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ABSTRACT

Neurocognitive impairment is one of the factors that put heroin abusers at greater risk for relapse, and deficits in
related functional brain connections have been found. However, the alterations in structural brain connections that
may underlie these functional and neurocognitive impairments remain largely unknown. In the present study, we
investigated topological organization alterations in the structural network of white matter in heroin abusers and exam-
ined the relationships between the network changes and clinical measures. We acquired diffusion tensor imaging
datasets from 76 heroin abusers and 78 healthy controls. Network-based statistic was applied to identify alterations
in interregional white matter connectivity, and graph theory methods were used to analyze the properties of global
networks. The participants also completed a battery of neurocognitive measures. One increased subnetwork character-
izing widespread abnormalities in structural connectivity was present in heroin users, which mainly composed of
default-mode, attentional and visual systems. The connection strength was positively correlated with increases in
fractional anisotropy in heroin abusers. Intriguingly, the changes in within-frontal and within-temporal connections
in heroin abusers were significantly correlated with daily heroin dosage and impulsivity scores, respectively. These
findings suggest that heroin abusers have extensive abnormal white matter connectivity, which may mediate the
relationship between heroin dependence and clinical measures. The increase in white matter connectivity may be
attributable to the inefficient microstructure integrity of white matter. The present findings extend our understanding
of cerebral structural disruptions that underlie neurocognitive and functional deficits in heroin addiction and provide
circuit-level markers for this chronic disorder.
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INTRODUCTION

Dependence on heroin results in high rates of mortality,
morbidity and criminality and has become an important
public health concern (Hulse et al. 1999). Extensively
disrupted components in whole brain structures have
been identified in heroin-addicted patients. Gray matter
atrophy in heroin abusers mainly occurs in frontal and

cingulate cortices (Liu et al. 2009). Several diffusion ten-
sor imaging (DTI) studies have reported abnormal white
matter integrity, including fractional anisotropy (FA),
mean diffusivity, axial diffusivity and radial diffusivity, in
specific brain structures, such as the corpus callosum
and frontal matter, in heroin-dependent individuals (Liu
et al., 2008; Shen et al. 2012), but the results have been
inconsistent (Bora et al. 2012; Qiu et al. 2013). Although
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these previous imaging studies provided valuable infor-
mation on the neuro-anatomical basis of addiction from
segregated brain areas, a whole-system-level understand-
ing is still lacking. The abnormal organization of function
connectivity has also been revealed in heroin abusers by
both task-related functional magnetic resonance imaging
(fMRI; Wang et al. 2010) and resting-state fMRI (Yuan
et al. 2010). However, still unclear is the structural basis
of these functional network changes in heroin addiction.
The present study investigated alterations in the topolog-
ical organization of the structural network of white mat-
ter in heroin abusers.

Connectomics, which conceptualizes the whole brain
as an interconnected network, is a promising approach
for identifying circuit-level makers of this chronic disor-
der (Behrens & Sporns 2012). DTI is a primary method
for characterizing the brain’s white matter microstruc-
ture or ‘structural network’ in vivo (Hagmann et al.
2008). Graph theory enables analyses of the whole
brain efficiency of information processing and specific
network properties (Bullmore & Sporns 2009).
Network-based statistic (NBS) can be used to identify
differences in specific connections within a network
between groups. Recent advances in NBS analysis have
allowed better representations of the overall connectivity
architecture, termed the human connectome. This
allows us to understand psychiatric disorders based on
brain connection abnormalities (Zalesky, Fornito, &
Bullmore 2010). The structural connectivity of white
matter can be well identified by the combined use of
these approaches.

The default mode network (DMN) is a constellation of
brain regions that represent a ‘sentinel’ resting state and
internally oriented cognition (Buckner, Andrews-Hanna,
& Schacter 2008). Many neuropsychiatric disorders are
associated with abnormal function of the DMN
(Whitfield-Gabrieli & Ford 2012). Resting-state func-
tional connectivity alterations in the DMN have been
found in heroin abusers (Hu et al. 2012). Brain regions
that are involved in the DMN, such as the anterior
cingulate cortex and hippocampus, play an important
role in heroin addiction-related cognitive abnormalities
(Ma et al. 2011). We theorized that structural connectiv-
ity in the DMN may exhibit abnormal organization in
heroin abusers and be correlated with clinical character-
istics of heroin addiction.

