32
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref32
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref33
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref33
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref33
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref33
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref34
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref34
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref34
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref34
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref35
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref35
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref35
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref35
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref36
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref36


F. Carbonell et al. / Neuropharmacology 84 (2014) 90e100100
multiple sclerosis associated with white matter lesion load. Brain 132 (12),
3366e3379.

He, Y., Wang, J., Wang, L., Chen, Z.J., Yan, C., Yang, H., Tang, H., Zhu, C., Gong, Q.,
Zang, Y., Evans, A.C., 2009b. Uncovering intrinsic modular organization of
spontaneous brain activity in humans. PLoS ONE 4 (4), e5226.

Helmich, R.C., Derikx, L.C., Bakker, M., Scheeringa, R., Bloem, B.R., Toni, I., 2010.
Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb.
Cortex 20 (5), 1175e1186.

Honey, G.D., Bullmore, E., 2004. Human pharmacological MRI. Trends Pharmacol.
Sci. 25 (7), 366e374.

Honey, G.D., Suckling, J., Zelaya, F., Long, C., Routledge, C., Jackson, S., Ng, V.,
Fletcher, P.C., Williams, S.C.R., Brown, J., Bullmore, E., 2003. Dopaminergic drug
effects on physiological connectivity in a human cortico-striato-thalamic sys-
tem. Brain 126 (8), 1767e1781.

Karrer, B., Levina, E., Newman, M.E.J., 2008. Robustness of community structure in
networks. Phys. Rev. E 77, 046119.

Kelly, A.M.C., de Zubicaray, G., Gee, D., Shehzad, Z., Gotimer, K., Di Martino, A.,
Copland, D., Klein, D.F., Adler, L., Rotrosen, J., Castellanos, F.X., McMahon, K.,
Milham, M.P., 2009a. Is there an inverted U-shaped relationship between
dopamine levels and resting state functional connectivity? NeuroImage 47
(Suppl. 1), S60.

Kelly, A.M.C., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., Milham, M.P., 2008.
Competition between functional brain networks mediates behavioral vari-
ability. NeuroImage 39 (1), 527e537.

Kelly, A.M.C., de Zubicaray, G., Di Martino, A., Copland, D., Reiss, P.T., Klein, D.F.,
Castellanos, F.X., Milham, M.P., McMahon, K., 2009. L-dopa modulates func-
tional connectivity in striatal cognitive and motor networks: a double-blind
placebo-controlled study. J. Neurosci. 29 (22), 7364e7378.

Kiviniemi, V., Kantola, J.H., Jauhiainen, J., Hyvarinen, A., Tervonen, O., 2003. Inde-
pendent component analysis of nondeterministic fMRI signal sources. Neuro-
image 19 (2), 253e260.

Latora, V., Marchiori, M., 2001. Efficient behavior of small-world networks. Phys.
Rev. Lett. 87 (19), 198701.

Leyton, M., Dagher, A., Boileau, I., Casey, K., Baker, G.B., Diksic, M., Gunn, R.,
Young, S.N., Benkelaft, C., 2004. Decreasing amphetamine-induced dopamine
release by acute phenylalanine/tyrosine depletion: a PET/[11] raclopride study
in healthy men. Neuropsychopharmacology 29 (2), 427e432.

Leyton, M., Young, S.N., Pihl, R.O., Etezadi, S., Lauze, C., Blier, P., Baker, G.B.,
Benkelfat, C., 2000. Effects on mood of acute phenylalanine/tyrosine depletion
in healthy women. Neuropsychopharmacology 22 (1), 52e63.

Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., Yu, C., Liu, H., Liu, Z., Jiang, T.,
2008. Disrupted small-world networks in schizophrenia. Brain 131 (4), 945e
961.

Lowe, M.J., Mock, B.J., Sorenson, J.A., 1998. Functional connectivity in single and
multislice echoplanar imaging using resting-state fluctuations. NeuroImage 7
(2), 119e132.

Lund, T.E., Madsen, K.H., Sidaros, K., Luo, W.L., Nichols, T.E., 2006. Non-white noise
in fMRI: does modelling have an impact? NeuroImage 29 (1), 54e66.

Maslov, S., Sneppen, K., 2002. Specificity and stability in topology of protein net-
works. Science 296, 910e913.

Masurier, M.L., Cowen, P.J., Sharp, T., 2004. Fos immunocytochemical studies on the
neuroanatomical sites of action of acute tyrosine depletion in the rat brain.
Psychopharmacology 171 (4), 435e440.

McTavish, S., Callado, L., Cowen, P., Sharp, T., 1999a. Comparison of the effects of a-
methyl-p-tyrosine and a tyrosine-free amino acid load on extracellular noradren-
aline in the rat hippocampus in vivo. J. Psychopharmacol. 13 (4), 379e384.

