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Abstract

The choice of representation has a fundamental influence on the network analysis results of an empirical data set. The answers to two
basic questions — how to define a node and how to define an edge between a pair of nodes — are not obvious in the network analysis of
brain imaging data. We considered the first question in the case of magnetic resonance imaging (MRI)-based cortical thickness networks. We
selected network nodes to represent vertices of a cortical surface mesh or cortical brain regions. The first network represents the maximal
level of detail available in the analysis of cortical thickness networks, while the latter network represents the typical level of detail in the
current network analysis studies. We compared the network analysis results between these two representations. The basic network measures
behaved approximately as expected when the level of detail increased. However, the overall connectivity of nodes was greater in the vertex
level, degree of clustering was smaller in the vertex level, and the node centralities were different between the levels. Further, many
parameters of vertex-level network were more robust to the selection of the correlation threshold used to define the edges of network. We
conclude that albeit many qualitative network properties were consistent between the two resolution levels, the vertex-level resolution
revealed details that were not visible at the regional-level networks, and this additional detail could be useful for some applications. Finally, a
similar methodology as the one used here could be used to study effects of the sampling density in other brain-imaging-based networks, for

example, in resting-state functional MRI.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

The analysis of various complex networks derived from
three-dimensional images of human brain has become a topic
of emerging interest in neuroscience. The characterizations
of the architecture of such complex networks can reveal
general principles of structural and functional organization in
the human brain and increase our understanding of how the
human brain is capable of generating and integrating
information from multiple sources in real time [1]. There
exist several interesting properties of these networks — such
as small-world properties, degree distributions and the
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centrality of the network nodes — that can be derived based
on the graph theoretical analysis of these networks [2].
Most studies of complex brain networks in human have
focused upon exploring connectivity patterns under func-
tional brain states [3]. Anatomical connectivity networks
have been derived based on magnetic resonance imaging
(MRI)-based cortical thickness measurements [4—6], local
gray matter volumes [7], regional cortical surface area [8] or
diffusion MRI [9—12]. This work is related to Ref. [4], where
an anatomical connectivity network was constructed through
MRI-based cortical thickness measurements and the small-
world property of the studied network was demonstrated.
Cortical thickness was chosen as a morphometric feature
because it reflects the size, density and arrangement of cells
(neurons, neuroglia and nerve fibers) [13]. Moreover, as
discussed in detail in Ref. [4], it has been suggested that
interregional statistical associations in cortical thickness


//www.sciencedirect.com/science/journal/0730725X
http://dx.doi.org/10.1016/j.mri.2012.02.029
http://dx.doi.org/10.1016/j.mri.2012.02.029
http://dx.doi.org/10.1016/j.mri.2012.02.029
mailto:jussi.tohka@tut.fi
//dx.doi.org/10.1016/j.mri.2012.02.029

J. Tohka et al. / Magnetic Resonance Imaging 30 (2012) 978-992 979

provide important connectivity information in the human
brain [14].

In Ref. [4], the cortex was segmented into 54 regions
based on a brain atlas, and a 54x54 regional connectivity
graph was constructed and studied. The cortical thickness for
a given region was computed by averaging more local
surface mesh-based measurements of the cortical thickness
in each subject. Two regions were considered to be
anatomically connected if there was a significant correlation
of cortical thickness between the regions across a population
of 124 normal brains. The coarse anatomical parcellation of
the human cortex into 54 regions suggests that there are
functional and anatomical variations within a region. Also,
the anatomy of the human cerebral cortex is highly
individual, and there is no single acceptable strategy for
the cortical parcellation. Particularly, the validity of the atlas-
based parcellation depends on the suitability of the applied
atlas. This is an instance of the general problem of encoding
brain imaging data into a network represented by nodes and
edges between them. The problem of selecting a set of nodes
for the network is already a very challenging problem in
brain image analysis [15] and also in other applications
[16]. Moreover, the node set selection will potentially affect
the results and interpretations of the complex network
analysis [16].

