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Abstract
The human brain is a large, interacting dynamic network, and its architecture of coupling among

brain regions varies across time (termed the “chronnectome”). However, very little is known about

whether and how the dynamic properties of the chronnectome can characterize individual unique-

ness, such as identifying individuals as a “fingerprint” of the brain. Here, we employed multiband

resting-state functional magnetic resonance imaging data from the Human Connectome Project

(N5105) and a sliding time-window dynamic network analysis approach to systematically examine

individual time-varying properties of the chronnectome. We revealed stable and remarkable indi-

vidual variability in three dynamic characteristics of brain connectivity (i.e., strength, stability, and

variability), which was mainly distributed in three higher order cognitive systems (i.e., default

mode, dorsal attention, and fronto-parietal) and in two primary systems (i.e., visual and sensorimo-

tor). Intriguingly, the spatial patterns of these dynamic characteristics of brain connectivity could

successfully identify individuals with high accuracy and could further significantly predict individual

higher cognitive performance (e.g., fluid intelligence and executive function), which was primarily

contributed by the higher order cognitive systems. Together, our findings highlight that the

chronnectome captures inherent functional dynamics of individual brain networks and provides

implications for individualized characterization of health and disease.
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1 | INTRODUCTION

Functional brain connectomics derived from resting-state functional

MRI (R-fMRI) data offer a powerful tool to greatly advance our under-

standing of individual differences in human cognitive and behavioral

performance in a network perspective. Recent studies have reported

inter-individual variability in functional brain connectivity architecture

at rest (Airan et al., 2016; Barnes, Anderson, Plitt, & Martin, 2014;

Finn et al., 2015; Gao et al., 2014; Mueller et al., 2013). Such interin-

dividual connectivity variability is closely associated with evolutionary

cortical expansion (Mueller et al., 2013) and genetics (Gao et al.,

2014), and it is partially responsible for individual differences in

cognitive performance (Baldassarre et al., 2012; Gerraty, Davidow,

Wimmer, Kahn, & Shohamy, 2014; Hampson, Driesen, Skudlarski,

Gore, & Constable, 2006; Liu et al., 2016; Seeley et al., 2007; Wei

et al., 2012). Moreover, individual connectivity patterns can act as a

detectable “fingerprint” of the brain, with higher order functional sys-

tems (e.g., the fronto-parietal system) as the most distinctive feature

(Finn et al., 2015). These studies suggest that the R-fMRI-derived

functional connectome captures inherent or intrinsic individual char-

acteristics of brain activity. However, all these R-fMRI studies of indi-

vidual differences have implicitly assumed that the functional

coupling among brain regions is static and unchanging over the entire

scanning period.
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Recently, there has been growing interest in the “chronnectome,” a

new concept that has emerged to emphasize the dynamic characteris-

tics of functional brain connectivity (Allen et al., 2014; Calhoun & Adali,

2016; Calhoun, Miller, Pearlson, & Adali, 2014; Hutchison et al., 2013;

Preti, Bolton, Van, & Ville, 2017). Mounting evidence has suggested

that the chronnectome at rest reflects underlying temporal changes in

neural activities measured by electrophysiological recording (Chang, Liu,

Chen, Liu, & Duyn, 2013; Keilholz, 2014; Tagliazucchi, von Wegner,

Morzelewski, Brodbeck, & Laufs, 2012; Zhang et al., 2016), is structur-

ally constrained by white matter connectivity (Liao et al., 2015; Shen,

Hutchison, Bezgin, Everling, & McIntosh, 2015a; Zhang et al., 2016),

and is able to trace alterations in normal development (Davison et al.,

2016; Hutchison & Morton, 2015; Qin et al., 2015) and neuropsychiat-

ric disorders, such as depression (Wei et al., 2015) and schizophrenia

(Damaraju et al., 2014; Rashid, Damaraju, Pearlson, & Calhoun, 2014;

Zhang et al., 2016). Notably, most research involving the dynamic func-

tional network has primarily focused on group-level analyses, largely

ignoring individual-specific characteristics in the chronnectome.

Recently, several studies have found that the resting-state dynamic

connectivity pattern is associated with individual perception and atten-

tion abilities (Madhyastha, Askren, Boord, & Grabowski, 2015; Sada-

ghiani, Poline, Kleinschmidt, & D’esposito, 2015) and demographic

characteristics, such as age (Davison et al., 2016), indicating the exis-

tence of individual variability in the resting-state chronnectome. How-

ever, very little is known about whether the chronnectome is unique to

each person and can act as a fingerprint to identify individuals, and con-

tribute to individual differences in high cognitive performance.

To address these issues, we employed multiband R-fMRI data

(N5105) with a sub-second sampling rate and a sliding time-window

dynamic network analysis approach to systematically investigate the

individual time-varying characteristics of the chronnectome. Specifi-

cally, we first constructed dynamic functional networks for each partici-

pant and calculated the dynamic functional connectivity (DFC)

strength, stability and variability to comprehensively characterize the

time-varying characteristics of each functional connectivity. Then, we

examined the spatial distribution pattern of inter-subject variability of

these dynamic characteristics, followed by individual identification anal-

yses and individual prediction analyses of higher cognitive functions.

Given the existing correlation between dynamic connectivity patterns

and individual cognitive behaviors and demographic characteristics

(Chen, Cai, Ryali, Supekar, & Menon, 2016; Davison et al., 2016; Mad-

hyastha et al., 2015; Sadaghiani et al., 2015; Yaesoubi, Miller, & Cal-

houn, 2015), we hypothesized that the chronnectome would capture

individual unique characteristics in time-varying functional organization

to identify individuals from one another and significantly contribute to

cognition prediction.

2 | MATERIALS AND METHODS

2.1 | Data collection

We used the publicly available Q2 Data Release of the Human Connec-

tome Project (HCP) (Van Essen et al., 2013). The full Q2 release contains

data from 142 healthy participants, 132 of whom underwent repeated

R-fMRI scanning in two sessions (S1 and S2). Written informed consent

was obtained from each participant. The scanning protocol was

approved by the Institutional Review Board of Washington University in

St. Louis, MO, USA (IRB #20120436). Data from 27 participants were

excluded because of large head motion (24 participants; see Section 2.2)

or missing time points in image data (3 participants) in either of the two

sessions. Therefore, R-fMRI data from two sessions with 105 partici-

pants were included in the following analyses (Table 1).

