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Abstract

Objective: To investigate the topological alterations of the whole-brain white-matter (WM) structural networks in patients
with neuromyelitis optica (NMO).

Methods: The present study involved 26 NMO patients and 26 age- and sex-matched healthy controls. WM structural
connectivity in each participant was imaged with diffusion-weighted MRI and represented in terms of a connectivity matrix
using deterministic tractography method. Graph theory-based analyses were then performed for the characterization of
brain network properties. A multiple linear regression analysis was performed on each network metric between the NMO
and control groups.

Results: The NMO patients exhibited abnormal small-world network properties, as indicated by increased normalized
characteristic path length, increased normalized clustering and increased small-worldness. Furthermore, largely similar hub
distributions of the WM structural networks were observed between NMO patients and healthy controls. However, regional
efficiency in several brain areas of NMO patients was significantly reduced, which were mainly distributed in the default-
mode, sensorimotor and visual systems. Furthermore, we have observed increased regional efficiency in a few brain regions
such as the orbital parts of the superior and middle frontal and fusiform gyri.

Conclusion: Although the NMO patients in this study had no discernible white matter T2 lesions in the brain, we
hypothesize that the disrupted topological organization of WM networks provides additional evidence for subtle,
widespread cerebral WM pathology in NMO.
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Introduction

Neuromyelitis optica (Devic’s disease) (NMO) is an inflamma-

tory, demyelinating syndrome of the central nervous system

characterized by severe attacks of optic neuritis and myelitis [1,2].

Imaging evidence of brain involvement in NMO has been

demonstrated by several recent studies [3–8], challenging the

notion of spinal cord and optic nerve restricted pathology in

NMO.

Diffusion tensor imaging (DTI) is a powerful, non-invasive

imaging technique which has the potential to map the white

matter (WM) integrity and anatomical connectivity of the human

brain in vivo [9–11]. Several previous studies have utilized the DTI

technique and diffusion measures to investigate changes in the

brain WM in patients with NMO. For example, Rocca and

colleagues examined the alteration of mean diffusivity histogram-

derived metrics of the normal appearing white matter (NAWM),

and found that there were no significant differences between the

NMO patients and controls [3]. In contrast, our group showed

that NMO patients had abnormal diffusion indices in the cerebral

corticospinal tract and optic radiation, potentially suggesting

transsynaptic neural degeneration arising from spinal and optic

nerve lesions [6]. Additionally, our group has recently shown more

widespread, subtle cerebral abnormalities in NMO patients,

utilizing the tract based spatial statistics technique [8]. However,

it is unknown whether these abnormalities are significant enough

to alter the brain anatomical connectional architecture, as assessed

by whole-brain structural network analysis.

Recent studies have suggested that the structural networks of the

human brain can be constructed by using diffusion MRI and

tractography methods [for reviews, see 12,13]. In healthy
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populations, the WM structural networks have been mapped by

using deterministic [14–17] or probabilistic [18–20] tractography

methods. Importantly, these studies have consistently revealed that

the human WM structural networks have many non-trivial

topological properties such as the small-worldness [high local

clustering and short path length linking individual nodes [21]],

high efficiency at a low wiring cost and network hubs in the

posterior medial cortical regions (e.g., the precuneus). These

results are largely compatible with previous morphological and

functional brain network studies [22–26]. Recently, these diffusion

MRI-based methods have been applied to investigate the

topological changes in normal aging [20], Alzheimer’s disease

[27], schizophrenia [28], early onset blindness [29], and multiple

sclerosis [30] demonstrating specific alterations in the human

brain connectome in diseased populations [13,31].

In this study, we employed diffusion tensor tractography and

graph theoretical approaches to assess connectional architecture of

whole-brain WM structural networks in NMO patients. To our

knowledge, the present study is the first to explore the topological

alterations of diffusion MRI-derived network in patients with

NMO, seeking to clarify the extent and potential structural

consequences of cerebral pathology in an illness not associated

with overt WM changes visible on conventional MRI sequences

such as T2-weighted, T1-weighted or FLAIR sequences.

