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Depression, Neuroimaging and Connectomics:
A Selective Overview
Qiyong Gong and Yong He
ABSTRACT
Depression is a multifactorial disorder with clinically heterogeneous features involving disturbances of mood and
cognitive function. Noninvasive neuroimaging studies have provided rich evidence that these behavioral deficits in
depression are associated with structural and functional abnormalities in specific regions and connections. Recent
advances in brain connectomics through the use of graph theory highlight disrupted topological organization of
large-scale functional and structural brain networks in depression, involving global topology (e.g., local clustering,
shortest-path lengths, and global and local efficiencies), modular structure, and network hubs. These system-level
disruptions show important correlates with genetic and environmental factors, which provide an integrative
perspective on mood and cognitive deficits in depressive syndrome. Moreover, research suggests that the
pathologic networks associated with depression represent potentially valuable biomarkers for early detection of
this disorder and they are likely to be regulated and recalibrated by using pharmacologic, psychological, and brain
stimulation therapies. These connectome-based imaging studies present new opportunities to reconceptualize the
pathogenesis of depression, improve our knowledge of the biological mechanisms of therapeutic effects, and identify
appropriate stimulation targets to optimize the clinical response in depression treatment. Here, we summarize the
current findings and historical understanding of structural and functional connectomes in depression, focusing on
graph analyses of depressive brain networks. We also consider methodological factors such as sample hetero-
geneity and poor test-retest reliability of recordings due to physiological, head motion, and imaging artifacts to
discuss result inconsistencies among studies. We conclude with suggestions for future research directions on the
emerging field of imaging connectomics in depression.
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Depression is a globally prevalent psychiatric disorder char-
acterized by affective, cognitive, and somatic symptoms.
Neuropsychological evidence suggests impairments in exec-
utive function, memory, and emotional processing in patients
with depression (1). Neuroimaging studies demonstrate
that these impairments are accompanied by focal functional
and structural abnormalities in many regions (2–4), including
the hippocampus (5,6), medial prefrontal cortex (mPFC) (3),
dorsolateral prefrontal cortex (DLPFC) (7), anterior cingulate
cortex (ACC) (8), posterior cingulate cortex/precuneus (PCC/
PCu) (9), amygdala (9,10), and caudate nucleus (11–13). Also
reported were abnormal functional associations between
regions, involving default mode network (DMN) (14–20),
ACC-thalamus (21), ACC-insula (20), and prefrontal-limbic-
thalamic (22); structural covariance between prefrontal regions
(23); and anatomical connectivity in the inferior longitudinal
fasciculus, inferior fronto-occipital fasciculus, posterior thala-
mic radiation, and corpus callosum (24,25), suggesting that
depression involves alterations of brain connectivity in multiple
neuronal circuits.

The human brain is structurally and functionally organized
into a complex network that facilitates the effective segrega-
tion and integration of information processing. Recently, the
topological description of the network was referred to as the
N: 0006-3223 Biolog
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human connectome (26). Combined with neuroimaging,
connectome-based approaches revealed many nontrivial
topological properties of healthy human brains, such as
small-world efficiency, modular structure, and highly con-
nected hubs (27–32). These features are disrupted in various
brain disorders, such as schizophrenia (33,34) and Alzheimer’s
disease (35–37). Depression is also associated with abnormal
topological organization of brain networks, including disrupted
global integrity and regional connectivity (38–51) (Table 1).
These network dysfunctions are valuable for studies of
diagnosis biomarkers (52–55) and treatment evaluation (56)
and significantly advanced our understanding of the neuro-
psychopathology of depression. Here, we provide an overview
of imaging depressive connectomes, focusing especially on
graph-based network analysis.
GRAPH THEORY AND BRAIN CONNECTOMICS

Measurement of Brain Connectivity

There are three classes of brain connectivity: functional, effec-
tive, and structural connectivity (Table S1 in Supplement 1)
(26–32,57–59). Structural connectivity includes gray matter (GM)
structural covariance and white matter (WM) anatomical con-
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nectivity (28,29,59). Effective connectivity is not commonly used
for graph-based brain network analysis due to its complexity
and will not be detailed here. Based on the brain connectivity
information extracted from neuroimaging data (e.g., functional,
structural, and diffusion magnetic resonance imaging [MRI]),
functional or structural networks can be generated (Figure 1) and
their topological properties can be described using graph theory
approaches (Figure 2).