Heroin abusers exhibit impairments in multiple cogni-
tive functions, especially high impulsivity and impulsive
decision-making, which are critical risk factors for relapse
(Bechara 2005). A growing body of evidence suggests
that impulsivity and declines in decision-making in heroin
abusers may arise from brain abnormalities, including
dysfunctional structural and functional networks (Ersche
et al. 2006; Xie et al. 2011; Qiu et al. 2013). Additionally,

brain abnormalities in heroin abusers may be significantly
associated with drug use characteristics (e.g. the duration
and dosage of heroin use; Yuan et al. 2010; Seifert et al. in
press). Therefore, we investigated whether brain structural
network changes are related to impairments in
neurocognitive performance, including global cognition,
impulsivity, decision-making and drug use characteristics
in heroin addiction.

MATERIAL AND METHODS

Participants

This study was a cross-sectional design that was
performed in accordance with the Declaration of Helsinki
and was approved by the Research Ethics Board at Peking
University. Seventy-six heroin-dependent individuals were
recruited from Zhongshan Compulsory Detoxification
Institute, Guangdong Province, China. They met the
Diagnostic and Statistical Manual of Mental Disorders, 4th
edition, criteria for heroin dependence but did not have
any other substance dependence history (other opioid
drug use for not more than 1month and other kinds of
addictive drug use not more than three times), with the
exception of nicotine dependence (according to medical
records and self-reports). The subjects had been abstinent
from heroin for 1month to 1 year at the time of the study.
The inclusion criteria were the following: Zhongshan
origin, male, 30–50 years old, right-handed and intrave-
nous heroin use. None of the heroin-dependent patients
received systemic pharmacological substitution treat-
ments during the study. Seventy-eight age-matched
healthy male controls were enrolled using advertisements
in the local newspaper. Control subjects were excluded if
they had any history of drug abuse or dependence other
than nicotine. No participants were currently taking anti-
psychotics, benzodiazepines, antiparkinson medications
or anticholinergics. Other exclusion criteria were the fol-
lowing: history of head injury with loss of consciousness,
current or past major Axis I psychiatric disorder (includ-
ing their first-degree relatives), history of cardiovascular
or endocrine diseases and imaging scan contraindications
(such as claustrophobia, dentures, head trauma and
metal implants). Alcohol abusers were excluded based
on the Michigan Alcoholism Screening Test. All included
subjects were determined by the structured clinical inter-
view. The participants provided written informed consent
after a detailed explanation of the procedures and risks of
the study. The subjects received monetary compensation
for participating in the study.

Neuropsychological test

The participants underwent a detailed battery of
standardized neuropsychological tests either on the same
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day or within a few days of their MRI scanning. We
focused our analysis on the following four cognitive tests.
(i) Montreal cognitive assessment (MoCA): The MoCA

is a cognitive-screening test that is used to assess
global cognitive ability (Nasreddine et al. 2005). It
includes tests of visual space and execution, naming,
memory, attention, language, abstraction, delayed
recall and orientation. The MoCA takes approxi-
mately 10–15minutes to administer and is scored
on a 30-point scale. A higher score indicates better
cognitive function, and the cutoff score is 24/25.

(ii) Barratt impulsiveness scale (BIS-11): The BIS-11 is
a well-validated self-report measure of impulsivity
(Patton, Stanford, & Barratt 1995). The BIS is a
30-item self-report questionnaire that assesses
impulsive personality traits in three dimensions:
attention (inattention and cognitive instability),
motor behavior (spontaneous actions) and non-
planning (lack of forethought). Subjects were
administered the Chinese version.

(iii) Iowa gambling task (IGT): The IGT is a common
measure of decision-making (Bechara et al. 1994),
which is a card-playing task-assessing decision-
making under uncertainty and risk. In the IGT, a
disadvantageous decision bias is reflected by a prefer-
ence for card decks that are associated with high
immediate wins but long-term losses. The IGT net
score [sum of advantageous deck choices (C+D)
minus sum of disadvantageous deck choices (A+B)]
is an index of the quality of decision-making.

(iv) Visual analogue scale (VAS). A VAS was used to
assess heroin craving at rest on a 10-point scale,
from ‘not at all’ to ‘extremely’ (Bickel, DeGrandpre,
& Higgins 1993).

Magnetic resonance imaging data acquisition

Magnetic resonance imaging was performed using a 1.5-
TMR SignaHDxt imaging system (General ElectricMedical
System, Milwaukee, WI, USA) and standard eight-channel
head coil. The routine MRI sequences included T2 fluid-
attenuated inversion recovery. T1-weighted, sagittal
three-dimensional images were acquired with a spoiled
gradient recalled echo sequence with coverage of the entire
brain (slice thickness, 1mm; repetition time/echo time,
7.816ms/2.984ms; inversion time, 450ms; flip angle,
13°; acquisition matrix, 256×256; field of view,
256×256mm2; number of averages, 2). For DTI, a total
of 28 image sets were acquired with 56 axial slices (slice
thickness, 2.4mm with no gap, repetition time/echo time,
14.4 s/85ms; three b0 images without diffusion weighting
and 25 non-collinear diffusion-weighting gradients with a
b value of 1000 s/mm2; acquisition matrix, 128×128;
field of view, 256×256mm2). Two experienced

radiologists checked the T2 images, and no abnormal brain
structures were found in the subjects.