Materials and Methods

Participants
This study included 26 NMO patients (24 females; mean age

35.7611.9 years) and 26 age and sex-matched healthy controls (24

females; mean age 34.1610.1 years). The diagnosis of NMO was

made by an experienced neurologist with special expertise in white

matter disease (Dr. Jing Ye). All patients fulfilled the recently

revised diagnostic criteria for NMO [1]. As NMO IgG testing was

not available at our hospital when the patients were assessed and

scanned, all patients met both the absolute criteria, namely

episodes of optic neuritis and myelitis, as well as the supporting

criteria of brain MRI results that were negative or nondiagnostic

for multiple sclerosis, and MRI evidence of a longitudinally

extensive spinal cord T2 lesion spanning at least three vertebral

segments. To improve diagnostic certainty, we asked the patients

in this study to be tested for serum anti-AQP4 antibodies when the

test became available to us in 2010. To date, 18 of the studied

patients were tested and 16 patients (89%) were anti-AQP4

positive, further confirming that our included patients are similar

to other reported NMO cohorts. The main demographic and

clinical characteristics of the patients are reported in Table 1.

Twenty-one patients had no T2 WM lesions on brain MRIs and

five of them had small, non-specific WM lesions. None of the

participating patients had been treated with medications for NMO

(e.g., corticosteroids and immunosuppressants) within 3 months

before MRI scanning. This study was approved by the institutional

review board of Xuanwu Hospital, and written informed consent

was obtained from each participant.

Image Acquisition
All participants were scanned with a 1.5T MRI scanner

(Sonata, Siemens Medical Systems, Erlangen, Germany). T2, T1

and DTI images were acquired with the following sequences: (a)

T2-weighted turbo spin echo imaging [repetition time (TR)/echo

time (TE) = 5460/94 ms; number of excitation (NEX) = 3; echo

train length = 11; matrix = 2246256; field of view

(FOV) = 210 mm6240 mm; slice = 30; slice thickness = 4 mm;

orientation = axial], (b) T1-weighted spin echo imaging [TR/

TE = 1900/4 ms; NEX = 1; matrix = 2246256;

FOV = 220 mm6250 mm; slices = 96; slice thickness = 1.7 mm;

orientation = sagittal] and (c) spin-echo single-shot echo planar

imaging (EPI) [TR/TE = 5000/100 ms; NEX = 10; ma-

trix = 1286128; FOV = 240 mm6240 mm; slices = 30; slice thick-

ness = 4 mm; slice gap = 0.4 mm; orientation = axial; 6 nonlinear

diffusion weighting gradient directions with b = 1000 s/mm2 and

1 additional image without diffusion weighting (i.e., b = 0 s/

mm2)].

Data Preprocessing
Eddy current distortions and motion artifacts in the DTI dataset

were corrected by applying affine alignment of each diffusion-

weighted image to the b = 0 image, using FMRIB’s Diffusion

Toolbox (FSL, version 3.3; www.fmrib.ox.ac.uk/fsl). After this

process, the diffusion tensor elements were estimated by solving

the Stejskal and Tanner equation [11,32], and then the

reconstructed tensor matrix was diagonalized to obtain three

eigenvalues (l1, l2, l3) and eigenvectors. The fractional anisotropy

(FA) of each voxel was also calculated.

White Matter Tractography
Diffusion tensor tractography (DTT) was implemented with

DTIstudio, Version 2.40 software (H. Jiang, S. Mori; Johns

Hopkins University), by using the ‘‘fiber assignment by continuous

tracking’’ method [33]. All tracts in the dataset were computed by

seeding each voxel with FA greater than 0.2. Tractography was

terminated if it turned an angle greater than 45 degrees or reached

a voxel with FA less than 0.2 [34].

Network Construction
Nodes and edges are the two basic elements of a network. In this

study, we defined all of the network nodes and edges using the

following procedures.

Network node definition. The procedure of defining the

nodes has been previously described [20,29] and was performed in

the present study using the SPM8. Briefly, individual T1-weighted

images were coregistered to the b0 images in the DTI space. The

transformed T1 images were then nonlinearly transformed to the

ICBM152 T1 template in the MNI space. The inverse transfor-

mations were used to warp the automated anatomical labeling

(AAL) atlas [35] from the MNI space to the DTI native space. Of

note, discrete labeling values were preserved by the use of a

nearest-neighbor interpolation method. Using this procedure, we

obtained 90 cortical and subcortical regions (45 for each

Table 1. Demographics and clinical characteristics of all
participants.