Whole-brain multiband gradient-echo-planar imaging acquisitions

were acquired on a customized 32-channel 3T Siemens “Connectome

Skyra” scanner at Washington University. The sequence parameters

were as follows: repetition time5720 ms, time echo533.1 ms, flip

angle5528, bandwidth52,290 Hz/pixel, in-plane field of view5208

3 180 mm2, matrix5104 3 90, 72 slices, 2 mm isotropic voxels, multi-

band acceleration factor58 and 1,200 volumes (14 min and 24 s).

Data were collected over 2 days with one session of R-fMRI data col-

lection (eyes open with fixation) on each day. Two phase-encoding

directions (left-to-right or right-to-left) were used in each session dur-

ing R-fMRI data acquisition. Here, we included only the left-to-right-

encoded runs to avoid potential effects of different phase-encoding

directions on our findings.

2.2 | Data preprocessing

Our image analysis was based on the HCP R-fMRI dataset with the

minimal preprocessing procedure (Glasser et al., 2013), which included

gradient distortion correction, head motion correction, image distortion

correction, spatial transformation to the Montreal Neurological Insti-

tute (MNI) space and intensity normalization. Notably, R-fMRI data

from 24 participants were excluded due to large head motion in either

session with the exclusion criteria of translation/rotation above 3 mm/

38 or mean frame-wise head motion above 0.14 mm (HCP: Movemen-

t_RelativeRMS_mean) (Finn et al., 2015). We further used the Data

Processing Assistant for Resting-State fMRI (DPARSF) (Yan & Zang,

2010) and the Statistical Parametric Mapping software (SPM8; http://

www.fil.ion.ucl.ac.uk/spm) to reduce biophysical and other noise in the

TABLE 1 Demographics and behavioral performances of the
participants

HCP Q2 dataset (N5 105)a

Gender (M/F) 37/68

Age (years) 22–35

Executive function/cognitive flexibility 103.369.9 (66.6–122.7)

Executive function/inhibition 104.569.0 (80.3–123.6)

Fluid intelligence 16.664.6 (5–24)

Sustained attention 57.462.9 (42–60)

Working memory 101.6615.0 (60.1–127.4)

Note. Behavioral data are presented as mean6 SD (minimum–maximum).
aData from 27 participants were not used because of large head motion
(N5 24) and missing time points in image data (N53) in either of the
two sessions.
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minimally preprocessed data by removing linear trend, regressing nui-

sance signals (24 head motion parameters (Friston, Williams, Howard,

Frackowiak, & Turner, 1996), cerebrospinal fluid, white matter and

global signals), and performing temporal band-pass filtering (0.01–0.1

Hz). The resultant residuals were used for the following analysis.

2.3 | Dynamic network construction

For each participant, whole-brain dynamic functional networks were

constructed based on the preprocessed R-fMRI data. A flow chart of

the analysis strategy is illustrated in Figure 1. Briefly, for the node defi-

nition, we employed a 268-node functional atlas (Finn et al., 2015),

which was defined using a group-wise spectral clustering algorithm

(Shen, Tokoglu, Papademetris, & Constable, 2013). To focus on the cer-

ebrum and cerebellum, thirteen nodes located in the brainstem or ven-

tricles were excluded, yielding 255 nodes for subsequent dynamic

connectivity construction. Then, we extracted the time series of each

node by averaging the time courses of all voxels within the node.

Another 264-node functional atlas (Power et al., 2011) was also utilized

for validation purposes (Section 2.8).

DFC was estimated with a widely used sliding window approach

(Allen et al., 2014; Calhoun et al., 2014; Hutchison et al., 2013; Kivi-

niemi et al., 2011; Liao, Cao, Xia, & He, 2017; Liao et al., 2015; Taglia-

zucchi et al., 2012; Zalesky, Fornito, Cocchi, Gollo, & Breakspear,

2014). Specifically, Pearson’s correlation coefficients were calculated

between any pair of nodes using segments of the time course within a

time window. The window had a width of 139 TRs (i.e., 100 s) and slide

on time with a time step of 1 TR (i.e., 720 ms). Using time window of

this width provided a sufficient number of time points (at least one

period of oscillation) to estimate functional connectivity over the low-

frequency band of interest (0.01–0.1 Hz) and to simultaneously capture

temporal changes in functional connectivity during a short period (Bet-

zel, Fukushima, He, Zuo, & Sporns, 2016; Leonardi & Van De Ville,

2015; Liao et al., 2015). Finally, for each participant in each session, we

obtained a total of 1,062 windows, each of which had 32,385 func-

tional connectivities (i.e., 255 3 254/2). Additionally, we examined the

influence of different sliding window widths on the main findings, and

validated the effect of dynamic network construction approach by

using dynamic conditional correlation (DCC) (Lindquist, Xu, Nebel, &

Caffo, 2014) (Section 2.8).

2.4 | Dynamic characteristic measurements

To quantitatively describe the time-varying characteristics of the func-

tional connectivities, we calculated three measurements, including DFC

mean strength (DFC-Str), DFC stability (DFC-Sta) and DFC variability

(DFC-Var), for each functional connectivity as follows:

DFC-Str ði; jÞ51
T

XT

t51

rði;jÞt (1)

DFC-Sta ði; jÞ512
1

ðT21Þ
XT21

t51

jrði;jÞðt11Þ2rði;jÞtj
2

(2)