The ‘node selection’ problem has received some attention
in brain imaging literature. In Ref. [17], the authors found
significant differences in various topological parameters
(e.g., small-worldness and degree distribution) between the
functional MRI (fMRI)-based resting state connectivity
networks derived based on different anatomical atlases.
The influence of the atlas choice on the topological
parameters of networks derived based on cortical thickness
and regional cortical surface area was addressed in Ref. [8],
where the authors found differences in various parameters
due to the selected parcellation scheme. In Ref. [12], a more
general choice of nodes question was addressed in the
context of anatomical networks derived from diffusion
tensor imaging and high-angular-resolution diffusion imag-
ing by studying networks at different scales of representation
varying from 82 to 4000 nodes. It was concluded that while
binary conclusions about the network organization were
unaffected by spatial scale, the quantitative values of various
network parameters varied considerably with the scale of
representation. Thus, it was recommended that the compar-
ison of network parameters across studies must be made with
a reference to the scale of representation.

In the case of MRI-based cortical thickness networks, the
anatomical precision of the network is limited by the number
of surface mesh points (vertices) at which the cortical
thickness is estimated. The purpose of the present work is to
compare the results of a coarse regional-level network
(54 nodes; called V-node network in this paper) analysis and
a fine surface-point or vertex-level network (40,962 nodes;
called N-node network in this paper) analysis. Thus, in
effect, we compare a standard network formed based on an

anatomical atlas to a network that has maximally fine scale
for this application. We report similarities and differences of
various network parameters (connectivity patterns, degree
distributions, small-world parameters and betweenness)
between these two end points of the scale and show, in
accordance to Ref. [12], that the binary conclusions were
unaffected by the spatial scale of the network, but there were
notable differences in individual parameter values. More-
over, many parameters of vertex-level N-node network were
more robust to the selection of the correlation threshold used
to define the edges of network.

2. Material and methods
2.1. Subjects, MRI acquisition and image processing

This study uses the International Consortium for Brain
Mapping 152 data set which has been described elsewhere
[18]. In brief, the subjects scanned were 152 unselected
normal volunteers. Each subject gave written informed
consent, and the Research Ethics Committee of the Montreal
Neurological Institute (MNI) and Hospital approved the
study. The scans of 28 subjects were excluded from the
analysis due to left-handedness (14 subjects), unknown
handedness (10 subjects) and failure of image processing (4
subjects). Of the remaining 124 right-handed subjects, 71
were male and 53 were female. Ages ranged from 18 to 39
years (mean age 24.38, standard deviation 4.25). MRI scans
were performed on a Phillips Gyroscan 1.5-T superconduct-
ing magnet system with Tl-weighted imaging sequence
(three-dimensional fast field echo scan with 140—160 slices,
1-mm isotropic resolution, 18-ms time repetition, 10-ms time
echo, flip angle of 30°).

The native MR images were first registered into
stereotaxic space using a nine-parameter linear transforma-
tion [19]. The images were corrected for nonuniformity
artifacts using the N3 algorithms [20]. The registered and
corrected images were further tissue classified [21], and the
fractional tissue content in each voxel was estimated [22,23].
The inner and outer gray matter surfaces were then
automatically extracted from each MR volume using the
Constrained Laplacian-based Automated Segmentation with
Proximities algorithm [23,24]. Cortical thickness was
measured in native-space millimeters using the linked
distance between the white and pial surfaces at 40,962
vertices throughout the cortex [25]. The subjectwise
thickness measurements were nonlinearly aligned to the
standard template using two-dimensional (2D) surface
registration [26].