Characteristics
NMO Patients
(n = 26)

Controls
(n = 26) P-value

Mean age 6 std (range)
[years]

35.7611.9
(19–59)

34.1610.1
(19–52)

0.67

Gender (M/F) 2/24 2/24 .0.99

Median EDSS (range) 3.0 (1.0–6.0) – –

Median disease duration
(range) [months]

48 (6–240) – –

Abbreviations: NMO: neuromyelitis optica; EDSS: expanded disability status
scale. See text for further details.
doi:10.1371/journal.pone.0048846.t001
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Figure 1. A flowchart for the construction of WM structural network by DTI. (1) The rigid coregistration from the T1-weighted structural MRI
(b) to DTI native space (a) (DTI color-coded map; red: left to right; green: anterior to posterior; blue: inferior to superior) for each subject. (2) The
nonlinear registration from the resultant structural MRI to the ICBM152 T1 template in the MNI space (c), resulting in a nonlinear transformation (T).
(3) The application of the inverse transformation (T21) to the AAL template in the MNI space (e), resulting in the subject-specific AAL mask in the DTI
native space (f). All registrations were implemented in the SPM8 package. (4) The reconstruction of all of the WM fibers (d) in the whole brain using
DTI deterministic tractography in DTIstudio. (5) The weighted networks of each subject (g) were created by computing the fiber numbers (FN-
weighted) and the mean FA values (FA-weighted) of the fiber bundles that connected each pair of brain regions. The binary network was created by
considering the existence/absence of fiber bundles between two regions. The matrices and 3D representations (lateral view) of the three kinds of WM
structural networks of a representative healthy subject were shown in the bottom panel. The nodes are located according to their centroid
stereotaxic coordinates, and the edges are coded according to their connection weights. For details, see the Materials and Methods section.
doi:10.1371/journal.pone.0048846.g001
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hemisphere, see Table 2), each representing a node of the network

(Figure 1).

Network edge definition. To define the network edges, we

selected a threshold value for the fiber bundles. Two regions were

considered structurally connected at least three fibers with two

end-points were located in these two regions [29]. Such a

threshold selection reduced the risk of false-positive connections

due to noise or the limitations in the deterministic tractography,

and simultaneously ensured the size of the largest connected

component (i.e., 90) in the networks was observed across all of the

controls [29]. In the present study, we also evaluated the effects of

different thresholds on the network analysis by setting threshold

values of the number of fiber bundles that ranged from 1 to 5. We

found that this thresholding procedure did not significantly

influence our results. After defining the network edges, both the

weighted and unweighted network analyses were performed. For

the weighted networks, we defined the fiber-number (FN) and the

mean FA values of the connected fibers between two regions as the

weights of the network edges. For the unweighted networks, we

considered the existence/absence of fiber bundles in which the

network edges were defined as 1 if the fiber number between the

two regions was larger than the threshold (T = 3 in our case) and as

0 otherwise. As a result, for each participant, there were three

different kinds of WM networks (FN-weighted, FA-weighted and

binary), each of which was represented by a symmetric 90690

matrix.

Network Analysis
To characterize the WM structural network, several key

measures describing specific attributes of network organization

were considered: network strength, global efficiency, local

efficiency, shortest path length, clustering coefficient and small-

worldness [36]. Here, we provide formal definitions of these

network properties as utilized in our analysis.

Network strength. For a network (graph) G with N nodes

and K edges, we calculated the strength of G as:

Sp(G)~
1

N

X

i[G

S(i)

where S(i) is the sum of the edge weights wij (wij are the FN or FA

values for the weighted networks and 1 for the binary networks)

linking to node i. The strength of a network is the average of the

strengths across all of the nodes in the network.

Small-world properties. Small-world network parameters

(clustering coefficient, Cp, and shortest path length, Lp) were

originally proposed by Watts and Strogatz [21].

In this study, we investigated the small-world properties of the

weighted brain networks. The clustering coefficient of a node i,

C(i), which was defined as the likelihood whether the neighbor-

hoods were connected with each other or not [37], is expressed as

follows:

Table 2. Cortical and subcortical regions of interest defined in the study.

Index Regions Abbr. Index Regions Abbr.

(1,2) Precental gyrus PreCG (47,48) Lingual gyrus LING

(3,4) Superior frontal gyrus, dorsolateral SFGdor (49,50) Superior occipital gyrus SOG

(5,6) Superior frontal gyrus, orbital part ORBsup (51,52) Middle occipital gyrus MOG

(7,8) Middle frontal gyrus MFG (53,54) Inferior occipital gyrus IOG

(9, 10) Middle frontal gyrus, orbital part ORBmid (55,56) Fusiform gyrus FFG

(11,12) Inferior frontal gyrus, opercular part IFGoperc (57,58) Postcentral gyrus PoCG

(13,14) Inferior frontal gyrus, triangular part IFGtriang (59,60) Superior parietal gyrus SPG

(15,16) Inferior frontal gyrus, orbital part ORBinf (61,62) Inferior parietal, but supramarginal and
angular gyri

