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Abstract
The recent collection of unprecedented quantities of neuroimaging data with high spatial resolution

has led to brain network big data. However, a toolkit for fast and scalable computational solutions is

still lacking. Here, we developed the PArallel Graph-theoretical ANalysIs (PAGANI) Toolkit based on

a hybrid central processing unit–graphics processing unit (CPU-GPU) framework with a graphical

user interface to facilitate the mapping and characterization of high-resolution brain networks. Spe-

cifically, the toolkit provides flexible parameters for users to customize computations of graph

metrics in brain network analyses. As an empirical example, the PAGANI Toolkit was applied to indi-

vidual voxel-based brain networks with �200,000 nodes that were derived from a resting-state

fMRI dataset of 624 healthy young adults from the Human Connectome Project. Using a personal

computer, this toolbox completed all computations in �27 h for one subject, which is markedly less

than the 118 h required with a single-thread implementation. The voxel-based functional brain net-

works exhibited prominent small-world characteristics and densely connected hubs, which were

mainly located in the medial and lateral fronto-parietal cortices. Moreover, the female group had sig-

nificantly higher modularity and nodal betweenness centrality mainly in the medial/lateral fronto-

parietal and occipital cortices than the male group. Significant correlations between the intelligence

quotient and nodal metrics were also observed in several frontal regions. Collectively, the PAGANI

Toolkit shows high computational performance and good scalability for analyzing connectome big

data and provides a friendly interface without the complicated configuration of computing environ-

ments, thereby facilitating high-resolution connectomics research in health and disease.
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1 | INTRODUCTION

The human brain is organized as a complex network comprising numer-

ous interacting neuronal elements. Recent developments in noninva-

sive magnetic resonance imaging technologies and graph theoretical

approaches have provided a promising framework for characterizing

the topological properties of complex brain networks, that is, connec-

tomics (Sporns, Tononi, & Kotter, 2005). Based on the imaging con-

nectomics framework, researchers have revealed many important

topological characteristics of healthy human brain networks, including

the small-world properties, modular structure, and densely connected

hubs (Bullmore & Sporns, 2012; Liao, Vasilakos, & He, 2017; Sporns &

Betzel, 2016; van den Heuvel & Sporns, 2013). Moreover, imaging con-

nectomics have been widely used to study topological changes in brainHaixiao Du, Mingrui Xia and Kang Zhao contributed equally to this work.
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networks during development (Cao, Huang, & He, 2017; Cao et al.,

2017; Keunen, Counsell, & Benders, 2017) and aging (Ferreira et al.,

2016; Grayson & Fair, 2017; Zuo et al., 2017) and in neuropsychiatric

disorders (Fornito, Zalesky, & Breakspear, 2015; Stam, 2014; Xia & He,

2011).

The construction of brain networks has typically been confined to a

coarse level based on regions of interest (ROIs) derived from various

anatomically and functionally predefined parcellation atlases (Cohen

et al., 2008; Fan et al., 2016; Glasser et al., 2016; Power et al., 2011;

Tzourio-Mazoyer et al., 2002). These atlas-based studies have provided

substantial knowledge regarding the organization of the brain from a

macroscopic perspective. However, atlas-based studies employ a variety

of different priori parcellation schemes and typically ignore spatial inho-

mogeneity within large ROIs (Jiang et al., 2015), which may bias the

results and conclusions. Moreover, inspired by technical advances, the

research community has contributed enormous quantities of connec-

tomics data, referred to as “Big Data” (Xia & He, 2017), at unprece-

dented rates, such as the Human Connectome Project (HCP) (Van

Essen et al., 2012). Growing datasets with higher resolution have pro-

vided a large amount of novel information with finer details that can be

better used to explore the functional architecture of human brain net-

works (Castellanos, Di Martino, Craddock, Mehta, & Milham, 2013; Xia

& He, 2017). However, although the Big Data research model repre-

sents a highly promising research direction, it also requires breakthrough

algorithmic and computational solutions. Thus, fast and efficient compu-

tational tools scalable to brain network big data are urgently required.

Several publicly available toolboxes, such as the Brain Connectivity

Toolbox (BCT) (Rubinov & Sporns, 2010), Graph-Analysis Toolbox

(GAT) (Hosseini, Hoeft, & Kesler, 2012), and GRaph thEoreTical Net-

work Analysis toolbox (GRETNA) (Wang et al., 2015), have facilitated

imaging connectomics studies by utilizing graph theoretical network

analysis approaches. However, these popular toolboxes have difficul-

ties dealing with brain network big data of large network sizes. Recent

advances in graphics processing units (GPUs) have provided promising

solutions to the high computational requirements. Over the past dec-

ade, GPUs have been used for fast graphic processing and other

general-purpose parallel computations in the domain of neuroimaging

(Eklund, Dufort, Forsberg, & LaConte, 2013; Wang et al., 2013); how-

ever, these advances are rarely utilized in the topological analysis of

human brain networks because they lack automatic and flexible soft-

ware based on GPUs to fulfill the urgent requirements for the analysis

of brain network big data.

Here, based on a CPU-GPU hybrid framework, we developed a

PArallel Graph-theoretical ANalysIs (PAGANI) Toolkit that can quickly

compute the global and nodal topological characteristics of large brain

networks. The toolkit incorporates a user-friendly interface and low

requirements of the computing environment. We further comprehen-

sively evaluated the performance of the PAGANI Toolkit for different

network sizes and densities. The results demonstrated that this

advanced toolbox can substantially reduce the time consumption and

improve the clinical applicability for mapping high-resolution brain net-

works from big data. Moreover, we illustrated the application of the

PAGANI Toolkit using a resting-state fMRI (R-fMRI) dataset from the

HCP, which contains 873 subjects under the original 2-mm (isotropic)

resolution. We further examined the gender-related differences in both

global and nodal metrics of the high-resolution functional networks

and characterized the relationship between these network metrics and

individual cognitive abilities (intelligence quotient and emotion recogni-

tion score).

2 | MATERIALS AND METHODS

2.1 | Overview of functionality of the PAGANI toolkit

The PAGANI Toolkit was developed in a hybrid CPU-GPU framework

with C/C11 and CUDA (Computing Unified Device Architecture) as

programming languages and QT as a GUI designing software under a

64-bit Microsoft Windows environment and the General Public License

(GPL). The PAGANI Toolkit is an open-source software package con-

taining background computation and the GUI as two separate modules.

The computation module was developed based on a previously

described CPU-GPU accelerated framework (Wang et al., 2013) pack-

aged into independent executable files for different functions. The

well-designed GUI module can flexibly generate scripts to call execut-

able commands to perform batch computations.

The greatest advantage of the PAGANI Toolkit compared with the

existing connectomics-related toolboxes (e.g., BCT, GRETNA and GAT)

is the implementation of a fast and scalable technique to construct

voxel-wise functional brain networks from preprocessed high-

resolution fMRI data and to calculate graph-based global and nodal

metrics of networks derived from any species or imaging data modality

(Table 1). Some graph-based toolboxes, such as GRETNA, take advan-

tages of parallel computing with multicore CPUs to accelerate analyses

of a large quantity of ROI-defined networks by calculating subjects’

connectomes concurrently. However, the between-subject parallel

model is inefficient for large voxel-wise networks because it requires

the maintenance of all connectivity matrices of every subject in mem-

ory. To address this issue, the PAGANI Toolkit parallelizes graph-based

computations at a finer granularity, node, and edge level concurrently

within an individual network, by employing a hybrid CPU-GPU frame-

work. The toolbox also uses a sparse data structure to store the voxel-

wise network to improve the scalability of the software platform.