Brain Connectome Analysis Based on Graph Theory

Graph theory provides a powerful mathematical framework to
quantify the topological organization of the brain networks or
connectomes. In graph theory, the brain is modeled as a graph
composed of nodes, representing structurally or functionally
defined regions of interest or imaging voxels and edges,
representing functional or structural connectivity (27–32).
Topological architectures of the brain networks (binarized or
weighted) are usually depicted at three levels: global proper-
ties (e.g., clustering coefficient, shortest path length, local
efficiency, and global efficiency), modularity, and regional
nodal properties (e.g., degree, efficiency, and betweenness
centralities) (26–32,60–62) (Figure 2 and Table S1 in
Supplement 1). The global metrics measure the capacity of
the overall information segregation or integrity of the networks.
Detecting the brain’s modular structures allow the identifica-
tion of groups of anatomically and/or functionally associated
regions that perform specific functions. Regional nodal proper-
ties are often used to identify network hubs that are critical for
establishing and maintaining efficient information transfer
across regions.

Using imaging connectomics, recent studies have demon-
strated that the healthy brain networks have higher local
clustering and smaller shortest path lengths (i.e., high local
and global efficiencies) than their random counterparts
(63–65), suggesting an optimized small-world configuration
that supports both segregated and integrated information
processing. The networks are also found to contain cohesive
modules, such as the somatosensory/motor, auditory, atten-
tion, visual, subcortical, and DMN systems (65–67), and highly
centralized hub nodes predominantly located in the PCC/PCu,
mPFC, DLPFC, and insula (Figure 3) (63–70). These network
architectures are crucial for maintaining brain function but are
disrupted in neuropsychiatric disorders, such as Alzheimer’s
disease, schizophrenia, and depression (27–31).
DISRUPTED FUNCTIONAL CONNECTOMICS IN
DEPRESSION

Several resting-state functional MRI (R-fMRI) studies reported
aberrant topological organization of whole-brain functional
networks in adult depressive patients involving the global,
modular, and nodal properties (Table 1). In the first such study,
Zhang et al. (38) measured partial correlation coefficients of
R-fMRI signals between 90 cortical and subcortical regions in
30 first-episode, drug-naive depressive patients. They observed
that the depressed group showed altered global properties
including smaller path lengths and higher global efficiency,
indicating a shift toward randomization in their brain networks.
The opposite pattern (increased path lengths and decreased
g/journal
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Figure 1. Illustration of brain network construction with magnetic resonance imaging (MRI). (A) Functional MRI data (left) can be used to estimate functional
connectivity; structural MRI data (middle) can be used to estimate morphological connectivity or structural covariance; diffusion tensor imaging data (right)
can be used to generate anatomical connectivity. (B) Network nodes, corresponding to different brain regions, are identified by division of the brain into
sections with a range of strategies, e.g., a priori anatomical templates (left), random division (middle), and functionally defined regions of interest (right). (C)
After definition of brain regions, interregional connectivity is typically measured with functional associations in regional-activity time courses for functional MRI
(left), statistical dependencies in interregional morphological features (e.g., cortical thickness) for structural MRI (middle), or whole-brain tractography for
diffusion tensor imaging (right). (D) After some measure of connectivity has been calculated for every pair of brain regions, connectome architecture can be
represented by a connectivity matrix encoding the strength and type of connectivity between each regional pair. In MRI studies, these matrices are typically
symmetric (i.e., connections are undirected), weighted (i.e., variations in the strength of interregional connectivity are captured), and unthresholded (i.e., the
values are continuous, with few zero entries; left). A threshold is usually applied to distinguish the real from spurious connections (middle) and to binarize the
resulting matrix to encode the presence or absence of a connection (right). [Reproduced with permission from Filippi et al. (31) with a slight modification.]
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global efficiency) was observed by Meng et al. (39), where
wavelet correlations were computed between 112 regions in
25 recurrent depressed patients. Two additional R-fMRI studies
Biological Psy
by Lord et al. (40) and Bohr et al. (41) employed Pearson’s
correlation for connectivity metric and reported no significant
depression-associated differences in these global measures.
chiatry February 1, 2015; 77:223–235 www.sobp.org/journal 225
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Figure 2. Summary of the main
measures with graph theoretical ana-
lysis. (A) A graph is a mathematical
description of a network, consisting of
a collection of nodes and connec-
tions. (B) A weighted graph includes
information about the strength of the
connections. (C–F) Local and global
metrics can provide insight into the
topological organization of a network.
(C) The clustering coefficient des-
cribes the tendency of nodes to form
local triangles, providing insight into
the local organization of the network.
(D) The shortest path length describes
the minimum number of steps needed
to travel between two nodes (dots in
blue) and provides insight into the
capacity of the network to commu-
nicate between remote regions. (E)