IPL

(17,18) Rolandic operculum ROL (63,64) Supramarginal gyrus SMG

(19,20) Supplementary motor area SMA (65,66) Angular gyrus ANG

(21,22) Olfactory cortex OLF (67,68) Precuneus PCUN

(23,24) Superior frontal gyrus, medial SFGmed (69,70) Paracentral lobule PCL

(25,26) Superior frontal gyrus, medial orbital ORBsupmed (71,72) Caudate nucleus CAU

(27,28) Gyrus rectus REC (73,74) Lenticular nucleus, putamen PUT

(29,30) Insula INS (75,76) Lenticular nucleus, pallidum PAL

(31,32) Anterior cingulate and paracingulate gyri ACG (77,78) Thalamus THA

(33,34) Median cingulate and paracingulate gyri DCG (79,80) Heschl gyrus HES

(35,36) Posterior cingulate gyrus PCG (81,82) Superior temporal gyrus STG

(37,38) Hippocampus HIP (83,84) Temporal pole: superior temporal gyrus TPOsup

(39,40) Parahippocampal gyrus PHG (85,86) Middle temporal gyrus MTG

(41,42) Amygdala AMYG (87,88) Temporal pole: middle temporal gyrus TPOmid

(43,44) Calcarine fissure and surrounding cortex CAL (89,90) Inferior temporal gyrus ITG

(45,46) Cuneus CUN

Note: The regions are listed in terms of a prior template of an AAL-atlas (Tzourio-Mazoyer et al., 2002).
doi:10.1371/journal.pone.0048846.t002
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C(i)~
2

ki(ki{1)

X

j,k

(�wwij �wwjk �wwki)
1=3

where ki is the degree of node i, and �ww is the weight, which is scaled

by the mean of all weights to control each participant’s cost at the

same level. The clustering coefficient is zero, C(i) = 0, if the nodes

are isolated or with just one connection, i.e., ki = 0 or ki = 1. The

clustering coefficient, Cp, of a network is the average of the

clustering coefficient over all nodes, which indicates the extent of

local interconnectivity or cliquishness in a network [21].

The path length between any pair of nodes (e.g., node i and

node j) is defined as the sum of the edge lengths along this path.

For weighted networks, the length of each edge was assigned by

computing the reciprocal of the edge weight, 1/wij. The shortest

path length, Lij, is defined as the length of the path for node i and

node j with the shortest length. The shortest path length of a

network is computed as follows:

Lp(G)~
1

N(N{1)

X

i=j[G

Lij

where N is the number of nodes in the network. The Lp of a

network quantifies the ability for information propagation in

parallel.

To examine the small-world properties, the clustering coeffi-

cient, Cp, and shortest path length, Lp, of the brain networks were

compared with those of random networks. In this study, we

generated 100 matched random networks, which had the same

number of nodes, edges, and degree distribution as the real

networks [38]. Of note, we retained the weight of each edge

during the randomization procedure such that the weight

distribution of the network was preserved. Furthermore, we

computed the normalized shortest path length, l~Lreal
p =Lrand

p ,

and the normalized clustering coefficient, c~Creal
p =Crand

p , where

Lrand
p and Crand

p are the mean clustering coefficient and the mean

shortest path length of 100 matched random networks. Of note,

the two parameters correct the differences in the edge number and

degree distribution of the networks across individuals. A real

network would be considered small-world if cw1 and l&1 [21].

In other words, a small-world network has not only the higher

local interconnectivity but also the approximately equivalent

shortest path length compared with the random networks. These

two measurements can be summarized into a simple quantitative

metric, small-worldness, s~c=l, which is typically greater than 1

for small-world networks [39].

Network efficiency. The global efficiency of G measures the

global efficiency of the parallel information transfer in the network

[40], which can be computed as [40]:

Eglob(G)~
1

N(N{1)

X

i=j[G

1

Lij

where Lij is the shortest path length between node i and node j in

G.

The local efficiency of G reveals how much the network is fault

tolerant, showing how efficient the communication is among the

first neighbors of the node i when it is removed. The local

efficiency of a graph is defined as [40]:

Eloc(G)~
1

N

X

i[G

Eglob(Gi)

where Gi denotes the subgraph composed of the nearest neighbors

of node i.