DFC-Var ði; jÞ51
F

XF

Ff51

Afði;jÞ (3)

where r(i,j)t is the strength of functional connectivity between node i

and node j of a given window t; T is the total number of time windows

(i.e., T51,062); Afði;jÞ is the amplitude of the temporal fluctuations in

functional connectivity between node i and node j at a given frequency

range f; and F is the total number of discrete low frequencies of inter-

est (<0.08 Hz, corresponding to 80% energy of the frequency spec-

trum; the evaluation of the effect of the low-frequency threshold in

the DFC-Var calculation was described in Section 2.8). Notably, these

measurements reflect different aspects of dynamic features of func-

tional connectivity: DFC-Str indicates the overall strength around

which the DFC fluctuates; DFC-Sta represents the continuousness of

the temporal changes in DFC between adjacent windows; and DFC-

Var describes the overall fluctuating level of DFC across time. Of note,

DFC-Var used here takes into account the information of power and

amplitude in the frequency domain by filtering the potential fluctuating

noises contained in the high frequencies (>0.08 Hz), which is slightly

different from a simple measure of standard deviation. For each

FIGURE 1 Flow chart of the dynamic network analysis. (a) Left:

transient dynamic functional connectivity matrices at different
sliding windows. The edges of the matrices were defined as the
Pearson’s correlation between any pair of nodes in terms of the
resting-state time series. The color indicates the weight of each
edge. For a given edge/connectivity between node i and node j
(i 6¼ j), the strength fluctuates across windows. Right: definition of
nodes. The regions of interest (ROI) set including 255 regions was
obtained after removing ROIs located in the brainstem from a pre-
viously defined functional atlas (Finn et al., 2015). (b) To quantita-
tively describe time-varying characteristics, we estimated three
dynamic measurements for each functional connectivity, including
dynamic functional connectivity strength (DFC-Str), dynamic func-
tional connectivity stability (DFC-Sta) and dynamic functional con-
nectivity variability (DFC-Var). Then, for each participant, we
obtained three different DFC matrices in each session, reflecting
the intrinsic chronnectome profiles in three different ways [Color
figure can be viewed at wileyonlinelibrary.com]
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participant, we obtained three different DFC matrices in each session,

reflecting the intrinsic chronnectome profiles in three different ways.

To further ascertain whether these dynamic characteristics of the

chronnectome were strongly system dependent, we employed a previ-

ously published brain template with seven functional systems (Yeo

et al., 2011): the default mode, fronto-parietal, dorsal attention, ventral

attention, visual, sensorimotor, and limbic systems. Given that this tem-

plate included only the cerebral cortex, we added two additional sys-

tems—the subcortical and cerebellar areas—to the template according

to the automated anatomical labeling atlas (Tzourio-Mazoyer et al.,

2002), yielding nine brain systems in total (Supporting Information, Fig-

ure S1). Finally, 255 nodes were assigned to the nine systems accord-

ing to the maximal spatial overlap between nodes and systems.

Specifically, for a given node, we separately calculated the percentage

of voxels located in each system and assigned this node to the system

with the largest percentage.

2.5 | Individual variability analysis

To assess individual variability in DFC, we computed the standard devi-

ation of each dynamic characteristic (DFC-Str, DFC-Sta, and DFC-Var)

across participants (N5105) for each connectivity, yielding three indi-

vidual variability matrices in each session. To examine whether the

individual difference patterns of dynamic properties of functional con-

nectivity were consistent across scan sessions, we compared the indi-

vidual difference patterns between two sessions by calculating

Pearson’s correlation across connections for each dynamic characteris-

tic. Further, we quantified the distribution of highest variability in brain

systems by counting the number of the highest individual variability

connections (top 5%) within or between systems.

2.6 | Individual identification analysis

To explore the potential power of chronnectome profiles in discriminat-

ing individuals from each other, we performed an individual identifica-

tion analysis proposed by Finn et al. (2015). First, for each participant,

we compared the matrix of the dynamic characteristic of this participant

from Session 1 to each of the matrices of all the participants in Session

2 (S1!S2). For each comparison, the similarity was computed using

Pearson’s correlation coefficient across connections. Second, the pre-

dicted identity of this participant was assigned the same label as the

participant in Session 2 who showed maximal similarity to this partici-

pant. The accuracy of the comparison was designated 1 if the predicted

identity matched the true identity; otherwise, it was designated 0. After

the identities of all the participants had been predicted, we determined

the identification accuracy of all the participants by calculating the pro-

portion of participants with correct identification. Finally, Sessions 1

and 2 were reversed, and all the processes described above were per-

formed again (S2!S1). All these processes, including the S1!S2 and

S2!S1 identification analyses, were performed separately for each

dynamic characteristic (i.e., DFC-Str, DFC-Sta, and DFC-Var).

After obtaining the identification accuracy of each dynamic charac-

teristic, we performed a nonparametric permutation test to examine its

statistical significance. Briefly, for each permutation, we randomized

the identities of the participants in both sessions, reperformed the

identification processes and recorded the identification accuracy. An

empirical distribution of the identification accuracy was obtained with

10,000 permutations, and the 95th percentile points of the empirical

distribution were used as critical values to determine whether the

observed identification accuracy occurred by chance.

To ascertain which specific functional connectivity contributed the

most to individual identification, for each functional connectivity we

calculated the modified differential power (DP) based on Finn et al.

(2015):

DPði; jÞ512
X

l

Plði; jÞ (4)

where Plði; jÞ5 j/lkði; jÞ > /llði; jÞj1jð/klði; jÞ > /llði; jÞjð Þ=2ðN21Þ, j/lkði; jÞ
> /llði; jÞj indicates the probability that /lk between two different partici-

pants is higher than /ll within the same participant; /lkði; jÞ5XS1
l ði; jÞ3

XS2
k ði; jÞ and XS1

l ði; jÞ and XS2
k ði; jÞ represent the dynamic characteristic val-

ues of functional connectivity between node i and node j in two sessions

(S1 and S2) after z-score normalization; l and k (l 6¼ k) represent the labels

of two different participants; and N denotes the number of all partici-

pants (here, N5105). For a given functional connectivity, a higher DP

value indicates a great positive contribution to individual identification.

Moreover, to explore the system-dependent contribution to individual

identification, we counted the distribution of functional connectivity with

the highest DP value (top 5%; the results for additional two thresholds

are also shown in Supporting Information) within or between systems to

examine whether specific brain systems play important roles in discrimi-

nating individuals.