Data preprocessing

The data preprocessing consisted of the following steps:
eddy current and motion artifact correction of the DTI
data (FSL version 4.1.9; http://www.fmrib.ox.ac.uk/fsl;
accessed April 27, 2015), estimation of the diffusion
tensor, calculation of the diffusion metrics and recon-
struction of the whole brain white matter tracts. Distor-
tions in the diffusion-weighted images that were caused
by eddy currents and head motions were corrected by
applying an affine alignment of each diffusion-weighted
image to the b=0 image. Gradient directions were ad-
justed to account for any slight rotations associated
with head movement (Leemans & Jones 2009). Diffu-
sion tensor models were estimated by solving the
Stejskal and Tanner equation, and FA and other diffu-
sion metrics were calculated at each voxel. Whole brain
white matter fiber tracts were reconstructed in native
diffusion space for each subject using the fiber assign-
ment by continuous tracking algorithm (Mori et al.
1999), embedded in DTI studio (version 3.0.3). All of
the tracts in the dataset were reconstructed by seeding
voxels with an FA value that was greater than 0.2.
Fiber tracking was initiated from the center of each
seed voxel and stopped when the angle between two
consecutive orientation vectors was greater than the
given threshold of 45°or reached voxels where FA was
less than 0.2.

Network construction

Nodes and edges are two basic elements of a network. In
the present study, we defined all of the network nodes
and edges using the following procedures (for a flow chart,
see Fig. S1).

Network node definition

The procedure that was used to define the nodes has been
described previously (Shu et al. 2011) and was performed
using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8; accessed April 27, 2015). Briefly, individ-
ual T1-weighted images were first co-registered to the b0
image in the native DTI space. The transformed T1
images were then non-linearly transformed into the
ICBM152 T1 template in MNI space. The inverse trans-
formations were used to warp the automated anatomical
labeling atlas from the MNI space to the native DTI space
with a nearest-neighbor interpolation method. Using this
procedure, we obtained 90 cortical and subcortical
regions (45 for each hemisphere), with each representing
a node of the network.
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Network edge definition

To define the network edges between the 90 regions,
we selected a threshold value for the streamline
bundles. Two regions were considered structurally
connected if at least three streamlines with two end-
points were located in each pair of two regions. Such
a threshold selection reduced the risk of false-positive
connections because of noise or limitations in the deter-
ministic tractography and simultaneously ensured the
size of the largest connected subnetwork that was
observed in the networks across all of the controls
(Shu et al. 2011). After the network edges were defined,
the weighted network analyses were performed.
Specifically, we defined the streamline number (SN) of
the connected streamlines between each pair of regions
as the weights of the network edges. As a result, we
constructed the SN-weighted white matter network for
each participant, which was represented by a symmetrical
90×90 matrix.

Network analysis

To characterize the topological organization of white
matter structural networks, several graph measures were
considered: network strength, global efficiency, local
efficiency, shortest path length, clustering coefficient
and small-worldness. The uses and interpretations of
these network measures (Rubinov & Sporns 2010) are
the following.

Network strength

The strength of a network is the average of the strength
across all of the nodes in the network. For a network
(graph) G with N nodes and K edges, we calculated the
strength of G as the following:

SP Gð Þ ¼ 1
N
∑
i∈G

S ið Þ

where S(i) is the sum of the edge weights wij (wij are the
SN values between node i and node j) linking to node i.
The strength of a network is the average of the strength
across all of the nodes in the network. To control for
the effects of the different number of total streamlines
on the network topological differences, the connectivity
matrix of each subject was first normalized to the
network strength (the total number of interconnecting
streamlines between regions) before the calculation of
the following network properties.

Small-world properties

Small-world network parameters (clustering coefficient,
Cp, and shortest path length, Lp) were originally proposed
by Watts and Strogatz (Watts & Strogatz 1998). In the

present study, we investigated the small-world properties
of the weighted brain networks (Rubinov & Sporns
2010). The clustering coefficient of a node i, C(i), which
was defined as the likelihood of whether the neighbor-
hoods were connected with each other or not, was
computed as the following:

C ið Þ ¼ 2
ki ki � 1ð Þ∑j;k

wijwjkwki
� �1=3

where ki is the degree of node i andw is the weight, which
is scaled by the mean of all weights to control the cost of
each participant at the same level. The clustering coeffi-
cient is zero [C(i) = 0] if the nodes are isolated or have just
one connection (i.e. ki=0 or ki=1). The clustering coeffi-
cient, Cp, of a network is the average of the clustering
coefficient over all nodes and indicates the extent of local
interconnectivity or cliquishness in a network.