Regional nodal characteristics. To determine the nodal

(regional) characteristics of the WM networks, we computed the

regional efficiency, Enodal(i) [41]:

Enodal(i)~
1

N{1

X

i=j[G

1

Lij

where Lij is the shortest path length between node i and node j in

G. Enodal(i) measures the average shortest path length between a

given node i and all of the other nodes in the network. The node i

was considered a brain hub if Enodal(i) was at least one standard

deviation (SD) greater than the average nodal efficiency of the

network (i.e., Enodal(i) . mean6SD).

Statistical Analysis
To determine whether the network topology in NMO was

significantly changed, a general linear model (GLM) was then

conducted to test group differences on the global and regional

network parameters while removing the effects of age and gender.

Results

In the present study, we constructed three different kinds of

networks for each participant, including FN-weighted, FA-

weighted and binary networks (Figure 1). Despite the different

connectivity metrics of the networks, we observed compatible

results for the group differences. In the present study, we focused

mainly on the results that were obtained from the analyses of the

FN-weighted networks (for the results of the FA-weighted and

binary network analyses, see Figures S1 and S2, Table 3).

Small-world Topology of the White Matter Structural
Networks

Based on the constructed WM structural network for each

subjects, both controls and NMO patients showed small-world

organization of the WM networks expressed by a cw1 and l&1
(Figure 2 and Table 3). Between the NMO and control groups, no

significant differences were found in the strength, global efficiency,

local efficiency, absolute path length and absolute clustering of the

WM networks at p,0.05. However, NMO patients exhibited

abnormal small-world parameters, as indicated by increased

normalized path length, increased normalized clustering and

increased small-worldness (Figure 2 and Table 3).

Distribution of Altered Regional Efficiency in NMO
Hub regions of the white matter structural

networks. For the control group, the identified hub nodes (15

in total, Figure 3 and Table 4) included 8 regions of the association

cortex, 4 regions of the primary cortex, 2 regions of subcortical

structures and 1 paralimbic region. The 17 hubs for the NMO

group included 8 regions of the association cortex, 4 regions of the

primary cortex, 4 regions of subcortical structures and 1 in the

paralimbic region (Figure 3 and Table 4). Fourteen hub regions

were the same for both groups, including bilateral precuneus

(PCUN), bilateral precentral gyrus (PreCG), bilateral postcentral

gyrus (PoCG), bilateral dorsolateral superior frontal gyrus

(SFGdor), bilateral middle frontal gyrus (MFG), left medial

WM Network Changes in NMO

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e48846



superior frontal gyrus, bilateral putamen and right median

cingulate gyrus. One hub region, the left inferior parietal gyrus

(IPL), was present in the control group but not in the NMO group.

The left middle occipital gyrus and bilateral thalami were

identified as hubs in the NMO group but not in the control

group. From the results, the hubs that we located for both groups

were predominantly in regions of heteromodal or unimodal

association cortex, which receive convergent inputs from multiple

cortical regions [42], consistent with many previous studies

[15,16,18,26,29].

Group differences in regional efficiency. Compared with

healthy controls, 17 regions with significantly altered efficiency in

NMO patients were identified at p,0.05 (uncorrected) (Figure 4

and Table 5). Most of these regions had reduced efficiency in

NMO patients, including the left PreCG, right supramarginal

gyrus (SMG), right dorsolateral superior frontal gyrus, right

opercular part of inferior frontal gyrus, bilateral PCUN, left

Table 3. Comparisons of global network measures between controls and NMO patients.

FN-weighted network Sp Eglob Eloc Lp Cp l c s

Control 476.07684.66 0.5960.04 0.9160.07 1.7160.12 0.3560.02 1.1460.04 3.8660.31 3.3960.28

NMO 462.88674.16 0.5760.05 0.8960.07 1.7760.17 0.3560.02 1.1660.04 4.1660.49 3.5760.37

T-value 20.91 21.59 20.98 1.67 0.99 2.29 2.85 2.17

P-value NS NS NS NS NS 0.027* 0.007* 0.035*

FA-weighted network Sp Eglob Eloc Lp Cp l c s

Control 4.0760.37 0.4960.02 0.6960.02 2.0560.06 0.4560.02 1.0960.01 3.0960.28 2.8460.23

NMO 3.9160.51 0.4860.02 0.6960.03 2.0860.11 0.4560.02 1.0960.02 3.3560.41 3.0660.33

T-value 21.55 21.42 20.23 1.50 0.24 1.17 2.88 3.04

P-value NS NS NS NS NS NS 0.006* 0.004*

Binary network Sp Eglob Eloc Lp Cp l c s

Control 10.1860.77 0.4660.01 0.6960.02 2.1660.06 0.4660.02 1.1060.01 3.1760.27 2.8860.23