2.2. Construction of cortical thickness networks

2.2.1. N-node network

The statistical similarity in cortical thickness between two
surface vertices was measured by computing the Pearson
correlation coefficient across subjects, and Nx N intervertex
correlation matrix (N=40,962) of such connections was
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acquired using the 124 brains included in this study. (Note
that this correlation matrix is rank deficient.) Prior to the
correlation analysis, a linear regression was performed at
every vertex to remove the effects of age, gender, age—
gender interaction and mean overall cortical thickness; the
residuals of this regression were then substituted for the raw
cortical thickness values. To form a simple undirected graph
to be analyzed using methods from the complex network
theory, the correlation matrix was thresholded at several
levels TVE {0.3, 0.36, 0.39, 0.42, 0.45, 0.48}. A node pair
with the absolute value of the correlation coefficient greater
than 7" was considered to be connected by an edge. The
carlier work on regional-level networks [4] defined the
connections based on the absolute values of correlation
coefficients, and it is not an aim of the present work to
analyze the role of negative correlations. Instead, we refer to
Ref. [27] for further discussions about the role of negative
correlations. The range of the studied correlation thresholds
was selected based on the expected properties of the
networks: we expect that the true anatomical connection
network has a single connected component. Extending the
upper limit of the studied correlation thresholds would lead
to disconnected networks that clearly do not approximate the
connection network. With the correlation threshold of
TV=0.48, 87% of the nodes belonged to the largest
connected component. When 77>0.48, this percentage
started to decrease rapidly. On the lower limit, 7"=0.30,
the characteristic path length was 2.85, which can be
considered as a limiting value for the true anatomical
correlation network given the bilateral nature of the human
brain. The threshold 7"=0.33 was not studied as it was not
an end point in the studied correlation range and it produced
no false discovery rate (FDR)-adjusted P value [28], i.e., this
threshold was too low for any of the 40,961x40,962/2
hypothesis tests to show significant correlation after the
FDR-based multiple comparisons correction.

2.2.2. V-node network

A regional-level correlation matrix was constructed as in
Ref. [4]. The labels of brain regions were transformed to the
cortical surface by assigning the value of the voxel label to
each vertex on the surface by registering each subject’s MR
images to a presegmented volumetric template using non-
linear deformations [29]. The subjectwise cortical thickness
values were averaged within a region, and 54x54 correlation
matrix was constructed as described above for the vertex-
level networks. This correlation matrix was then thresholded
to create the regional or V-node network. We note that the
operations of averaging the cortical thickness values and
removing the effects of covariates are commutative. Hence,
the regional-level correlation matrix is the same independent
of the order of these operations. This is important because we
want to study the V-node network, where the averaging takes
place after the removal of the effects of covariates for the
maximal comparability between the V-node and N-node

networks, but in Ref. [4], the removal of the effects of
covariates took place after the averaging.

2.3. Matching regional and vertex-level networks

Since the aim of this work was to study relationships
between regional- and vertex-level networks, we needed a
technique to match the correlation thresholds used to define
the edges of the network. It is not obvious how such
matching should be done because of possibly different
probability distributions between regional and vertexwise
correlation coefficients, and some possibilities and their
limitations have been outlined in Ref. [33]. We applied two
different matching techniques: direct matching and FDR
matching. In the direct matching, the V-node networks were
thresholded at the same thresholds as the N-node networks,
ie., TV=T", where T" is the threshold for the V-node
networks. We call the networks created this way directly
matched networks. However, as we will demonstrate, it may
not be reasonable to match the N-node and V-node networks
at the same correlation threshold, but to correct for multiple
comparisons. Therefore, we matched the N-node and V-node
networks so that the P value thresholds after the multiple
comparisons corrections were equal. Here, the correction
was based on FDR using the Benjamini—Hochberg proce-
dure [28,34]. In this FDR matching, we set p” (T") =
pN(™), where p”, p" denote the FDR-corrected P value
thresholds that are equivalent with the given correlation
threshold. In other words, the threshold 7" was selected so
that the FDR-corrected P value of 7" (1431 comparisons
when V=54) was equal to the FDR-corrected P value of 7
(8.39x10® comparisons when N=40,962). The correspond-
ing thresholds along with the FDR-corrected P values are
provided in Table 1. The P values for the correlation
coefficients were computed based on the f-transformation.
These networks are called FDR matched networks.

The two matching procedures can be considered to
provide upper and lower bounds of 7" given T". Clearly,
if the networks are directly matched, the possibility of a
false-positive connection (i.e., an edge which is due to
chance only) is much greater in the N-node networks. On
the other hand, if the networks are FDR matched, the
multiple comparisons correction may be more stringent
with the N-node networks. This is because we can expect

Table 1
The correspondence between the correlation thresholds and FDR-adjusted
P values limit

™ FDR ad

0.30 N/A N/A
0.36 0.5 0.23
0.39 0.1 0.29
0.42 0.05 0.31
0.45 0.005 0.38
0.48 0.0005 0.42

The V-node correlation thresholds are rounded to the first percentage that
satisfies the FDR-corrected P value.
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the dependencies between the elements of Nx N correlation
matrix to be stronger than the dependencies between
the elements of VXV correlation matrix. In these cases,
the standard Benjamini—Hochberg procedure is known to
be conservative [34,35] and thus, the proportion of
false negatives can be conjectured to be greater with
N-node networks.