As illustrated in Figure 1, calculation of the network topological

metrics in the PAGANI Toolkit can be categorized into two levels, the

global and nodal levels (for detailed definitions, see Supporting Informa-

tion, Table S1), and the calculation dependencies are as follows. Compu-

tations of Cp and Lp depend on calculation of the nodal clustering

coefficient and nodal efficiency, respectively. Computation of the all-

pairs shortest path (APSP) precedes nodal efficiency calculation. The

results of the modular detection are required for the computation of

participation coefficients. GPUs are used to accelerate functional net-

work construction and computations of various network metrics with

high parallelism, including the characteristic shortest path length,

eigenvector-based module detection (Newman, 2006), nodal efficiency,

betweenness, and eigenvector centrality. Other computations are imple-

mented on single or multicore CPUs, including heuristic Louvain module
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detection (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008), global and

nodal clustering coefficient, nodal degree and participation coefficient.

The GUI (Figure 2) of the PAGANI Toolkit enables customized

computations in the network analysis. Global and nodal metrics are

separated into two panels in the GUI. Tooltips and item information for

each function and parameter are displayed when the mouse is hovered

over the items. An operation manual is included in the package to pro-

vide detailed instructions for using the PAGANI Toolkit via either the

GUI or the command line.

2.2 | Network type

The current version of the PAGANI Toolkit supports the analysis of

both binary and weighted networks. The connectivity matrix is defined

as C5 [cij], where cij is a non-negative connectivity strength value that

quantifies the internode similarity. For example, C can be derived from

a correlation matrix by setting negative correlations as either zeros or

their absolute values. The binary network is defined as an adjacency

matrix A5 [aij],

aij5
1; if cij>r̂ ;

0; others

(

and the weighted network W 5 [wij] is defined as

wij5
cij; if cij>r̂ ;

0; others

(

Where r̂ is a connectivity strength threshold. Notably, r̂ is constant in

the thresholding strategy using connectivity strength across different

subjects. However, for density thresholding, r̂ is subject-specific and

determined by the given network density.

2.3 | Global network properties

The PAGANI Toolkit is available for the computation of several popular

global network properties, including the clustering coefficient (Cp), the

TABLE 1 Summary of neuroscience connectomics tools

Software
R-fMRI
preprocessing

Network
construction

Graph
analysis GUI Vis

Parallel
computing

High-resolution
network analysis

PAGANI
3

� � �
3

� �

GRETNA (Wang et al., 2015) � � � �
3

�
3

BCT (Rubinov & Sporns, 2010)
3 3

�
3 3 3 3

GAT (Hosseini et al., 2012)
3

� � � �
3 3

CONN (Whitfieldgabrieli &
Nietocastanon, 2012)

� � � � �
3 3

eConnectome (He et al., 2011)
3

�
3

� �
3 3

GraphVar (Kruschwitz, List, Waller,
Rubinov, & Walter, 2015)

3
� � � �

3 3

Note. Abbreviations: GUI, graphical user interface; Vis, visualization.

FIGURE 1 Overview of the PAGANI Toolkit. Blue items are accelerated on GPU devices in the PAGANI Toolkit [Color figure can be
viewed at wileyonlinelibrary.com]
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normalized clustering coefficient (Gamma, i.e., Cp/Cprand), the charac-

teristic shortest path length (Lp), the normalized characteristic length

(Lambda, i.e., Lp/Lprand), small-worldness (Sigma, i.e., Gamma/Lambda),

and modularity (Rubinov & Sporns, 2010). Cprand and Lprand refer to the

average Cp and Lp of several surrogate random networks, the number

of which can be customized in the GUI panel. The computations of Cp

and Lp, and the generation of random networks are the basic function-

alities required. For details regarding these network parameters, see

below.

2.3.1 | Computation of Cp and Lp

For a given network, its Cp is defined as the average across the nodal

clustering coefficient of all voxels. The Lp of a network is defined as

the “harmonic mean” shortest path length among all potential pairs of

nodes, which is the reciprocal of the average nodal efficiency. Using

the harmonic mean instead of the arithmetic mean is more satisfactory

when disconnected components exist in a network (Newman, 2003;

Wang et al., 2015) (Supporting Information, Table S1). Users are free to

select the output of each nodal and global metric via the GUI.

In PAGANI, the CPU-based parallel acceleration for Cp and nodal

metrics was designed to evenly assign the computation to all CPU

cores at the nodal level within an individual brain network instead of

the subject-level parallelism utilized in other existing toolboxes (Wang

et al., 2015). Processing multiple subjects in parallel requires mainte-

nance of the network matrices of these subjects in the memory concur-

rently, which is not adaptable to large voxel-wise brain networks.

Moreover, the PAGANI Toolkit provides two algorithms to the calcu-

late weighted Cp (for the formulas, see Supporting Information, Table

S1) (Barrat, Barthelemy, Pastor-Satorras, & Vespignani, 2004; Onnela,

Saramaki, Kertesz, & Kaski, 2005). There are no differences in memory

requirements and theoretical time complexity between these two algo-

rithms. However, the Cp algorithm from Onnela et al. (2005) takes

more time because it requires computation of the cube root, which is

slower than simple multiplication and addition.

For Lp and nodal efficiency calculations, both the breadth-first

search (BFS) algorithm and the blocked Floyd–Warshall’s (BFW) algo-

rithm are implemented to calculate APSP. The BFS algorithm is imple-

mented by a multicore CPU and performs well in sparse graphs,

whereas the GPU-based BFW algorithm is more efficient for dense

networks. The BFS algorithm launches a small number of threads, and

each thread computes the efficiency of a subset of nodes sequentially.

A distance vector (a single row of a pairwise distance matrix) indicating

the shortest path length between a current node and all other nodes in

a network can be reutilized within a thread. Therefore, the BFS algo-

rithm only needs to store a sparse graph and a few distance vectors

and uses less memory than the BFW algorithm which requires mainte-

nance of the entire distance matrix in memory. For detailed applica-

tions of the two APSP algorithms, please refer to our previous work

(Wang et al., 2013).

The PAGANI Toolkit currently implements the automatic selection

of these algorithms for binary networks based on a lookup table (LUT)

method. The lookup table is predefined in the PAGANI Toolkit with

time consumptions for executing BFS and BFW algorithms for a large

range of network sizes with different densities. Given a particular

network, the program estimates the time consumption of the two algo-

rithms based on the predefined LUT and automatically selects an algo-

rithm. Only the BFW algorithm is available for weighted networks in

the current version of PAGANI.

2.3.2 | Generation of random networks

Random networks are generated by a random rewiring process (Maslov

& Sneppen, 2002), in which the number of nodes and edges and the

distribution of the nodal degree remain the same as the original brain

network. Initially, the process randomly selects two edges (V1, V2) and

FIGURE 2 Graphical user interface (GUI) of the PAGANI Toolkit. Users can customize the parameter settings through the GUI
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(V3, V4), where node V1 connects to node V2 and node V3 connects

to node V4. Subsequently, the original edges are replaced with (V1, V3)

and (V2, V4) if the new edges do not exist in the original network. This

procedure is typically repeated for twice the number of edges in the ref-

erence network. The graph frequently updates, removing and inserting

the edges in the iterative rewiring process. Therefore, the network ran-

domization can be regarded as a dynamically changing graph problem.

To efficiently store and update dynamically changing graphs, we

adopted a novel data representation based on the combination of a bit-

map and a hash table (Figure 3). Specifically, we maintained a bitmap

only for dense rows in the adjacency matrix instead of storing the

entire matrix. The storage for each row in the bitmap requests n/8

bytes, where n is the number of nodes. Sparse rows are stored in a

data structure based on the hash table proposed by Que, Checconi,

Petrini, & Gunnels (2015). This hash table requires 8*mi/l bytes for the

storage of mi connections related to the i-th node (i.e., mi nonzero

entries in i-th row in the adjacency matrix). Each connection requires 8

bytes to store the indices of two end nodes, and l is the load factor

describing the ratio of the number of stored elements in the hash table

to the actual allocated memory space of the hash table. Notably, less

harsh conflicts occur with decreasing load factors. Here, we empirically

set the load factor to 1/2. We can easily obtain an optimal strategy

that minimizes the memory usage with rows containing more than

l*n/64 nonzero entries stored in the bitmap and otherwise stored in

the hash table. The hash table is hashed on edges utilizing a Fibonacci

function. Please refer to Que et al. (2015) for more details concerning

the implementation of the hash table.