NMO 9.9360.99 0.4660.02 0.6860.03 2.2060.10 0.4660.02 1.1160.02 3.4360.41 3.0960.33

T-value 21.25 21.67 20.26 1.72 0.14 2.05 2.92 2.94

P-value NS NS NS NS NS 0.046* 0.005* 0.005*

Note: The WM network with different connectivity metrics (FN-weighted, FA-weighted and binary networks) for each participant was constructed under the threshold
T = 3.
*p,0.05 was considered significant. NS: not significant.
doi:10.1371/journal.pone.0048846.t003

Figure 2. Group differences in global measures of WM structural networks were quantified between control and NMO groups. The
FN-weighted network of each subject was constructed with different thresholds (T = 1,2,3,4,5). The threshold (horizontal axis) determined the
minimum number of streamlines that needed to interconnect a pair of nodes for a connection to be assumed. Data points marked with a star indicate
a significant difference (p,0.05) between groups. Significant group effects in normalized path length and normalized clustering were observed for all
thresholds considered. A trend of increased small-worldness was also observed in NMO patients versus controls.
doi:10.1371/journal.pone.0048846.g002

WM Network Changes in NMO
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rolandic operculum, bilateral PoCG, right cuneus, left insula, right

median cingulate and paracingulate gyri and left calcarine (CAL).

Four regions were found with increased efficiency in NMO

patients, including bilateral orbital part of superior frontal gyrus

(ORBsup), right orbital part of middle frontal gyrus (ORBmid) and

left fusiform gyrus (FFG).

In order to fully account for the potential effect of non-specific

white matter lesions, we identified and excluded the 5 patients with

small, non-specific cerebral white matter lesions. All network

analysis was repeated and results were not significantly different

from the primary analysis which included all patients.

Discussion

In this study, we constructed WM structural networks from DTI

data to investigate potential alterations in network properties in

patients with NMO compared to healthy controls. The NMO

patients exhibited abnormal small-world network properties, as

indicated by increased normalized path length, increased normal-

ized clustering and increased small-worldness. Furthermore,

largely similar hub distributions of the WM structural networks

were observed between NMO and normal subjects. However,

regional efficiency in several brain areas of NMO patients was

significantly changed, and usually reduced, when compared with

the healthy controls.

Small-world Properties in the WM Networks in NMO
The human brain is a large, dynamic network system with an

optimal balance between local specialization and global integra-

tion. In the present study, we characterized the small-world

topology of the WM networks in both controls and NMO patients,

using methods described in previous network studies based on

various imaging techniques (e.g., structural MRI, functional MRI

and EEG/MEG). Although the WM networks in NMO showed

prominent small-world topology, we found patients with NMO

had significantly altered global network organization relative to

controls, exhibiting increased normalized path length, increased

normalized clustering and increased small-worldness. Increased

path length suggest reduced efficiency of parallel information

Figure 3. The hub region distributions of the WM structural networks in the control and NMO groups. The hub nodes are shown in red
with node sizes indicating their nodal efficiency values. The network shown here was constructed by averaging the WM connection matrices of each
group and thresholded with the sparsity of 10%. The regions were mapped onto the cortical surface at the lateral view. The nodal regions are located
according to their centroid stereotaxic coordinates. For the abbreviations of nodes, see Table 2.
doi:10.1371/journal.pone.0048846.g003

WM Network Changes in NMO
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transfer in the WM networks in NMO patients, while increased

normalized clustering suggests a stronger local specialization.

Given that the small-world connectivity model reflects an optimal

balance between local specialization and global integration, the

longer path length (l), higher clustering (c) and increased small-

worldness in the NMO patients’ networks could indicate less

optimal organization of the brain networks, possibly as a

consequence of reorganization secondary to cortical injury.

Distributed Regions with Altered Efficiency in NMO
In the present study, we observed several brain regions with

reduced efficiency in NMO patients. For example, decreased

efficiency was demonstrated in the PCUN, which is a hub region

in the default-mode network (DMN), an intrinsic functional

connectivity network extensively characterized in healthy volun-

teers. The DMN concept is derived from resting-state functional

Table 4. Hub Regions of WM networks in control and NMO
groups.