The path length between any pair of nodes (e.g. node i
and node j) is defined as the sum of the edge lengths
along this path. For weighted networks, the length of
each edge was assigned by computing the reciprocal of
the edge weight, 1/wij. The shortest path length, Lij, is
defined as the length of the path for node i and node j
with the shortest length. The shortest path length of a
network was computed as the following:

Lp ¼ 1
N N � 1ð Þ ∑

i≠j∈G
Lij

where N is the number of nodes in the network. The Lp of
a network quantifies the ability for information to propa-
gate in parallel.

To examine small-world properties, the clustering
coefficient, Cp, and the shortest path length, Lp, of the
brain networks were compared with those of random
networks. In the present study, we generated 100
matched random networks, which had the same num-
ber of nodes, edges and degree distribution as the real
networks (Maslov & Sneppen 2002). Notably, we
retained the weight of each edge during the randomiza-
tion procedure such that the weight distribution of the
network was preserved. Furthermore, we computed the

normalized shortest path length λ (λ ¼ Lrealp =Lprandp ) and

normalized clustering coefficient γ ( γ ¼ Creal
p =Crand

p ),

where Lrandp and Crand
p are the mean clustering coefficient

and mean shortest path length of 100 matched ran-
dom networks, respectively. Importantly, two parame-
ters correct differences in the edge number and
degree distribution of the networks across individuals.
A real network would be considered small-world if
γ>1 and λ ≈1 (Watts & Strogatz 1998). Thus, a
small-world network not only has a higher local
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interconnectivity but also has the shortest path length
that is approximately equivalent to that of random
networks. These two measurements can be summarized
into a simple quantitative metric, small-worldness
(σ= γ/λ), which is typically σ>1 for small-world net-
works (Humphries, Gurney, & Prescott 2007).

Network efficiency

The global efficiency of G measures the global efficiency of
parallel information transfer in the network (Latora &
Marchiori 2001), which can be computed as the
following:

Eglob Gð Þ ¼ 1
N N � 1ð Þ ∑

i≠j∈G

1
Lij

where Lij is the shortest path length between node i and
node j in G.

The local efficiency of G reveals how much the
network is fault-tolerant and shows the efficiency of
communication among the first neighbors of node iwhen
it is removed. The local efficiency of a graph is defined as
the following:

Eloc Gð Þ ¼ 1
N

∑
i∈G

Eglob Gið Þ

where Gi denotes the subgraph that is composed of the
nearest neighbors of node i.

Network connectivity characteristics

To further localize specific pairs of brain regions where
structural connections were altered in the patients, we
used an NBS approach (Zalesky et al. 2010), which is a
non-parametric multiple-comparison procedure that
identifies differences in network connectivity. We identi-
fied regional pairs that showed between-group differences
in structural connectivity and further localized connected
networks that showed significant changes in heroin
abusers (for details, see the Statistical analysis section in
the following).

Tract-based spatial statistic analysis

To determine group-level differences in white matter
integrity, we performed tract-based spatial statistic analysis
(TBSS) using the FMRIB Software Library. The FA image of
each subject was aligned to a pre-identified target FA
image (FMRIB58_FA) by non-linear registration. All of
the aligned FA images were transformed into the
MNI152 template (1×1×1mm) by affine registration.
The mean FA image and its skeleton (i.e. the mean FA
skeleton) were created from all of the subjects. Fractional
anisotropy images from individual subjects were projected

onto the skeleton. Voxel-wise statistics across subjects were
calculated for each voxel on the common skeleton. Tract
identification of the locations of white matter structures
was based on the JHU White-Matter Tractography Atlas.
The cerebellum was excluded from the image analysis.
To better visualize the results, the data were thickened
with the ‘tbss-fill’ command.

Voxel-wise statistics in TBSS were performed using a
permutation-based inference tool for non-parametric
statistical threshold. The mean FA skeleton was used as
a mask (threshold at a mean FA value of 0.2), and the
number of permutations was set to 5000. The FA values
were first corrected by false discovery rate correction
(P<0.05). If no results were significant after false discovery
rate correction, then we tried to use AlphaSim correction.
The statistical threshold of AlphaSim correction was set at
porigin <0.01 and cluster size >5voxels, corresponding
to a corrected P<0.05. This correction was confined
within the group FA skeleton mask (thresholded at 0.2)
and was determined using Monte Carlo simulations and
the AFNI AlphaSim program (http://afni.nih.gov/afni/
docpdf/AlphaSim.pdf; accessed April 27, 2015).

