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Abstract

The characterization of topological architecture of complex brain networks is one of the most challenging issues in
neuroscience. Slow (,0.1 Hz), spontaneous fluctuations of the blood oxygen level dependent (BOLD) signal in functional
magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity.
Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the
brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations
are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal
activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal
and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular
structure in which the connections between regions are much denser within modules than between them. These identified
modules are found to be closely associated with several well known functionally interconnected subsystems such as the
somatosensory/motor, auditory, attention, visual, subcortical, and the ‘‘default’’ system. Specifically, we demonstrate that
the module-specific topological features can not be captured by means of computing the corresponding global network
parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors
and paths (predominantly associated with the association and limbic/paralimbic cortex regions) that are vital for the global
coordination of information flow over the whole network, and we find that their lesions (deletions) critically affect the
stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular
architecture and associated topological properties in the temporal and spatial brain functional networks of the human brain
that underlie spontaneous neuronal dynamics, which provides important implications for our understanding of how
intrinsically coherent spontaneous brain activity has evolved into an optimal neuronal architecture to support global
computation and information integration in the absence of specific stimuli or behaviors.
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Introduction

Spontaneous neuronal activity refers to the brain activity that is

intrinsically generated in the absence of explicit inputs or outputs

[1]. For the brain functional studies, the investigation of the

intrinsic or spontaneous brain activity is thought to be vital since it

is able to (i) represent unconstrained conscious mental activity, (ii)

facilitate responses to tasks or stimuli, and (iii) assess brain-

behavior relationship [for reviews, see 1,2,3].

Recently, many researchers have focused on exploring the

nature of the brain’s intrinsic functional activity by examining the

slow (,0.1 Hz), spontaneous blood oxygen level dependent

(BOLD) fluctuations observed in the resting state using functional

magnetic resonance imaging (fMRI). For instance, several

researchers have exclusively studied regional characteristics of

spontaneous BOLD signals, such as regional neuronal coherence

[4,5] and fractal complexity [6]. Alternatively, several functional

connectivity fMRI studies [7,8] have examined correlations in the

spontaneous BOLD fluctuations among different brain regions

and demonstrated that many neuroanatomical systems tend to be

highly coherent in their spontaneous activity, including the motor

[8–10], auditory [11], visual [10], language [12], default-mode

[13,14] and attention systems [15]. Some of these functional

systems have also been identified using multivariate statistical

approaches such as hierarchical clustering [16] and independent

component analysis (ICA) [17–20]. With the recent advent of

modern network analysis based on graph theory [21,22], several

studies have investigated the large-scale topological organization of

these coherent spontaneous brain activities, and revealed many

important statistical characteristics underlying the functional

organization of the human brain, including the small-world

property [16,23–25], high efficiency at a low wiring cost [24–27],
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and truncated power-law degree distribution [23,24,27]. These

global network properties have been shown to be largely

compatible with those observed in the human brain structural

networks [28–32]. Here, we will focus on an important question

concerning the network modularity of the ongoing, spontaneous

BOLD activity in the human brain.

Modularity, presumably shaped by evolutionary constraints, is

thought to be one of the main organizing principles of most

complex systems, including social, economical and biological

networks [33–35, for a review, see 36]. Detection and character-

ization of modular structure in the brain system can help us to

identify groups of anatomically and/or functionally associated

components that perform specific biological functions. Several

recent studies have attempted to investigate various aspects of

modular organization of large-scale structural brain networks in

both mammalians and humans. By analyzing anatomical connec-

tivity data in the cat cerebral cortex [37], Zhou and colleagues

have demonstrated that there exist structurally interconnected

modules in the cat brain network, which broadly agree with

several well-defined functional subdivisions such as the somato-

sensory-motor, auditory, visual, and fronto-limbic [38]. In the

human cerebral cortex, the modular architecture of structural

connectivity patterns has been also demonstrated by using the

cortical thickness measurement from structural MRI [39] and

white matter tracts from diffusion spectrum imaging [40],

respectively. There are also a few recent studies reporting functional

modular organization of spontaneous neuronal activity in the

brain networks using spontaneous BOLD fluctuations derived

from resting-state fMRI data in the rats [41] and healthy human

subjects [42,43] (we will discuss the similarities and differences

among these studies in the Discussion section).

In the present study, we performed a comprehensive modularity

analysis of human brain functional networks by examining both

temporal and spatial correlation patterns of spontaneous BOLD

fluctuations derived from resting-state fMRI. Temporal correla-

tion patterns were obtained by measuring the extent of similarity

of BOLD time series between regional pairs, but spatial

correlation patterns were obtained by measuring the extent of

similarity of temporal correlation maps of BOLD signals between

regional pairs (also see Materials and Methods). To address our

issues, we first constructed the large-scale human brain functional

networks at both the temporal and spatial scales, and then

revealed their intrinsically modular architectures that underlie

spontaneous neuronal dynamics. We further computed the

topological parameters for each module, and determined whether

these module-specific properties could also be characterized by the

corresponding global network parameters. Finally, we identified

the pivotal brain regions and connections of the spontaneous brain

functional networks that are crucial in controlling the information

flow of the whole networks, and evaluated how their lesions

(deletions) would affect the topological stability and robustness of

the brain functional networks.

Results

Construction of the Temporal and Spatial Brain
Functional Networks

In the current study, we employed resting-state BOLD fMRI

signal to construct spontaneous brain functional networks at both

the temporal and spatial scales. First, a prior brain atlas [44] was

utilized to parcellate the whole brain into ninety cortical and

subcortical regions (Table S1), with each of them representing a

single node in the brain functional networks. We then acquired

individual temporal correlation matrices of the ninety brain

regions by computing the correlation coefficients between the

time-courses of every pair of regions (Figure 1A). A random-effect

one-sample t test was further performed on these correlation

matrices in an element-by-element manner to obtain the

Figure 1. Inter-regional correlation matrix and its functional connectivity backbone. (A) The mean correlation matrix is obtained by
averaging a set of correlation matrices across subjects where individual correlation matrix is acquired by calculating Pearson correlation coefficients
of time series between every pair of brain regions. The color bar indicates the correlation coefficients. The black arrow in the color bar indicates the
threshold value (r = 0.44) that was used to obtain the binarized matrix (B). For the abbreviations of the regions, see Table S1. (B) The functional
connectivity backbone (binarized matrix) is obtained by thresholding the mean correlation matrix using a Bonforroni-corrected procedure (P,0.001).
Significant correlations between regions are marked in white squares and black squares otherwise. Notably, the binarized matrix describes the basic
topological organization of the spontaneous human brain functional network.
doi:10.1371/journal.pone.0005226.g001
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significance level (i.e. P value) of each inter-regional correlation

across the subjects. Finally, the P-value matrix was thresholded by

using a conservative Bonferroni-corrected P value (P = 0.001) to

reduce the chance of false positives, which resulted in a binarized

matrix (sparsity = 8.41%) that captured the functional connectivity

backbone underlying the topological organization of spontaneous

human brain activity at a time domain (Figure 1B). Unless stated

otherwise, we will mainly report our results using this threshold.

However, considering that different thresholds would have an

effect on the number of links in the resulting brain networks, we

also evaluated the topological stability of the brain functional

networks by applying multiple statistical thresholds (Bonferroni-

corrected P values of 0.005, 0.01, 0.05 and 0.10 which correspond

to a network sparsity of 10.79%, 12.16%, 15.38% and 16.78%,

respectively) to the P-value matrix. In addition to the above-

mentioned temporal brain functional networks, in this study, we

also constructed spatial brain functional networks derived from

thresholding inter-regional spatial correlation matrices that were

composed of correlation coefficients between every pair of vectors

in the temporal correlation matrices above (see Materials and

Methods). The analysis of the spatial brain functional networks

was similar to that of the temporal brain functional networks.