Control NMO

Hub
regions Class

Enodal/

mean
Hub
regions Class

Enodal/

mean

PCUN.R Association 1.58 PCUN.R Association 1.45

PCUN.L Association 1.56 PCUN.L Association 1.40

PreCG.L Primay 1.52 PreCG.R Primay 1.40

PoCG.L Primay 1.46 PreCG.L Primay 1.37

PoCG.R Primay 1.46 PoCG.R Primay 1.37

SFGdor.R Association 1.46 PoCG.L Primay 1.36

PreCG.R Primay 1.44 SFGdor.R Association 1.33

MFG.L Association 1.40 MFG.L Association 1.32

DCG.R Paralimbic 1.40 DCG.R Paralimbic 1.31

SFGmed.L Association 1.36 PUT.L Subcortical 1.32

SFGdor.L Association 1.35 SFGdor.L Association 1.32

MFG.R Association 1.32 MFG.R Association 1.32

PUT.L Subcortical 1.30 SFGmed.L Association 1.30

IPL.L Association 1.29 PUT.R Subcortical 1.29

PUT.R Subcortical 1.28 MOG.L Association 1.28

THA.L Subcortical 1.24

THA.R Subcortical 1.24

The hub regions were identified if Enodal(i) was at least one SD greater than the
mean nodal efficiency of the network (i.e., Enodal(i) . mean6SD). The hubs are
sorted by the mean normalized nodal efficiency (divided by the mean of all
nodes) in each group. The cortical regions are classified as primary, association
and paralimibic [42].
doi:10.1371/journal.pone.0048846.t004

Figure 4. The brain regions with significant group differences in nodal efficiency between control and NMO groups at p,0.05
(uncorrected). The node sizes indicate the significance of between-group differences in the regional efficiency. The network shown here was
constructed by averaging the WM connection matrices of all healthy controls and thresholded with the sparsity of 10%. The nodal regions are located
according to their centroid stereotaxic coordinates. Nodes in blue showed the regions have reduced efficiency in NMO patients versus controls.
Nodes in green showed the regions have increased efficiency in NMO patients versus controls. For the abbreviations of nodes, see Table 2.
doi:10.1371/journal.pone.0048846.g004

Table 5. Brain regions with significant group effects in nodal
efficiency between control and NMO groups.

Control .NMO Control , NMO

Regions Class
T-
value

P-
value Regions Class

T-
value

P-
value

PreCG.L Primary 23.01 0.004 FFG.L Association 2.59 0.013

SMG.R Association 22.92 0.005 ORBsup.R Paralimbic 2.13 0.038

SFGdor.R Association 22.77 0.008 ORBmid.R Paralimbic 2.10 0.041

IFGoperc.R Association 22.66 0.012 ORBsup.L Paralimbic 2.05 0.046

PCUN.L Association 22.63 0.013

ROL.L Association 22.63 0.013

PCUN.R Association 22.50 0.016

PoCG.L Primary 22.41 0.020

CUN.R Association 22.34 0.023

INS.L Paralimbic 22.23 0.030

DCG.R Paralimbic 22.12 0.039

PoCG.R Primary 22.08 0.043

CAL.L Primary 22.03 0.048

Note: The FN-weighted WM network for each participant was constructed
under the threshold T = 3. The comparisons of nodal efficiency were performed
between groups for each brain region. p,0.05 (uncorrected) was considered
significant.
doi:10.1371/journal.pone.0048846.t005
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MRI, altered in Alzheimer’s disease and MS [43–45] and

implicated in episodic memory processing [46,47]. Similarly, the

supramarginal gyrus, dorsolateral superior frontal gyrus, opercular

part of the inferior frontal gyrus and the rolandic operculum are

part of DMN, involving cognitive processing. Decreased nodal

efficiency in these areas implies a pathological alteration in the

DMN, potentially providing an explanation for cognitive impair-

ment in NMO, as reported by Blanc et al. [48]. Recently, resting

state functional MRI studies also demonstrated DMN alteration in

NMO [49], supporting the findings of the current study.

Reduced regional efficiencies were also observed in the precentral

and postcentral gyrus, which are key regions of the sensorimotor

system. Previous fMRI studies showed abnormal movement-

associated patternsof cortical activation inpatients withcorddamage

of different origins [50–52] including patients with NMO [7], so that

changes in these areas could be secondary to corticospinal tract

damage in spinal cord lesions. Similarly, the cuneus (CUN), insula

(INS) and calcarine (CAL) are visual processing centers, and the

decreased regional efficiency of these brain areas could be related to

the opticnervedamage inNMO. While it is also possible that all of the

subtlealterationswehaveobserved indifferentbrainregions inNMO

are in some way secondary to spinal cord and optic nerve pathology,

we hypothesize that changes in DMN-associated WM regions are

more likely secondary to relatively subtle cerebral pathology in

NMO.