We note that matching networks based on their edge
density (also called sparsity, see Ref. [33]) would not be
possible here. This is because N-node networks were
intrinsically much more sparse than their regional counter-
parts. For example, the edge density of the N-node network
with 7V=0.30 was 0.56 %, and the regional network with the
same edge density would have only eight edges.

2.4. Graph theoretical measures

We studied several graph theoretical measures of the
network topology including degree distributions, global
efficiencies, clustering, small-worldness and centrality.
There are several good reviews available explaining these
measures, €.g., [2,15], and the purpose of this subsection is to
give a brief overview and explain the choices made
where necessary.

The degree of a node 7, denoted here by £;, is the number
of edges connected to a node. When we refer specifically to
V-node (N-node) networks, we use the superscript V' (N),
writing, for example, k.. The node degrees are not
comparable between the V-node and N-node networks, and
we compared the node degrees normalized by the number of
nodes. The type of the network’s degree distribution is an
important concept in the network analysis for the classifi-
cation of the networks into different categories [36]. In Ref.
[4], it was found that the degree distributions of regional-
level cortical thickness networks followed an exponentially
truncated power law

P(k)~k"* Vexp(~k | ko), (1)

where P(k) is the fraction of nodes having a degree greater
than or equal to k£ and o and ko are the parameters of the
model (see Ref. [2]). Estimates of the model parameters were
found by fitting the model (1) to the empirical cumulative
distribution functions (cdfs) based on the least squares
criterion. The parameter o is comparable between the
N-node and the J-node networks, i.e., if we multiplied
each k" by N/V to account for the differences in the number
of nodes, exactly the same estimate for o would be obtained
as by using the original values k. The parameters k, are
not comparable, and we compared them between N-node
and V-node networks after multiplying k{ by N/V, effectively
resulting in normalization by the number of nodes.

To study the small-world properties of the networks, we
adopted the procedure of Watts and Strogatz [37], where the
clustering coefficients and characteristic path lengths of the
network under study and a randomized version of it are
compared, in a slightly modified form. Following Ref. [37],

the clustering coefficient ¢; is here defined as the fraction of
allowable edges that exist in the neighborhood of the vertex i
(see also Eq. [5] in Ref. [2] for an equivalent definition). If
k<2, we set ¢,=0 [2]. The average clustering coefficient is
denoted by <c>. We denote by dj; the length of the shortest
path between nodes i and j. The characteristic path length
L is the average of d; over all node pairs and for a
disconnected network L is infinite. To circumvent the
problem, one can study the largest connected component
of the network as, e.g., in Ref. [4]. However, to study the
small-world properties of networks, a random network with
the same degree of distribution as the original one needs to
be constructed [37]. The generation of a random network
corresponding to the largest connected component remains
problematic because the randomized network may be
disconnected even if the original network is connected.
The average degree should fulfill <k>">>log(¥) to guaran-
tee (almost surely) that the random graph is connected [37].
A simple way to circumvent this problem is to study the
global efficiency (here defined for V-node networks)

s (1/df
Efop = 2%—0 ) 2)

instead of the characteristic path length [38]. The global
efficiency measures the efficiency of the information
transmission in a parallel system, whereas the inverse of
the characteristic path length measures the efficiency of the
information transmission in a sequential system [39]. This
makes global efficiency an attractive parameter to study in
the analysis of the brain network topology because the brain
is known to instantiate parallel processing [40]. Our small-
world considerations will be based on global efficiency
instead of characteristic path length.

