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Alzheimer’s disease (AD) is the most common type of dementia, comprising an estimated 60–80% of all 
dementia cases. It is clinically characterized by impairments of memory and other cognitive functions. Previous 
studies have demonstrated that these impairments are associated with abnormal structural and functional 
connections among brain regions, leading to a disconnection concept of AD. With the advent of a combination 
of non-invasive neuroimaging (structural magnetic resonance imaging (MRI), diffusion MRI, and functional 
MRI) and neurophysiological techniques (electroencephalography and magnetoencephalography) with graph 
theoretical analysis, recent studies have shown that patients with AD and mild cognitive impairment (MCI), 
the prodromal stage of AD, exhibit disrupted topological organization in large-scale brain networks (i.e., 
connectomics) and that this disruption is signifi cantly correlated with the decline of cognitive functions. In this 
review, we summarize the recent progress of brain connectomics in AD and MCI, focusing on the changes 
in the topological organization of large-scale structural and functional brain networks using graph theoretical 
approaches. Based on the two different perspectives of information segregation and integration, the literature 
reviewed here suggests that AD and MCI are associated with disrupted segregation and integration in brain 
networks. Thus, these connectomics studies open up a new window for understanding the pathophysiological 
mechanisms of AD and demonstrate the potential to uncover imaging biomarkers for clinical diagnosis and 
treatment evaluation for this disease.
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Introduction

As of 2010, there were an estimated 35.6 million people 
with dementia worldwide, and the number is expected to 
double every 20 years, with 65.7 million in 2030 and 115.4 
million in 2050 (World Alzheimer Report 2010, http://www.
alz.org). Alzheimer’s disease (AD) is the most common 
type of dementia, comprising an estimated 60–80% of 
all dementia cases. Difficulty in remembering names and 
recent events is usually an early clinical symptom of AD; 
apathy and depression are early symptoms as well. Later 
symptoms include impaired judgment, disorientation, 

confusion, behavioral changes, and diffi culties in speaking, 
swallowing, and walking. AD is ultimately fatal. In 2011, the 
National Institute on Aging and the Alzheimer’s Association 
proposed new criteria and guidelines for diagnosing AD[1-4]. 
Accordingly, the three stages are preclinical AD, mild 
cognitive impairment (MCI) due to AD, and dementia due to 
AD. In preclinical AD, individuals have measurable changes 
in the brain but have not yet developed symptoms such 
as memory loss. Although the new criteria and guidelines 
identify the preclinical form as a stage of AD, they do not 
establish immediately useful diagnostic criteria. Further, the 
guidelines state that additional research on biomarker tests 
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is needed before this stage of AD can be diagnosed. In 
MCI, individuals have cognitive impairments beyond what 
is expected for their age and education, without substantial 
interference with daily activities, and they have a high risk 
of progression to AD[5].

Previous studies have demonstrated that the 
clinical manifestations of AD are not only associated with 
regional gray matter damage but also with abnormal 
integration between brain regions through disconnection 
mechanisms[6-8]. With the advent of non-invasive structural 
and functional neuroimaging and neurophysiological 
techniques, i t  has become possible to assess  in 
vivo aberrant cortico-cortical axonal pathways and 
synchronizations of neuronal activity (i.e., connectomics) 
in AD patients. Recently, graph theoretical analysis has 
provided a unique tool to reveal intrinsic attributes of the 
connectivity patterns of a complex network/graph from 
the global perspective. Within this framework, a complex 
brain system can be formalized as a mathematical 
model consisting of a set of nodes and a set of pairwise 
relationships between the nodes (i.e., edges). Topological 
metrics of brain networks such as small-world, modularity, 
and hubs[9-11] are often used to explore the structural and 
functional connectivity patterns of the human brain. 

In this article, we review the recent progress in AD-
related brain network research, focusing specifically on 
the changes of topological organization in the large-scale 
structural and functional brain networks, using graph 
theoretical approaches. 

Brain Network Measures

In graph theory, a network is defi ned as a graph comprising 
a set of nodes or vertices and the edges or lines between 
them. In a large-scale brain network, nodes usually 
represent electroencephalograph (EEG) electrodes, 
magnetoencephalograph (MEG) channels, and imaging 
voxels or regions of interest (ROIs) derived from anatomical 
or functional atlases, while links represent the structural 
or functional associations among nodes. The structural 
associations can be defined as covariations of cortical 
thickness or volume between the ROIs across individuals or 
diffusion magnetic resonance imaging (dMRI)-traced white 
matter tracts. The functional associations can be defined 
as temporal correlations and can be measured with either 

linear or nonlinear techniques in EEG/MEG and functional 
MRI (fMRI). The network types can be classified as 
directed or undirected, based on whether the edges have 
directional information, and as weighted or binary, based on 
whether the edges have weighting information. The present 
review focuses on the undirected binary or weighted brain 
networks. The flowchart of brain network construction is 
presented in Figure 1. Below, we briefl y introduce several 
key network metrics, which are also summarized in Table 1. 
More detailed descriptions of graph theory can be found in 
previous publications[12-14].