The degree of a node describes its number of connections (lines in yellow). The existence of a small set of high-degree nodes with a central position in
the network can suggest the existence of hub nodes. (F) High-level connectivity (lines in yellow) between hub nodes (dots in blue) can suggest the existence
of a central so-called rich club within the overall network structure. [Reproduced with permission from Filippi et al. (31).]
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Notably, there were important differences in the patient samples
across these studies: in the Meng et al. (39) study, the patients
were highly heterogeneous, varying in many factors including
depressive episode number (n 5 2–10) and medication type
(antidepressant monotherapy, dual therapy, or triple therapy);
in the Lord et al. (40) study, some patients (n 5 4) were
experiencing their first episodes and the others were recurrent,
and all patients were treated using different types of antide-
pressants; in the Bohr et al. (41) study, all patients were taking
antidepressants, antipsychotics, nonbenzodiazepine hypnotics,
or antiepileptic drugs at the time of the study. Thus, sample
heterogeneity in age, depressive episode, or medication at the
time of scan or in the patients’ prior records is a highly likely
source of the result inconsistency; other potential sources
226 Biological Psychiatry February 1, 2015; 77:223–235 www.sobp.or
include the use of different network node and edge definitions
(Table 1) or changes in arousal, cardiorespiratory, and motion
artifacts, all of which are correlated with the global properties of
brain networks (71–73).