As already mentioned, to establish the small-world
character of a network, its global efficiency and average
clustering coefficient were compared to the same parameters
of a random network. Particularly, we studied quantities
A=E[8 Egiop and y=(c)/(c)""?, where Eji and (c)™"’
are the global efficiency and the average clustering
coefficient for a randomly rewired version of the original
network. Here, we used the rewiring procedure of Ref. [41],
which preserves the degree of each node of the network. For
the small-world networks, A~1 and y>>1 [37].

We evaluated the centrality of the node i by betweenness
centrality (BC) b,. For node i, b; is defined as the number of
shortest paths (geodesics) passing through i [42]. We
assumed that if there are a shortest paths between a pair of
nodes, then each node along these paths receives a score of
1/a. The main advantage of the BC over the closeness
centrality applied in Ref. [4] is that it is defined also for
disconnected networks [43].

We used logarithms of BC wvalues to visualize the
centrality of nodes of N-node networks because BC values
are often distributed according to a power law [44]. Because
the BC distributions were different for different thresholds



982

1.5
1t
P
‘@
c
[}
°
0.5F
0 —
0 1

log(b + 1)

density

J. Tohka et al. / Magnetic Resonance Imaging 30 (2012) 978-992

0.45 T

0.4}

0.35F

-4 -2 0
standardized log(b + 1)

-10 -8 -6

Fig. 1. Standardized logarithmic BC values of N-node networks. The Parzen estimates of the probability density functions (pdfs) of logarithms of the BC values
(Ib;) are shown in the left panel. The Parzen estimates of the pdfs of the standardized logarithmic BC values (/b;) are shown in the right panel. Pdfs of raw
logarithmic BC values matched poorly between the thresholds, while standardization produced an excellent match. Note that normalizing BCs by dividing them
by average (or median) BC would produce only a shift in the pdfs of the left panel, and this would be insufficient to ensure the match of the pdfs.

TV as is shown in Fig. 1, we standardized the logarithmic BC
values to make the comparison between the thresholds
easier. Let /b;/=log(h/+1) denote the logarithmic BC of the
node i at the correlation threshold 7%, where the addition of
1 before taking the logarithm ensures that /b; is nonnegative.
Then, the standardized (logarithmic) BC was defined as

W = IbT —median; (Ib])

r 1.483median; (lbiT —median, (ldbfT)) | :

This is a basic robust standardization procedure [45],
meaning that it is not overly sensitive to outliers.
Particularly, the denominator is known as robust median
absolute deviation scale estimator [45]. This standardization
produced an approximate match between the positive halves
of the BC distributions (see Fig. 1). We chose a robust

procedure due to outlying BC values that were abundant
particularly at higher thresholds.

2.5. Standard errors of the correlation coefficients and
average node degrees

To characterize and compare the variability within
regional- and vertex-level thickness correlations due to the
subject sample, we computed the jackknife estimates of the
standard error (S.E.) of the correlation coefficients [30].
These were computed for each possible correlation coeffi-
cient separately, producing 40,961x40,962/2 S.E. estimates
for the vertex-level analysis and 53x54/2 S.E. estimates for
the regional-level analysis. The jackknife was selected as the
estimator for the S.E. instead of more computationally
intensive bootstrap techniques due to high computational
demands for the vertex-level case; see Ref. [31] for an
explanation of the relative computational ease of jackknife

compared to bootstrap as well as the exact relationship of the
two techniques. We computed also jackknife S.E. of average
node degrees to clarify how the correlation variability affects
networks properties. The extension of analysis of the
correlation coefficient to the analysis of node degrees was
relatively straightforward in the computational sense.
However, the computational burden in the vertex level (see
Section 2.6) prevented performing the analysis of the other
network properties as done for regional networks in Ref. [8].
Also, it is unclear whether the jackknife technique, known to
fail for the estimation of S.E. of sample quantiles (see
Ref. [32]), is a suitable tool for assessing network measures.
Therefore, we validated the jackknife technique by compar-
ing it to bootstrap with a high number of bootstrap
replications (3000) with the regional-level networks.
The jackknife was found to be sufficiently reliable for the
average degree (although, not surprisingly, some upward
bias could be noticed) but failed for the maximum
degree, and therefore, we limit our discussion to the S.E.
of average degrees.