Modularity of the Functional Brain Networks
A network module is referred as a set of nodes with denser links

among them, but sparser with the rest of the network. It has been

shown that modularity is one of the most fundamental and

intriguing properties of many biological networks [36]. To

determine whether the spontaneous brain functional networks

also have a modular structure at the temporal scale, we employed

a simulated annealing approach [45,46] to find the network

partitions that maximize the modularity (see Materials and

Methods). Notably, the modular detection process did not take

into account of prior knowledge regarding the functionality of any

brain regions. As a result, a maximum modularity (Qmax = 0.66, Z-

score = 45.25) was reached when the brain functional network was

separated into 5 modules (I, II, III, IV, V in Figure 2 and Figure 3).

Module I included 20 regions mostly from (pre)motor, parietal and

temporal cortices such as right supplementary motor area,

bilateral precentral gyrus, postcentral gyrus, paracentral lobule,

superior parietal gyrus, supramarginal gyrus, insula, superior

temporal gyrus, and heschl gyrus that are mainly associated with

the somatosensory, motor and auditory functions [47]. The result

was consistent with several recent resting-state fMRI studies using

ICA demonstrating that these motor- and auditory-related areas

were located at one single component [20]. The result was also

compatible with a recent graph theoretical analysis of human

brain functional network in which Meunier et al. [43] used resting-

state fMRI measurement to identify a central module that was

mainly composed of the motor and auditory areas. Module II

included all of 14 regions from the occipital lobe, namely bilateral

superior, middle and inferior occipital gyrus, cuneus, calcarine

fissure, fusiform gyrus and lingual gyrus that are primarily

specialized for visual processing. This result was consistent with

many previous resting-state fMRI studies [16–20,43]. The 18-

region module III was mainly composed of regions from lateral

Figure 2. The modular architecture of the human brain functional network. We identify five functional modules in the spontaneous brain
functional network represented by five different colors. The geometric distance between two brain regions on the drawing space approximates the
shortest path length between them. The network is visualized with the Pajek software package (http://vlado.fmf.uni-lj.si/pub/networks/pajek/) using
a Kamada-Kawai layout algorithm. The intra-module and inter-module connections are shown in gray and dark lines, respectively. For the
abbreviations of the regions, see Table S1.
doi:10.1371/journal.pone.0005226.g002
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frontal and parietal cortices such as bilateral middle frontal gyrus,

inferior frontal gyrus (both opercular and triangular part), angular

gyrus, and inferior parietal lobe that are known to be

predominantly involved in attention processing [48]. This finding

was also in agreement with many previous studies showing

coherent spontaneous BOLD fluctuations in the front-parietal

system [15,18–20].The other 18-region module IV consisted of

regions mostly from medial frontal and parietal cortices, and

lateral temporal cortex such as bilateral anterior cingulate gyrus,

medial superior frontal gyrus, posterior cingulate gyrus, precuneus

and middle temporal gyrus that are the key components of the

‘default’ network as described by Raichle et al. [49] and Greicius

et al. [14]. The last 20-member module V included regions such as

bilateral parahippocampal gyrus, hippocampus, amygdale, tem-

poral pole, olfactory cortex, thalamus, caudate, putamen and

pallidum that are components of limbic/paralimbic and subcor-

tical systems. Interestingly, we found that several major ‘default’

regions in module IV (e.g. posterior cingulate cortex and

precuneus) showed strongly negative correlations with most

regions in module III that are associated with attention function

(Figure 4), which was in accordance with recent findings of anti-

correlations between the default and attention subsystems [13,50].

It was noteworthy that the significant modular architecture shown

here was also reproduced in both the temporal and spatial brain

Figure 3. Surface and anatomical representation of modular architecture of the human brain functional network. (A) All of 90 brain
regions are marked by using different colored spheres (different colors represent distinct network modules) and further mapped onto the cortical
surfaces at the lateral, medial and top views, respectively, by using the Caret software [84]. Notably, the regions are located according to their
centroid stereotaxic coordinates. For the visualization purpose, the subcortical regions are projected to the medial cortical surface according to their
y and z centroid stereotaxic coordinates. (B) Sagittal and top views of the spontaneous brain functional network. The nodes and edges within each
module are marked in one single color. The inter-module connections are shown in gray lines. For the abbreviations of the regions, see Table S1.
doi:10.1371/journal.pone.0005226.g003
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functional networks constructed using distinct statistical thresholds

(Figure S2 and Table S2). Interestingly, when the modularity

detection algorithm was further applied to individual modules, it

was able to identify several sub-modules (Figure S1). For instance,

module I was subdivided two small modules (Qmax = 0.20, Z-

score = 7.01) that corresponded to the somatosensory/motor and

auditory systems, respectively, which was consistent with previous

studies showing that the regions were associated with different

functional components or clusters [16,18,39]. Module IV was

subdivided into three small modules (Qmax = 0.42, Z-score = 5.81)

that approximately corresponded to the anterior, middle, and

posterior parts of the ‘default’ network, which was also compatible

with previous studies of functional subdivisions in the brain system

[51]. On the basis of the recursive analysis of modular detection

algorithm as well as previous studies [42], we speculate that the

spontaneous functional networks of the human brain are likely to

be topologically organized into a hierarchical modular structure at

a macroscale (i.e. region level).

Global versus Module-Specific Average Network
Properties

We have identified a markedly modular structure in both the

temporal and spatial spontaneous brain functional networks in

humans as shown previously. Several recent studies have

demonstrated that the large-scale brain networks have a small-

world topology at a global level [16,23–31,52], characterized by

high clustering and short path length [53], or high efficiency at a

low wiring cost [54]. A key question we further posed here is

whether the local topological properties within each module can

be characterized by means of these global network parameters,

such as the average degree (,k.), the shortest path length (Lp), the

clustering coefficient (Cp), the local (Eloc) and global efficiency

(Eglob). To address this issue, we compared the local network

parameters within each module with the corresponding global

network parameters obtained by a randomization procedure [55]

(see Materials and Methods). The analysis of the global brain

networks exhibited a small-world-like topology (Table S3, S4) as

expected. However, more importantly, we found that, except for

the clustering coefficient, almost all average network properties of

each module significantly (P,0.05) differ from the corresponding

global average of the whole brain networks (Table 1 and Table

S5). Likewise, the analysis of spatial brain functional networks

demonstrated similar results (Table S6, S7). These findings

strongly implicate that the average properties of the global brain

functional networks can not be representative of individual

module-specific properties because each module in the network

contains a specific topological structure.

Node Diversity of the Functional Brain Networks
Roles of nodes. We first investigated the global role of every

node (i.e. region) in the brain networks by examining their relative

betweenness centrality [56], Nbc (see Materials and Methods). The

Figure 4. The anti-correlation map between module III and module IV. We show the inter-regional correlations between module III and
module IV. The two key regions in the ‘default’ subnetwork (module III), the posterior cingulate cortex and precuneus (asterisk signs), exhibit
dramatically negative correlations with most of brain regions in the attention subnetwork (module IV). The color bar indicates the correlation
coefficients. Note that the correlation matrix is extracted from Figure 1A.
doi:10.1371/journal.pone.0005226.g004
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higher Nbc for a region, the more important the region is to the

whole network. Twelve regions including 6 heteromodal or

unimodal association cortex regions, 4 limbic/paralimbic cortex

regions, 1 primary motor cortex region and 1 subcortical region

were identified as the global hubs (Nbc.mean+std) (Table 2,

Figure 5A and 5B). Notably, these identified hub regions were

predominately located at those recently evolved association cortex

regions [middle frontal gyrus, superior occipital gyrus, fusiform

gyrus, superior parietal gyrus and superior frontal gyrus

(dorsolateral)] and primitive paralimbic/limbic cortex regions

(parahippocampal gyrus, insula, anterior and middle cingulate

gyrus) [47], most of which have been recently found to tend to

have high regional efficiency or centrality in the functional [23]

and structural [28,39] brain networks in humans. These global

hubs were also obtained in the brain networks derived from using

different statistical thresholds at the temporal (Figure 5C) and

spatial scales (Figure S3). Furthermore, we found that, in the

spontaneous brain functional networks, both the node

betweenness and degree distribution followed an exponentially

truncated power law distribution pattern as opposed to a scale-free

distribution (Figure 6 and Figure S4), implying that the lack of

nodes with extremely high centrality.