Statistical analysis

The two-sample t-test was used to test differences in
demographic characteristics between groups using SPSS
16.0 software. To determine differences in neurocognitive
performance and global network metrics between groups
(Sp, Cp, Lp, Eglob, Eloc, γ, λ and σ), a multiple linear regres-
sion analysis was performed, with age and cigarettes
smoked per day as covariates.

The NBS approach was utilized to identify network
connectivity differences between heroin abusers and
healthy controls and conducted within the connections.
Briefly, a primary threshold (P<0.05) was first applied
to the one-tailed test of the general linear model that
was computed for each link to define a set of suprathreshold
links, among which any connected subnetworks and their
sizes (number of links) were then determined, obtaining
increases or decreases in subnetworks in the patients
separately. To estimate the significance for each subnet-
work, the null distribution of the connected subnetwork
size was empirically derived using a non-parametric permu-
tation approach (10000 permutations). For each permuta-
tion, all of the subjects were randomly re-allocated to two
groups, and the general linear model was computed
independently for each link. The threshold (P<0.05) was
then used to generate suprathreshold links among which
the maximal connected subnetwork size was recorded.
Finally, for a connected subnetwork size (M) that was found
in a right grouping of controls and patients, the corrected P
value was determined by finding the proportion of the
10000 permutations for which the maximal connected
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subnetwork was larger than M. Age and cigarettes smoked
per day were used as covariates in the regression analysis of
each connection.

When significant between-group differences were
observed in any network metrics and network connec-
tivity, we further assessed the relationships between
these metrics and network connectivity with the
clinical and psychological characteristics in the heroin
addiction group, which was performed by partial corre-
lation analyses with cigarettes smoked per day and age
as covariates.

The network analysis was performed using the
GRETNA package (http://www.nitrc.org/projects/gretna/;
accessed April 27, 2015). The results were visualized
using the BrainNet Viewer package (http://www.nitrc.
org/projects/bnv/; accessed April 27, 2015).

RESULTS

Demographics and neurocognitive performance

No significant difference was found in the demographic
characteristics of the subjects, with the exception of the
number of cigarettes smoked per day, which was signifi-
cantly higher in heroin abusers than in controls.
Compared with healthy controls, heroin abusers had
significantly lower MoCA and IGT scores and higher
motor and non-planning scores on the BIS-11 (Table 1).

Whole brain mapping of connectivity deficits in heroin
abusers

The NBS identified one extensive subnetwork that was
increased (34 nodes and 35 edges) and significantly
different between heroin abusers and control participants
(P=0.0021 after the 10000 permutation test; Fig. 1a).
This subnetwork could be generally categorized into three
systems: default-mode, attentional and visual. The
default-mode system mainly involved the bilateral medial
superior frontal gyrus, superior temporal pole, left inferior
parietal gyrus, bilateral precuneus and cingulate regions.
The attentional system mainly consisted of the bilateral
superior frontal gyrus, supplementary motor area and su-
perior parietal gyrus. The visual system mainly included
the bilateral superior occipital gyrus, lingual gyrus and
right fusiform. The details of the increased connections
and nodes within the subnetwork are illustrated in
Tables 2 and S1.

Individuals with heroin dependence had widespread
increases in FA compared with healthy controls (Fig. 1b).
The increase in FA was mainly located in the corpus
callosum, inferior longitudinal fasciculus, superior longi-
tudinal fasciculus and forceps major. The main clusters
are listed in Table S2.

Correlation analyses revealed that the mean FA value
within the increased clusters in the TBSS analysis was
positively correlated with the streamline number within
the increased subnetwork in the NBS analysis (Fig. 1c)

Global network properties

We found no significant differences in any global param-
eter (average strength, global and local efficiency, Lp, Cp,
λ, γ and σ) of the whole brain anatomical networks
between the two groups (Table 3). Both heroin abusers
and the healthy controls exhibited efficient small-world
properties in the white matter networks, characterized
by almost identical path lengths (λ ≈1) but higher clus-
tering coefficients (γ>1) in the brain networks compared
with the matched random networks (heroin abusers:
γ=2.8449±0.0194, λ=1.1697±0.0325; healthy con-
trols: γ=2.868±0.1636, λ=1.1649±0.0307).

Relationships between network metrics and clinical
variables and performance

No significant correlation was found between any global
network parameters, including average strength, global

Table 1 Demographic and heroin use characteristics and
neurocognitive performance of the subjects.

Heroin group
(n = 76)

Control group
(n = 78) P

Age (years) 36.22 ± 3.93 37.58 ± 4.99 0.064
Gender (male/
female)

76/0 78/0 N.A.