Segregation Measures
Segregation in the brain is the ability for specialized 
in fo rmat ion  process ing  to  occur  w i th in  dense ly 
interconnected groups of regions. Measures of segregation 
are primarily based on the concepts of clustering coeffi cient 
and modularity. The clustering coeffi cient of a node is given 
by the ratio of the number of connections between the 
direct neighbors of the node to the total number of possible 
connections between these neighbors. The clustering 
coefficient of a network is calculated by averaging the 
clustering coeffi cients over all nodes in the network. Thus, 
the clustering coefficient provides information about the 
level of local connectedness within a network, a higher 
value representing higher local efficiency of information 
transfer. Another important measure of segregation is 
modular structure, which can be reflected by the single 
statistic of modularity. Each module contains several 
densely interconnected nodes, and there are relatively few 
connections between nodes in different modules[15].

Integration Measures  
Integrative processes in the brain can be considered 
from at least two angles, one based on the efficiency of 
global information communication and the other on the 
ability of the network to integrate distributed information. 
Measurement of the efficiency of global information 
communication in a network is commonly based on the 
characteristic path length, which is the average minimum 
number of connections that link any two nodes of the 
network. On the other hand, the ability of a network to 
integrate distributed information can usually be revealed 
by the network hubs, which are nodes with high levels of 
degree or other node measures of centrality. The degree 
of a node is the number of edges that link to this node. 
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Fig. 1. Flowchart for construction of structural and functional brain networks. First is the extraction of gray-matter morphological metrics 
such as cortical thickness and gray-matter volume from structural MRI (sMRI) data, and the white-matter fi ber information such 
as fi ber number from diffusion MRI (dMRI) or the time-course from EEG/MEG/fMRI. Second, the nodes of the brain network are 
obtained from prior brain templates (e.g., anatomical templates, random templates, functional templates, or voxel-based schemes). 
Third, region-based or voxel-based information is extracted from the above imaging data. All pair-wise associations between 
nodes are calculated to generate a connection matrix. Finally, the connection matrix is visualized.
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Other measures of centrality mainly include betweenness 
centrality and eigenvector centrality. The betweenness 
centrality of a node measures how many of the shortest 
paths between all other node pairs in the network pass 
through that node[16], while the eigenvector centrality is 
simply the eigenvector of the adjacent matrix corresponding 
to the largest eigenvalue[17]. 
Small-world Network
Based on the two network information-processing 
perspectives of information segregation and integration, 
different types of networks can be distinguished, including 
regular, small-world, and random networks. A small-
world network has a shorter characteristic path length 
than a regular network (high clustering coefficient and 
long characteristic path length) and a greater clustering 
coeffi cient than a random network (low clustering coeffi cient 
and short characteristic path length)[18]. To quantitatively 
examine the smal l -wor ld  proper t ies ,  normal ized 
characteristic path length and normalized clustering 
coefficient are computed. The normalized characteristic 
path length is defi ned as the ratio of the characteristic path 
length of the brain network to that of matched random 
networks, while normalized clustering coeffi cient is defi ned 
as the ratio of the clustering coefficient of the network 
to that of matched random networks. Typically, the ratio 
between the normalized characteristic path length and 
the normalized clustering coefficient should be >1 for 
a small-world network. Notably, small-world structure 
characterizes an optimized balance between segregation 

and integration, which is essential for high synchronizability 
and fast information transmission in a complex network. 
Deviation from this optimal confi guration, such as disrupted 
integration and segregation, may lead to various brain 
disorders.

Brain Networks in AD and MCI

By searching PubMed (http://www.ncbi.nlm.nih.gov/
pubmed) using the keywords “graph theory”, “small-
world”, “connectome”, “Alzheimer’s disease”, and “mild 
cognitive impairment”, we selected articles that used 
graph theory to analyze networks at the whole-brain level 
based on MRI and EEG/MEG data (Table 2). Other work 
included connectomics reviews, mainly focusing on the 
altered network properties in AD populations but paying 
little attention to MCI populations[19-21]. In addition, with the 
widespread application of graph theory in the study of brain 
networks, the number of AD-related brain network studies 
is growing rapidly. Here, we include 25 papers, many more 
than in previous reviews, and this is the fi rst review based 
on the two perspectives of information segregation and 
integration.
Structural Connectomics in AD and MCI
The network of structural connectomics in the human brain 
in vivo can be constructed using both structural MRI (sMRI) 
and dMRI. In this section, we review recent progress in 
analyzing the structural and diffusion MRI networks in AD 
and MCI.