Tao et al. (42) specifically investigated intrinsic modular
structure of 90-node brain networks in two depressed groups
(15 first-episode, drug-naive and 24 long-term, drug-resistant).
The greatest change in both depressed groups was the
uncoupling of the hate circuitry, including the superior frontal
gyrus, insula, and putamen. Other major changes were located
in circuitry related to risk-taking, emotion, and reward proc-
essing. These findings may reflect an impaired ability for
cognitive control over negative feelings in patients. Zhang
et al. (38) showed decreased regional connectivity (degree,
Figure 3. Functional and structural
network hubs of the human brain.
(A) Functional brain hubs were identi-
fied by using degree connectivity
from resting-state functional magnetic
resonance imaging (R-fMRI) data
of 127 participants. Higher degree
values were primarily located at the
default mode network (including the
medial prefrontal cortex [MPFC], poster-
ior cingulate cortex/precuneus [PCC/
PCu], and lateral parietal cortex), dorso-
lateral prefrontal cortex, and insula. Fig-
ure adapted from (69). (B) Structural
brain hubs were identified by using
betweenness centrality from diffusion
tensor imaging (68) and diffusion spec-
trum imaging data (65) (upper and lower
panels, respectively). Structural hubs
were mainly located in the MPFC,
PCC/PCu, and visual cortex. [(A) Repro-
duced with permission from Buckner
et al. (31); (B) Reproduced with permis-
sion from Hagmann et al. (65) and Gong
et al. (68) with slight modifications.]
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Figure 4. Disrupted regional and connectivity patterns of structural and functional brain networks using various imaging modalities. (A) A working
depression model based on positron emission tomography (PET) studies. Regions showing functional changes using PET were grouped into three main
compartments: dorsal (red), ventral (blue), and rostral (yellow). Sadness and depressive illness are associated with decreased activities in dorsal limbic and
neocortical regions (red) and increased in ventral paralimbic areas (blue). (B) (i) Brain regions showing abnormal nodal betweenness centralities in the whole-
brain functional networks with 90 regions of interest (ROIs) in depression patients. The red colors represent higher nodal centralities in brain networks in
depression patients than control subjects. The blue colors represent lower nodal centralities in brain networks in depression patients than control subjects. (ii)
Brain regions (e.g., ventral anterior cingulate cortex/medial prefrontal cortex [vACC/MPFC]) showing decreased connectivity degree in the whole-brain
networks with 67,632 nodes (i.e., voxels). (C) Depression patients showed altered regional betweenness (i) and degree (ii) centralities in whole-brain structural
correlation networks derived from structural magnetic resonance imaging (sMRI) data. Hot colors denote higher nodal centrality values in the patients than the
control subjects, while cold colors denote lower values in the patients. (D) Diffusion tensor imaging (DTI)-based network analysis revealed decreased white-
matter structural connectivity in the default mode network (DMN) (48) and frontal-subcortical (46,48) networks. Am, amygdala; BG, basal ganglia; CAU,
caudate nucleus; CAU.R, right caudate nucleus; Cg 25, subgenual cingulate; CUN, cuneus; dCg, dorsal anterior cingulate; dFr, dorsolateral prefrontal; FFG.R,
right fusiform gyrus; Hc, hippocampus; HIP, hippocampus; HIP.R, right hippocampus; Hth, hypothalamus; inf Par, inferior parietal; INS.R, right insula; IOG.R,
right inferior occipital gyrus; IPL, inferior parietal, but supramarginal and angular gyri; ITG.R, right inferior temporal gyrus; LING, lingual gyrus; mb-p, midbrain-
pons; MDD, major depressive disorder; MFG, middle frontal gyrus; MOG.R, right middle occipital gyrus; MTG, middle temporal gyrus; MTG.R, right middle
temporal gyrus; NC, normal controls subjects; ORBmed, medial orbital frontal gyrus; ORBmid, middle frontal gyrus, orbital part; ORBsup, superior frontal
gyrus, orbital part; ORBsupmed, superior frontal gyrus, medial orbital; ORBsup.R, right superior frontal gyrus, orbital part; PAL.R, right pallidium; PCC,
posterior cingulate cortex; pCg, posterior cingulate; PCu, precuneus; PCUN, precuneus; PHG, parahippocampal gyrus; PHG.R, right parahippocampus;
PoCG, postcentral gyrus; PUT.R, right putamen; rACC, rostral anterior cingulate cortex; rCg, rostral anterior cingulate; R-fMRI, resting state functional
magnetic resonance imaging; SFG, superior frontal gyrus; SMG, supramarginal gyrus; SOG.R, right superior occipital gyrus; SPG.R, right superior parietal
gyrus; STG.R, right superior temporal gyrus; Th, thalamus; THA.R, right thalamus; TPOmid.R, right temporal pole (middle temporal gyrus); TPOsup.R, right
temporal pole (superior temporal gyrus); vFr, ventral frontal; vlns, ventral anterior insula. [(A) Reproduced with permission from Mayberg (2); (B) (i) Reproduced
with permission from Zhang et al. (38); (B) (ii) Reproduced with permission from Wang et al. (49); (C) Reproduced with permission from Singh et al. (44) with
modifications; (D) Reproduced with permission from Bai et al. (46) and Korgaonkar et al. (48) with slight modifications with the BrainNet Viewer (http://www.
nitrc.org/projects/bnv/) (136).]
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efficiency, and betweenness) in the DLPFC and occipital
regions (Figure 4B). The DLPFC plays a critical role in mood
regulation and cognitive functioning (3,74) and is frequently
implicated in the pathophysiology of depression (18,22,25)
(Figure 4A). Abnormal occipital activity was reported in
depression (75). Notably, increased regional connectivity was
found in the caudate nucleus and DMN (Figure 4B), and these
increases significantly correlated with disease duration and
severity (38). The caudate nucleus, through its afferent and
efferent connections, plays a key role in the regulation of
attention and reward (76). Depression-related GM atrophy
(11,12) and functional abnormalities during specific tasks (13)
and rest (40,77,78) have been found in this region. The DMN
regions, a set of core areas in the brain (30,69,79) (Figure 3),
have frequently been found to show increases of regional
cerebral blood flow (5), cerebral glucose metabolic metabolism
(9), and functional connectivity (18,19) in depressed patients.
These increases of DMN connectivity suggest their strength-
ened roles in coordinating information transfer in brain net-
works, which may reflect pathologic adaptations. Depressed
patients also exhibited increased nodal connectivity in the
putamen and this increase positively correlated with depres-
sive episode number, independent of current symptoms,
medication status, and disease duration (39), indicating that
the reorganization of striatal connectivity may interact with the
course of episodes. Notably, Jin et al. (43) constructed
90-node whole-brain networks in 16 first-episode, drug-naive
adolescent patients and reported higher nodal degree in the
DMN, DLPFC, insula, and amygdala. The degree connectivity
of the amygdala positively correlated with depression duration.
These findings are largely compatible with adult depression
studies showing increased glucose metabolism and functional
connectivity in these regions (5,9,10,18,19), supporting the
notion that symptoms of depression in adolescents are an
early sign of adult depressive disorders (80).