Cigarettes smoked
per day

26.16 ± 9.16 8.83 ± 9.82 <0.001

Heroin dosage
(g/day)

0.52 ± 0.36 N.A. N.A.

Abstinence time
(months)

5.48 ± 3.44 N.A. N.A.

Heroin duration
of use (years)

15.13 ± 3.45 N.A. N.A.

Heroin craving
at rest

2.93 ± 0.24 N.A. N.A.

MoCA score 26.64 ± 0.38 22.01 ± 0.29 <0.001
IGT score 3.59 ± 3.23 �4.64 ± 2.44 0.039
BIS-11 score
(attention)

15.72 ± 0.39 16.89 ± 0.31 0.011

BIS-11 score
(motivation)

20.72 ± 0.58 23.87 ± 0.52 0.0084

BIS-11 score
(non-planning)

24 ± 0.84 27.42 ± 0.62 0.020

BIS-11 score
(sum)

60.44 ± 1.49 68.18 ± 1.05 0.0012

BIS = Barratt Impulsiveness Scale; IGT = Iowa Gambling Task; MoCA =
Montreal Cognitive Assessment; N.A. = not applicable. The data are
expressed as mean ± standard error.
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and local efficiency, Lp, Cp, λ, γ and σ, and clinical perfor-
mance (global cognition, decision-making and impulsiv-
ity; all P>0.05).

We found a significant positive correlation between
the connection strength of the left superior frontal
gyrus and the left opercular inferior frontal gyrus

(SFG.L-SFGoperc.L) with the daily dosage of heroin
(P=0.0022). A negative correlation was found be-
tween the connection strength of the right middle tem-
poral gyrus and right middle temporal pole (MTG.R-
TPOmid.R) and non-planning scores on the BIS-11
(P=0.0087; Fig. 2).

Figure 1 Network-based statistic
(NBS) and tract-based spatial statisti-
cal (TBSS) analysis results. (a) Heroin
abusers relative to the control sub-
jects showed increased connectivity
in a subnetwork composed of 34
nodes and 35 edges (P= 0.0021 after
10 000 permutation test). The sub-
network could be categorized into
three systems: (1) the nodes in blue
are within the default-mode system,
mainly involving the bilateral medial
superior frontal gyrus, the superior
temporal pole, the left inferior parie-
tal gyrus, the bilateral precuneus and
cingulate regions; (2) the nodes in
green are within the attentional sys-
tem, including the bilateral superior
frontal gyrus, supplementary motor
area and superior parietal gyrus; and
(3) the nodes in yellow are within
the visual system, including the bilat-
eral superior occipital gyrus, lingual
gyrus and right fusiform. The node
sizes indicate their connection num-
ber in this subnetwork. The edge
width represents the T value between
groups. For details on the increased
connections and nodes within the
subnetwork, see Tables 2 and S1. (b)
Regions that showed significant in-
creases in fractional anisotropy (FA)
in heroin abusers compared with
healthy controls (AlphaSim-corrected
P< 0.05). The FA values were higher
mainly in the corpus callosum, inferior
longitudinal fasciculus, superior longi-
tudinal fasciculus and forceps major.
Details on the main clusters with in-
creases in FA in heroin abusers are
depicted in Table S2. (c) Mean FA
values within the increased clusters
in the TBSS analysis were positively
correlated with the streamline num-
ber within the increased subnetwork
in the NBS analysis
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DISCUSSION

The present study explored differences in whole brain
structural networks between heroin abusers and healthy
controls in a large sample. One increased subnetwork
characterizing widespread abnormalities in structural
connectivity was present in heroin users, including the
default-mode, attentional and visual systems. The
connection strength was positively correlated with
increases in FA in heroin abusers. Furthermore, the
connection strength of SFG.L-IFGoperc.L increased as
the daily dosage of heroin increased. The non-planning
impulsivity trait was negatively associated with an
increase in the connection strength of MTG.R-TPOmid.
R in heroin abusers. Our results indicated that structural
connectivity was extensively reorganized in heroin

Table 2 White matter connections of increase in network-based statistic subnetwork in heroin abusers.