Table 1. Segregation and integration network measures

Measure Description

Measures of segregation 

Clustering coeffi cient The clustering coeffi cient quantifi es the number of connections that exist between the nearest neighbors of a node as a 

 proportion of the maximum number of possible connections. It measures the extent of local clustering of the network.

Modular structure Modular structure is defi ned by a high density of connectivity among nodes of the same module and a low density of 

 connections between nodes of different modules.

Measures of integration 

Characteristic path length The characteristic path length of a network is the average minimum number of connections that link any two nodes of 

 the network. It measures the overall routing effi ciency of the network.

Hubs Hubs are nodes with high levels of connection edges or other node measures of centrality.



Zhengjia Dai, et al.    Disrupted structural and functional brain connectomes in mild cognitive impairment and AD 221



Neurosci Bull     April 1, 2014, 30(2): 217–232222



Zhengjia Dai, et al.    Disrupted structural and functional brain connectomes in mild cognitive impairment and AD 223

Structural MRI networks  In recent years, coordinated 
variations in brain morphology (e.g., gray-matter volume 
and thickness) have been used as measures of structural 
association between regions to construct large-scale 
structural correlation networks[22, 23]. This approach relies on 
the hypothesis that connectivity confers a mutually trophic 
effect on the growth of connected regions[24, 25]. In AD 
studies, He et al.[26] were the fi rst to use cortical thickness 
measurement by sMRI to investigate large-scale structural 
networks in 92 AD patients and 97 healthy controls (HCs). 
They found that although both groups exhibited small-
world topology in their sMRI networks, the AD patients 
had larger clustering coeffi cients and longer characteristic 
path lengths than controls, implying a greater segregation 
and a disrupted integration topological organization in AD. 
In addition, He and others found decreased betweenness 
centrality in several heteromodal association cortices 
(e.g., superior temporal gyrus and angular gyrus) in AD. 
All of these regions were identifi ed as hubs in the healthy 
brain networks. The abnormalities of nodal centrality in AD 
also refl ected a disrupted integration of brain networks. A 
subsequent study used three groups, AD, MCI, and HCs, 
to investigate the characteristics of the cortical volume 
network[27]. Consistently, larger clustering coefficients and 
longer characteristic path lengths were found in AD; and 
the MCI network had values intermediate between HC 
and AD, although no statistically signifi cant changes were 
found. Further, they found loss of betweenness centrality of 
hub regions in the temporal lobe in the MCI and AD groups. 
In contrast, Tijms et al.[28] investigated the graph properties 
of a single-individual gray-matter network in AD and found 
decreases in clustering coefficients, characteristic path 
lengths, normalized clustering coeffi cients, and normalized 
characteristic path lengths. 

In summary, the three sMRI-based network studies 
demonstrated that AD has aberrant morphological 
organization in sMRI networks. Specifically, two studies 
suggested a greater segregation and a disrupted integration 
of topological organization in AD based on the network 
construction across subjects[26, 27]. The other study implied 
a disrupted segregation and a more integrated topological 
organization in AD based on the network construction in 
a single individual[28]. The discrepancies in these results 
may be due to the differences in network construction 
approaches and in AD populations.