In this study, we further characterized the role of each node in

the brain functional networks according to their patterns of intra-

and inter-module connections. Two measurements were used: the

relative within-module betweenness centrality (Nbc
s), which quan-

tifies the level of control a region has over the information flow

among others within the same module, and participant coefficient

(PC), which quantifies the extent of a region’s connections to

distinct functional modules [33,34]. Based on the two measures,

we divided all of network nodes into four categories (see Materials

and Methods): connector hubs (R1, 3), provincial hubs (R2, 12),

connector non-hubs (R3, 31), and peripheral non-hubs (R4, 44)

(Figure 7, Figure 8A and 8B). Importantly, we found that 11 out of

the 12 global hubs identified previously belonged to either R1 or

R3 connectors that had many inter-module connections (Figure 7),

thus constituting a functional core that played a critical role in the

coordination of information flow over the whole network. Further

analysis indicated that these identified connectors were also

consistent with in the brain networks derived from different

statistical thresholds at both the temporal (Figure 8C) and spatial

scales (Figure S5). Additionally, we also noted that there were a

minimum amount of overlap between the connectors and within-

module hubs (Figure 7), suggesting that the brain regions in the

spontaneous brain networks are likely to be responsible for distinct

aspects of intra- and inter-module communications.

Node removal. To assess the effect of nodal ‘lesions’ on the

overall topology of brain functional networks, in the present

investigation we performed a simulation analysis [23,29,57,58] to

examine the network performance after individual nodes were

continuously removed in a manner of random failure or targeted

attack, respectively (see Materials and Methods). As expected, the

continuous attacks on the global hubs (i.e. regions with high Nbc)

had a more dramatic effect on the brain functional network

performance than the random failure of regions (Figure 9A).

However, further analysis revealed striking differences in the

removal of the nodes with different roles in terms of their intra-

and inter-module communications. Attacks against R3 connectors

had a significantly more deleterious effect on the network integrity

as compared to the removal of R2 provincial hubs and R4

peripheral non-hubs that resembled random failures (Figure 9A).

Attacks on R1 connector hubs were omitted since only 3 regions

were obtained here. Interestingly, we observed that the network

integrity was sharply decreased with a removal of a certain

percentage of nodes [e.g. 15 R3 connectors (15/90; 16.67%) in

Figure 9A]. This phenomenon implies that there may be a critical

point in the level of the brain network tolerance in which the

system would collapse when attacked. Together, our results

indicate that the connector regions linking different functional

modules are more responsible in keeping the robustness and

stability of the brain functional networks.

Edge Diversity of the Functional Brain Networks
Roles of edges. In this study, we also characterized the role

of each edge (i.e. functional connection between two regions) in

Table 1. Global vs. module-specific properties in the human
brain functional networks.

Threshold, S r,k. rCp rLp rEloc rEglob

8.41% 1.00 (0.00) 0.80 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

10.79% 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

12.16% 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

15.38% 1.00 (0.00) 0.81 (0.05) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

16.78% 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

The table illustrates the fraction r of modules (and standard deviation) whose
topological parameters significantly (P,0.05) differ from the corresponding
global network parameters. ,k., average degree; Cp, clustering coefficient; Lp,
characteristic path length; Eglob, global efficiency; and Eloc, local efficiency.
Notably, the first column (network threshold, S) denotes the network sparsity
thresholds corresponding to the Bonferroni-corrected significance levels
(P = 0.001, 0.005, 0.01, 0.05 and 0.10, respectively) that were used to construct
brain functional networks at the temporal scale. Under each threshold, there
were 5 modules that were identified in the temporal functional brain networks
by using the modular identification algorithms (Table S2). For details, see
Materials and Methods.
doi:10.1371/journal.pone.0005226.t001

Table 2. The global hubs of the human brain functional
network.

Region Class Nbc(i) K(i) C(i) L(i) Module Role

PHG.R Paralimbic 4.11 14 0.34 2.22 V R1

MFG.R Association 4.04 10 0.16 2.22 III R3

PreCG.L Primary 3.85 11 0.29 2.32 I R3

PUT.R Subcortical 3.12 10 0.42 2.46 V R3

INS.R Paralimbic 2.89 11 0.56 2.31 I R3

MFG.L Association 2.83 8 0.29 2.33 III R3

SOG.R Association 2.33 12 0.39 2.59 II R2

FFG.L Association 2.25 6 0.40 2.57 II R3

ACG.R Paralimbic 2.22 8 0.29 2.61 IV R1

DCG.R Paralimbic 2.08 6 0.27 2.55 V R3

SPG.R Association 1.96 7 0.33 2.48 I R3

SFGdor.R Association 1.94 8 0.36 2.53 IV R3

The hub regions (Nbc(i).mean+SD) are listed in a decreasing order of their
relative node betweenness centrality and further classified into association,
primary, limbic/paralimbic and subcortical regions as described by Mesulam
(2000). Nbc(i), K(i), C(i) and L(i) denote the relative node betweenness, degree,
clustering coefficient and shortest path length of node i, respectively. The
Module column denotes the functional modules that the hub regions belong
to, and the Role column denotes the roles that the hub regions play in terms of
their intra- and inter-module connectivity patterns (See Materials and Methods).
R: right; L: left. For the description of the abbreviations, see Table S1.
doi:10.1371/journal.pone.0005226.t002
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the brain functional network in terms of its relative edge

betweenness centrality [56], Ebc (see Materials and Methods).

Table 3 showed the most pivotal 42 edges (i.e. bridges) that were

ranked according to their Ebc. In the brain network, the proportion

of edges with high Ebc was found to be relatively rare (42/337;

12.46%) as indicated by a truncated power-law edge betweenness

distribution (Figure 6, Figure S4). Moreover, we found that these

bridges were mainly composed of inter-module connections (25/

42; 59.52%), despite the fact that most network connections were

intra-module (296/337; 87.83%). Further statistical analysis

revealed that, of these edges with high Ebc, the number of inter-

module connections was significantly (chi-square test,

x2(1) = 104.07; P = 0.000) more than that of intra-module

connections. Moreover, we noted that these edges were mainly

associated with those global hubs with high Nbc (28/42; 66.67%) or

inter-module R1/R3 connectors with high PC (40/42; 95.24%)

shown in the previous section. The bridge edges were also found to

be composed of 11 inter-hemispheric, 14 inter-lobe and 17 intra-

lobe connections (Table 3), which were approximately consistent

with our recent studies in the structural brain networks [30,39].

Additionally, we also observed that there existed a few number of

edges with high Ebc, but linking two R4 peripheral non-hub nodes

such as the edge between the inferior frontal gyrus (opercular) and

superior frontal gyrus (medial orbital) (Table 3).

Edge removal. Similar to the nodal removal analysis, we also

evaluated the effect of ‘lesion’ of edges on the overall topology of

brain functional networks [29,58,59]. As expected, the continuous

attacks on the global edges with high Ebc had a more significant

impact on the whole network integrity than the random failure of

edges (Figure 9B). Further analysis indicated that the brain

Figure 5. The global hubs with high topological centralities in the human brain functional networks. (A) The surface visualization of all
90 brain regions with node sizes indicating their relative node betweenness centrality, Nbc values. Regions with Nbc.mean+std are considered as
hubs (red colors) and non-hubs (blue colors) otherwise. (Figure 1B). (B) The bar plot of all 90 brain regions in a descending order of their relative node
betweenness centrality. Red and blue color bars indicate hub regions and non-hub regions in the brain network, respectively. For the abbreviations
of the regions, see Table S1. (C) The bar plot of the occurrence that brain regions show high Nbc values (.mean) in the functional brain networks
constructed at all selected statistical thresholds (P = 0.001, 0.005, 0.01, 0.05 and 0.10). If one region shows a high occurrence, it indicates that this
region has a high topological centrality in the spontaneous brain functional networks and is insensitive to the selection of statistical thresholds.
doi:10.1371/journal.pone.0005226.g005

Modularity of Brain Networks

PLoS ONE | www.plosone.org 7 April 2009 | Volume 4 | Issue 4 | e5226



networks were considerably more vulnerable to the targeted

attacks on inter-module connections than on intra-module

connections. Particularly, we observed that the size of the largest

connected network component was reduced to 20% when all

inter-module connections (41/337; 12.17%) were attacked,

whereas it remained nearly unchanged when the same

proportion of intra-module connections were removed

(Figure 9B). Analogous to the behaviors the responses to the

nodal removal, the brain network also demonstrated critical points

on both the global bridges (53/337; 15.73% and 80/337; 23.74%)

and inter-module connections (37/337; 10.98%) attacks

(Figure 9B). Together, our results indicate that the inter-module

connections are accountable for a vast majority of the deleterious

effects observed when the brain network is attacked.