The data representation provided herein would be quite efficient

for dynamically changing graphs in the network randomization for two

reasons. First, considering the scale-free properties of the high-

resolution brain network, the degree distribution typically follows a

power law, and most nodes have only a small number of connections

(van den Heuvel, Stam, Boersma, & Hulshoff Pol, 2008; Wang et al.,

2013). Second, the distribution of the nodal degree remains identical to

the original network during the random rewiring process (Maslov &

Sneppen, 2002). Therefore, the number of edges stored in the hash

table does not change, ensuring the memory efficiency of the proposed

data representation.

2.4 | Module detection

In the PAGANI Toolkit, we implemented two module detection algo-

rithms that are widely used in connectomics studies. These two parti-

tion methods can be applied for both binary and weighted networks.

The algorithms detect modules that maximize the modularity measure-

ment Q value in different ways. The first algorithm applies a spectral

partition method (Newman, 2006), which was accelerated on GPUs in

a previous study (Wang et al., 2013). In each round, a large module was

divided into two submodules until no improvement in Q was found,

and the best division for maximizing Q relied on the eigenvector that

corresponded to the largest positive eigenvalue of the so-called modu-

larity matrix. We accelerated the iterative power method for the com-

putation of the eigenvector on GPUs. According to other graph

analysis tools (e.g., BCT and GRETNA), a small modification was made

to the original program to improve the modularity results. Specifically,

the greedy method was performed to fine-tune the original

eigenvector-based partition results at the end of each round. However,

this process spends too much time on the iterative calculation of altera-

tions in Q by moving each node in one submodule to the other. Again,

we accelerated this iterative process on GPUs to an acceptable time

for high-resolution networks with relatively sparse connectivity.

Another popular Louvain modularity algorithm implemented in the

PAGANI Toolkit is based on an iterative heuristic partition method

(Blondel et al., 2008). This algorithm includes two phases that repeat

iteratively. The first phase attains the local maximum of the modularity

by moving each node to the community for which the gain of modular-

ity is maximum. The second phase builds a new network comprising

hypernodes of the communities obtained in the first phase as the input

network for the next iteration. The algorithm complexity is approxi-

mately linear on sparse networks because we only need to scan the

neighbor communities of each node in the first iteration to calculate

the maximum gain of modularity, and the number of communities dra-

matically declines after a few iterations. The module detection algo-

rithms finally obtain the modularity Q value and a vector of community

indices for each node in a network, which is required for the following

computation of the participation coefficient (PC).

2.5 | Nodal metrics

The PAGANI Toolkit computes various nodal centrality metrics, includ-

ing nodal degree, nodal efficiency, betweenness centrality (BC, only for

binary networks), eigenvector centrality (EC) and PC (for detailed

descriptions and definitions, see Supporting Information, Table S1). For

a given node, its degree is defined as the number of edges in a binary

network or the sum of the weights of the edges in a weighted network

that directly connect to a node. Nodal BC measures the number of

pairwise shortest paths that travel through a given node, which reflects

its importance in the communication between other nodes. Nodal EC is

defined as the first eigenvector corresponding to the principal

FIGURE 3 A schematic of the data structure combining a bitmap
and a hash table. The dense rows were stored in a bitmap, while the
sparse rows were stored in a hash table. The determination of
whether a row is stored in a bitmap or a hash table optimizes the
memory usage [Color figure can be viewed at wileyonlinelibrary.com]
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eigenvalue of an adjacent matrix and can capture an aspect of central-

ity that extends to global features of the graph (Bonacich, 1972; Zuo

et al., 2012). Nodal PC describes the ratio between the intermodule

and intramodule connections of a node, representing the ability to inte-

grate the communication between different modules. Notably, nodes

with high a PC are usually identified as “connector” hubs (He et al.,

2009; Power, Schlaggar, Lessov-Schlaggar, & Petersen, 2013). The

computations of nodal degree and PC take a short amount of time.

Therefore, accelerating their computation is trivial.

In addition to these centrality metrics, the PAGANI Toolkit can

also calculate nodal clustering coefficients (a measure of clustering in

the neighborhood of a node) and nodal efficiency (a measure of the

global efficiency of a node communicating with other nodes). These

two metrics share the same computational programs with Cp and Lp,

respectively, as mentioned in the previous section regarding global

metrics. Here, we primarily focused on the acceleration of BC and EC

computations.

BC is defined as the ratio of all shortest paths passing through a

given node in the network, indicating the influence of a given node on

information transfer through the network. BFS and a subsequent

reverse traversal are two steps required for the computation of BC. We

compared different accelerating strategies on the GPU (Pande & Bader,

2011; Sriram, Gautham, Kothapalli, Narayan, & Govindarajulu, 2009)

and ultimately integrated parallel schemes from a study (Pande & Bader,

2011) into the PAGANI Toolkit according to experiments on commonly

used 3- and 4-mm isotropic resolutions. In addition, a level synchronous

BFS algorithm (Hong, Oguntebi, & Olukotun, 2011), which optimizes

the pattern of GPU memory access, was used to compute BC.

EC is calculated using the power method. The basic operation of

the power method is sparse matrix vector multiplication, which has

been accelerated on GPU devices in several studies (Bell & Garland,

2008; Williams et al., 2009). For easy implementation and robustness,

sparse matrix vector multiplication in the PAGANI Toolkit is performed

by calling functions from the cuSPARSE library (http://docs.nvidia.

com/cuda/cusparse/index.html). The cuSPARSE library was also

employed in the spectral module detection to accelerate sparse matrix

computations. The GPU-based library is composed of basic linear alge-

bra subroutines utilized for sparse matrices and has better performance

than the Intel MKL, a high-performance math library widely used in

CPU programming (https://software.intel.com/en-us/intel-mkl/).

2.6 | Data format

The PAGANI Toolkit employs connectivity matrices in a compressed

sparse row (CSR) format (Langr & Tvrdik, 2015), a standard storage for-

mat for sparse matrices in scientific computing, as the inputs for com-

putations in the graph-theoretical analysis. Briefly, as illustrated in

Figure 4, a graph or network is traditionally represented by indices of

two end-points and the connective weight of every edge in the graph,

referred to as the coordinate (COO) format. The CSR format represents

a connectivity matrix by three vectors denoted R, C, and V. The non-

zero entries (i.e., the connective weights) in the matrix are contiguously

stored in vector V, along with their column indices in vector C. Vector

R maintains the offset pointing to the first element of each row in vec-

tor V or C. For a binary network, all the nonzero weights are one; thus,

vector V can be omitted. Compared with adopting entire connectivity

matrices as the basic data structure in most existing connectome tool-

boxes, using the CSR format is more efficient for representing brain

networks because the high-resolution brain networks are usually sparse

and vectors V and C can be very small. The theoretical space complex-

ity for the storage of a network matrix decreased from O(n2) to O

(n1m), where m is the number of links in a network.

After providing a working directory, the PAGANI Toolkit calculates

the topological metrics ticked in the GUI panel for all networks (CSR

format files) under the directory. Global metrics, including Cp, Lp, mod-

ularity, Gamma, Lambda, and Sigma, are exported as text files. Nodal

metrics, including nodal efficiency, degree, nodal clustering coefficient,

PC, BC, and EC, are automatically converted to 3D NIfTI files. For func-

tional networks, the toolbox offers a GPU-based program to accelerate

network construction from functional imaging data in common NIfTI

files. A MATLAB function, which converts connectivity matrices into

CSR format files, is also provided in the software package for compati-

bility with other connectomes from different modalities.