Together, these R-fMRI studies suggest topological disor-
ganization of brain functional networks in depression. Given
the several inconsistent findings among studies (38–41),
further validation using independent data sets and the same
analysis strategy is important. Depression individuals suffer
from behavioral deficits such as biased cognitive processing
and dysregulation of emotion (1). Although functional dyscon-
nectivity has been reported when depressed patients perform
specific emotional or cognitive tasks (17,81), topological
alterations of brain networks during task states are rarely
studied and need to be further investigated. These works will
add to our understanding of how the system-level disruption
of functional brain networks underlies the mood and cognitive
impairments associated with depression.
DISRUPTED STRUCTURAL CONNECTOMICS IN
DEPRESSION

Two structural MRI studies by Singh et al. (44) and Ajilore et al.
(45) investigated topological organization of depressive GM
networks (with 90 or 82 nodes) (Table 1). Singh et al. (44)
reported that the depressed patients had smaller clustering
coefficients in their GM networks, which suggests a less
specialized or segregated topological organization. Higher
regional connectivity was primarily found in the components
228 Biological Psychiatry February 1, 2015; 77:223–235 www.sobp.or
of the prefrontal-limbic circuit (amygdala and ventral mPFC)
(Figure 4C). These highly interactive regions could be vital in
maintaining or adapting to depressive pathology. Reduced
regional connectivity was observed in the DMN and DLPFC.
Ajilore et al. (45) reported disrupted GM networks in late-life
depressed patients involving the DMN and limbic regions.
These regions are frequently implicated in functional imaging
studies of depression (18,19,82,83). Different from the Singh
et al. (44) study, higher local clustering was found in the late-
life depressive networks, possibly due to different age distri-
butions and regional parcellation approaches (Table 1).

Three diffusion tensor imaging (DTI) studies (46–48) exam-
ined whole-brain WM networks in depression (Table 1). Bai
et al. (46) reported disrupted global properties in patients with
remitted geriatric depression, including reduced network
strength and increased path length. This result was compat-
ible with the Korgaonkar et al. (48) study and suggests that
widespread disconnections between regions may cause
depressed patients to have reduced global network integrity.
However, Qin et al. (47) did not detect any significant
depression-related abnormalities in these global measures.
Using network-based statistical analysis (84), Korgaonkar et al.
(48) reported disrupted WM connectivity in the DMN (e.g.,
ACC/mPFC and PCC/PCu) and frontal-subcortical (e.g.,
DLPFC, thalamus, and caudate) networks (Figure 4D). As
aforementioned, the DMN engages in emotional and self
processing (3,85), and the frontal-subcortical network is
critical for mood regulation and cognitive functioning (3,74).
These aberrations could be the structural basis underlying the
functional and behavioral deficits in depressive individuals.

Overall, depressed patients exhibit disrupted topological
organization in both structural GM and WM networks.
Although GM morphology displays similar topological princi-
ples with the WM connectivity network (86), they capture
different information about interregional association, possibly
reflecting developmental changes or environment-related
plasticity (59,87). Future research should combine structural
and diffusion MRI techniques as well as R-fMRI (34,88) to
better understand network dysfunction in depression.
GENETIC AND ENVIRONMENTAL INFLUENCES ON
BRAIN CONNECTOMICS IN DEPRESSION

Genetic Effects on Depressive Brain Networks

Depression is a highly heritable disorder with a reported
heritability of 31% to 42% (89). Specifically, several suscept-
ibility genes are relevant to depression, including apolipopro-
tein E, dopamine receptor D4, dopamine transporter, and
serotonin transporter (90). Neuroimaging studies have dem-
onstrated that these genetic variations are associated with
different brain connectivity patterns. In a large sample of
healthy human subjects, Pezawas et al. (91) reported that
compared with individuals with two long alleles (L/L genotype),
individuals with one or two short alleles (S carriers) of the
promoter region (serotonin transporter [5-HTT]) of the seroto-
nin transporter gene had significantly reduced structural
covariance and functional connectivity between the amygdala
and the rostral subgenual portion of the ACC. These
genotype-related alterations in the amygdala-cingulate circuit
g/journal
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for emotion regulation implicate a system-level mechanism
that underlies genetic susceptibility for depression. In another
study, Pezawas et al. (92) showed that the brain-derived
neurotrophic factor (BDNF) genotypes significantly impacted
the influences of 5-HTT S allele on the structural covariance of
this circuitry: in comparison with a group that was at low risk
of depression (5-HTT L/L genotype and BDNF methionine allele
carrier), high-risk genotypes (5-HTT S allele carrier and BDNF
valine/valine genotype) had reduced structural covariance
between the amygdala and the subgenual ACC. Although the
influences of genetic variations have been demonstrated in the
DMN in health (93) and depression (16), few studies have
directly examined the effects of these susceptibility genes on
the brain network topology. Two R-fMRI studies based on twin
datasets (94,95) reported that the global efficiency of brain
networks and regional connectivity in the DMN and DLPFC are
heritable. A DTI study showed that apolipoprotein E4 carriers
displayed an accelerated age-related loss of mean local WM
interconnectivity and regional nodal interconnectivity decreases
in several DMN regions (96). We speculate that these suscept-
ibility genes associated with depression may affect the brain
network topology underlying preclinical or clinical phenotypes
of depression, which can be further explored by combining
neuroimaging and molecular genetic methods.