The Reproducibility of Our Results
One of the key characteristics of fMRI data, is their large inter-

subject variability, which may dramatically influence on the

robustness of group analysis [60]. To test for robustness of the

construction of brain functional networks, we divided all 18

subjects into two independent datasets (9 subjects for each dataset,

age- and gender-matched), and calculated the split-half reliability.

For each dataset, the brain functional networks were constructed

and then analyzed with the same criterion shown in the Materials

and Methods. We found that the two datasets showed a high

similarity in topological organization of the brain networks: (1)

visual examination indicated the correlation patterns were similar

between the two datasets (Figure 10A), also similar to that in the

large group (Figure 1). Further statistical analysis revealed a

Figure 6. Topological distribution of the human brain functional networks. (A) Log-log plot of the cumulative probability of node degree
distribution. (B) Log-log plot of the cumulative probability of relative node betweenness distribution. (C) Log-log plot of the cumulative probability of
relative edge betweenness distribution. The solid, dashed and dotted lines indicate the fits of exponentially truncated power law [p(x),xa21ex/xc],
exponential [p(x),ex/xc], and power law [p(x),xa21], respectively. R-squared values indicate the goodness of the fits. Retp, R-squared value for an
exponentially truncated power law fit; Re, R-squared value for an exponential fit; and Rp, R-squared value for a power law fit.
doi:10.1371/journal.pone.0005226.g006

Figure 7. The classifications of brain regions by means of their intra- and inter-module connectivity patterns. All of 90 brain regions
are divided into four categories in terms of their relative regional within-module betweenness centrality (Nbc

s) and participant coefficient (PC) (see
Materials and Methods). The bars denote the ranked Nbc

s values within modules. The identified global hubs in the brain functional networks are
marked in red colors and are found to be mainly composed of the network connectors. For the abbreviations of the regions, see Table S1.
doi:10.1371/journal.pone.0005226.g007
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significant correlation (r = 0.90, P = 0.00) (Figure 10A). (2) There was

the same number of modules (N = 5) and similar modular

organization between the two datasets (Figure 10 B), also similar to

those shown in the large group (Figure 2 and Figure 3). These results

suggest the reliability of our findings. Of note, there were also slight

differences found between the brain networks of two datasets. For

example, the bilateral fusiform gyri were located in module V in the

dataset 1, but in module II in the dataset 2 (Figure 10B).

Discussion

In this study, we present a comprehensive network modularity

analysis of spontaneous neuronal activity in the human brain by

examining coherent spontaneous BOLD fMRI fluctuations at

both the temporal and spatial scales. Our main findings are as

follows: 1) that the spontaneous human brain functional networks

exhibit significant modular structures that are associated with

many well known brain functions, and the modular structure was

highly similar at the temporal and spatial scales; 2) that the local

network properties of an individual module can not be correctly

depicted by using the corresponding global network properties;

and 3) that the spontaneous brain functional networks contain

several core regions and connections that are predominantly

associated with the inter-module connectors and edges, respec-

tively, and their lesions have critical influences on the stability and

robustness of the functional brain system. Taken together, our

results demonstrate an intrinsically cohesive modular architecture

in the spontaneous brain functional networks, which has profound

implications for our understanding of the topological mechanisms

underlying the spontaneous human brain activity at a large scale.

Figure 8. Surface representation of the network connectors. (A) The surface visualization of all 90 brain regions with node sizes indicating
their participant coefficient (PC) values. Regions with PC.0.30 are considered connectors (red and yellow colors) and otherwise non-connectors (blue
colors). (B) The bar plot of all 90 brain regions in a descending order of their PC values. Red, yellow and blue color bars indicate the connector hubs,
connector non-hubs, and non-connectors in the brain network, respectively. For the abbreviations of the regions, see Table S1. (C) The bar plot of the
occurrence that brain regions show high PC values (.0.30) in the functional brain networks constructed at all selected statistical thresholds (P = 0.001,
0.005, 0.01, 0.05 and 0.10). If one region shows a high occurrence, it indicates that this region has a high participant coefficient in the spontaneous
brain functional networks and is insensitive to the selection of statistical thresholds.
doi:10.1371/journal.pone.0005226.g008
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Modularity, one of the main organizational principles of

complex biological networks, has been extensively studied in

recent years [33–36,61]. However, it remains controversial in the

brain networks, with arguments concerning the existence and

emergence of the modular organization [62]. Our findings

provided strong evidence in supporting the presence of the

modular structure in the spontaneous human brain functional

networks. The highly modularized architecture elucidated here

could reflect a fundamental design principle of spontaneous brain

functional networks and contribute to various aspects of

intrinsically functional organization of the human brain such as

the balance of functional segregation and integration while

conserving wiring length [63], efficient local information process-

ing within modules [63,64], rapid information exchange between

modules [54], and high resilience to network node or edge

damages [35,65].

We identified five intrinsically cohesive modules in the

spontaneous brain functional networks that correspond to several

well known subsystems such as the somatosensory/motor,

auditory, attention, visual, subcortical and the ‘‘default’’ system

(see Results for details). These uncovered functional subsystems are

compatible with those found in previous spontaneous BOLD

fluctuations studies using ‘seed’ functional connectivity analysis [8–

15], hierarchical clustering [16] and ICA [17–20]. Recently, many

studies have suggested that biological network modularity arises

from natural selection pressure or evolutionary constraint for

adaptation to environmental demands [66–68], thus leading to an

interesting question that whether the brain modular architecture

discovered here also reflects an evolutionary preserved pattern of

brain functional organization. Previous mammalian cortical

network study has demonstrated several modules corresponding

to similar functional subdivisions such as the somatosensory/

Figure 9. Topological robustness of the human brain functional network. (A) Network robustness in response to node (brain regions)
lesions. The graphs show the changes in the relative characteristic path length (left) and the size of the largest connected component (right) as a
function of the fraction of removed nodes. The removal of R1 connector hubs is omitted because only 3 nodes are included in the brain networks. (B)
Network robustness in response to edge (connections) lesions. The graphs show the changes in the relative characteristic path length (left) and the
size of the largest connected component (right) as a function of the fraction of removed edges.
doi:10.1371/journal.pone.0005226.g009
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motor, auditory, visual and fronto-limibic systems [38]. In

addition, we also noted that Vincent and colleagues [69] employed

a ‘seed’ functional connectivity analysis to demonstrate the

coherent spontaneous BOLD fluctuations within similar function-

ally connected systems in anaesthetized monkey. These results

imply that the modularity of the spontaneous human brain activity

is likely to correspond to an evolutionary conserved pattern of

brain functional organization. However, it needs to be noted that a

direct network comparison between the humans and mammalians

is difficult because of the discrepancies in the data acquisition,

region definition and network construction. Further computational

simulation and experimental studies would be necessary to explore

how the modular organization evolves in the spontaneous brain

functional networks.