2.7 | Example R-fMRI data

2.7.1 | Data acquisition and preprocessing

We used a publicly available dataset from the HCP S900 release (Van

Essen et al., 2012) to illustrate the application of the PAGANI Toolkit.

This dataset contains R-fMRI data from 873 healthy young adults. Indi-

vidual functional images include 1,200 frames of multiband, gradient-

echo planar imaging data acquired during a period of 14 min and 33 s

with the following parameters: TR5720 ms; TE533.1 ms; FA5528;

FOV5 280 3 180 mm2; matrix5140 3 90 mm2; and 2-mm isotropic

voxel size. During data acquisition, individuals fixated on a bright cross-

hair projected on a dark background. Two phase-encoding directions

(left-to-right and right-to-left) were used in each session during R-fMRI

data acquisition. Here, we only used the left-to-right-encoded runs to

avoid potential effects of different phase-encoding directions on our

findings. The original R-fMRI data were minimally preprocessed

(Glasser et al., 2013) with gradient distortion correction, head motion

correction, image distortion correction, spatial normalization to the

Montreal Neurological Institute (MNI) space, and intensity

normalization.

We further reduced the biophysical and other noise in the mini-

mally preprocessed data with DPARSF (Yan & Zang, 2010) and SPM8

(http://www.fil.ion.ucl.ac.uk/spm). Additional preprocessing procedure

included linear detrending, nuisance signals regression (24 head motion

parameters and cerebrospinal fluid, white matter, and global signals),

and temporal bandpass filtering (0.01–0.1 Hz). The data of 227 subjects

were excluded because of excessive head motion (translation>3 mm,

rotation >38, or a mean frame-wise displacement >0.2 mm), 21 sub-

jects were excluded due to arachnoid cysts, and one subject was

excluded due to missing time points. Finally, the data of 624 subjects

(352 females and 272 males) were included in the further analysis (age:

22�36, 44 males, IQ: 16.764.9, ER: 35.562.6). IQ stands for
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intelligence quotient. ER stands for emotion recognition score, which is

the number of correct responses in the Penn Emotion Recognition

Test. The distributions of IQ and ER are illustrated in Supporting Infor-

mation, Figure S1.

2.7.2 | Functional network construction

A gray matter (GM) mask of 195,144 voxels was generated from a prior

GM probability map (threshold at 0.2) provided by SPM8. We calcu-

lated Pearson’s correlations between all pairs of nodes (i.e., GM voxels)

and removed all negative correlations considering their vague biological

interpretation (Murphy & Fox, 2017; Schwarz & McGonigle, 2011).

Then, we constructed functional networks for each subject at a con-

nectivity density threshold of 0.1%. The selected density ensures the

sparse nature of the brain networks and simultaneously maintains esti-

mable small-world properties. The PAGANI Toolkit accelerated both

the computation of the correlation matrix and the subsequent thresh-

olding procedure on GPUs for the functional network construction.

The detailed optimization of functional network construction can be

found in our previous work (Zhao, Du, & Wang, 2017).

2.7.3 | Network analysis

A variety of global (Cp, Lp, Gamma, Lambda, small-worldness, and mod-

ularity) and nodal (nodal degree, nodal efficiency, nodal BC, EC, and

PC) topological metrics were calculated for the binary networks of 624

subjects. Here, we applied the spectral partition algorithm for module

detection, and five surrogate random networks were generated for

each network for the calculation of small-world properties. Spatial maps

of nodal metrics were smoothed with an 8-mm isotropic FWHM Gaus-

sian kernel using SPM8. We attained the group-level maps at each den-

sity by averaging the individual maps across subjects for all nodal

metrics. These maps were further normalized to z-scores by subtracting

the mean and dividing by the standard deviation. Functional hubs were

identified based on the criterion of one standard deviation above the

mean value of nodal centralities across the brain (i.e., z-score>1).

2.7.4 | Statistical analysis

We performed the following statistical analysis at each network den-

sity. First, we investigated whether there were between-gender differ-

ences in the global and nodal network metrics using a general linear

model (GLM) with the network metric as the dependent variable,

gender as the independent variable, and age as a covariate. Then, to

determine whether the network metrics were related to individual cog-

nitive abilities (i.e., IQ and ER) and whether these relationships were

different in males and females, another GLM was used to elucidate the

interactive and main effects of cognitive abilities and sex on each graph

metric. The network metric again served as the dependent variable,

with the cognitive score (i.e., IQ or ER), sex, and the product of the cog-

nitive score and sex as the independent variables and age as a covari-

ate. Notably, the statistical analysis for nodal metrics was performed in

a voxel-wise fashion, and the significance level was set to p<0.001 at

the voxel level with family-wise error (FWE) correction to p<0.05 for

multiple comparisons at the cluster level.

2.7.5 | Validation analysis

To validate the robustness of the global architecture of the high-

resolution functional brain networks, we examined the influence of dif-

ferent image preprocessing and data analysis strategies, including the

use of different network densities (0.05%, 0.1%, and 0.15%) and pre-

processed data without global signal regression. Due to the limited

computation resources, we performed these validation analyses on a

subdataset of 134 subjects from the HCP Q2 data release. After

excluding 9 subjects with excessive head motion or missing time points,

the data of 125 subjects were finally used in the analysis.

3 | RESULTS

The release version of the PAGANI Toolkit is published and can be

downloaded freely from the NITRC website (https://www.nitrc.org/

projects/pagani_toolkit/), and the source code is uploaded on GitHub

for open-source development. The evaluation of the software perform-

ance was under a computing environment comprising an Intel (R) Core

(TM) i7-3770 quad-core CPU @ 3.4 GHz with 64 GB RAM for CPU

programs, the NVIDIA GeForce GTX TITAN Black (5.5 GB GPU mem-

ory) for GPU programs, and a 64-bit Windows operating system.

3.1 | The calculation performance of the PAGANI
toolkit

To demonstrate the efficiency of the PAGANI Toolkit for mapping

human connectomes under different resolutions, we conducted a

FIGURE 4 A schematic of the coordinate (COO) format and compressed sparse row (CSR) format for the storage of a sparse connectivity
matrix [Color figure can be viewed at wileyonlinelibrary.com]
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comprehensive evaluation of its performance, including the elapsed

time and memory usage, on a wide variety of network scales at differ-

ent imaging resolutions. We resliced the original images of one ran-

domly selected subject from 2-mm isotropic resolution (�200,000

voxels within the mask) to 1-mm and 3-mm isotropic resolutions

(�1,600,000, and �60,000 voxels, respectively).

Table 2 shows the performance of the computations for network

metrics at several typical densities under different resolutions: 0.1%,

1%, and 10% densities for 3-mm resolution, 0.1% and 1% densities for

2-mm resolution, and 0.01% density for 1-mm resolution; most compu-

tations finished in an acceptable run time with tolerable memory usage.

Specifically, for 3-mm resolution, the GPU-based network construction

required only 0.1 min, independent of network density. For network

densities of 0.1%–10%, most network computations were completed

in a few minutes (e.g., Cp: 0.2–6.5 min; network randomization: 0.1–

3.0 min; module detection: 0.2–0.8 min for the Louvain heuristic algo-

rithm; and 0.3–3.6 min for the Newman spectral algorithm). For 2-mm

resolution, the network construction required �1 min. For network

densities of 0.1%–1%, the computing time for most network metrics

slightly increased (Cp: 1.4–45.3 min; network randomization: 0.7–7.3

min; module detection: 2.0–6.7 min for the Louvain algorithm; and

4.6–26.6 min for the Newman algorithm). For 1-mm resolution, the run

time for network construction increased to �1 h. Most computations

were completed in an acceptable time at 0.01% density (Cp: 8.2 min;

network randomization: 4.4 min; module detection: 199.7 min for the

Louvain algorithm; and 95.1 min for the Newman algorithm). Among all

network sizes and densities, PC and EC were computed in almost real

time (<3 s). Computations of Lp and BC using the BFS algorithm had

the highest complexity. The running time took only a few minutes at

0.1% density for 3-mm resolution but dramatically increased with

growing network sizes and densities. Here, computation performances

for the nodal clustering coefficient and nodal efficiency are not listed in

the table because they were included in the calculation of Cp and Lp.