We also observed increased regional efficiency in the orbital

parts of superior and middle frontal gyrus, and fusiform gyrus.

These increased structural connections could indicate compensa-

tory reorganization or recruitment [53].

Convergent Evidence from Comprehensive Analyses
We reproduced our investigations by utilizing binary, FA-

weighted and FN-weighted networks construction with different

threshold values (T = 1,2,3,4,5). In each of these situations, we

calculated the topological properties of brain networks for small-

world evaluation and performed inter-group comparisons by

statistical analyses. The results of these analyses showed that, in all

the tested situations, prominent small-world characteristics were

consistently observed in both control and NMO groups (Figures

S1 and S2, Table 3). More importantly, abnormal small-world

parameters of WM networks were consistently observed in the

NMO group (Figures S1 and S2, Table 3). These comprehensive

analyses provide additional evidence for the validity of our

findings.

White Matter Brain Networks of MS versus NMO
Recently, we investigated the WM networks of MS using a

similar analysis method, and demonstrated decreased global and

local efficiencies in patients [30]. In the present study, we

demonstrate NMO-related changes in the WM structural brain

networks. Although the loss of small-world properties was

observed in both studies, there were distinct patterns. In MS

patients, the WM brain networks tended to have much less

connections (reduced network strength, global and local efficien-

cies) compared with controls. In contrast, in NMO, the structural

brain networks exhibited a disrupted topological organization

(abnormal small-world parameters but no changes in network

strength and efficiencies). Further, we found a greater number of

disrupted regions in MS compared to NMO. The likely

explanation is that the extent of brain injury in MS is greater

than NMO including the presence of T1 and T2 lesions in MS,

but it is also possible that different lesion pathogenesis could

contribute to the observed difference [2]. In order to confirm and

extend these findings, future studies should ideally include new

cohorts of both NMO and MS patients scanned using identical

protocols on the same protocols on the same scanner.

Methodological Issues
First, the present study used a suboptimal DTI sequence with

six diffusion-encoding gradient directions and non-isotropic voxel

size. Although, using similar scanning sequences, a recent study

did report a high reproducibility of the WM network properties

[15], our analysis should be reproduced with new patient and

healthy control datasets derived from optimal scanning parame-

ters. Second, we employed deterministic tractography to define the

edges of the WM networks. This method has been used in previous

DTI studies [15,29]. However, the tracking procedure always

stops when it reaches regions with fiber crossings and low FA

values because of the ‘‘fiber crossing’’ problem [54], which might

result in inappropriate loss of existing fibers. Other studies have

proposed the use of probabilistic tractography to define the

network edges [18,20], or advanced diffusion imaging techniques

such as diffusion spectral imaging [55] or high angular resolution

diffusion imaging with Q-ball reconstruction of multiple fiber

orientations [56], which could be helpful to address the issue.

Third, we utilized DTI tractorgraphy to construct the WM

networks. Brain networks can also be studied using structural and

functional MRI data [24,26,57]. The combination of these

multimodal MRI techniques would yield a more comprehensive

understanding of how structural disruptions in brain networks are

associated with functional deficits in patients with NMO, and

should include detailed cognitive assessments.

Conclusion
In the present study, we used diffusion tensor tractography and

graph theoretical analyses to investigate NMO-related topological

changes in WM structural networks. We found that, compared to

controls, patients with NMO had abnormal small-world param-

eters in their brain networks. Moreover, we observed that regions

with decreased efficiency were mainly distributed in the default-

mode network, sensorimotor and visual systems. Although the

NMO patients in this study had no discernible WM T2 lesions in

the brain, we hypothesize that these findings provide additional

evidence for subtle, widespread cerebral WM pathology in NMO.

Supporting Information

Figure S1 Global measures of WM structural networks
were quantified in controls and NMO patients with
different connectivity metrics (FA-weighted network).
The threshold (horizontal axis) determined the minimum number

of streamlines that needed to interconnect a pair of nodes for a

connection to be assumed. Data points marked with a star indicate

a significant difference (p,0.05) between groups. Significant group

effects in normalized clustering and small-worldness were observed

for most thresholds considered.

(TIF)

Figure S2 Global measures of WM structural networks
were quantified in controls and NMO patients with
different connectivity metrics (binary network). The

threshold (horizontal axis) determined the minimum number of

streamlines that needed to interconnect a pair of nodes for a

connection to be assumed. Data points marked with a star indicate

a significant difference (p,0.05) between groups. Significant group

effects in normalized clustering and small-worldness were observed

for most thresholds considered.

(TIF)
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