2.7 | Individual cognition prediction analysis using

support vector regression

To explore the possibility that the dynamic characteristics (DFC-Str,

DFC-Sta, and DFC-Var) of the chronnectome could significantly predict

individual cognitive performance, we performed epsilon-insensitive

support vector regression (SVR) with a linear kernel. SVR is one of the

most widely used supervised machine-learning approaches (Dosenbach

et al., 2010; Erus et al., 2015; He et al., 2013). We employed behavioral

data on high-level cognition from the HCP protocol, including execu-

tive function/cognitive flexibility (Dimensional Change Card Sort, HCP:

CardSort_AgeAdj), executive function/inhibition (Flanker task, HCP:

Flanker_AgeAdj), fluid intelligence (Penn Progressive Matrices, HCP:

PMAT24_A_CR), sustained attention (Short Penn Continuous Perform-

ance Test, HCP: SCPT_TP) and working memory (List Sorting, HCP:

ListSort_AgeAdj) (see Table 1 for more details). Then, dynamic charac-

teristics (DFC-Str, DFC-Sta, or DFC-Var) from Session 1 were sepa-

rately used as features in the SVR analysis to predict the scores of

these high-level cognitive abilities.

For the SVR analysis, the leave-one-out cross-validation (LOOCV)

strategy was adopted to provide a conservative estimate of the predic-

tion accuracy. As an example, to assess the ability of DFC-Str to predict

executive function/cognitive flexibility, in each LOOCV fold, one partic-

ipant was designated as the test sample and the remaining participants
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were used as the training set in the SVR analysis. First, the DFC-Str val-

ues of all functional connectivities (i.e., 32,385 connections) were con-

catenated to generate a feature vector for each participant; then, each

feature was normalized by subtracting the mean value and dividing it

by its standard deviation across the participants in the training set (the

average value and standard deviation were also used for normalizing

the test sample). Second, a feature selection procedure (Dosenbach

et al., 2010) was implemented by ranking features according to their

correlation coefficient with the executive function/cognitive flexibility

score, retaining only features with the highest correlation coefficient

corresponding to p value <.001 (the evaluation of the effect of the fea-

ture selection threshold in SVR is described in Section 2.8). Third, a pre-

dicted model was built using SVR to fit the relationship between the

pattern of the selected features and the score of individual executive

function/cognitive flexibility in the training set. Fourth, the model was

used to predict the behavioral score of a previously unseen test sample.

Each participant was set as the test sample once, and after all the

LOOCV folds were completed, we correlated the predicted scores and

observed scores across all folds to yield final accuracy estimation. The

predictive power of each feature was calculated by counting the num-

ber of times that this feature was selected across all folds of the

LOOCV, which was termed the feature frequency (Dosenbach et al.,

2010; Zeng et al., 2012). At the functional system level, the predictive

power was computed by summing the feature frequency of all connec-

tions within or between systems. Further, to elucidate the directions of

relationship between the dynamic features and cognitive scores, we

separated the predictive features into two types according to whether

the connections were positively or negatively correlated with high-

level cognitive capabilities. In addition, 5-fold and 10-fold cross-valida-

tion strategies were used, as described in Section 2.8.

Finally, a permutation test (10,000 times) was used to assess the

statistical significance of the observed prediction accuracy for each

dynamic characteristic (Cui, Su, Li, Shu, & Gong, 2017). During each

permutation, the observed behavioral scores of participants were ran-

domly shuffled prior to the SVR analysis. In other words, we estimated

the possibility of the same prediction performance occurring by chance.

Bonferroni correction was used to correct for multiple predictions

across three measurements and five behavioral indexes (here, N515).

SVR was implemented using the LIBSVM toolbox for Matlab

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) (Chang & Lin, 2011) with

the default settings of C51 and E50.001.

2.8 | Validation analysis

To validate our main results, we examined the effects of different

image preprocessing procedures and analysis strategies as follows. (a)

Head motion. A recent study suggested that observations of DFC could

be affected by head motion (Laumann et al., 2017); therefore, we

assessed the potential influence of head motion on our main findings in

three ways. First, during the individual cognitive prediction analysis, we

examined the relationship between the predicted behavioral scores and

the observed behavioral scores after controlling for individual mean

frame-wise head motion (HCP: Movement_RelativeRMS_mean). Sec-

ond, we performed a spike-regression-based scrubbing in the original

nuisance regression procedure during data preprocessing (Power,

Schlaggar, & Petersen, 2015; Yan et al., 2013), with the criterion of a

frame-wise displacement (FD) (Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012) above 0.5 mm; then, we repeated the main analyses

above. Third, we performed correlation analyses across participants

between the mean frame-wide head motion and the averaged value of

each dynamic characteristic to rule out the possibility that time-varying

characteristics were driven simply by head motion. (b) Parcellation

scheme. To determine whether our major results were affected by the

brain parcellations, we also computed the dynamic characteristics

based on a functional atlas (Power-264) consisting of 264 regions of

interest (Power et al., 2011); then, we reperformed the individual iden-

tification and prediction analysis. (c) Global signal. Previous studies have

suggested that while global signal regression can effectively reduce the

impacts of physiological and non-neuronal signals (Birn, Diamond,

Smith, & Bandettini, 2006; Fox, Zhang, Snyder, & Raichle, 2009; Power

et al., 2014), it may simultaneously alter the intrinsic network architec-

ture (Ibinson et al., 2015; Murphy, Birn, Handwerker, Jones, & Bandet-

tini, 2009; Weissenbacher et al., 2009). Very recently, Murphy and Fox

(2017) suggested that different preprocessing strategies are likely to

provide complementary insights into functional brain organization.