Notably, a GPU-based BFW algorithm was used to compute Lp at

1% and 10% densities under 3-mm resolution. The time cost of the

BFW algorithm, primarily determined by the number of nodes,

remained stable, costing �8 min at these two densities. However, the

BFW algorithm occupies �15 GB memory for the storage of a distance

matrix. The high space complexity limits its application in large network

analyses at higher resolutions. Except for computing Lp using the BFW

algorithm, the PAGANI Toolkit showed good memory efficiency for the

computations of most metrics and used less than 10 GB of memory for

all network sizes and densities in the experiments due to algorithm

optimization based on a CSR format. In contrast, most of the existing

graph-based toolboxes adopt an entire connectivity matrix that stores

n2 entries to represent a network. An entire voxel-wise functional con-

nectivity network theoretically requires approximately 15 GB, 140 GB,

and 9 TB for 3-mm, 2-mm, and 1-mm isotropic resolutions, respec-

tively, regardless of the edge density.

The computation time and memory usage largely rely on the net-

work size and density; the acceptable density range decreases with

increasing network size. Here, we provide a guideline for the approxi-

mate highest density thresholds for different network scales (Table 3).

The thresholds are given under the constraints of either a reasonable

time consumption (<200 min) or memory requirements available in the

system (<45 GB).

Functional network construction, network randomization, heuristic

module detection, and the computations of degree and PC are mainly

restricted by memory constraints, with the highest acceptable density

thresholds over 10% at 2-mm resolution and 0.1% at 1-mm resolution.

The computations of BC, Cp, and Lp (together with the nodal clustering

coefficient and nodal efficiency) are limited by computational speed

and a lower density range that can be handled within the time limit.

The computation of BC is the most time-consuming step, and the high-

est density reached 3%, 0.11%, and 0.0002% for 3, 2, and 1-mm iso-

tropic resolution data, respectively. The GPU-based BFW algorithm

TABLE 2 The performance of the PAGANI Toolkit at different network scales

Network scale (resolution) ~60 K (3-mm) ~200 K (2-mm) ~1.6 M (1-mm)
Density 0.10% 1.00% 10.00% 0.10% 1.00% 0.01%

Performance Runtime/memory (min/GB)

FNC (GPU) 0.1/0.52 0.1/0.8 0.1/3.3 1.0/1.5 1.0/4.3 59.4/9.8

Small-world properties Cp (CPU) 0.2/0.1 0.6/0.3 6.5/1.3 1.4/0.2 45.3/1.5 8.2/1.1

Lp (GPU & CPU) 1.4/0.1 8.1/14.3 8.1/15.5 58.5/0.2 514.1/1.4 -
RNG (CPU) 0.1/0.1 0.35/3.6 3.0/4.6 0.7/0.9 7.3/6.0 4.4/6.4

Module detection Louvain (CPU) 0.8/0.2 0.2/0.3 0.5/2.6 2.0/1.6 6.7/2.9 199.7/1.9

Newman (GPU) 0.3/0.3 0.8/1.0 3.6/8.1 4.6/1.1 26.6/8.9 95.1/5.9

Nodal centralities Deg. (CPU) 0.0/0.0 0.0/0.6 0.0/2.6 0.0/0.4 0.0/3.1 0.0/1.9

PC (CPU) 0.0/0.0 0.0/0.6 0.0/2.6 0.0/0.4 0.0/3.1 0.0/1.9
EC (GPU) 0.1/0.0 0.0/0.4 0.0/1.7 0.0/0.7 0.1/4.6 0.1/2.9
BC (GPU) 3.2/0.1 59.2/0.2 �103/1.5 149.1/0.3 - -

Note. Abbreviations: BC5 betweenness centrality; Cp5 clustering coefficient; EC5 eigenvector centrality; FNC5 functional network construction;
Lp5 characteristic path length; PC5 participation coefficient; RNG5 random network generation.
These results are for binary networks. For weighted networks, please refer to Supporting Information, Table S2. The nodal clustering coefficient and
efficiency are not included because they share the same computational module with Cp and Lp.
The symbol “-” indicates that the computation cannot finish in 24 h.
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can be used to calculate the Lp values for networks at an arbitrary den-

sity at 3-mm resolution, but it is not available at 2-mm or higher resolu-

tions due to the memory limitation.

The GPU-based eigenvector method applied in the computation of

EC and in Newman module detection is primarily limited by the

capacity of GPU memory (5.5 GB) where the sparse network matrix is

loaded (highest densities: 13% for 3-mm, 1.1% for 2-mm, and 0.017%

for 1-mm isotropic resolutions). Notably, the execution time of both

module detection methods also depends on the modular structure of a

network, varying greatly among different subjects and network den-

sities. For example, a lower network density could result in an increase

in separated modules in a network, thus reducing the convergence

speed of module detection.

Together, these results suggest that the PAGANI Toolkit shows

high performance for analyzing high-resolution networks and offers a

guideline for researchers to estimate computational time consumption

and to choose a network scale with an appropriate density range when

using the software toolbox.

3.2 | Parallel speedup compared to a single-core CPU

toolkit

We first compared the parallel implementation in PAGANI to a typical

single-core CPU version used by popular graph-based tools (e.g.,

GRETNA). The comparison was performed under three network scales

(n55,353, 8,187, and 11,044) and network densities from 1% to

10%. Different network scales were generated from a GM probabil-

ity map (4-mm isotropic resolution) with different thresholds (i.e.,

0.6, 0.65, and 0.7). The parallel implementation in PAGANI showed

extensive speedup for most of the computations (Supporting Infor-

mation, Table S2). Specifically, the GPU-based BFW algorithm

achieved the best speedup in the analysis (n55,353: 292.8- to

333.2-fold speedup; n58,187: 408.5- to 486.8-fold speedup;

11,044: 551.3- to 568.2-fold speedup). Multicore acceleration for

Cp achieved the least improvement in speed: a 7.7- to 16.7-fold

increase among all conditions.

Next, we reimplemented a single-core version based on the CSR

format to make it scalable to the 2-mm resolution HCP dataset;

we compared the analysis time for one randomly selected subject with

the parallelized computation components in PAGANI (Table 4).

Generally, GPU-based acceleration achieved an approximate a 350-fold

increase in speed for the network construction, a 4.5- to 7.9-fold

increase for modularity, a 2.9- to 11.8-fold increase for EC, and a 4.9-

to 6.6-fold increase for betweenness. Notably, the computations of the

correlation matrix can be more efficient using high-performance math

libraries, such as the Intel MKL and the AMD ACML. These libraries

can help achieve up to 10-fold increases in speed on the same multi-

core CPU compared with that of the single-thread baseline in the com-

parison. Nevertheless, the GPU-based algorithm is still more efficient,

achieving approximately a 30-fold increase in speed compared with

that of these high-performance libraries. Multicore CPU acceleration

using 8 threads led to a 4.6- to 5.1-fold speed increase for Cp and a

3.6- to 3.7-fold increase for Lp. Together, considering the computations

for all three densities and the computations of Cp and Lp for the five-

surrogate random network, the analysis in total spent �27 h for one

subject using the PAGANI Toolkit on a single machine. In contrast, the

elapsed time would be 118 h running on the single-core CPU.

3.3 | The topological properties of high-resolution

functional brain networks

3.3.1 | Global metrics and hubs of high-resolution

functional brain networks

The voxel-based functional networks of almost all the individuals

exhibited stable small-world characteristics (Sigma53.5161.56).