Environmental Effects on Depressive Brain Networks

Depression is also highly associated with environmental
factors, such as early life stress (ELS). Converging evidence
suggests that ELS (e.g., sexual, physical, and emotional mal-
treatment) markedly elevates the risk of developing depression
(97–99) and influences many aspects of the disease process
including the appearance of symptoms, frequency of recur-
rence and treatment outcome (100–102). Neuroimaging stud-
ies show that ELS affects the brain networks in ways that are
similar to those in adults with depression. Several R-fMRI
studies have reported that ELS-exposed individuals without
any psychiatric or medical illness exhibit decreased PCC-
mPFC connectivity (103), amygdala-mPFC connectivity (104),
and dorsal ACC-related salience network connectivity
(105,106). DTI studies in primates and humans demonstrated
that ELS leads to disrupted WM integrity in the genu of the
corpus callosum (107) and the anterior limb of the internal
capsule (108). ELS effects on the brain network topology were
also reported in both healthy and depressed individuals. Using
R-fMRI, Wang et al. (49) investigated whole-brain networks
with 67,632 nodes in 18 depressed patients with a history of
childhood maltreatment and 20 depressed patients without
childhood maltreatment (Table 1). They found that the
depressed groups showed overlapping reduced regional
degree connectivity in the ventral ACC/mPFC (Figure 4B).
However, the maltreated group exhibited remarkably reduced
degree connectivity relative to the nonmaltreated patients,
especially in regions within the prefrontal-limbic-thalamic-
cerebellar circuitry; these reductions significantly correlated
with measures of childhood neglect. Also using R-fMRI, Cisler
et al. (50) examined a 21-node emotion regulation brain net-
work in 7 resilient individuals with ELS and 19 individuals who
were susceptible to ELS (Table 1), observing decreased de-
gree connectivity and hub-like properties (in terms of
Biological Psy
betweenness) in the ventrolateral prefrontal cortex in the
resilient individuals and decreased hub-like properties in the
dorsal ACC and increased hub-like properties in the amygdala
in
the susceptible individuals. Using a large-sample structural
MRI dataset, Teicher et al. (51) examined the ELS effects on
112-node GM networks in 142 childhood-maltreated individ-
uals and 123 nonmaltreated control subjects (Table 1). They
found that the dorsal ACC had the second highest degree
centrality and was a major component of the “rich club” in the
control network but not in the maltreated network. Conversely,
both the precuneus and anterior insula were major hub regions
in the maltreated network but not in the control network.
Although the neurobiological basis underlying these ELS-
associated network alterations remains unclear, ELS may
induce long-term hyperactivity or hypoactivity of corticotropin-
releasing factor systems and/or other neurotransmitter systems,
thereby resulting in brain network dysfunction and increases of
stress responsiveness (97–101). The manifestation of depres-
sion in relation to ELS can be moderated by age, gender, and
genetic factors (100,101). Collectively, these findings suggest
not only the relationship between ELS exposure and the
impaired brain connectivity in depression but that ELS may
lead to a more serious level (or compounds) of impairment in
brain connectivity than does depression alone.

The genetic and environmental variables may also influence
depressive symptoms and brain networks in an interactive
fashion (89,109–111). In a prospective longitudinal study, Caspi
et al. (112) reported that individuals with the 5-HTT S allele were
more stress-sensitive than those with two long alleles (L/L
genotype), suggesting that the influence of ELS on depressive
symptoms could be moderated by specific genes. Using an
fMRI stressful/threatening paradigm, Alexander et al. (113)
reported the interaction of the 5-HTT gene and environmental
adversity as characterized by higher amygdala-hypothalamus
connectivity in the 5-HTT S/S allele carriers with ELS. Future
works should include intensive, systematic studies of how gene-
environment interactions influence depressive connectomes.
DEVELOPING DIAGNOSTIC BIOMARKERS USING
CONNECTOME-BASED METRICS