Thus, we also examined the results without global signal regression. (d)

Feature selection threshold. We examined the effects of different fea-

ture selection thresholds on our main results in the SVR analysis using

two additional feature selection thresholds (i.e., p value <.0005 and p

value <.0001). (e) Cross-validation strategy. We employed a commonly

used LOOCV strategy to estimate the prediction accuracy of the cogni-

tive prediction analysis; however, a recent study suggested that this

strategy might produce some unstable and biased estimates (Varo-

quaux et al., 2017). Thus, we also employed 5-fold and 10-fold cross-

validation strategies to conservatively validate the estimates. The 5-

fold and 10-fold cross-validations were repeated 100 times. (f) Sliding

window width. We employed a commonly used sliding window

approach to capture the dynamics of functional connectivity. However,

the optimal selection of the window width remains controversial (Allen

et al., 2014; Hutchison et al., 2013; Jones et al., 2012; Kiviniemi et al.,

2011; Zalesky et al., 2014). Two additional window widths (50 and

150 s) were considered to validate our main findings. (g) Dynamic net-

work construction approach. Recent studies have suggested that sliding

window correlation analysis with a short window width could introduce

artificial fluctuations in estimating DFC (Hindriks et al., 2016; Liegeois,

Laumann, Snyder, Zhou, & Yeo, 2017; Lindquist et al., 2014). Thus, in

this study, a long window width of 100s was adopted to avoid this

issue. However, to further assess the potential effect, we constructed

the dynamic functional brain networks by utilizing the dynamic condi-

tion correlation (DCC) approach (Lindquist et al., 2014) to estimate

DFC and validate our main results. (h) Static FC regression. To further

investigate the potential effect of static FC on the characteristics of

DFC in the individual identification and cognitive prediction analysis,

for each participant, we regressed out the static FC strength from three

dynamic characteristics across the connections using general linear

model, respectively. Then, we reperformed the individual identification

and cognitive prediction analysis using the residual from the model. (i)

Low-frequency threshold. To investigate the effects of the low-

frequency threshold in the DFC-Var calculation on the identification

accuracy and prediction performance, different thresholds (0.04 Hz and

906 | LIU ET AL.

http://www.csie.ntu.edu.tw/~cjlin/libsvm


0.19 Hz, corresponding to 70% and 90% energy of the frequency spec-

trum) were used to estimate the robustness of our findings.

3 | RESULTS

3.1 | Individual variability in dynamic characteristics of

time-varying network connectivity

Figure 2a displays the spatial patterns of individual variability in the

three dynamic properties (DFC-Str, DFC-Sta, and DFC-Var) in Session

1 (Right) and Session 2 (Left). Further cross-connection correlation

analysis revealed significant positive correlations between Session 1

and Session 2 for all three characteristics (DFC-Str: r50.85; DFC-Sta:

r50.89; and DFC-Var: r50.55; all p values <.0001) (Figure 2b), sug-

gesting a stable spatial pattern of individual differences in these

dynamic characteristics across repeated scanning sessions. At the

system level, the individual variability in the three dynamic characteris-

tics was spatially heterogeneous in both sessions, with the greatest var-

iability predominantly in the default mode, visual, dorsal attention,

sensorimotor and fronto-parietal systems (Figure 2c).

3.2 | Chronnectome-based individual identification

Based on the dynamic characteristics of the intrinsic chronnectome, we

identified individuals with the following identification accuracies:

S1!S2, 95/105 (90.5%) for DFC-Str, 82/105 (78.1%) for DFC-Sta and

56/105 (53.3%) for DFC-Var; and S2!S1, 96/105 (91.4%) for DFC-

Str, 83/105 (79.0%) for DFC-Sta; and 57/105 (54.3%) for DFC-Var (all

p values <.0001, permutation tests) (Figure 3a–c, top). To demonstrate

functional connectivity with large contributions to individual discrimi-

nation, we calculated the DP for all connections in the brain network

and showed the top 5% for each dynamic characteristic (Figure 3a–c,

FIGURE 2 Individual variability in dynamic characteristics of functional connectivity. (a) Individual variability matrices of the three dynamic
characteristics (DFC-Str, DFC-Sta, and DFC-Var) were evaluated in two sessions. (b) There was high similarity of the spatial distribution pat-
terns of individual variability in the three dynamic characteristics between the two sessions. Each dot represents the variability of one con-
nectivity. The dashed lines indicate the 95% prediction error bounds. (c) The system-dependency of the individual variability distribution in
the three dynamic characteristics. Numbers of connectivities with the highest individual variability (top 5%) within a system and between
systems (connected with other systems) were counted for each system. FC, functional connectivity; DFC-Str, dynamic functional connectiv-
ity strength; DFC-Sta, dynamic functional connectivity stability; DFC-Var, dynamic functional connectivity variability; DMN, default mode
network; FPN, fronto-parietal network; DAN, dorsal attention network; VAN, ventral attention network; VN, visual network; SM, sensorimo-
tor network; Sub, subcortical network; Cer, cerebellar network [Color figure can be viewed at wileyonlinelibrary.com]
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bottom). Generally, most of the DFCs with high DP for three character-

istics were the connections related to the default mode, fronto-parietal

and dorsal attention systems. Specifically, the connections with high

DP were mainly between the default mode, fronto-parietal and dorsal

attentional systems for DFC-Str (Figure 3a), whereas the connections

with high DP were predominantly connected to the default mode for

DFC-Sta and DFC-Var (Figure 3b,c). Of note, although high individual

variability was observed in primary systems such as the visual and sen-

sorimotor systems (Figure 2c), primary systems contributed less to indi-

vidual identification than did the default mode (Figure 3, bottom).

Similar results were observed at two additional thresholds (top 1% and

top 10%) (Supporting Information, Figure S2). These findings suggest

that DFC patterns can act as a fingerprint feature to identify individu-

als; in particular, connections involving higher order functional brain

systems play critical roles in individual identification.

3.3 | Chronnectome-based high-level cognition

prediction

Three dynamic characteristics (DFC-Str, DFC-Sta, or DFC-Var) of the

chronnectome exhibited different prediction abilities for different

higher cognitive functions. (a) DFC-Str: The SVR models using DFC-Str

patterns successfully predicted the performance of fluid intelligence for

previously unseen participants (test sample), with a predicted-observed

correlation of r50.42 (p value <.0001, corrected) (Figure 4a, left). Fur-

ther, we found that the functional connectivity within the dorsal atten-

tion system, between the default mode and ventral attention systems,

and between the default mode and cerebellar systems contributed the

most to fluid intelligence prediction (Figure 4a, right). In detail, the

predictive power of the connections within the dorsal attention system

and between the default mode and ventral attention systems was con-

tributed by the positive correlation with fluid intelligence, while the

predictive power of the connections between the default mode and

cerebellar systems was contributed by the negative correlation with

fluid intelligence (Supporting Information, Figure S3). When predicting

the performance of working memory, we found a marginally significant

predicted-observed correlation (r50.24, p value <.051, corrected)

(Supporting Information, Figure S4). Notably, the DFC-Str patterns

could not significantly predict individual executive function (both cogni-

tive flexibility and inhibition) or sustained attention. (b) DFC-Sta: When

using DFC-Sta patterns as a feature in the SVR models, we did not find

significant predictions for any of the five cognitive functions after Bon-

ferroni corrections. (c) DFC-Var: The SVR models using the DFC-Var

patterns significantly predicted the scores of executive function/cogni-

tive flexibility (r50.49, p value <.0001, corrected) and executive func-

tion/inhibition (r50.31, p value <.0015, corrected) (Figure 4b,c, left).