Connection

Connection strength (mean ± standard deviation)

tHeroin group (n = 76) Control group (n = 78)

Left opercular inferior frontal and left superior frontal 80.00± 87.44 55.29 ± 76.67 3.84
Left supplementary motor area and right superior frontal 50.93± 76.48 35.72 ± 53.28 2.99
Left opercular inferior frontal and left supplementary motor area 91.25± 94.64 54.67 ± 93.29 2.78
Left supplementary motor area and right supplementary motor area 227.99± 261.74 190.82 ± 190.31 2.71
Right medial superior frontal and left medial superior frontal 568.75± 405.51 509.51 ± 373.04 2.67
Left medial superior frontal and right anterior cingulate 87.59± 81.84 77.40 ± 75.04 2.58
Left supplementary motor area and left middle cingulate 119.49± 61.69 109.36 ± 56.61 2.52
Left medial superior frontal and left middle cingulate 143.30± 117.40 113.12 ± 79.43 2.4
Right supplementary motor area and right middle cingulate 115.26± 69.60 117.49 ± 53.87 2.36
Right medial superior frontal and right middle cingulate 90.83± 69.1 81.01 ± 54.4 2.35
Right anterior cingulate and right middle cingulate 225.5 ± 94.20 189.51 ± 93.94 2.35
Left posterior cingulate and left middle cingulate 39.54± 33.8 30.54 ± 23.52 2.33
Right hippocampus and right lingual 103.26± 84.36 82.24 ± 70.19 2.27
Right hippocampus and right superior occipital 39.08± 38.42 31.32 ± 35.65 2.24
Right superior occipital and right calcarine 86.24± 48.18 74.82 ± 37.68 2.23
Right superior occipital and right cuneus 208.82± 78.09 207.91 ± 76.89 2.16
Left middle occipital and right calcarine 102.78± 109.09 58.44 ± 59.53 2.13
Left middle occipital and left superior occipital 352.12± 128.83 335 ± 119.71 2.12
Right lingual and right fusiform 194.22± 77.89 186.42 ± 69.81 2.11
Right inferior occipital and right fusiform 301.41± 148.15 274.51 ± 116.53 2.09
Left superior parietal and left middle occipital 262.84± 135.28 228.37 ± 110.94 2.04
Left inferior parietal and left superior parietal 291.08± 131.04 266.59 ± 139.16 1.99
Left angular and left superior parietal 82.46± 70.89 72.44 ± 95.95 1.97
Left precuneus and left calcarine 133.03± 60.42 118.40 ± 49.33 1.95
Left precuneus and left lingual 69.25± 34.57 61.62 ± 34.38 1.94
Left precuneus and left medial occipital 28.50± 58.26 24.38 ± 41.07 1.93
Right precuneus and right medial superior frontal 206.39± 107.30 109.58 ± 94.72 1.91
Right precuneus and right cuneus 30.45± 43.24 23.33 ± 31.08 1.91
Right paracentral lobule and right middle cingulate 29.75± 23.49 24.03 ± 17.74 1.83
Right superior temporal and right Heschl 45.72± 30.48 33.81 ± 20.39 1.79
Left superior temporal pole and left middle occipital 24.84± 27.29 21.94 ± 30.09 1.76
Right middle temporal and right fusiform 33.87± 56.09 18.23 ± 25.35 1.75
Right middle temporal and right superior temporal 564.24± 184.82 489.90 ± 173.90 1.7
Right superior temporal pole and right middle temporal 50.96± 36.97 48 ± 26.42 1.67
Right middle temporal pole and right middle temporal 104.37± 60.04 80.73 ± 41.69 1.66

Table 3 Global network metrics in heroin abusers and controls.

Global network
parameter

Heroin group
(n = 76)

Control group
(n = 78) t P

Average
strength

1107.76
± 157.49

1113.43
± 154.04

1.58 0.12

Global
efficiency

0.79 ± 0.046 0.79 ± 0.046 �0.17 0.86

Local
efficiency

1.12 ± 0.053 1.13 ± 0.050 �0.65 0.52

Lp 1.27 ± 0.076 1.26 ± 0.073 0.20 0.84
Cp 0.57 ± 0.015 0.58 ± 0.016 �0.86 0.39
λ 1.17 ± 0.033 1.16 ± 0.030 1.43 0.15
γ 2.84 ± 0.019 2.87 ± 0.16 �0.96 0.34
σ 2.43 ± 0.17 2.46 ± 0.15 �1.53 0.13

Values are expressed as mean ± standard deviation.
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abusers, and the connectivity properties were correlated
with heroin addiction-related clinical variables and
performance.