Diffusion MRI networks  In addition to sMRI, the 
patterns of structural connectivity of the human brain in 
vivo can also be studied with dMRI tractography. dMRI 
maps the local diffusivity of water molecules in brain 
tissues[29]. Neural tractography (so-called fi ber tracking) by 
propagating the orientation information in each voxel has 
proved useful for mapping white-matter trajectories[30]. By 
linking the distinct regions with fiber tracts, it is possible 
to reveal white-matter anatomical connections and to 
map the whole-brain connectivity. Several recent studies 
have used dMRI data to construct human brain white-
matter networks[31-33]. In AD brain network studies, Lo et 
al.[34] for the fi rst time used dMRI tractography to construct 
the networks of AD patients and HCs. In this study, the 
fiber number between two cortical regions multiplied by 
the mean fractional anisotropy of the fiber bundles was 
calculated as the edge weight. They found that both groups 
had a small-world topology and that the characteristic 
path length and normalized characteristic path length 
were increased in the AD group compared with controls, 
which reflected a disrupted integration of the network in 
AD. This result was consistent with previous sMRI brain 
networks in AD[26, 27]. Another similar study from Reijmer et 
al.[35] used the fi ber number as the edge weight to construct 
white-matter networks for AD and HCs, and found a 
tendency toward lower clustering coefficients in AD. This 
result implied disruption of the information segregation 
ability. Recently, increasing numbers of researchers are 
concerned about the network characteristics of different 
types and different periods of MCI[36, 37]. Shu et al. [36] 
investigated the topological alterations of white-matter 
networks in patients with different types of amnestic MCI 
(aMCI). They found that the global topological properties 
(i.e., normalized clustering coeffi cients, characteristic path 
length, and normalized characteristic path length) of white-
matter networks were significantly increased in patients 
with multidomain aMCI, but not in those with single-domain 
aMCI, compared with HCs. Meanwhile, Daianu et al.[37] 
demonstrated increased normalized clustering coeffi cients 
and decreased normalized characteristic path lengths 
of the white-matter network in AD, and both early and 
late MCI showed intermediate values with no significant 
difference between the HC and AD groups. Notably, Bai 
et al.[38] considered high-risk groups such as patients with 
remitted geriatric depression and aMCI for developing 
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AD. They revealed higher characteristic path lengths in 
the patient groups compared with HCs, and there were 
no signifi cant differences in the global network properties 
between the patient groups. They also found that the 
deficits in the regional and connectivity characteristics of 
the patient groups were primarily in the frontal regions in 
the dMRI network. These results suggest that the patterns 
of dMRI networks in remitted geriatric depression and aMCI 
are very similar, which may lead to increasing attention on 
defi ning the population at risk of AD.

In summary, the five dMRI studies (2 AD, 2 MCI 
and 1 AD/MCI) demonstrated abnormal white-matter 
connectomics in both the AD and MCI groups. Of the AD 
studies, one suggested a disrupted integration topological 
organization in patients[34], and the other implied disrupted 
segregation[35]. Different from the two studies, Daianu et 
al.[37] implied a more segregated and a more integrated 
topological organization in AD compared with HCs. These 
discrepancies may be due to the differences in data 
acquisition methods and parcellation atlases: Daianu et 
al.[37] obtained dMRI data from 13 sites and parcellated the 
brain into 68 ROIs based on a prior FreeSurfer defined 
atlas, while Lo et al.[34] and Reijmer et al.[35] obtained dMRI 
data from single sites and parcellated the brain into 78 or 
90 ROIs based on the automated anatomical labeling atlas. 
In addition, clinical differences in AD populations may also 
partly contribute to the discrepancies: in the studies by Lo 
et al.[34] and Reijmer et al.[35], the mean Mini-Mental State 
Examination (MMSE) scores of AD patients were >20, but 
the Daianu et al. study[37] did not report this measure. Of 
the MCI studies, two suggested the disruption of integration 
topological organization in MCI[36, 38], and one demonstrated 
more segregation in MCI[36].
Functional Connectomics in AD and MCI
The network of functional connectomics in the human brain 
in vivo can be constructed from EEG/MEG and fMRI data. 
In this section, we review recent progress in analyzing the 
functional networks in AD and MCI.
EEG/MEG networks  EEG and MEG measure changes in 
the electric and magnetic fi elds related to neuronal activity 
at high temporal resolution (milliseconds). Several recent 
studies have used EEG/MEG data to construct human 
brain functional networks in healthy individuals[39-41]. In AD 
brain network studies, the first graph theoretical network 
analysis by Stam et al. [42] measured the resting-state 