Our results are also consistent with the modular organization

reported in several recent human brain networks studies. Chen et

al. [39] demonstrated for the first time such a modular

architecture (sensorimotor, auditory, visual, attention and mne-

monic processing) in the human brain structural network using the

inter-regional correlations of cortical thickness from structural

MRI. Using the white matter tracts derived from diffusion

spectrum imaging, Hagmann et al. [40] also reported a modular

structure in the human cortical network that is mainly associated

with the visual cortex, medial parietal cortex, bilateral frontal and

temporo-parietal cortex regions. Very recently, Meunier et al. [43]

demonstrated that the human brain functional networks con-

structed from inter-regional wavelet correlations of spontaneous

neuronal activity can be decomposed into three major modules:

central (putatively motor and auditory/verbal), posterior (puta-

tively visual) and a dorsal fronto-cingulo-parietal module (puta-

tively attention and default-mode functions). Key circuit compo-

nents related to the primary brain functions (e.g. motor, auditory

and visual systems) were regularly detected in all studies, thus

providing evidence in supporting the notions that coherent

spontaneous brain activities can be shaped by the underlying

brain anatomical connectivity [70,71]. However, we also observed

significant differences in the modular architectures among these

studies. For example, the ‘default’ system that has been thought to

participate in internal modes of cognition [72] and the subcortical

system were observed in the spontaneous brain functional

networks but not in the structural brain network studies [39,40].

The discrepancies could be attributed to the use of different

neuroimaging modalities (e.g. functional, structural, and diffusion

MRI), research subjects population, brain parcellation strategies or

statistical thresholds during the brain network construction. Thus,

it would be crucial to have additional studies to systematically

investigate topological organization of human brain structural and

functional networks using multi-modal neuroimaging data derived

from the same participants.

Another significant finding of the present study is that the

module-specific topological features in the brain functional

networks can not be captured by means of the corresponding

global network parameters. Most human brain networks studies

have been mainly focused on the global topological properties such

as the average clustering coefficients, shortest path length and

network efficiency [16,23–30,32,52]. However, the brain networks

have also been shown to be highly modularized [30,38,40,43], and

thus raises the question as to whether the global network quantities

are informative enough to depict the local topological organization

of the complex brain networks. Here, we speculated that module-

specific topological properties might be more predictive of

spontaneous brain dynamics since brain development, aging and

damages are mainly associated with functional changes in specific

brain systems. Particularly, we have also demonstrated that

Table 3. The ‘‘bridge’’ connections of the human brain
functional network.

Region A Region B Class Ebc({i,j}) Module Role

MFG.L PHG.R Inter-H 5.74 III-V R3-R1

SMA.R DCG.R Inter-L 5.18 I-V R3-R3

PreCG.L MOG.L Inter-L 4.99 I-II R3-R4

INS.R PUT.R Inter-L 4.90 I-V R3-R3

INS.R IFGtriang.R Inter-L 4.87 I-III R3-R4

MFG.R SFGdor.R Intra-L 4.55 III-IV R3-R3

IFGoperc.R ORBsupmed.L Inter-H 4.18 III-IV R4-R4

INS.L PUT.R Inter-H 4.16 I-V R4-R3

SPG.R SOG.R Inter-L 3.93 I-II R3-R2

MFG.R PHG.L Inter-H 3.55 III-V R3-R1

REC.R OLF.R Intra-L 3.45 IV-V R3-R4

LING.L FFG.L Intra-L 3.39 II-II R4-R3

CUN.L PCUN.R Inter-H 3.29 II-IV R3-R3

ACG.R DCG.R Intra-L 3.24 IV-V R1-R3

PreCG.L IFGtriang.L Intra-L 3.21 I-III R3-R4

FFG.L PHG.R Inter-H 3.08 II-V R3-R1

SPG.R IPL.R Intra-L 2.92 I-III R3-R4

ORBinf.L MTG.L Inter-L 2.91 III-IV R2-R3

LING.R FFG.L Inter-H 2.84 II-II R2-R3

FFG.L MFG.R Inter-H 2.83 II-III R3-R3

MFG.L SFGdor.L Intra-L 2.80 III-IV R3-R3

PreCG.L IFGoperc.L Intra-L 2.75 I-III R3-R4

MFG.R IFGtriang.R Intra-L 2.73 III-III R3-R4

PCG.R THA.R Inter-L 2.72 IV-V R3-R2

LING.R FFG.R Intra-L 2.69 II-II R2-R3

TPOsup.R TPOsup.L Inter-H 2.51 I-III R4-R3

DCG.R THA.R Inter-L 2.50 V-V R3-R2

PreCG.L ROL.L Intra-L 2.48 I-I R3-R2

PCUN.L PCUN.R Inter-H 2.35 IV-IV R4-R3

SPG.L SOG.L Inter-L 2.30 I-II R3-R2

ORBsup.L ORBmid.L Intra-L 2.26 III-III R4-R2

SFGmed.L ACG.R Inter-H 2.21 IV-IV R2-R1

SPG.R SMG.R Intra-L 2.15 I-I R3-R4

ROL.R SMA.R Intra-L 2.14 I-I R2-R3

IPL.L ANG.L Intra-L 2.13 III-III R3-R3

IFGtriang.L ITG.L Inter-L 2.12 III-III R4-R3

SFGdor.R ACG.R Inter-L 2.10 IV-IV R3-R1

OLF.R PHG.R Inter-L 2.07 V-V R4-R1

FFG.R MFG.R Intra-L 2.06 II-III R3-R3

SPG.L IPL.L Intra-L 2.03 I-III R3-R3

PCG.R PCUN.R Inter-L 2.00 IV-IV R3-R3

OLF.R PUT.R Inter-L 2.00 V-V R4-R3

The ‘‘bridge’’ connections (Ebc({i,j}).mean+SD) are listed in a descending order
of their relative edge betweenness centrality and further classified into Inter-H
(inter-hemispheric), Inter-L (inter-lobe) and Intra-L (intra-lobe). The Module
column denotes the functional modules that the linked two nodes belong to.
The Role column denotes the roles that the two nodes play in terms of their
intra- and inter-module connectivity patterns (See Materials and Methods). L:
left; R: right. For the description of the abbreviations, see Table S1.
doi:10.1371/journal.pone.0005226.t003
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patients with obsessive-compulsive disorder exhibit abnormal

topological organization (e.g. small-world properties) in the top-

down attention subnetwork rather than the whole brain system

(Zhang TJ, Wang JH, Yan, CG, Gong QY, He Y; unpublished

data). Therefore, our findings of the module-specific network

properties could potentially have a major impact on the

understanding of topological organization of complex brain

networks in normal and pathological conditions.

We identified twelve network hubs that played major roles in

the global coordination of the spontaneous brain activity in

humans. These regions were mainly composed of recently evolved

heteromodal or unimodal association cortex regions and primitive

paralimbic/limbic cortex regions (See Results). The former have

been shown to have rich and convergent inputs from multiple

other cortical regions and contribute to the integrity of multiple

functional systems, such as attention and memory systems [47].

The latter tend to be highly interconnected with the prefrontal

regions and subcortical regions (e.g. nucleus accumbens) and are

mainly involved in emotional processing and the maintenance of

consciousness state of mind [47]. Our findings of high topological

centrality in the primitive paralimbic/limibic cortex regions may

also provide evidence for the ‘preferential attachment’, an

important concept in the network evolution in which new nodes

are preferentially attached to the nodes that are already well

connected [73]. Recently, Kaiser and colleagues have argued that

the emergence of network hubs could be mostly a by-product of

brain evolution and development generating anatomical structures

for efficient information processing [58]. We also noted that the

brain functional networks prevent the presence of extremely high

topological centrality as demonstrated by the truncated power-law

connectivity distribution (Figure 6). It is worth mentioning that

most of these global network hubs are also identified in both the

functional brain networks derived from inter-regional wavelet

correlations [23,43] and structural brain networks derived from

inter-regional correlations of cortical thickness [28]. However,

they showed little overlap with those of structural brain networks

constructed by white matter tracts from diffusion MRI [30,32,40].

These discrepancies could be due to the distinct brain organization

information provided by different neuroimaging modalities. The

topological similarities and differences in the multi-modal brain

network nodes would be an important research topic in the future.