2.6. Implementation details

The network measures were computed based on custom-
ized Matlab code built on the Matlab Bioinformatics
Toolbox (Mathworks, Natick, MA, USA) except that the
BC was computed with the MATLAB BGL library version
4.0 [46]. The computation for a single vertex-level network
(original or randomly rewired) required approximately from
12 h to 4 days of CPU time on a 3.0-GHz Intel XEON
processor. The speed of the graph algorithms depends
heavily on the number of edges in the networks, which
explains the considerable timing differences between
different networks. For rewiring, we used the Matlab
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Fig. 2. The size of the largest connected component relative to the number of
nodes in the network in percents. The regional-level network was much
more prone to disconnection than the vertex-level network.

implementation available at http://www.cmth.bnl.gov/
maslov/matlab.htm, which is slow for large networks and
required several days of CPU time per network. The whole
jackknife analysis required 10 days of CPU time.

3. Results
3.1. Standard errors of the correlation coefficients

In the vertex level, the average (over all possible vertex
pairs) of the jackknife estimates for S.E. was 0.0918. In the
regional level, the average was 0.0906. As expected, the S.E.
was smaller in the regional level. Both of the values
were close to the theoretical estimate of 1/+/123~0.0902
for the S.E. of the correlation coefficient based on the

number of edges

thickness correlation x 100%

distance (mm)

normal theory. The S.E. values were stable across the
cortical surface.

3.2. Connectivity and strongest connections

The sizes of the largest connected components of
N-node and V-node networks are compared in Fig. 2. The
N-node network was connected at 7=0.3, and it was
disconnected for higher thresholds. However, also for the
higher thresholds, the largest connected component was
large, and the second largest connected component was
small (at 7"=0.48, 93 nodes corresponding to 0.2% of the
total 40,962 nodes). As can be seen in Fig. 2, the V-node
network was much more prone to disconnection even when
FDR matched the N-node network. Particularly, for the
thresholds greater than 77=0.31, the giant component was
too small to consider regional-level network as an
approximation to an anatomical connectivity network.
Thus, at the vertex level, the range of the correlation
thresholds producing reasonable networks was greater.
This observation indicates that there are network-analytical
aspects of the brain which are not properly characterized by
a regional-level network analysis.

To further characterize the additional detail visible at the
vertex level, we computed the number of edges in the
N-node network within each region V; of the applied atlas
and compared it to the maximum number of possible edges
in this region W(W;—1)/2, where W; is the cardinality of V;.
The average ratio of the number of actual intraregional edges
to the number of possible intraregional edges in the N-node
networks varied between 4.4% (for 7"=0.30) and 1.4% (for
TV=0.48), with the maximum ratio of 16.1% in left
precuneus for 7"=0.30. The negative correlation of the
region size (in terms of W;) and the fraction of realized
intraregional edges was notable: it varied between —0.40 (for
TV=0.48) and —0.43 (for 7"=0.36).

distance (mm) thickness correlation x 100%

Fig. 3. Thickness correlation and geometrical distance between nodes in the N-node correlation matrices. The left (right) panel shows 2D histogram of the
number of edges |E| (log(|E|+1)) associated with a specified thickness correlation and geometrical distance between the two end nodes. On average, the
connection strength decreased with increasing geometrical distance between node pairs.
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Table 2

Statistics about positive and negative correlations as well as IHCs and SIHCs

J. Tohka et al. / Magnetic Resonance Imaging 30 (2012) 978-992

Pos corr Neg corr Pos/neg ratio IHC SIHC IHC/SIHC ratio
7=0.36 641,054 110,449 5.8 87,170 10,547 8.3
™=0.42 394,321 27,561 143 13,725 3393 3.9
7=0.48 265,674 10,215 26.0 2694 997 2.7
Regional (T"=0.31) 76 28 2.7 58 18 3.2
Regional (77=0.36) 49 9 5.4 33 14 24
Regional (7"=0.42) 32 3 10.7 17 11 15

The column ‘Pos corr’ (‘Neg corr’) gives the number of positive (negative) thickness correlations exceeding the threshold. Only those vertex-level
interhemispheric and symmetric interhemispheric connections are counted that have a node-to-node distance larger than 1 cm to discount the influence of
connections between nearby nodes near the midline. Symmetric interhemispheric connection has a reflection distance of at most 1 cm between its end vertices.
The reflection distance between points (x;, yi, z;) and (x5, y», z) lying in opposite hemispheres in the stereotactic space was defined as

\/ (o + xz)2 + (yryz)2 + (zrzz)z, where x;, x, are the coordinates in the left—right axis. In other words, this distance is the distance between points in left
hemisphere and in right hemisphere reflected with respect to the midsagittal plane.