Early diagnosis of depression is important, as treatment is
most effective in the early stages. However, depression is
traditionally diagnosed mainly focused on clinical interviews
and patient ratings and underrecognized and often misdiag-
nosed (114). Recent advances in machine learning and neuro-
imaging techniques provide potential for the clinical diagnosis
of this disorder. Of these, multivariate pattern analysis based
on support vector machine is one of the most popular machine
learning methods, in part because of high prediction accuracy
and low sensitivity to noise in comparison with conventional
univariate analysis (115). In support vector machine models,
the selection of the optimal set of features is essential to
reduce prediction errors and improve the results interpretabil-
ity (52,115). Recently, structural and functional connectivity
and graph network metrics have been shown to be promising
measures for depressive classification analysis (Table 1).
Using a whole-brain DTI tractography method, Korgaonkar
et al. (53) mapped 70-node WM connectivity matrices in
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Figure 5. Modulation of functional
connectivity in depressive brain net-
works by electroconvulsive therapy
(ECT) treatment. Three-dimensional
orthogonal representation of the left
dorsolateral prefrontal cortex cluster
of voxels (in red) for which a signifi-
cant reduction in the average global
functional connectivity was observed
after ECT treatment (left). The coor-
dinates (x, y, and z) refer to Montreal
Neurological Institute standard
space. Functional connectivity in
severely depressed patients before
ECT (displayed in orange) and per-
sisting connectivity after ECT (dis-
played in cyan), showing a
substantial reduction in cortical con-
nectivity after ECT treatment (p ,

.001, corrected; right). CHART, cor-
tical hub and related network topol-
ogy. [Reproduced with permission
from Perrin et al. (56) with a slight
modification.]
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depressed patients and yielded a high discriminating accu-
racy. The most discriminating features were found in the
superior longitudinal fasciculus, corpus callosum, and poste-
rior thalamic radiation. Using R-fMRI, several studies of
depression also achieved high classification accuracy by
training functional connectivity matrices (52,54) or regional
nodal measures (40,55). The most discriminating features were
primarily in the DMN and the affective networks that underlie
emotional processing and cognitive function. While only with
small sample sizes, these data demonstrated how the alter-
ations of network connectivity might aid diagnostic biomarker
studies of depression. Importantly, future works should be
conducted to validate these studies with larger samples and
examine whether connectome-based metrics could discrim-
inate subtypes of depression and solve the problem of
heterogeneity of this clinical syndrome.
UNDERSTANDING TREATMENT MECHANISMS AND
IDENTIFYING POTENTIAL THERAPEUTIC TARGETS
FROM A CONNECTOME PERSPECTIVE

Numerous antidepressant treatments are currently available in
clinical practice, including pharmacologic and psychothera-
peutic interventions and brain stimulation therapies (e.g.,
electroconvulsive therapy, repetitive transcranial magnetic
stimulation, and deep brain stimulation). Although the bio-
logical mechanisms of action underlying their therapeutic
effects remain incompletely understood, one possible explan-
ation is that these treatment methods selectively modulate the
activities of pathologic neuronal circuitries, thereby improving
depressive symptoms (116–119). Such a putative mechanism
has gained crucial support from brain imaging studies. Using
230 Biological Psychiatry February 1, 2015; 77:223–235 www.sobp.or
R-fMRI, Li et al. (120) reported that unmedicated depressed
patients showed elevated functional connectivity in posterior
components of DMN, which was significantly normalized after
12 weeks of antidepressant medication. Sheline et al. (18)
observed that in depressed patients, the dorsal mPFC exhib-
ited dramatically high functional connectivity with several
systems (DMN, cognitive control, and affective networks)
and argued that antidepressant treatment may be involved in
the “hotwiring” normalization. This hypothesis was tested by
R-fMRI studies in healthy individuals: the mPFC exhibited
reduced functional connectivity following a ketamine and
selective serotonin reuptake inhibitor (citalopram) administra-
tion (121–123). Using fMRI, Perrin et al. (56) observed the
strongest reduction of degree connectivity in the DLPFC
(involving DLPFC-mPFC connectivity) in patients with severe
depressive disorder after electroconvulsive therapy treatment
(Figure 5 and Table 1). These connectivity-based studies
suggest that several frontal regions (e.g., DLPFC and mPFC)
are accessible therapeutic targets in depression treatment.
Importantly, different stimulation targets are associated with
varying levels of clinical efficacy: several DLPFC stimulation
sites, such as the lateral and anterior parts, are more effective
than others (124), presumably due to different connectivity
profiles in these subregions (125). Together, these neuroimaging
studies not only increase our understanding of the biological
mechanisms underlying therapeutic effects but also show prom-
ise for identifying the appropriate stimulation targets to optimize
the clinical response in depression treatment. Future work should
investigate from a connectome perspective the effects of
psychotherapy and multimodal interventions (combined medi-
cations and psychotherapy), which is the mainstay of treatment
for the vast majority of individuals with depression.
g/journal
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FUTURE PERSPECTIVES

Addressing Sample Heterogeneity

As described above, there have been mixed results showing
decreased, increased, and unchanged global and regional
properties in depressive brain networks. The heterogeneity of
the patient samples may be a major reason for these discrep-
ancies (Table 1). Researchers need to select more homogeneous
samples with detailed consideration of demographic variables
(e.g., age, gender, medication, socioeconomic status, childhood
experiences, and disease duration) and symptom dimensions.