Another interesting finding is that the brain regions can be divided

into distinct classes in terms of their intra- and inter-module

connectivity patterns. It was noted that that previously identified

global hubs were predominantly associated with those network

connectors linking different functional modules (referred as the

party hubs in Han et al. [35]) rather than the provincial hubs

occupying central positions within a single module (referred as the

date hubs in Han et al. [35]). The lesions (deletions) of the network

connectors also had a more deleterious effect on the network

Figure 10. Reproducibility assessment of our results. (A) The two correlation matrices are separately shown (left: dataset 1; right: dataset 2).
The right graph shows the correlation (r = 0.90) between dataset 1 and dataset 2. The results show that there is a high similarity in correlation patterns
between dataset 1 and dataset 2. (B) The modular structures of brain functional networks are separately shown (left: dataset 1; right: dataset 2). There
is also a high similarity between dataset 1 and dataset 2.
doi:10.1371/journal.pone.0005226.g010
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stability than the others. These findings indicated that the modular

connectors were crucial for the global coordination of information

flow in the brain functional networks, which was in accordance

with a previous study in the mammalian brain networks showing

the existence of connector hubs and their importance for

maintaining network integrity [65]. In this study, network bridges

are referred to those pivotal connections for the information flow

of the whole brain network. We identified a set of bridges that

were mainly composed of inter-module connections which ensure

the communications between different functional modules. Most

of these bridges are also associated with the network connectors

identified previously (40/42; 95.24%), suggesting their involve-

ments in the integrity of multiple brain functions. As expected, the

lesions (deletions) of these bridges have a more negative effect on

the performance of the whole brain functional networks than

others.

In this study, we found a high similarity between the modular

structure of temporal and spatial brain functional networks that

were derived by computing temporal and spatial correlations

among brain regions, respectively. As described previously,

temporal correlations represent the extent of temporal coupling

between two regions, but spatial correlations represent the extent

of similarity of temporal correlation maps of the regions. Thus, the

similar modular structure indicates that the regions within the

same brain system not only have coherent spontaneous fluctua-

tions across time, but also exhibit similar temporal connectivity

patterns with the other brain regions, which could due to that the

regions are associated with similar brain functions or have

structural connections. Such a phenomenon has been recently

observed in several functional brain systems (e.g. oculomotor and

attention) in humans and monkey [15,69].

It is important to point out that there are only three previous

studies exploring the modular structure of spontaneous brain

functional networks in the rats [41] and human brain [42,43]. In

contrast to the previous studies, we reported novel findings by

demonstrating (1) that there was a high similarity in the modular

structure of the human brain functional networks at both the

temporal and spatial scales, (2) that module-specific network

properties could not be represented by computing the whole-brain

network characteristics, and (3) that both brain regions and

connections could be classified into different categories, and their

lesions exhibited different influences on brain network perfor-

mance. Nonetheless, there are still some issues that need to be

elucidated in future studies. First, we applied a network

comparison algorithm [55] to compare the module-specific

properties with the global properties of the brain networks. For

each real module s with ns nodes, we generated the random

modules by randomly selecting a set of ns nodes from the whole

network. Although there was the same number of nodes between a

real module and corresponding random modules, there was

different edge density that likely contribute to the difference in

network parameters. It would also be important to constrain the

same edge density for future network comparisons. Second, in the

current study, we constructed brain functional networks by

computing Pearson’s correlations between the time series of every

pair of brain regions. Brain functional networks can also be

constructed by using other connectivity measures such as the

partial correlation [16,25], wavelet correlation [23,26] and mutual

information [74]. Although the constructed brain networks by

these different measures have been found to show similar network

characteristics (e.g. small-world properties and modular structure),

they should also have different topological organization since these

connectivity measures represent different aspects (e.g. linear or

nonlinear) about the relationship between brain regions. The

differences in network organization and the underlying biological

mechanisms associated with these connectivity measures remain to

be further elucidated. Third, in the brain network construction, we

removed the global brain signal to reduce the effect of

physiological artifacts. However, it is still an ongoing controversy

question as to the removal of the global brain signal since it could

lead to ambiguous interpretations of biological mechanisms of

correlations [75]. Here we also re-analyzed the modular

organization of brain functional networks without the removal of

global brain signals, and found that the resultant modular

architecture (Figure S6) was approximately consistent with that

with the removal of global signal (Figure 2 and Figure 3),

suggesting a robust modular organization in spontaneous func-

tional networks of the human brain. Fourth, we need to determine

what are the mechanisms for the emergence of the modular

structure and whether they are associated with the evolutionary

pressure, environmental-related plasticity or genetic factors. Fifth,

it is also important to investigate whether a similar modular

organization exists in the brain functional networks derived from

using different structural or functional subdivisions of brain regions

[76–78] or constructed at other spatial scales such as neurons and

minicolumns [71]. Finally, the functional/structural connectivity

patterns of the human brain is not static, rather, it could be

changed dramatically under specific task demands [9,12,79] or

pathological conditions [25,29,52]. Thus, it would be very

interesting to investigate how the intrinsic functional modular

architecture is modulated or altered by specific tasks or brain

damages, respectively.

In conclusion, we provide the empirical evidence to support the

existence of the modular architecture in the spontaneous brain

functional networks, thus opening a new window into our

understanding of fundamental organizational principles of spon-

taneous neuronal activity of the human brain. Our results also

suggest that the network topology-based approach provides the

means to reveal potentially biological mechanism that could be

responsible for brain dynamics and the underlying pathophysiol-

ogy in brain disease.

Materials and Methods

Data Acquisition and Preprocessing
Eighteen right-handed healthy volunteers (9 male and 9 female,

21–25 years) were scanned on a 3.0 Tesla GE MR scanner

(EXCITE, Milwaukee, USA). All subjects had no history of

neurological or psychiatric disorders. Written informed consent

was obtained from each participant and this study was approved

by the Ethics Committee of Huaxi Hospital, Sichuan University.

Functional images were obtained during the resting state and

further preprocessed as previously described [24]. See Text S1 for

details.

Construction of Brain Functional Networks
Functional brain networks at the temporal scale. To

construct large-scale brain functional networks at the temporal

scale, a three-step process was undertaken. (i) The whole brain was

first parcellated into 90 cortical and subcortical regions of interest

(45 for each hemisphere, see Table S1) using a prior anatomical

automatic labeling (AAL) atlas [44]. The mean time series of each

region was then acquired by averaging the time series of all voxels

within that region, followed by a multiple linear regression analysis

to remove several sources of spurious variances from estimated

head-motion profiles and global brain signal [13]. The resulting

residual signal was then applied to substitute for the raw mean

time series of the corresponding region. Notably, previous studies
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have suggested that there were significant correlations between

the global brain signal and respiration-induced fMRI signal [80].

To reduce the effect of the physiological noise, we therefore

removed the global brain signal as shown in several previous

studies [13,72]. (ii) We then obtained a temporal correlation

matrix (90690) for each subject by computing the Pearson

correlation coefficients between the residual time series of every

pair of regions as

rij~

PT
t~1

xi tð Þ{xi½ �: xj tð Þ{xj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t~1

xi tð Þ{xi½ �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t~1

xj tð Þ{xj

� �2s ð1Þ

where xi(t) and xj(t) (t = 1, 2…T, T = 190) were the residual time

series of region i and j with means of xi and xj , respectively. (iii)

To examine whether each inter-regional correlation significantly

differed from zero, two-tailed one-sample t-tests were performed

for all the possible 4005 [i.e. (90689)/2] pairwise correlations

across subjects. Prior to the t-tests, a Fisher’s r-to-z transform

was utilized to convert each correlation coefficient rij into zij to

improve the normality [81]. A Bonferroni-corrected significance

level of P,0.001 was further used to threshold the correlation

matrix into a binarized matrix (S = 8.41%. The sparisty, S of a

network is the ratio of the number of existing edges and possible

maximum edges in the network) whose element was 1 if there

was significant correlation between the two brain regions and 0

otherwise. The process assured that all brain regions were

included in the brain functional network and the number of

false-positive connections was minimized. In this study, to

evaluate whether the selection of different statistical thresholds

would affect the topological stability of the brain networks, we

also constructed temporal brain functional networks at several

other significant P values of 0.005, 0.01, 0.05 and 0.10

corresponding to networks with a sparsity of 10.79%, 12.16%,

15.38% and 16.78%, respectively.