Meanwhile, the voxel-based functional networks also exhibited promi-

nent modular architectures (Q50.6160.06) (Table 5).

The probability distribution of all nodal centrality fitted well with

exponential truncated power law scaling, decaying as p xð Þ�a xb
� �

exp

2x=cð Þ (Figure 5a). The global functional hubs identified based on nodal

degree, BC, and EC exhibited similar spatial distribution patterns (the

yellow regions with black boundaries in Figure 5b) and were primarily

located in the default-mode network (DMN) [e.g., the bilateral precu-

neus (PCu), the medial prefrontal cortex (MPFC), and the inferior parie-

tal lobule], the fronto-parietal network (FPN) [e.g., the dorsolateral

prefrontal cortex and superior parietal cortex], the salience network

[e.g., the dorsal anterior cingulate cortex (dACC)], and the primary vis-

ual cortex. The connector hubs with high PC values were mainly identi-

fied in the FPN [e.g., the dorsolateral prefrontal cortex and superior

parietal cortex] (Figure 5b). A correlation analysis revealed that degree,

TABLE 3 The maximum acceptable density threshold for different computations and network scales

Network scale
(resolution)

Maximum acceptable density (%)

FNC Cp/ci Lp/ei RNG Newman/EC Louvain Deg/PC BC

�60 K (3-mm) � 25.0 � � 13.0 � � 3.0

�200 K (2-mm) 15.0 2.1 0.4 13.0 1.1 15.0 30.0 0.11

�1.6 M (1-mm) 0.2 0.1 0.004 0.1 0.017 0.2 0.4 0.0002

Limitation mem. time time mem. GPU mem. mem. mem. time

Note. Abbreviations: BC5 betweenness centrality; Cp/ci5 global and nodal clustering coefficient; EC5 eigenvector centrality; FNC5 functional network
construction; Lp/ei5 characteristic path length and nodal efficiency; RNG5 random network generation; PC5 participation coefficient.
The symbol “�” indicates that there is no theoretical density limit under the given time (<200 min) and memory (<45 GB) constraints and network
scale.
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BC, and EC had high spatial correlations between each other (r val-

ues>0.84) but relatively low correlations with PC (r values<0.66)

(Supporting Information, Table S4).

3.3.2 | Between-gender differences in network topologies

Among the global metrics, we found that only modularity was signifi-

cantly higher in the female group than that in the male group (T53.86,

p<0.001, Bonferroni corrected, Supporting Information, Figure S2).

The spatial distribution of all four nodal metrics (i.e., degree, BC, EC,

and PC) was highly similar between the two gender groups (all r val-

ues>0.8, p values<1026). Nodal-level statistical analyses revealed

that the male group, compared with the female, had significantly lower

BC in a widespread bilateral regions over the medial/lateral frontopari-

etal and occipital cortices, including the precuneus/posterior cingulate

cortex (PCu/PCC), superior frontal gyrus (SFG), insular cortex and thala-

mus. Males also had a significantly higher degree in the left cerebellum

and inferior occipital gyrus but a lower degree in the bilateral PCu/PCC

(Figure 6). No significant differences were observed between the two

gender groups for EC and PC.

3.3.3 | Correlation between network metrics and cognitive

behaviors

Neither significant interactive effects between IQ (or ER) and gender

nor main effects of IQ (or ER) were observed for any of the global met-

rics. However, the nodal degree, BC, and EC showed significant nega-

tive correlations with IQ in several frontal regions: the left medial

orbitofrontal cortex (OFCmed) for nodal degree; the left frontal gyrus

for BC; and the bilateral olfactory cortex and the right middle frontal

gyrus for EC. No significant interactive effect was found between cog-

nitive abilities (IQ/ER) and gender on nodal metrics (Figure 7).

3.3.4 | Validation

The validation analysis for the HCP Q2 dataset revealed consistent

small-world and modular architectures for individual voxel-wise func-

tional networks at different densities with the main findings, with

Sigma ranging from 3.66 to 3.96 and modularity Q inversely related to

the network density ranging from 0.6 to 0.67, respectively. Functional

hubs showed similar spatial distribution patterns across different den-

sities, with global hubs located in the regions of the DMN and the vis-

ual cortex, and connector hubs mostly located in the FPN.

Regarding global signal regression, we found that the voxel-based

functional network derived from non-global signal-regressed

data retained predominant small-world and modular architectures

(Sigma51.4361.22 and Q50.4660.14). However, compared to

networks derived from global signal-regressed data, significantly lower

Cp, Gamma, Sigma and Q and significantly higher Lp and Lambda were

observed (all p values <0.01, Bonferroni corrected). Moreover, we

showed a significant negative correlation between BC and IQ in the

left inferior/middle occipital gyrus (IOG/MOG) and the left opercular

part of the inferior frontal gyrus. No significant differences were found

between genders.

4 | DISCUSSION

We developed the PAGANI Toolkit based on a CPU–GPU hybrid

framework (Wang et al., 2013) to automatically and rapidly compute

the topological characteristics of high-resolution brain networks. The

PAGANI Toolkit enhances the applicability and efficacy of high-

resolution brain network analysis and facilitates “Big Data” research in

human connectomics. This software provides a user-friendly GUI to

customize computations with different parameter settings, such as the

TABLE 4 Speedup of using the PAGANI Toolkit compared with a single-thread CPU platform

Computations

GPU Multicore CPU

F. N. C. Modularity EC BC Cp Lp

0.05% density Baseline 734.8 4.4 2.5 3 104 130.9 7.2 3 103

PAGANI 162.1 2.9 3.8 3 103 26.5 2.0 3 103

Speedup 4.5 1.5 6.6 4.9 3.6

0.10% density Baseline 1.7 3 103 8.4 5.4 3 104 385.7 1.3 3 104

PAGANI 277.3 1.0 1.1 3 104 84.7 3.5 3 103

Speedup 6.2 8.3 4.9 4.6 3.7

0.15% density Baseline 2.1 3 104 3.1 3 103 13.4 7.5 3 104 727.6 1.9 3 104

PAGANI 60.1 390.4 1.1 1.5 3 104 142.3 5.2 3 103

Speedup 350.0 7.9 11.8 5.0 5.1 3.7

Note. Abbreviations: BC5 betweenness centrality; Cp5 clustering coefficient; EC5 eigenvector centrality; FNC5 functional network construction;
Lp5 characteristic path length.
In the analysis of the example dataset, networks at 0.05% and 0.1% densities were generated from the network at 0.15% density without repeated
computations of the correlation matrix during the network construction. Therefore, we only consider the runtime at 0.15% density for functional net-
work construction.

TABLE 5 The quantitative values of global metrics

Measure Cp Gamma Lp Lambda Sigma Q

Mean 0.22 4.99 5.40 1.46 3.51 0.61

Std 0.05 2.13 2.25 0.25 1.56 0.06

Min 0.07 1.03 3.06 1.11 0.30 0.41

Max 0.32 16.49 21.42 3.57 12.58 0.75
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network type and thresholding strategy. The computation components

are packaged into independent executable files with necessary libraries

and are simple to set up without complicated configuration of the

computing environment. Moreover, we utilized a publicly available

R-fMRI dataset under 2 mm isotropic resolution to demonstrate the

capabilities of the PAGANI Toolkit.