The strongest edges — in terms of the absolute values of
the correlation coefficient — between the nodes of the N-
node networks were typically short-range connections as can
be seen in Fig. 3. The correlation coefficient of the distance
between the anatomical location of two nodes D;; and the
absolute value of cortical thickness correlation between these
nodes corr(D;;,|r;|) was —0.38 (only the node pairs with |r;[>
0.36 were accounted for). This indicates that the average
‘connection strength’ decreased with increased distance
between the nodes. There was no qualitative difference
between these observations and corresponding results in the
carlier regional-level study [4]. Also, as in the regional-level
analysis, a few long-range (D;>75 mm) connections were
found: 42,284 with the correlation threshold 77¥=0.36, 1195
with 7V=0.42, and 48 with 7"=0.48. The 48 long-range
connections with |r;{>0.48 were most abundant between left
middle frontal gyrus and left medial occipitotemporal gyrus
(12 connections) and left cingulate and right superior
temporal gyrus (4 connections). As in the regional-level
networks, the long-range connections were typically be-
tween frontal cortex and temporal and occipital association
cortices. However, also strong long-range connections from
cingulate and insula to temporal and occipital association
cortices were found.

Selected statistics about edges of the vertex-level
networks are provided in Table 2, where also the same
statistics about edges in the regional-level network are

shown for reference. The edges with positive correlations
were more abundant than the ones with negative correlations,
with the positive/negative ratio increasing with the threshold.
Note that, under FDR matching, the positive/negative ratio
was greater in the vertex level, whereas, under direct
matching, it was almost the same between the regional and
vertex levels. Almost a full range of the anatomical distances
was observed for the node pairs connected by an edge
independent of the used correlation threshold. The maximal
correlation coefficient (0.97) was with 0.65-mm distance
[from the MNI coordinates of (3.98 mm 31.78 mm —5.42
mm) to (4.07 mm 32.33 mm —5.09 mm); a connection
between neighboring nodes]. The minimal correlation
coefficient (—0.74) was with 7.25-mm distance [from the
MNI coordinates of (2.76 mm 31.47 mm —4.42 mm) to
(—=3.20 mm 27.60 mm -—5.82 mm); interestingly, an
interhemispheric connection). For the regional network, the
maximum correlation was 0.67 (between left and right
postcentral gyrus) and the minimum correlation was —0.47
(between right occipital pole and precuneus). This shows that
the range of thickness correlations was extended in the
vertex-level analysis as expected.

The numbers of interhemispheric and symmetric inter-
hemispheric connections (IHCs and SIHCs) are also given in
Table 2. The SIHCs were defined as the connections between
homologous regions/vertices in the left and right hemi-
spheres, which were speculated to be related to white matter

Fig. 4. Symmetric interhemispheric connections. Vertices having at least one STHC at 7"=0.36, 7"=0.42 and T"=0.48 are plotted in cyan, yellow and red,
respectively. See Table 2 for the exact definition of SIHC. The SIHCs existed throughout the cortex; however, the strongest and most abundant were connections

between insulas, cingulates and parahippocampal gyri.
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tracts in the corpus callosum in Ref. [4]. For the exact
definitions of IHCs and SIHCs, see Table 2. There existed
both asymmetric and symmetric IHCs even at 7"=0.48. The
relative number of SIHCs increased with the correlation
threshold at both the regional and vertex levels. The vertices
having at least one SIHC are shown in Fig. 4. The SIHCs
existed throughout the cortex; however, strongest and the
most abundant were connections between insulas, cingulates
and parahippocampal gyri. We note that the threshold
distance (1 cm) applied to define IHCs and SIHCs was rather
arbitrary. Especially for SIHCs, a different threshold distance
might have led to different results.