Functional brain networks at the spatial scale. In

addition to the brain functional networks at the temporal scale,

we also constructed brain functional connectivity networks at the

spatial scale. First, the spatial correlation coefficient between any

two brain regions [15,69] was computed as

Rij~

PN
n~1,n=i,n=j

zi nð Þ{zi½ �: zj nð Þ{zj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n~1,n=i,n=j

zi nð Þ{zi½ �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n~1,n=i,n=j

zj nð Þ{zj

� �2s ð2Þ

where zi(n) and zj(n) (n = 1,2…N, n?i, n?j, N = 90) were the ith

and jth columns of the temporal correlation matrix obtained above

(after Fisher’s transformation) with means of zi and zj , respectively.

The spatial correlation coefficient between two brain regions

represents the degree of similarity in the temporal functional

connectivity patterns of the two regions. Second, a Fisher’s r-to-z

transformation was performed again and followed by a two-tail

one-sample t-test to determine the significance of each inter-

regional spatial correlation. For comparative purpose, the spatial

brain functional networks were constructed based upon the

thresholded spatial correlation matrix with the same sparsities as

the temporal brain functional networks derived in the previous

section.

Identification of Network Modularity
The modularity Q(p) for a given partition p of the brain

functional network [82] is defined as

Q pð Þ~
XNM

s~1

ls

L
{

ds

2L

� �2
" #

ð3Þ

where NM is the number of modules, L is the number of

connections in the network, ls is the number of connections

between nodes in module s, and ds is the sum of the degrees of

the nodes in module s. The modularity index quantifies the

difference between the number of intra-module links of actual

network and that of random network in which connections are

linked at random. The aim of this module identification process

is to find a specific partition (p) which yields the largest network

modularity, Q(p). Several optimization algorithms are currently

available with different advantages, here, we adopted a

simulated annealing approach [45,46] which is the most

accurate to date [46,83]. Finally, we evaluated the significance

of modularity of the functional brain networks by comparing

with that of 100 node- and degree-matched random networks.

Notably, the partition of the network remains unchanged when

multiple values of temperature were used in the simulated

annealing procedure.

Comparisons of Module-Specific and Global Network
Properties

To determine whether the module-specific network properties

can be captured by the global topological properties in the brain

functional network, we applied a network comparison algorithm

recently proposed by [55]. Briefly, for each module s with ns nodes,

we first calculated its topological parameters, including the average

degree ,k., clustering coefficient (Cp), characteristic path length

(Lp), local efficiency (Eloc) and global efficiency (Eglob) (Text S2). We

then obtained the distribution of each parameter for 1000 random

modules that were generated by randomly selecting a set of ns

nodes from the whole network. If the empirical module

parameters fell outside of the 95% probability of the distribution,

we could argue that the global network properties were unable to

capture those of the local module network properties. Finally, we

calculated the fraction (r) of modules that can not be characterized

by the global network parameters.

Characterization of Nodes and Edges
Node characterization. To determine the global role of

each node (brain region) in the brain functional network, we

computed the node betweenness centrality [56], N’
bc(i), as

N
0

bc ið Þ~
X

j=i=k[G

sjk ið Þ
sjk

ð4Þ

where sjk is the total number of shortest geodesic paths from node j to

node k, and sjk(i) is the number of shortest geodesic paths from node j

to node k that pass through the node i in a graph G. The relative

betweennness centrality, Nbc(i) of a node i is its betweenness, N’
bc(i)

divided by the mean of all node betweenness in the network and it

was calculated here by using the MatlabBGL package (http://www.

stanford.edu/_dgleich/programs/matlab_bgl/). Nbc measures the

ability of a node over information flow between other nodes in the

whole network. Regions with a high relative node betweenness

centrality value (Nbc(i).mean+SD) were considered global hubs in

the brain network.
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To further distinguish the roles of nodes in terms of their intra-

and inter-module connectivity patterns, the two measurements,

the relative within-module betweenness centrality, Nbc
s and the

participant coefficient, PC were applied [33,34]. The Nbc
s(i) of a

node i is the relative betweenness centrality but calculated only

within the module s which it belongs to. It measures the

importance of a node over the information flow between other

nodes in the module. The PC(i) of a node i is defined as

PC ið Þ~1{
XNM

s~1

kis

ki

� �2

ð5Þ

where NM is the number of modules, kis is the number of links of

node i to nodes in module s and ki is the total degree of node i. The

PC(i) tends to 1 if node i has a homogeneous connection

distribution with all the modules and 0 if it doesn’t have any

inter-module connections. PC measures the ability of a node in

keeping the communication between its own module and the other

modules. A high PC value for a given node usually means the node

has many inter-module connections. Depending on the Nbc
s, the

nodes in the brain functional network was classified into the

modular hubs (Nbc
s.mean+std) and non-hubs (Nbc

s#mean+std),

respectively. In terms of the PC, the hub nodes were further

subdivided into R1 connector hubs (PC.0.30) and R2 provincial

hubs (PC#0.30), and non-hub nodes were divided into R3

connector non-hubs (PC.0.30) and R4 peripheral non-hubs

(PC#0.30) [33,34].

Edge characterization. To determine the global role of each

edge (connection) in the brain functional network, we computed

the edge betweenness centrality [56], E’
bc({i,j}), as

E
0

bc i,jf gð Þ~
X

s=t[G
s,tf g= i,jf g

sst i,jf gð Þ
sst

ð6Þ

where sst is the number of shortest geodesic paths from node s to

node t, and sst({i,j}) is the number of shortest geodesic paths from

node s to node t that pass through the edge (Q. The relative

betweennness centrality, Ebc([57]) of an edge i was its betweenness,

E’
bc({i,j}) divided by the mean of all edge betweenness in the

network and it was calculated here by using the MatlabBGL

package (http://www.stanford.edu/_dgleich/programs/

matlab_bgl/). Ebc({i,j}) measures the importance of an edge over

information flow between other nodes in the whole network.

Connections with a high relative edge betweenness centrality value

(Ebc({i,j}).mean+SD) were considered global bridges in the brain

functional network. We further classified all edges into intra- and

inter-module connections, respectively, and determined which of

them were associated with the global bridges of the brain

functional network.

Network Robustness and Brain Lesions
To describe how the robustness of the brain functional

network is affected by the different types of lesions, a simulated

procedure was applied [23,29,57,59]. Briefly, we observed the

changes in both the largest connected component size and

characteristic path length of the brain functional network in

response to the continuous removal of the network nodes (brain

regions) and edges (connections) in either a random failure or

target attack fashion. As the distinct functional roles were

assigned to both the network nodes and edges, target attacks on

all network nodes, R1 connector hub nodes, R2 provincial hub

nodes, R3 connector non-hub nodes, R4 peripheral non-hub

nodes, all network connections, intra-module connections and

inter-module connections were thus examined separately.

Supporting Information

Text S1 Data Acquisition and Preprocessing

Found at: doi:10.1371/journal.pone.0005226.s001 (0.01 MB

PDF)

Text S2 Small-World Properties and Efficiency Measurements

Found at: doi:10.1371/journal.pone.0005226.s002 (0.02 MB

PDF)

Figure S1 Subdivision of Modules. (A) Subdivisions of Module I.

(B) Subdivisions of Module II. (C) Subdivisions of Module III. (D)

Subdivisions of Module IV. (E) Subdivisions of Module V. We

applied the simulated annealing approach [38,39] to individual

modules to determine whether they can be further subdivide into

small modules. The results show that there is a high modularity (Z-

score.2) in four of five modules (I, II, IV and V).