Specifically, connections within the default mode system made the

greatest contribution to executive function/cognitive flexibility predic-

tion (Figure 4b, right), whereas the connections within fronto-parietal

and dorsal attention systems predominantly contributed to executive

function/inhibition prediction (Figure 4c, right). Furthermore, for cogni-

tive flexibility, we observed that the predictive power of the default

mode system was contributed by both connections positively and neg-

atively correlated with this behavioral score (Supporting Information,

Figure S3). In the prediction of inhibition, the predictive power of the

fronto-parietal system was contributed by the connections negatively

correlated with inhibition, while that of dorsal attention system was

contributed by both connections positively and negatively related to

FIGURE 3 The identification accuracy and distribution of the highest differential power connectivity among systems for the three dynamic
characteristics. The identification accuracy of each dynamic characteristic is shown in the box for S1!S2 and S2!S1. Circle plots show the
functional connectivity with the highest differential power (top 5%) in individual identification for DFC-Str (a), DFC-Sta (b), and DFC-Var (c).
Outer circle segments with different colors indicate different brain functional systems, and the segment length indicates the total number of
functional connectivities with the highest differential power (both within and between systems) connected to a system. Ribbons indicate
functional connectivity, and their width represents the number of connectivity within a system or between two systems. The colors of the

inner circle segments indicate the systems to which the ribbons are connected [Color figure can be viewed at wileyonlinelibrary.com]
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inhibition (Supporting Information, Figure S3). DFC-Var had no signifi-

cant predictive power for fluid intelligence, working memory or sus-

tained attention after Bonferroni corrections.

3.4 | Validation results

We evaluated the reliability of our main findings using data obtained

under different image preprocessing procedures and analysis strategies,

including head motion correction, parcellation schemes, data prepro-

cessing without global signal regression, feature selection thresholds

and cross-validation strategies in SVR, sliding window widths, the

dynamic network construction approach, static FC regression and low-

frequency thresholds in DFC-Var calculations. The main results of the

individual variability analysis and individual identification analysis were

highly consistent across these different image preprocessing procedures

and analysis strategies (Figure 5a,b). The majority of the cognitive pre-

diction results were validated (Figure 5c), whereas the executive func-

tion prediction with DFC-Var as the feature was relatively sensitive to

the effects of several factors, such as the selection of parcellation

schemes, the absence of global signal regression, sliding window widths

and spike-based scrubbing. Moreover, we calculated the across-subject

correlations between the mean frame-wide head motion and averaged

value of each dynamic characteristic across connections and we found

no significant correlations. Together, the results of the validation analy-

sis suggested our main findings had robust reproducibility.

4 | DISCUSSION

In this study, we showed that the spatial distribution patterns of individ-

ual variability in DFC characteristics (i.e., DFC-Str, DFC-Sta, and DFC-

Var) were heterogeneously distributed among functional brain systems

and these patterns were highly similar across repeated scanning ses-

sions. More importantly, we showed that DFC could successfully distin-

guish one individual from others with high identification accuracy and

could significantly predict individual high-level cognitive behaviors,

including fluid intelligence and executive function. Notably, the default

mode, dorsal attention and fronto-parietal systems showed large contri-

butions to individual identification and cognition prediction. Collectively,

our findings provide empirical evidence to support the functional signifi-

cance of chronnectome fingerprints, which extends our understanding

of how individual brains vary temporally in unique ways.

4.1 | Chronnectome captures individual inherent

characteristics of brain and behaviors

We found that the spatial pattern of individual variation in DFC charac-

teristics was highly similar between two repeated scanning sessions,

suggesting stable individual variability of the intrinsic chronnectome.

Intriguingly, we found that the DFC pattern derived from R-fMRI

showed a notable ability to differentiate between individuals, suggest-

ing that the chronnectome at rest may act as a fingerprint that reflects

individual intrinsic characteristics. Previous studies have explored inter-

individual variability in dynamic functional architecture in terms of

associations with individual cognitive performance (Bassett, Yang,

Wymbs, & Grafton, 2015; Braun et al., 2015; Davison et al., 2016;

Gonzalez-Castillo et al., 2015; Madhyastha et al., 2015; Nomi et al.,

2017), individual demographics (Davison et al., 2016) and clinical char-

acteristics (Damaraju et al., 2014; Rashid et al., 2014; Wei et al., 2015;

Zhang et al., 2016). In a recent study, by performing a hypergraph anal-

ysis (a method based on dynamic network theory) on lifespan datasets,

Davison et al. (2016) showed that one dynamic metric (i.e., hypergraph

cardinality) exhibited individual differences and was significantly corre-

lated with age. Our finding of the strong individual identification power

of DFC patterns further suggests that chronnectomes not only vary

across individuals but also are unique for each person. Correspondingly,

the SVR analysis revealed significant predictive abilities of DFC for indi-

vidual higher cognitive performance. All our findings highlight that the

intrinsic chronnectome at rest has individual uniqueness, which may

capture individual inherent characteristics of the brain and behaviors.