FIGURE 5 The probability distribution and functional hubs identified by degree, EC, BC, and PC. (a) The probability distribution of nodal
centralities fitted p xð Þ�a xb

� �
exp 2x=cð Þ with estimated parameters: a50.86, b50.097, c5133.6 for degree; a50.04, b50.33, c52.2 3

105 for BC; a52.58, b50.082, c53.3 3 1024 for EC; a58.23, b50.52, c50.12 for PC. (b) For each metric, regions with z-scores great
than 1 were defined as hubs, indicated by the yellow color. EC, eigenvector centrality; BC, betweenness centrality; PC, participation coeffi-
cient [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Between-gender differences for the nodal degree and betweenness centrality. The significance level was set to p< .001 at the
voxel level with family-wise error (FWE) correction to p< .05 for multiple comparisons at the cluster level. The image of the surface map-
ping was obtained using BrainNet Viewer (Xia, Wang, & He, 2013) [Color figure can be viewed at wileyonlinelibrary.com]
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4.1 | Advantages of the PAGANI toolkit

Compared with various existing graph-based tools, for example, BCT

(Rubinov & Sporns, 2010) and GRETNA (Wang et al., 2015), the

PAGANI Toolkit optimized the performance and scalability of graph-

based approaches for large connectomes with thousands to millions of

voxels from different modalities and species. Reflecting the high com-

putation complexity and lack of efficient computational tools, most

studies currently use a compromised ROI-based method or downsam-

ple the imaging data at a coarse level, potentially leading to loss of

some important connectivity information. For example, Zuo et al.

(2012) and Du et al. (2015) downsampled high-resolution imaging data-

sets to a 4-mm resolution when computing graph metrics at a voxel-

wise level. Liao et al. (2013) utilized 3-mm isotropic resolution datasets

in a study of the test–retest reliability of functional hubs. Tomasi,

Shokri-Kojori, and Volkow (2016) utilized HCP datasets under the origi-

nal 2-mm resolution for functional network analyses and suggested

optimal parameters for the network threshold, the filtering bandwidth

range, and the global signal normalization to increase the reliability of

the local functional connectivity density. However, these studies only

calculated the nodal degree or strength of connectivity with neighbor-

ing regions to identify the local functional connectivity density. To our

knowledge, there are no reports on either the global or nodal topologi-

cal characteristics of voxel-wise functional brain networks from data-

sets at 2 mm (or higher) resolution, although such resolutions have

increasingly become more common in data collection. Thus, the devel-

oped PAGANI Toolkit provides the possibility to facilitate the study of

human connectomes derived from currently available noninvasive

imaging big data at their original resolution.

The computation components of the PAGANI Toolkit are based on

a hybrid CPU-GPU platform proposed in a previous study (Wang et al.,

2013). Compared with the previous platform, several improvements

have been made to the current software toolbox. First, we integrated

more functionalities in the platform, including analysis of the weighted

network, a module detection program based on a heuristic algorithm

(Blondel et al., 2008), and new computation components for BC, EC,

and PC. Second, we optimized the memory efficiency to make the tool-

box scalable to extend network sizes with increasing resolutions. For

FIGURE 7 Significant correlation between IQ and voxel-wise nodal degree (a), betweenness (b), and eigenvector centrality (c) in the
T-value maps. The scatterplots illustrate the main effects of IQ on nodal metrics from the GLM analyses at the voxel of the peak T-value in
(a) the left medial orbitofrontal cortex for degree, (b) the left frontal gyrus for betweenness, and (c) the olfactory cortex and middle frontal
gyrus for eigenvector centrality. The significance level was set to p< .001 at the voxel level with family-wise error (FWE) correction to
p< .05 for multiple comparisons at the cluster level. The diagram shows the fitted IQ and degree/BC because the age effect has been
regressed as a covariate [Color figure can be viewed at wileyonlinelibrary.com]
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example, this software adopts a CSR format instead of an entire con-

nectivity matrix as the data structure, which largely reduces the mem-

ory usage for computations of naturally sparse brain networks.

Because the ordered structure of CSR is not suitable to represent a

dynamic changing graph in the network randomization, we proposed a

novel data representation combining a bitmap and a hash table to solve

this problem. Third, for functional network construction, in addition to

the GPU-based computation of the correlation matrix in the previous

platform, we also implemented a subsequent thresholding process on

GPUs. The entire procedure achieved up to a 350-fold increase in

speed compared with that of single-thread CPU implementations.

Finally, we improved the flexibility and usability by packaging all com-

putation components with the necessary libraries and providing a GUI.

Researchers can download and use the released software via the GUI

without the complicated configuration of computing environment.

4.2 | Computational limit of the PAGANI toolkit

The performance and scalability of the PAGANI Toolkit are optimized

based on the sparse nature of voxel-wise brain networks. For a typical

single-core implementation by existing graph-based tools, the memory

requirements increase with the square quantity of nodes. However, the

PAGANI Toolkit utilizes a CSR network representation, the memory

requirements of which scale linearly with network size and density. In

addition, the speed of most graph-based algorithms is related to net-

work density. For example, the time complexity for computing BC and

Lp (BFS) is O(nm), O(nk2) for Cp, and O(m) for a single loop of heuristic

and spectral module detection, where n is the number of nodes, m is

the number of edges, and k is the average connection degree of a

node. Although parallel acceleration in PAGANI can achieve tens to

hundreds of speedup for some complex computations by traversing

multiple nodes or edges concurrently, the elapsed time and memory

usage still increase with the network density at a given network scale.

Network density is a major bottleneck for large voxel-wise brain

network analysis because of its associated memory requirements and

its impact on computation speed—the acceptable range of network

density decreases with the increasing network sizes due to the improv-

ing imaging resolution. For a better understanding of the density limits,

Table 3 provides a guideline for the approximate highest acceptable

density thresholds for different resolutions.

4.3 | Comparison with a distributed system

The development of a distributed system on large-scale clusters is a

potential solution to the excessive computation required. For example,

Boubela, Kalcher, Huf, Nasel, and Moser (2015) proposed a scalable

technology for network construction and for the analysis of large fMRI

data (2-mm isotropic resolution) with the application of an Apache

Spark framework containing the GraphX library (Gonzalez et al., 2014)

as a representative distributed solution to achieve large graph comput-

ing. The principal advantage of distributed systems is that they are

essentially scalable to any arbitrarily large graph. However, the setup

and maintenance of the cluster environment for a distributed system

are complicated and not friendly to most neuroimaging researchers.

Moreover, the performance of a distributed system is largely affected

by the imbalance of computational capability and the actual workload

of different single computing nodes. For large graph computing, the

frequent communication between these nodes also decreases the per-

formance of the cluster. Indeed, recent single-machine systems are

able to manage huge graphs with billions of connections and achieve a

comparable performance to distributed systems (Chi et al., 2016; Kyr-

ola, Blelloch, & Guestrin, 2012). However, individual computing nodes

in high-performance clusters typically have both CPUs and GPUs that

provide promising computing power. The attempt to fully utilize the

potential computing power of an individual node is also meaningful in

distributed systems. The best computational model for “Big Data”

research in human connectomics would be the combination of opti-

mized single-machine and distributed systems. A single computing

node completes the internal fine-grain parallelism within an individual

network or subnetwork, and the distributed system realizes the high-

level parallelism with low coupling degree between different networks

or subnetworks.

4.4 | Distinctions between voxel-based and atlas-

based brain networks

The acquisition of high-resolution neuroimaging data can provide abun-

dant connectomics information at a fine granularity. Compared with

atlas- or ROI-based brain networks, analyses of voxel-wise brain net-

works allow full exploitation of high-resolution imaging data, with more

naturally defined nodes without a prior parcellation atlas that drastically

reduces the data resolution. Moreover, voxel-wise brain network analy-

ses can reveal more detailed connectivity information, particularly for

regions that contain multiple subdivisions, for example, the hippocam-

pus and amygdala (Amunts et al., 2005), the lateral parietal cortex (Nel-

son et al., 2010), and the medial parietal cortex (Margulies et al., 2009).

In contrast, a network defined based on a coarse-grained atlas usually

considers the functional activity within a given ROI as homogeneous,

ignoring the possible spatial inhomogeneity within large ROIs (Jiang

et al., 2015). In addition, greater connectedness can be achieved with

increasing network sizes, particularly at low connectivity densities (For-

nito, Zalesky, & Bullmore, 2010).