functional connectivity of beta band-fi ltered EEG channels 
(13–30 Hz) in AD and HC groups. Although both groups 
showed small-world properties in their networks, the AD 
patients had longer characteristic path lengths. This pattern 
suggested a disrupted integration topological organization 
in AD. Later, the same research group used resting-state 
MEG data to investigate the functional brain network at 
multiple frequency bands (delta [0.5–4 Hz], theta [4–8 Hz], 
lower alpha [8–10 Hz], upper alpha [10–13 Hz], beta [13–30 
Hz] and gamma [30–45 Hz]) in AD[43]. In the lower alpha 
band, the characteristic path length was increased, and 
the clustering coeffi cient, normalized clustering coeffi cient, 
and normalized characteristic path length were decreased 
in AD patients. In particular, AD patients had significantly 
lower left fronto-parietal, fronto-temporal, parieto-
occipital and temporo-occipital connectional strength. 
These findings support a model in which AD patients 
exhibit disrupted segregation topological organization. 
In a later study, de Haan et al. [44] also investigated 
topological changes in functional brain networks in AD and 
frontotemporal dementia using resting-state EEG data at 
multiple frequency bands. In AD, the normalized clustering 
coeffi cient was decreased in the lower alpha (8–10 Hz) and 
beta (13–30 Hz) bands, and the normalized characteristic 
path length was decreased in the lower alpha and gamma 
bands (30–45 Hz), compared to HCs. In frontotemporal 
dementia, no signifi cant differences from HCs were found 
in these measures. These results implied a disrupted 
segregation and greater integrated topological organization 
in AD. Next, de Haan et al.[45] investigated the modular 
structure of AD using resting-state MEG data. In AD, the 
delta and theta bands showed increases in modularity, 
whi le the beta and gamma bands showed strong 
decreases. The AD patients also showed a loss of module 
number in the theta, beta, and gamma bands. Decreases 
were found in the intra-module connections in the beta 
band and in the inter-module connections in the delta and 
theta bands. The parietal cortex showed the greatest intra-
modular connections in HCs, and showed the strongest 
intra-modular loss in the AD group. In the same year in 
another study[46], de Haan and colleagues used MEG 
recordings in the same groups as above and used graph-
spectral analysis to explore the functional networks in AD. 
They found lower eigenvector centrality of the left temporal 
region in the theta band and the parietal region in the beta 
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band in AD. In MCI brain network studies, Buldu et al.[47] 
evaluated the functional network of MCI using MEG data 
during a memory task. Five frequency bands [α1: (8–11) Hz, 
α2: (11–14) Hz, β1: (14–25) Hz, β2: (25–35) Hz, γ: (35–45) 
Hz] were considered. Graphs from MCI subjects showed an 
enhancement of the connection strength, suggesting that 
memory processing in MCI individuals is associated with 
higher energy expenditure. The MCI group also showed 
lowered normalized clustering coeffi cient and characteristic 
path length in the broadband signal.

In summary, the six EEG/MEG studies demonstrated 
abnormal functional brain connectomics in the AD and MCI 
groups, and these abnormalities are frequency dependent. 
These studies consistently demonstrated disrupted 
segregation in AD, more integrated topological organization 
in AD and MCI in the lower alpha band, and disrupted 
integration of topological organization in the beta and 
gamma bands in AD.
Functional MRI networks  In contrast to the EEG/MEG 
techniques, fMRI has relatively poor temporal resolution 
(~2 s) but high spatial resolution (~2 mm). Resting-state 
fMRI measures the endogenous or spontaneous brain 
activity as low-frequency fluctuations in blood oxygen 
level-dependent (BOLD) signals[48]. Several recent studies 
used resting-state fMRI to construct functional networks in 
healthy people, and all showed small-world organization[49, 

50]. 
For AD studies, Supekar et al.[51] first examined the 

whole-brain functional network in AD using resting-state 
fMRI. In the low-frequency interval of 0.01–0.05 Hz, they 
found signifi cantly lower normalized clustering coeffi cients, 
especially for the bilateral hippocampus, indicative of 
disrupted segregated organization. Further investigation 
showed that using the normalized clustering coeffi cient as a 
biomarker to diagnose AD would yield up to 72% sensitivity 
and 78% specifi city, suggesting that the topological network 
indices could serve as biomarkers of AD. They also found 
decreases in intratemporal connections and in connections 
between the thalamus and the frontal, temporal, and 
occipital lobes. In a subsequent study, Sanz-Arigita et al.[52] 
found a significantly decreased characteristic path length 
in the AD group. Decreased connection strengths were 
also found between the temporal lobe and the parietal and 
occipital regions. Zhao et al.[53] investigated the topological 
properties of resting-state fMRI with a focus on moderate 

AD, showing increases in the clustering coefficient, 
characteristic path length, normalized clustering coeffi cient, 
and normalized characteristic path length in the AD group. 
From the module perspective, Chen et al.[54] demonstrated 
that the largest homotopic module (defined as the insula 
module) in the HC group was divided into pieces in the AD 
group. They further quantified the functional connectivity 
changes and gray-matter concentration changes in the 
insula module as biomarkers for the classification of HC 
and AD and obtained 94% of the area under the curve of 
the receiver operation characteristic. These results implied 
a disruption of segregation topological organization in AD, 
and these disruptions could serve as biomarkers of AD. 
From a computational model perspective, Li et al.[55] found 
decreases in global effi ciency (i.e., increased characteristic 
path lengths) and clustering coeffi cients in AD. They then 
used the node betweenness and Euclidean distance 
between nodes as control factors for the brain network 
evolution processing from one network to another. The 
topological properties of the evolution networks were closer 
to those of the AD group than of the HC group. These 
results suggested that network evolution could be used to 
study the changes in functional brain networks in AD. 