FIGURE 4 Predictive ability and distribution of contribution of
dynamic characteristics to cognitive performance. Left: scatter
plots show significant positive correlations between the predicted
scores derived from the SVR analysis using DFC-Str as a feature
and the observed scores of fluid intelligence (a), DFC-Var and exec-
utive function/cognitive flexibility (b), and DFC-Var and executive
function/inhibition (c). Each dot represents the data from one sub-
ject, and the dashes indicate the 95% prediction error bounds.
Right: matrices represent the predictive power of functional con-
nectivity within and between brain functional systems for each pre-
diction on the left. The color of the outer rectangle indicates
different functional systems, and the color depth of the gird in the
matrix indicates the predictive power within and between systems
[Color figure can be viewed at wileyonlinelibrary.com]
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The individual uniqueness of the chronnectome may largely result

from both genetic and environmental factors. On one hand, previous

research has shown that dynamic network reconfigurations are associ-

ated with a genetic liability for schizophrenia (Braun et al., 2016). On

the other hand, the individual chronnectome has prominent plasticity;

the patterns of DFC can change with improvements in individual skills,

such as motor learning tasks (Bassett et al., 2011) and daily driving

(Shen et al., 2016). Therefore, genetics and acquired experience may

influence or even shape the individual chronnectome. Given each indi-

vidual’s unique genetic basis and life experiences, the individualized

chronnectome may gradually form and develop during interactions

between genetic factors and environmental adaptation.

4.2 | Chronnectome of higher order functional

systems mainly contributes to individual

characterization

In this study, we observed that the DFC with the largest variations

across individuals were located in both higher order systems (i.e.,

default mode, dorsal attention and fronto-parietal systems) and primary

systems (i.e., visual and sensorimotor systems), with the former contrib-

uting much more to individual identification and cognition prediction

than the latter. These results suggest that the DFC patterns of higher

order systems may carry more unique individual differentiating

information that reflects individual cognitive ability or demographic

characteristics than those of primary systems. Such divergent phenom-

ena might be due to the different developmental and functional fea-

tures of the two types of functional systems.

First, the primary systems are mainly distributed in the unimodal

cortex, whereas the higher order systems are mainly located in the

association cortex area, a brain area that is thought to be developmen-

tally late maturing (Gogtay et al., 2004; Yakovlev & Lecours, 1967). The

higher order functional systems may have an extended developmental

period and thus are more influenced by individual environmental

effects than primary systems (Mueller et al., 2013). Second, the higher

order systems and their collaboration with other systems are more

involved in various complex cognitive behaviors than the primary sys-

tems and play central roles in task control to adapt to changeable

external environments (Cole et al., 2013; Cole, Yarkoni, Repovs, Anti-

cevic, & Braver, 2012; Liang, Zou, He, & Yang, 2013, 2016; Liu et al.,

2016; Vatansever, Menon, Manktelow, Sahakian, & Stamatakis, 2015).

Thus, the DFC patterns of the higher order systems involving multiple

complex cognitive processing may more easily show diversity among

individuals than the primary systems, which mainly focus on basic vis-

ual and sensorimotor processing. We speculate that the extended

developmental period and cognitive processing complexity reinforce

the impact of variable environmental factors during individual develop-

ment and make interindividual variability in the higher order functional

FIGURE 5 Results of individual variability estimation, individual identification and cognition prediction in validation analysis. (a) The color
of the matrix represents the r value for the correlation of individual variability in the three dynamic characteristics between Sessions 1 and

2. Each row represents the result of a different preprocessing or analysis strategy. (b) The color of the two matrices represents the
identification accuracy using Session 1 to identify individuals in Session 2 and the reverse. (c) The color of the matrix represents the
correlation coefficient between the predicted scores and observed scores in the cognition prediction analysis. The r values or identification
accuracies with p value <.05 are shown in these matrices. The r value for DFC-Var to inhibition prediction in 5-fold across the validation
strategy (row 8, column 3) was at the marginally significant level of .05< p value< .1. In (a–c), the first row indicates the main results for
better comparisons with the validation results. n.a., not available; n.s., not significant [Color figure can be viewed at wileyonlinelibrary.com]
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systems more conspicuous. Notably, the observed variances in DFC in

primary systems, which were relatively high among individuals but did

not contribute greatly to individual identification and cognitive predic-

tion, might suggest that interindividual variability in primary systems

may be partially influenced by the temporary states or reaction of each

individual during scanning.

We also demonstrated large contributions of DFC in the default

mode, dorsal attention and fronto-parietal systems to individual fluid

intelligence and executive function. The regions identified here are

consistent with previous studies (Cole et al., 2012; Crittenden, Mitchell,

& Duncan, 2015; Dong, Lin, & Potenza, 2015; Finn et al., 2015; Leskin

& White, 2007; Reineberg, Andrews-Hanna, Depue, Friedman, &

Banich, 2015; Spreng et al., 2014; Vakhtin, Ryman, Flores, & Jung,

2014; Widjaja, Zamyadi, Raybaud, Snead, & Smith, 2013). Specifically,

functional connectivity strength within the default mode network has

been found to show an association with fluid intelligence (Cole et al.,

2012; Finn et al., 2015), and the activity of the default mode network

becomes more active when performing a task requiring more cognitive

flexibility than a simple task (Crittenden et al., 2015; Spreng et al.,

2014). Functional connectivity strength related to the dorsal attention

network is involved in executive control (Reineberg et al., 2015). With

regard to the fronto-parietal network, substantial evidence suggests

that connectivity within this network is closely linked to executive

function (Dong et al., 2015; Lin, Tseng, Lai, Matsuo, & Gau, 2015;

Reineberg & Banich, 2016; Widjaja et al., 2013). Of note, in addition to

the contribution of functional integration within a single system, previ-

ous studies also found that the complicated interactions among these

three higher order functional systems support complex cognitive proc-

esses and behaviors. For instance, the interactions between the default

mode and dorsal attention networks were increased during intelligence

testing (Vakhtin et al., 2014), and the anticorrelations between these

two networks can be regulated via the fronto-parietal network in fitting

different task requirements (Gao & Lin, 2012; Spreng, Stevens, Cham-

berlain, Gilmore, & Schacter, 2010; Spreng, Sepulcre, Turner, Stevens, &

Schacter, 2013). More recently, researchers revealed that such anticorre-

lations and their regulations by the fronto-parietal network were differ-

ent across default mode subsystems (Dixon et al., 2017), suggesting the

intricate and flexible interactions among these three high-order func-

tional systems. The findings of this study further suggest that not only

the functional architecture or activation but also the dynamic character-

istics of the higher order functional systems are crucial for individual

higher cognitive processing.