As expected, the DMN that was previously identified
as dysfunctional in heroin abusers showed abnormal
structural connectivity. The precuneus is a functional
core of the DMN (Utevsky, Smith, & Huettel 2014),
and its activation may be involved in cue reactivity in
addiction disorders (Brody et al. 2007). Areas in the
frontal part of the DMN are implicated in both the ex-
citatory and inhibitory modulation of craving associated
with addiction (Sell et al. 2000; Rose et al. 2011). The
hippocampus is a prominent node within the DMN and
the main brain region involved in learning drug-related
cues that drive relapse to drug-seeking behavior
(Robbins, Ersche, & Everitt 2008). Thus, the increase
in the connectivity of the DMN in heroin abusers may
suggest hypersensitivity to drug-related cues and
enhanced addiction-related memory processing. The
attentional network, which has opposite activational
effects to the DMN through modulatory interactions
(Hellyer et al. 2014), is implicated in attentional bias
toward drug cues in substance-dependent individuals
and contributes to the perpetuation of drug use (Hester
& Luijten 2014). Previous studies found gray matter
abnormalities in attentional network areas in heroin
abusers, including superior parietal regions (Li et al.
2014) and the supplementary motor cortex (Liu
et al. 2009). Thus, the co-disorganization of the
DMN and attentional network could arise from an
imbalance in continuous oscillation in these two sys-
tems (Kim 2014).

Consistent with the heroin-related changes in the
pattern of resting-state functional connectivity (Ma

et al. 2010; Yuan et al. 2010), the microstructural
measures of white matter connectivity also increased
in heroin abusers. We explored whether our findings
of increases in white matter connectivity were driven
by increases in FA. The TBSS analysis did reveal wide-
spread increases in FA in heroin abusers, which was
consistent with the changing pattern of white matter
connectivity in heroin abusers (Fig. 1b). Furthermore,
the increases in FA were positively correlated with the
streamline number within the subnetwork that was
increased (Fig. 1c). Thus, the increases in white matter
connectivity may be attributable to more inefficient
white matter microstructure integrity. With the deepen-
ing understanding of the imaging phenotype in psycho-
sis disorders, the increased pattern in parameters of
white matter is not always better, for which may predict
anomalous cognitive function in some diseases (Hoeft
et al. 2007). The FA is a well-established biomarker of
white matter integrity, which may be affected by many
factors, including myelination and axon size (Le Bihan
2003). The network strength, SN, may depend on the
number and myelination of axons. The myelin sheath,
which is wrapped by oligodendrocytes that can express
opioid receptors, supports axon survival and function.
Blocking opioid receptor activity decreases oligod-
endrogenesis (Persson et al. 2003). Therefore, heroin
may increase white matter integrity by increasing the
number of oligodendrocytes. However, our network
findings are not completely consistent with alterations
in the resting-state connectivity network that were previ-
ously reported in heroin users (Ma et al. 2011; Jiang et al.
2013). This may be because resting-state functional
networks are variable and continually reconfigure around
the underlying anatomical skeleton (Honey et al. 2009).

Figure 2 Relationships between network metrics and clinical variables and performance in heroin-dependent individuals. (a) A significant pos-
itive correlation was found between the connection strength of the pathway that connects the left superior frontal gyrus (SFG.L) and left oper-
cular inferior frontal gyrus (IFGoperc.L) and daily dosage of heroin use (P= 0.0022). (b) A negative correlation was found between the
connection strength of the pathway that connects the right middle temporal gyrus (MTG.R) and right middle temporal pole (TPOmid.R) and
non-planning scores (N) on the BIS-11 (P= 0.0087)
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Modulations within and between brain networks are
dynamic (Bassett et al. 2011). Based on the correlation
analysis results, we may acquire an initial understanding
of the cause of the increases in structural connectivity in
heroin addiction. Our results showed that the changes in
structural connections within frontal regions of the DMN
were positively correlated with heroin dosage, suggesting
that this connectivity abnormality was related to the se-
verity of addiction. Additionally, a significant association
was found between connectivity within the MTG and
non-planning impulsivity in heroin abusers. This finding
is consistent with a recent study that found that the
MTG is significantly hypoactive during No-Go trials (Ding
et al. 2014), suggesting that the MTG plays an inhibitory
role in impulsivity traits.

Some issues should be addressed. First, we performed
a cross-sectional study, and our results did not clearly
indicate whether the changes in network features were
a cause or consequence of heroin addiction. Second,
structural connectivity may be mirrored by functional
networks, but this may not be presumed to be a one-to-
one correspondence (Wang et al. 2015). Therefore,
combining information on structural and functional
connectivity may clarify how structural disruption
underlies functional deficits in heroin users. Third, the
changes in structural networks should be generalized in
female participants and by high-field MRI.

In conclusion, we found that heroin abuse was asso-
ciated with increases in structural connectivity within
the DMN and attentional and visual systems. Specific
within-frontal and within-temporal connections were
significantly correlated with clinical measures in heroin
abusers. Our findings revealed a structural basis for al-
terations in functional connectivity and neurocognitive
impairments in heroin abusers and suggested that
disruptions in connectivity in heroin addiction may be
attributable to inefficient white matter microstructure
integrity.
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