In MCI studies, Wang et al.[56] fi rst used resting-state 
fMRI and graph theory approaches to systematically 
investigate the topological organization of the functional 
connectomes in patients with aMCI and in HCs, and 
revealed an increased characteristic path length of 
connectomics in the aMCI group. Moreover, the disease 
targeted several key nodes, predominantly in the default-
mode regions, as well as key links, primarily in the intra-
module connections within the default-mode network 
and the inter-module connections among different 
functional systems. Intriguingly, the topological aberrations 
correlated with the patients’ memory performance 
and could distinguish aMCI patients from HCs with a 
sensitivity of 86.5% and a specificity of 85.1%. Drzezga 
et al.[57] investigated the cortical hub pattern in Pittsburgh 
compound B (PiB)-positive MCI, PiB-positive HCs, and 
PiB-negative HCs using resting-state fMRI. PiB positivity 
indicates an increased amyloid-beta burden. These 
results showed signifi cant abnormal connectivity in typical 
cortical hubs (posterior cingulate cortex/precuneus) in PiB-
positive MCI. Importantly, subtle connectivity disruptions 
and hypometabolism were already present in PiB-positive 
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HCs. More recently, Bai et al.[58] explored the influence 
of acupuncture on the network organization of MCI from 
the treatment perspective. These results showed longer 
characteristic path lengths and larger clustering coeffi cients 
in MCI compared with HCs. In addition, acupuncture with 
deep needling enhanced the nodal centrality primarily in 
the abnormal regions of MCI, including the hippocampus, 
postcentral cortex, and anterior cingulate cortex, most of 
which present decreased node centralities in MCI. 

Three other resting-state fMRI studies compared the 
brain network attributes of AD, MCI, and HC groups[59-61]. Liu 
et al.[59] found that AD patients had the longest characteristic 
path lengths and the largest clustering coefficients, while 
the small-world measures of MCI networks exhibited 
intermediate values but showed no significant changes 
compared with HCs. In addition, another study conducted 
by Liu et al.[60] found decreased global efficiency (i.e., 
increased characteristic path lengths) and loss of long-
distance connectivities in the AD group, implying disrupted 
integration topological organization. Recently, Brier et al.[61] 
investigated graph theory metrics as a function of disease 
severity. Decreased clustering coefficient and modularity 
were observed with increasing Clinical Dementia Rating, 
and these decreases also appeared in normal participants 
who harbored AD biomarker pathology. 

In summary, the eleven resting-state fMRI studies (5 
AD, 3 MCI, and 3 AD/MCI studies) demonstrated abnormal 
functional brain connectomics in the AD and MCI groups. 
In AD research, four studies suggested a disrupted 
integration topological organization in AD[53, 55, 59, 60], whereas 
one suggested an enhanced integration topological 
organization[52]. The discrepancies in these results may 
be due to differences in network construction approaches. 
Sanz-Arigita et al.[52] used a synchronization likelihood 
method to calculate the functional connectivity, while other 
studies used time-series correlations (partial correlation 
or Pearson's correlation) to calculate the connectivity. In 
addition, two studies implied greater segregation[53, 59] but 
four implied disrupted segregation topological organization 
in AD[51, 54, 55, 61]. The discrepancies in these results may be 
due to differences in the AD populations. The two studies 
showing patterns of greater segregation recruited AD 
patients with mean MMSE scores <18, and the four studies 
showing disrupted segregation organization recruited AD 
patients with mean MMSE scores >18. Patients at different 

stages may manifest different behavioral symptoms with 
distinct underlying neuronal mechanisms. In MCI research, 
three studies demonstrated a disrupted integration 
topological organization[56-58], and one suggested more 
segregation[58] in MCI.
Different Changing Patterns between Connectome-
based AD/MCI Studies
Overall, the studies of structural and functional brain 
connectomics in AD and MCI have demonstrated that the 
network configuration in patients is significantly different 
from HCs. However, it must be noted that the changes of 
topological confi guration in the networks exhibited distinct 
patterns in different modalities and populations (i.e., AD 
and MCI) (Fig. 2). These discrepancies may be caused 
by different imaging techniques providing different views 
of brain structure and function: structural MRI provides 
information about the morphology of gray matter; dMRI 
provides information about structural connectivity among 
brain regions; EEG/MEG measures the changes in the 
electrical and magnetic fields associated with neuronal 
activity at high temporal resolution (mill iseconds); 
and resting-state fMRI measures the endogenous or 
spontaneous brain activity as low-frequency fluctuations 
in BOLD signals. In addition, these studies recruited 
different AD populations, involving different preclinical and 
clinical stages. Recently, Brier et al.[61] demonstrated that 
the changes in network topological metrics are related 
to clinical AD status. Thus, all of these factors may have 
affected the consistency of the network analysis results. 
Nonetheless, these studies commonly point to a less-
optimized connectivity pattern in the brain networks of AD 
and MCI patients.