In this study, the analysis results show that a high-resolution brain

network retains remarkable small-world characteristics at low densities.

The Sigma values (mean: 3.51) of the voxel-wise networks are slightly

larger than the typical Sigma values (�2.0) of atlas-based networks

reported in previous studies (Achard, Salvador, Whitcher, Suckling, &

Bullmore, 2006; Salvador et al., 2005). Hayasaka and Laurienti (2010)

reported higher Sigma and Gamma values in voxel-wise networks com-

pared with ROI-based networks. Furthermore, studies also showed

that group-level voxel-wise networks could have more prominent

small-world properties, for example, Sigma5111 (31,503 nodes,

0.043% density) (Eguiluz, Chialvo, Cecchi, Baliki, & Apkarian, 2005), and

Sigma5111.4 (58,523 nodes, 0.023% density) (Wang et al., 2013).

Large Sigma values with low wiring costs may reflect cost-

effectiveness and efficiency of voxel-wise brain network organization.
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The voxel-wise maps of functional hubs in Figure 5 show that high-

degree hubs were mainly located in some DMN regions such as the

PCu and MPFC. Although similar results were found in atlas-based net-

works (Achard et al., 2006; Wang et al., 2011), the voxel-wise maps

allowed precise localization of these hub regions and delineation of

their boundaries without making a priori assumptions using anatomical

constraints.

Notably, connectivity densities play an important role in determin-

ing the network topologies of the voxel-wise networks. Increasing net-

work sizes typically lead to a decreasing network density range in

practical analyses, which can affect the nature and interpretation of the

resulting networks. Indeed, decreasing network density could lead to

fewer long-range connections, which is more important for the global

integration and communication of the whole network. As a result, the

network may tend to have an increased Lp and a reduced small-world

value but increased modular configurations (Du et al., 2015). In con-

trast, increasing network density would definitely favor the estimation

of network efficiency but at a higher cost, which may have different

implications for the cost-efficiency organization principle of the human

brain network (Bullmore & Sporns, 2012). Therefore, in voxel-wise net-

work analysis, sparse densities were commonly utilized for three main

reasons. First, biologically, the human brain is optimally organized to a

balance efficiency and cost. Second, mathematically, many graph theo-

retical metrics were less meaningful when the network connectivity

became denser. Third, the computation resource was limited.

4.5 | Characteristics of functional brain networks

Using a publicly available dataset from the HCP, we identified a stable

small-world property in voxel-based functional networks and highly

connected hubs located in the DMN, the salience network, the FPN,

and the primary visual cortex. These results are consistent with those

of previous voxel-based functional network studies (Du et al., 2015;

Liao et al., 2013; van den Heuvel & Sporns, 2013). Significantly higher

modularity and BC were observed in the female group mainly in the

medial/lateral fronto-parietal and occipital cortices. Moreover, negative

correlations were identified between IQ and node-level metrics

(degree, BC, and EC) in several frontal regions.

Several previous studies have revealed gender-related differences

in functional connectivity and brain networks (Gong, He, & Evans,

2011; Kilpatrick, Zald, Pardo, & Cahill, 2006; Tomasi & Volkow, 2012;

Wu et al., 2013). For example, Tomasi and Volkow (2012) revealed

gender-related differences in local functional connectivity density in

many cortical and subcortical brain regions using a thresholding-by-

correlation procedure, which is different from our study. Another ROI-

based study revealed asymmetric differences in the clustering coeffi-

cients in the in two hemispheres between males and females (Tian,

Wang, Yan, & He, 2011). These results may reflect distinct infrastruc-

tures of brain organization leading to cognitive and behavioral

between-gender differences. In the present study, we found that the

BC in the female group was higher in widespread bilateral regions

across the medial/lateral fronto-parietal and occipital cortices, which

may reflect the between-gender differences in some cognitive

functionalities correlated with these regions. For example, the PCu/

PCC has been regarded as a network hub (van den Heuvel & Sporns,

2013) in the human brain associated with multiple cognitive functions

including self-consciousness and memory (Freton et al., 2014). The

gender effects on nodal degree were twofold: the males possessed a

higher degree in the left cerebellum and IOG, but a lower degree in the

PCu/PCC. The cerebellum is involved in the regulation of various func-

tional traits such as affection, emotion, and behavior (Turner et al.,

2007). The IOG is related to visual functions such as face processing

(Uono et al., 2017). Together, our findings in high-resolution functional

networks provide further evidence of gender-related differences in

behavioral and brain functions.

Using large-sample data (624 subjects), the present study found

negative correlations between IQ and nodal centralities in different

frontal regions. These regions are related to various cognitive functions.

For example the left OFCmed is involved in the cognitive processing of

decision-making (Kringelbach, 2005); the left SFG is related to self-

awareness (Goldberg, Harel, & Malach, 2006); and the MFG (Brodmann

area 25) participates in the regulation of emotion through the amygdala

(Motzkin, Philippi, Wolf, Baskaya, & Koenigs, 2015) and is associated

with memory and decision-making (Hebscher, Barkan-Abramski, Gold-

smith, Aharon-Peretz, & Gilboa, 2016). Recent studies have demon-

strated a significant association between the functional architectures of

the human brain and cognitive abilities. For example, Finn et al. (2015)

demonstrated that functional connectivity patterns are individualized

and can be used to predict levels of individual intelligence. Hilger,

Ekman, Fiebach, and Basten (2016) reported significant associations

between the nodal efficiency in the dACC, the anterior insula, and the

left temporo-parietal junction of the voxel-wise functional brain net-

work and individual intelligence. They also observed a marginally signif-

icant correlation between IQ and global efficiency. Our results along

with these findings provide empirical evidence illustrating the func-

tional architectures that underlie human cognition and behavior.

4.6 | Future studies

In the future, the PAGANI Toolkit will be improved in several ways.

First, a future version of this toolbox will provide functionalities for net-

work mapping of structural connectomes from diffusion MRI. For

example, probabilistic fiber tractography methods (Behrens, Berg,

Jbabdi, Rushworth, & Woolrich, 2007) have advantages for identifying

multiple fiber orientations in diffusion tensor images but are extremely

time-consuming. GPU-based algorithms would largely accelerate the

process (Hernandez et al., 2013; Xu et al., 2012) and will be integrated

into the toolbox in the future. Second, the computing performance for

several high-complexity metrics, such as Lp and BC, is not satisfactory

for large networks. To further improve the software platform, we

intend to introduce state-of-the-art graph computing libraries, for

example, NXgraph (Chi et al., 2016), a disk-based single-machine sys-

tem, and CuSha (Khorasani, Vora, Gupta, & Bhuyan, 2014), a GPU-

based graph computing framework. Furthermore, we will extend the

toolbox to a cluster with multiple CPUs and GPUs to exploit the inter-

subject parallelism for Big Data research using large datasets. As an
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open-source project, we expect that the PAGANI Toolkit will promote

the interest of outstanding computer scientists to contribute to studies

of human connectomics and bridge the gap between the shortages of

efficient computing modals and the rapidly growing computational

requirements. Finally, we observed a significant effect of global signal

regression on the calculation of network metrics, although both kinds

of networks retained predominant small-world and modular architec-

tures. fMRI studies have revealed that functional metrics could be

affected by global signal regression for reduced BOLD spectral power

and improvement in the detection of system-level correlations in

resting-state brain networks (Du et al., 2015; Fox, Zhang, Snyder, &

Raichle, 2009; Liang et al., 2012; Liu, Nalci, & Falahpour, 2017). How-

ever, the biological mechanism for the global signal remains largely

unknown (Murphy & Fox, 2017; Qing, Dong, Li, Zang, & Liu, 2015;

Saad et al., 2012; Schwarz & McGonigle, 2011). Future studies with

combined imaging techniques and elegant experimental designs could

provide critical information for a valuable neurobiological explanation

of the global signal.
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