Relationship between Structural and Functional
Connectivity

Depression is characterized by disrupted structural and func-
tional connectivity. However, the structural-functional relation-
ship remains largely unclear (126,127). Using a multimodal
imaging approach, de Kwaasteniet et al. (128) reported that
depressed patients showed higher functional connectivity
between the subgenual ACC and the hippocampus and
decreased WM connectivity in the uncinate fasciculus that
links the two regions. Importantly, these structural and func-
tional changes were negatively correlated in patients, indicat-
ing that structural abnormalities may contribute to increased
functional connectivity in the frontolimbic network. Both
neuroimaging and computational modeling studies suggest
that human brain structural and functional networks share
similar topological mechanisms such as hubs (65,129). Future
multimodal imaging studies should be conducted to ascertain
topological associations between structural and functional
abnormalities in depression.

Physiological Basis of Network Topology

The preferentially disrupted sites in depression are primarily
distributed in the DMN (e.g., ACC/mPFC and PCC/PCu),
DLPFC, insula, and amygdala (Figure 4) (38–51). Most of these
areas are heavily connected and serve as global hubs of
human brain networks that support integrative processing and
information communication (63–70), raising the possibility that
depression mainly targets network hubs. The brain hubs
exhibit important correlates with the physiological measures
such as aerobic glycolysis (27), regional cerebral blood flow
(79), and regional cerebral metabolic rate of glucose (2,130).
The clearance and metabolism of glutamate, which is a
primary mediator of depression pathology and a target for
antidepressants, are associated with volumetric changes in
these regions in depression (131). Preclinical studies in stress
and depression models have reported dendritic remodeling
and synapse/circuitry alterations and found that these malad-
aptive changes can be reversed by antidepressants (131). All
of these studies indicate a physiological and neurochemical
basis underlying the network dysfunctions in depression, but
future work is necessary to clarify these issues.

Specificity of Connectomics-Based Findings in
Depression

Besides depression, other disorders such as schizophrenia
(33,34) and Alzheimer’s disease (35–37) also exhibit network
abnormalities but have distinct topological patterns. For
Biological Psy
instance, brain network alterations in schizophrenia point to
reduced local clustering and increased global efficiency,
namely a randomization configuration (33,34), whereas those
in Alzheimer’s disease show reduced global efficiency, namely
a regular configuration (35–37). Intriguingly, both diseases
tend to have hub-concentrated GM lesion distributions, with
distinct subsets of brain hubs targeted: lesions are mainly
associated with frontal and temporal hubs in schizophrenia,
whereas in Alzheimer’s disease, lesions are concentrated in
temporal lobe hubs (132). In depression, brain hubs also
appear to be abnormal, especially in the DMN and frontal-
subcortical regions (38–51). Undoubtedly, it would be of
interest to chart a comprehensive picture of connectome
changes in these brain disorders and further explore the
commonalities and specificities of their network dysfunctions.

Reliable Connectome Analysis Approaches and
Novel Imaging Protocols

Brain connectome analysis could be influenced by several
important sources of variances, including poor test-retest reli-
ability of recordings due to factors such as changes in arousal,
cardiorespiratory, and motion artifacts, as well as the noisiness
of imaging recordings more generally. Specifically, this ana-
lysis involves choosing various network node definitions and
connectivity metrics and imaging preprocessing such as
head-motion correction (27–32). These choices are associated
with variation in test-retest reliability of network measures
(73,133–135). Caution should be taken in choosing the most
reliable analysis strategies in imaging depressive connectomes.
For R-fMRI studies, higher test-retest network reliabilities could
be obtained using the following schemes: functionally rather than
structurally defined nodes, Pearson rather than partial-based
correlations, and nodal degree rather than betweenness metrics
(73,133,134). Finally, the emergence of novel connectome
analysis approaches (e.g., dynamic connectivity) and imaging
protocols (e.g., multiband fMRI) will dramatically increase our
knowledge of network dysfunction in depression.
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