McTavish, S.F.B., Cowen, P.J., Sharp, T., 1999b. Effect of a tyrosine-free amino acid
mixture on regional brain catecholamine synthesis and release. Psychophar-
macology 141 (2), 182e188.

Mehta, M.A., Gumaste, D., Montgomery, A.J., McTavish, S.F.B., Grasby, P.M., 2005. The
effects of acute tyrosine and phenylalanine depletion on spatial working
memory and planning in healthy volunteers are predicted by changes in striatal
dopamine levels. Psychopharmacology 180 (4), 654e663.

Meunier, D., Achard, S., Morcom, A., Bullmore, E., 2009. Age-related changes in
modular organization of human brain functional networks. NeuroImage 44 (3),
715e723.

Meyer-Lindenberg, A., Straub, R.E., Lipska, B.K., Verchinski, B.A., Goldberg, T.,
Callicott, J.H., Egan, M.F., Huffaker, S.S., Mattay, V.S., Kolachana, B., et al., 2007.
Genetic evidence implicating DARPP-32 in human frontostriatal structure,
function, and cognition. J. Clin. Investig. 117 (3), 672e682.

Montgomery, A.J., McTavish, S.F.B., Cowen, P.J., Grasby, P.M., 2003. Reduction
of brain dopamine concentration with dietary tyrosine plus phenylalanine
depletion: an [11C] raclopride PET study. Am. J. Psychiatry 160 (10),
1887e1889.
Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A., 2009. The
impact of global signal regression on resting state correlations: are anti-
correlated networks introduced? NeuroImage 44 (3), 893e905.

Nagano-Saito, A., Leyton, M., Monchi, O., Goldberg, Y.K., He, Y., Dagher, A., 2008.
Dopamine depletion impairs frontostriatal functional connectivity during a set-
shifting task. J. Neurosci. 28 (14), 3697e3706.

Nagano-Saito, A., Cisek, P., Perna, A.S., Shirdel, F.Z., Benkelfat, C., Leyton, M.,
Dagher, A., 2012. From anticipation to action, the role of dopamine in perceptual
decision-making: an fMRI e tyrosine depletion study. J. Neurophysiol. 108 (2),
501e512.

Newman, M., Girvan, M., 2004. Finding and evaluating community structure in
networks. Phys. Rev. E 69 (2), 26113.

Newman, M., 2006. Modularity and community structure in networks. PNAS 103
(23), 8577e8582.

Palmour, R.M., Ervin, F.R., Baker, G.B., Young, S.N., 1998. An amino acid mixture
deficient in phenylalanine and tyrosine reduces cerebrospinal fluid catechol-
amine metabolites and alcohol consumption in vervet monkeys. Psychophar-
macology 136 (1), 1e7.

Penny, W., Kiebel, S., Friston, K.J., 2003. Variational Bayesian inference for fMRI time
series. NeuroImage 19 (3), 727e741.

Percival, D.B., Walden, A.T., 2000. Wavelet Methods for Time Series Analysis.
Cambridge University Press.

Perlbarg, V., Bellec, P., Anton, J.L., Pelegrini-Issac, M., Doyon, J., Benali, H., 2007.
CORSICA: correction of structured noise in fMRI by automatic identification of
ICA components. Magn. Reson. Imaging 25 (1), 35e46.

Pessiglione, M., Guehl, D., Rolland, A.S., Francois, C., Hirsch, E.C., Feger, J.,
Tremblay, L., 2005. Thalamic neuronal activity in dopamine-depleted primates:
evidence for a loss of functional segregation within basal ganglia circuits.
J. Neurosci. 25 (6), 1523e1531.

Pinheiro, J.C., Bates, D.M., 2000. Mixed-effects Models in S and S-PLUS. Springer,
New York.

Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A.,
Shulman, G.L., 2001. A default mode of brain function. Proc. Natl. Acad. Sci. U. S.
A. 98, 676e682.

Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., Bullmore, E., 2005.
Neurophysiological architecture of functional magnetic resonance images of
human brain. Cereb. Cortex 15 (9), 1332e1342.

Sheehan, B.D., Tharyan, P., McTavish, S.F.B., Campling, G.M., Cowen, P.J., 1996. Use of
a dietary manipulation to deplete plasma tyrosine and phenylalanine in healthy
subjects. J. Psychopharmacol. 10 (3), 231e234.

Spreng, R.N., Stevens, W.D., Chamberlain, J.P., Gilmore, A.W., Schacter, D.L., 2010.
Default network activity, coupled with the frontoparietal control network,
supports goal-directed cognition. NeuroImage 53, 303e317.

Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D., 2008. Network analysis
of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput.
Biol. 4 (6), e1000100.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of
activations in SPM using a macroscopic anatomical parcellation of the MNI MRI
single-subject brain. NeuroImage 15 (1), 273e289.

Walters, J.R., Ruskin, D.N., Allers, K.A., Bergstrom, D.A., 2000. Pre-and postsynaptic
aspects of dopamine-mediated transmission. Trends Neurosci. 23, 41e47.