Methodological Issues and Future Perspectives

In this review, we summarized the recent findings of 
disrupted structural and functional brain connectivity in 
AD and MCI using sMRI, dMRI, EEG/MEG, and resting-
state fMRI data. Most of these studies demonstrated that 
AD and MCI brain networks have a disrupted segregated 
and integrated topological organization. Network analysis 
methods have enabled relatively comprehensive mapping 
of brain connectivity and topological organization. In 
particular, the application of network analysis to AD has led 
to novel insights into how this disease affects distributed 
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Fig. 2. Schematic of small-world networks and overview of main 
model findings of large-scale structural and functional 
brain network studies in AD and MCI. The computational 
model of small-world networks proposed by Watts and 
Strogatz (1998) begins by connecting nodes with their 
nearest neighbors, producing a regular network that has 
a high clustering coefficient and long characteristic path 
length. With a probability P, edges are then randomly 
rewired. When P is equal to unity, all edges are randomly 
rewired, and thus the network is perfectly random, with 
a low clustering coefficient and short characteristic path 
length. However, when P is between 0 and 1, the graph is a 
small-world network: a shorter characteristic path length, 
like a random network, and a greater clustering coeffi cient, 
like a regular network. Based on the small-world models, 
the brain network studies in AD and MCI can be classifi ed 
as favoring a more regular (left arrow) and random (right 
arrow) configuration. Numbers in brackets indicate 
corresponding reference number.

neuronal circuits. However, network-based analysis 
is a double-edged sword because it primarily addresses 
the interactions among elements (e.g., voxels and regions) 
and ignores the focal information of individual elements. 
Imaging data can also carry local features of brain structure 
and function such as the regional morphology (gray matter 
volume and thickness) obtained from sMRI data and local 
activation information from EEG/MEG/fMRI. Combination 
of these regional and connectivity features is important for 
deepening our understanding of brain function. In addition, 
researchers should be aware that the studies of complex 

brain networks in AD and MCI are in their early stages. 
There are still a number of challenging issues and further 
considerations remaining for understanding the changed 
topological organization of brain networks in AD and MCI.

First, given that the human connectome represents 
the complete set of neuronal elements and inter-element 
connections composing the brain[62], appropriately defi ning 
the nodes and edges in a brain network is required. Due 
to the vast numbers of neurons and interconnections, 
reconstructing an entire brain connectome on the neuronal 
level is an ambitious and challenging task that requires 
advances in both imaging techniques and computer 
systems. Currently, the connectomics of the human 
brain is instead formed on the regional or voxel level. 
However, there is no gold standard for the construction 
of brain networks. Various parcellation schemes, such 
as anatomical templates, random templates, functional 
templates, and voxel-based schemes, can be used to 
defi ne the nodes for such networks. Recent fi ndings have 
demonstrated the important infl uences of node choices on 
the properties of the resulting networks[63, 64]. Therefore, 
researchers should be cautious when collating results of 
studies that use different parcellation schemes. In AD brain 
connectome studies, the numbers of nodes range from ~24 
to 8683. This may lead to inconsistent results. However, it 
is also important to identify the parcellation scheme that is 
most sensitive for detection of AD. 

Second, in parallel with the definition of nodes, 
the method for defining the edges in brain networks is 
also important. Various definition choices are currently 
available for estimating the connectivity, such as gray-
matter morphological correlation in sMRI, fiber number, 
fi ber length, fractional anisotropy for dMRI, and Pearson’s 
correlation, partial correlation, or wavelet correlation for 
fMRI. Different defi nitions focus on different brain attributes 
(fi ber number, fi ber length) or different synchrony relations 
(linear or nonlinear). One recent study has demonstrated 
signifi cant connectivity-related differences in the topological 
organization of resting-state networks[65]. In addition, there 
are three common threshold rules used to construct binary 
or weighted brain networks. The equi-sparse threshold rule 
uses different thresholds for each individual to ensure that 
all networks in the group have the same number of edges 
or sparsity. The equi-thresholds method uses the same 
threshold for each individual, meaning that the networks 
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usually have different numbers of edges. In the statistically 
significant correlation method, the statistically significant 
correlation edges are maintained in the network. Different 
threshold rules may lead to different network topological 
organizations. Importantly, using the equi-thresholds and 
statistically significant correlation rules, the results of 
network properties compared between groups may differ 
from the results of normalized network properties because 
there are different degrees of distribution of matched 
random networks in different individuals. In particular, the 
increased characteristic path lengths in AD compared 
with HC may accompany the decreased normalized 
characteristic path lengths in AD because the characteristic 
path length distribution obtained from the random network 
of an individual is different from that of other people using 
these rules. In fact, such seemingly contradictory results 
were indeed found in an AD study[43].