Found at: doi:10.1371/journal.pone.0005226.s003 (0.47 MB JPG)

Figure S2 The Modular Architectures of the Human Brain

Functional Networks Constructed at Multiple Statistical Thresh-

olds. (A) Modular structures in the functional brain networks

with a sparsity of 8.41%. (B) Modular structures in the

functional brain networks with a sparsity of 10.79%. (C)

Modular structures in the functional brain networks with a

sparsity of 12.16%. (D) Modular structures in the functional

brain networks with a sparsity of 15.38%. (E) Modular

structures in the functional brain networks with a sparsity of

16.78%. The first row indicates the modular structures in the

temporal brain functional networks. The second row indicates

the modular structures in the spatial brain functional networks.

Notably, the modular structures of the temporal brain

functional networks show similar patterns to those of the spatial

brain functional networks. For the selection of the sparsity

thresholds, see Materials and Methods.

Found at: doi:10.1371/journal.pone.0005226.s004 (1.84 MB JPG)

Figure S3 The Global Hubs in the Human Brain Functional

Networks (Spatial Scale). The bar plot of the occurrence that brain

regions show high Nbc values (.mean) in the spatial brain

functional networks constructed at all selected statistical thresholds

(i.e. the same network sparsities as those temporal brain functional

networks). The brain regions are listed according to the order of

regions shown in Figure 5C. Note that the hub regions in the

temporal brain functional networks (red colors) also show high

topological centralities in the spatial brain functional networks.

The hub regions with a high occurrence indicate that they are

insensitive to the selection of statistical thresholds.

Found at: doi:10.1371/journal.pone.0005226.s005 (0.27 MB JPG)

Figure S4 Topological Distribution of the Human Brain

Functional Networks Constructed at Multiple Statistical Thresh-

olds (Temporal Scale). (A) Log-log plot of the cumulative

probability of node degree distribution. (B) Log-log plot of the

cumulative probability of relative node betweenness distribution.

(C) Log-log plot of the cumulative probability of relative edge

betweenness distribution. The solid, dashed and dotted lines

indicate the fits of exponentially truncated power law

[p(x),xa21ex/xc], exponential [p(x),ex/xc], and power law

[p(x),xa21], respectively. R-squared values indicate the goodness

of the fits. Retp, R-squared value for exponentially truncated power

law fit; Re, R-squared value for exponential fit; and Rp, R-squared

value for power law fit. Note that these functional brain networks

are constructed at the temporal scale. The spatial brain functional
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networks also show the similar topological distribution to the

temporal brain functional networks (data not shown).

Found at: doi:10.1371/journal.pone.0005226.s006 (0.23 MB JPG)

Figure S5 The Connectors of the Human Brain Functional

Networks (Spatial Scale). The bar plot of the occurrence that

brain regions show high PC values (.0.30) in the spatial

functional brain networks constructed at all selected statistical

thresholds (i.e. the same network sparsities as those temporal

brain functional networks). The network connectors with a high

occurrence indicate that they are insensitive to the selection of

statistical thresholds. The brain regions are listed according to

the order of regions shown in Figure 8C. Note that the

connector regions in the temporal brain functional networks (red

and yellow colors) also show high PC values in the spatial brain

functional networks.

Found at: doi:10.1371/journal.pone.0005226.s007 (0.34 MB JPG)

Figure S6 Surface Representation of Modular Architecture of

the Human Brain Functional Network (without the removal of

global brain signal). All of 90 brain regions are marked by using

different colored spheres (different colors represent distinct

network modules) and further mapped onto the cortical surfaces

at the lateral, medial and top views, respectively, by using the

Caret software [84]. The basic modular architecture

(Qmax = 0.57, Z-score = 38.26) was approximately consistent with

that obtained in the brain functional networks with the removal of

global brain signal (Figure 3).

Found at: doi:10.1371/journal.pone.0005226.s008 (0.08 MB JPG)

Table S1 Regions of Interest in the AAL-atlas.

Found at: doi:10.1371/journal.pone.0005226.s009 (0.01 MB

PDF)

Table S2 Modularity of the Human Brain Functional Networks.

S indicates the network sparsity of brain functional networks that

are constructed at multiple Bonferroni-corrected significance levels

(P = 0.001, 0.005, 0.01, 0.05 and 0.10 at the temporal scale, and

P = 0.02, 0.08, 0.14, 0.40 and 0.61 at the spatial scale, respectively)

(see Materials and Methods). NM denotes the number of modules

in the brain functional networks and Q is the maximum

modularity index in the modular identification (see Materials

and Methods). The values in bracket indicate the mean and

standard deviation values of the maximum modularity indices

derived from 100 node- and degree-matched random networks.

Found at: doi:10.1371/journal.pone.0005226.s010 (0.01 MB

PDF)

Table S3 Global Properties of the Human Brain Functional

Networks (Temporal Scale). S indicates the network sparsity

thresholds that are used to construct temporal brain functional

networks (see Materials and Methods). N and K are the number of

nodes and edges in the brain networks, respectively. ,k., Cp,

Lp,Eloc, and Eglob denote the average degree, clustering coefficient,

characteristic path length, local and global efficiency, respectively.

The values in bracket indicate the corresponding topological

parameters derived from 100 node- and degree-matched random

networks. The temporal brain functional networks were found to

have a small-world structure as they had an almost identical path

length (Lpbrain/Lprandom,1) but were more locally clustered

(Cpbrain/Cprandom&1) under multiple statistical thresholds in

comparison with the matched random networks.

Found at: doi:10.1371/journal.pone.0005226.s011 (0.03 MB

PDF)

Table S4 Global Properties of the Human Brain Functional

Networks (Spatial Scale). S indicates the network sparsity

thresholds that are used to construct spatial brain functional

networks (see Materials and Methods). N and K are the number of

nodes and edges in the brain networks, respectively. ,k., Cp, Lp,

Eloc, and Eglob denote the average degree, clustering coefficient,

characteristic path length, local and global efficiency, respectively.

The values in bracket indicate the corresponding topological

parameters derived from 100 node- and degree-matched random

networks. The spatial brain functional networks were found to

have a small-world structure as they had an almost identical path

length (Lpbrain/Lprandom,1) but were more locally clustered

(Cpbrain/Cprandom&1) under multiple statistical thresholds in

comparison with the matched random networks.

Found at: doi:10.1371/journal.pone.0005226.s012 (0.03 MB

PDF)

Table S5 Module-specific and Global Brain Networks Proper-

ties (Temporal Scale). The S column denotes the sparsity of

temporal brain functional networks. ,k., Cp, Lp, Eloc, and Eglob

denote the average degree, clustering coefficient, characteristic

path length, local and global efficiency, respectively. The values in

bracket are the corresponding global network parameters that

were obtained from 1,000 random modules (see Materials and

Methods).

Found at: doi:10.1371/journal.pone.0005226.s013 (0.01 MB

PDF)

Table S6 Global vs. Module-Specific Network Properties

(Spatial Scale). The table illustrates the fraction r of modules

(and standard deviation) whose topological parameters significant-

ly differ (P,0.05) from the corresponding global network

parameters. We find all module-specific properties can not be

correctly described by the global parameters because of all r.0.60

[47]. ,k., average degree; Cp, clustering coefficient; Lp,

characteristic path length; Eloc, local efficiency; Eglob, global

efficiency. Notably, the first column (network threshold, S) denotes

the network sparsity thresholds that were used to construct brain

functional networks at the spatial scale. Under a range of sparsity

thresholds (10.79%–16.78%), there were 5 modules identified in

the spatial brain functional networks, which was consistent with

those of temporal brain functional networks (Table S2). Under a

sparsity of threshold (8.41%), there were 6 modules found (Table

S2). For details, see Materials and Methods.

Found at: doi:10.1371/journal.pone.0005226.s014 (0.01 MB

PDF)

Table S7 Module-specific and Global Brain Networks Proper-

ties (Spatial Scale). The S column denotes the sparsity of spatial

brain functional networks. ,k., Cp, Lp, Eloc, and Eglob denote the

average degree, clustering coefficient, characteristic path length,

local and global efficiency, respectively. The values in bracket are

the corresponding global network parameters that were obtained

from 1,000 random modules (see Materials and Methods).

Found at: doi:10.1371/journal.pone.0005226.s015 (0.01 MB

PDF)
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