Watts, D.J., Strogatz, S.H., 1998. Collective dynamics of “small-world” networks.
Nature 393, 440e442.

Whitfield-Gabrieli, S., Thermenos, H.W., Milanovic, S., Tsuang, M.T.,
Faraone, S.V., McCarley, R.W., Shenton, M.E., Green, A.I., Nieto-Castanon, A.,
LaViolette, P., Wojcik, J., Gabrieli, J.D.E., Seidman, L.J., 2009. Hyperactivity
and hyperconnectivity of the default network in schizophrenia and in
first-degree relatives of persons with schizophrenia. Proc. Natl. Acad. Sci.
106, 1279e1284.

Worsley, K.J., Liao, C.H., Aston, J., Petre, V., Duncan, G.H., Morales, F., Evans, A.C.,
2002. A general statistical analysis for fMRI data. NeuroImage 15 (1), 1e15.

Worsley, K.J., Taylor, J.E., Carbonell, F., Chung, M.K., Duerden, E., Bernhardt, B.,
Lyttelton, O., Boucher, M., Evans, A.C., 2009. SurfStat: a Matlab toolbox for the
statistical analysis of univariate and multivariate surface and volumetric data
using linear mixed effects models and random field theory. In: Proceedings of
the 15th Annual Meeting of the Organization for Human Brain Mapping, San
Francisco, CA, USA.

Zarahn, E., Aguirre, G.K., D’Esposito, M., 1997. Empirical analysis of BOLD fMRI
statistics. I. Spatially smoothed data collected under null-hypothesis and
experimental conditions. NeuroImage 5, 179e197.

Zijdenbos, A.P., Forghani, R., Evans, A.C., 2002. Automatic “pipeline” analysis of 3-D
MRI data for clinical trials: application to multiple sclerosis. IEEE Trans. Med.
Imaging 21 (10), 1280e1291.

http://refhub.elsevier.com/S0028-3908(14)00003-3/sref36
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref36
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref36
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref37
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref37
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref37
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref38
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref38
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref38
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref38
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref39
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref39
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref39
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref40
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref40
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref40
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref40
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref40
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref41
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref41
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref42
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref42
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref42
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref42
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref42
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref43
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref43
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref43
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref43
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref44
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref44
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref44
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref44
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref44
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref45
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref45
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref45
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref45
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref46
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref46
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref47
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref47
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref47
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref47
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref47
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref48
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref48
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref48
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref48
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref49
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref49
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref49
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref50
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref50
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref50
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref50
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref51
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref51
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref51
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref52
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref52
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref52
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref53
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref53
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref53
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref53
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref54
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref54
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref54
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref54
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref55
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref55
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref55
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref55
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref56
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref56
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref56
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref56
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref56
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref57
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref57
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref57
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref57
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref58
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref58
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref58
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref58
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref58
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref59
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref59
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref59
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref59
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref59
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref60
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref60
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref60
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref60
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref61
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref61
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref61
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref61
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref62
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref62
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref62
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref62
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref62
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref62
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref63
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref63
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref64
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref64
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref64
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref65
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref65
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref65
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref65
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref65
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref66
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref66
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref66
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref67
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref67
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref68
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref68
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref68
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref68
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref69
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref69
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref69
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref69
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref69
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref70
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref70
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref71
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref71
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref71
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref71
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref72
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref72
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref72
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref72
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref73
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref73
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref73
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref73
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref74
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref74
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref74
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref74
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref75
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref75
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref75
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref76
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref76
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref76
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref76
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref76
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref77
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref77
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref77
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref78
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref78
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref78
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref79
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref79
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref79
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref79
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref79
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref79
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref79
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref80
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref80
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref80
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref81
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref81
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref81
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref81
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref81
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref81
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref82
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref82
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref82
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref82
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref83
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref83
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref83
http://refhub.elsevier.com/S0028-3908(14)00003-3/sref83

	Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks
	1 Introduction
	2 Materials and methods
	2.1 Subjects
	2.2 Dopamine depletion
	2.3 Data acquisition and preprocessing
	2.4 Statistical analysis of functional networks
	2.5 Network properties
	2.6 Modular organization

	3 Results
	3.1 Tyrosine depletion
	3.2 Functional connectivity
	3.3 Network analysis
	3.4 Modularity analysis

	4 Discussion
	4.1 Alterations in functional connectivity
	4.2 Methodological considerations

	Acknowledgments
	Appendix A Supplementary data
	References