4.3 | Different dynamic measurements may capture

distinct individual information

In this study, we used three dynamic measurements to systematically

investigate time-varying characteristics of functional connectivity. Our

analyses revealed that three different dynamic measurements showed

divergent abilities in individual identification and cognitive prediction,

suggesting these three dynamic characteristics may capture different

aspects of dynamic features of functional connectivity. DFC-Str, esti-

mated as the averaged strength across time windows, is algorithmically

close to static functional connectivity, which captures the basic skele-

ton of the chronnectome. The sensitive predictive ability of DFC-Str

for fluid intelligence is in line with previous findings based on static

functional connectivity (Cole et al., 2012; Finn et al., 2015; Song et al.,

2008). DFC-Var measures the overall fluctuating level for each func-

tional connectivity across time, which is similar to the power of fluctua-

tion of correlation across time windows (Elton & Gao, 2015). We found

that DFC-Var can significantly predict individual executive function,

which is consistent with the findings of a recent study (Nguyen et al.,

2017). DFC-Sta measures the tendency to maintain a metastable state

during a short period of time (Allen et al., 2014) and might be associ-

ated with the transition between different states. Furthermore, it is

worth noting that DFC-Var could predict individual performance in

executive function, while DFC-Str (numerically closer to static func-

tional connectivity) could predict fluid intelligence, and such divergent

predictive abilities toward different cognitive performances might sug-

gest that individual inherent traits captured by the chronnectome are

different from that captured by static functional connectivity. Similarly,

previous studies suggested that static and dynamic aspects of func-

tional connectivity might simultaneously capture individual information

about stably inherent traits (e.g., abilities and tendencies) and ongoing

conscious or unconscious states, with the DFC more involved in the

latter (Elton & Gao, 2015; Kucyi, 2017). For example, Kucyi Davis

(2014) demonstrated that the mean strength of static functional con-

nectivity (numerically close to DFC-Str) within the default mode net-

work is more associated with the general tendency to mind-wandering

while the dynamic variability across time tends to reflect the degree of

ongoing mind-wandering. Given the possibility of different degree of

mind-wandering in two scanning sessions within individuals and

because DFC is more involved in such ongoing mind-wandering states

than the static connectome, mind-wandering might be one of the

potential reasons for the lower identification accuracy in DFC-Sta and

DFC-Var than in DFC-Str. In this study, our findings might provide fur-

ther evidence that the static connectome tends to reflect stably inher-

ent traits, while the chronnectome captures more ongoing states.

In addition to divergent abilities in individual identification and cog-

nition prediction, previous studies have reported that the mean

strength and variability of functional connectivity showed divergent

alterations in skill learning (Shen et al., 2016) and in neurological disor-

ders, such as mild traumatic brain injury (Mayer et al., 2015). Specifi-

cally, Shen et al. (2016) found that the variability in DFC, instead of the

mean connectivity strength, could effectively distinguish taxi drivers

from nondrivers. Mayer et al. (2015) demonstrated that the variability,

rather than the strength, of functional connectivity across resting-state

functional systems had a decreasing trend in patients with mild trau-

matic brain injury. Further, using a principal component analysis across

the individuals in Sessions 1 and 2 separately, we found that although

DFC-Str was similar to the static functional connectivity strength, nei-

ther DFC-Sta nor DFC-Var can be explained by the same factor as the

static functional connectivity strength (Supporting Information, Table

S1). Together with our findings, these lines of evidence suggest that

different dynamic measurements might reflect distinct individual inher-

ent characteristics of the brain and behavior.
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Recent studies have probed the underlying physiological and struc-

tural mechanisms of functional network dynamics in terms of different

measurements. For instance, Liang et al. (2013) found tight coupling

between regional cerebral blood flow and functional connectivity

strength (close to DFC-Str) during rest and its modulation in response

to increasing task demands. An infusion of the N-methyl-D-aspartate

(NMDA) glutamate receptor antagonist ketamine in healthy subjects

can result in enhanced functional connectivity strength (Driesen et al.,

2013) and increased dynamic brain network flexibility (Braun et al.,

2016). Intriguingly, in the resting state, the strength of DFC with direct

structural connections has been found to be generally stronger than

without direct structural connections, whereas the variability in DFC is

the opposite (Liao et al., 2015). Similar findings were also found in mac-

aques (Shen et al., 2015a, 2015b), suggesting that different dynamic

measurements might have different underlying structural bases. Given

the distinct identification and cognitive prediction abilities of different

measurements of DFC, future works should be conducted to system-

atically and comprehensively ascertain the convergence and divergence

of the structural and physiological mechanisms underlying different

dynamic characteristics of intrinsic functional connectivity.

4.4 | Methodological considerations

Several issues require further consideration. First, several confounding

factors might influence the results of DFC analyses, such as parcellation

schemes, sliding window widths, head motion (Laumann et al., 2017)

and global signal removal (Chai, Castanon, Ongur, & Whitfield-Gabrieli,

2012; Scholvinck, Maier, Ye, Duyn, & Leopold, 2010). Here, using data

obtained from two repeated scanning sessions for the same group, we

evaluated the effects of these possible influencing factors on our

results and found that most of the findings remained robust (Figure 5).

Nevertheless, future studies are required to propose better approaches

to minimize noise in estimating the dynamic BOLD signal and connec-

tivity and to evaluate the optimal parameters in dynamic network anal-

ysis approaches. Second, different dynamic measurements showed

distinct abilities for individual characterization in our work. It is worth-

while to further explore their underlying physiological or structural sub-

strates using multimodal imaging and simultaneous EEG-fMRI data,

which can help us better understand and interpret the BOLD-based

dynamic mechanisms in the brain. Third, we focused our exploration on

a cohort of young, healthy adults (22–35 years old). Exploring individual

variability in DFC in a group with a broader age range would delineate

the normal developmental trajectory of the individual variability in DFC

and would further improve our understanding of the formation and

development of individual differences in lifespan. Finally, our findings

further support the notion that DFC could provide complementary

individual information distinct from static functional connectivity. A

combination of dynamic and static network analyses is certainly worth

applying to diseased populations, which may provide more comprehen-

sive insights to deepen our understanding of the pathological mecha-

nism and exploring potential predictive neuroimaging biomarkers for

the clinical evaluation of brain diseases.
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