Third, while graph theoretical approaches provide 
valuable insights into normal brain architecture and the 
pathological mechanisms of neurological and psychiatric 
diseases, the test-retest reliability of graphic metrics is 
important for reaching convincing conclusions. These 
metrics may be affected by many factors, involving 
acquisition parameters[66-68], fluctuations of conscious 
states[69-71], selection of preprocessing strategies[72, 73], and 
network construction approaches (e.g., different nodal 
and edge definitions)[68, 74, 75]. Therefore, choosing reliable 
analytical schemes and network metrics of interest is very 
important for brain network studies in both healthy and 
diseased populations.

Fourth, there are two major types of AD, early-
onset and the more common late-onset. The presence 
of the apolipoprotein E (APOE) gene with allelic variant 
4 (APOE ε4) is the most important genetic risk factor for 
late-onset AD, together with age[76]. Brown et al.[77] recently 
demonstrated that APOE ε4 carriers have an accelerated 
age-related loss of the clustering coeffi cients using diffusion 
tensor imaging, especially for the precuneus and cingulate 
regions. More recently, Zhao et al.[53] found that the APOE 
ε4 genotype modulated the topological properties of brain 
functional networks derived from resting-state fMRI in 
the AD group. They showed a decreasing tendency of 
clustering coefficients and characteristic path lengths in 
AD APOE ε4 carriers compared with non-carriers. Thus, 
the differences in topological parameters between the two 

AD groups may reflect different neurological functional 
impairments. However, how APOE ε4 and other genetic risk 
factors of AD affect the topology of the human connectome 
in healthy aging and AD, and the underlying mechanisms 
of these differences, remain to be further systematically 
explored.

Fifth, the core neuropathologies in AD include 
abnormalities such as the accumulation of the protein 
amyloid-beta (Aβ) and the development of neurofibrillary 
tangles[78, 79]. Such changes occur decades before the 
onset of AD. The detection of Aβ in the brains of living 
subjects has been made possible by the introduction of 
molecular imaging techniques such as positron emission 
tomography with Pittsburgh compound B. Buckner et 
al.[80] demonstrated high Aβ deposition in AD compared 
with elderly controls in locations corresponding with the 
hub regions of young, healthy brain networks, within the 
posterior cingulate, lateral temporal, lateral parietal, and 
medial/lateral prefrontal cortices. Further, Drzezga et 
al.[57] found that whole-brain connectivity values showed 
a negative correlation with Aβ deposition in the posterior 
cingulate cortex across their entire sample, including 
MCI and HCs. However, the relationship between these 
pathological changes (e.g., Aβ deposition) and network 
abnormalities requires further exploration. Empirical studies 
of AD pathology and neuroimaging would be helpful for 
clarifying this issue.

Sixth, the use of computational simulation models is 
important for understanding disease progression. Recently, 
de Hann et al.[81] used a computational model to test the 
hypothesis that hub regions are preferentially affected due 
to high neuronal activity levels in AD. They demonstrated 
the ‘activity-dependent degeneration’ hypothesis of AD. 
Two study groups used graph theory to suggest that 
neurodegenerative diseases spread diffusively via intrinsic 
brain networks[82, 83]. Li et al.[55] used the node betweenness 
and Euclidean distance between nodes as the control 
factors of the brain network evolution processing from one 
network to another and found that the topological properties 
of evolution networks were more like those of the AD group 
than those of the HC group. Further work is still needed to 
deepen our understanding of AD pathology, including the 
source spatial positions of AD and the disease diffusion 
patterns.

Finally, preclinical AD has been proposed as one of the 
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three stages of AD. However, no gold-standard diagnostic 
criteria have been provided. The generation of imaging 
biomarkers for this stage is urgent. In other words, it is vital 
to explore the initiation phase of AD. Further, longitudinal 
and multimodal imaging studies would be helpful for a 
comprehensive understanding of the pathophysiological 
sequence of events and would provide valuable insights 
into the cognitive defi cits in AD.

Conclusions

Taken together, the converging findings from these multi-
modal neuroimaging and neurophysiological studies 
suggest that AD is associated with disrupted integration and 
segregation in large-scale brain networks and that these 
disruptions may be responsible for the cognitive deficits. 
Thus, these connectome-based studies provide further 
support for the notion of AD as a disconnection syndrome 
and open a new window into our understanding of the 
pathophysiological mechanisms of this disease. These 
studies also have important implications for uncovering 
imaging biomarkers for clinical diagnosis and treatment 
evaluation of AD. 
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