3.3. Degree distributions

The maximum and average degrees of the nodes of the
networks are compared in Fig. 5. The normalized average
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Fig. 5. The average (top) and maximal (bottom) node degrees of N-node
networks compared to the average and maximal node degrees of the matched
V-node networks. The node degrees of F-node networks have been
multiplied by N/V to account for different scale of the networks. This
presentation scheme was selected in order to highlight the actual node degree
values for N-node networks.

Table 3

Standard errors of average node degrees based on jackknife

v 0.30 0.36 0.42 0.48
S.E. of <i>V 5.05 2.50 1.47 0.92
S.E. of <k>" N/A 1.41 1.09 0.47

bl N/A 0.23 0.31 0.42

The networks were FDR matched.

and maximal node degrees were considerably greater in the
matched V-node networks than in the N-node networks. The
average and maximal degrees of the N-node networks varied
between 13.5 (7=0.48) and 113 (7"V=0.30) and 266
(T=0.48) and 856 (T"=0.30), respectively. The jackknifed
standard errors for average degrees are listed in Table 3 (note

that there is no normalization between regional and vertex
. s.e.<k>N
levels in this table). For vertex-level networks, ———— was

smaller than 0.08 for all thresholds, which indicatés z]}]nodest
variability in the average degrees. Albeit nonnormalized
average degrees in vertex-level networks were considerably
greater than in the regional-level networks, the standard
errors were comparable between the levels.

The estimates of the empirical cdfs of node degrees along
with exponentially truncated power law distributions fitted to
the empirical cdfs based on the least squares criterion are
displayed in Fig. 6. It can be seen (a) that the degree
distributions of vertex-level networks did not follow the
power law and (b) that exponentially truncated power law
was a good approximation of the empirical distributions.
Hence, these considerations are the same for the vertex- and
regional-level networks (see Ref. [4]).

The values of parameters o and k for different correlation
thresholds are displayed in Fig. 7. The values of o were very
stable for the N-node networks and more stable than for the
V-node networks across the correlation thresholds. This
suggests that the degree distribution analyses were robust to
the choice of the correlation threshold in the vertex-level
case. Also, the values for the parameter o matched well
with the expectations based on the regional-level analyses
(see Fig. 7) at the levels of the correlation threshold that seem
most pertinent for the regional-level analysis (regional-level
correlation thresholds close to 0.3 [4]). However, the
parameter o' had typically a higher value than what was
expected based on o”. The cutoff values for the N-node
networks were considerably lower than the cutoff values for
the matched V-node networks multiplied by N/V to account
for difference in the number of nodes (see Fig. 7). This could
be expected based on the results concerning average and
maximal node degrees. The cutoff values for the N-node
networks decreased with an almost linear trend with
increasing correlation threshold.

3.4. Small-world properties

The characteristic path lengths (L") of the N-node
networks were 2.85 (7V=0.30), 4.37 (T"=0.36), 5.84
(TN=0.39), 8.39 (T™=0.42), 13.26 (I'""=0.45) and 21.63
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Fig. 6. Node degree distributions of the N-node networks. The empirical cdfs+ of node degrees are plotted with dashed lines, and the least squares fits of the
exponentially truncated power law distribution are plotted with solid lines. The exponentially truncated power law distribution approximated well the empirical
distributions. Only the N-node networks are considered as the corresponding figures for the regional-level networks have been presented in Ref. [4]. Figures for
7=0.39 and T"=0.45 are similar to figures for 7"'=0.42 and 7"=0.48, and they are thus omitted.

(TV=0.48): these values were characteristic path lengths of
the largest connected component. The global efficiencies are
displayed in Fig. 8. The global efficiency £ gob of the N-node
network varied between 0.05 and 0.36, and it was in line with
EgV,ob of the directly matched V/-node network. The mean
(averaged over the six correlation thresholds) absolute
difference between Eg(,b and 1/LY was 0.007, and the two
quantities agreed almost perfectly with each other. However,
as already noted, the characteristic path length is not defined
for disconnected networks. Therefore, comparing character-
istic path lengths across different resolutions would not
be straightforward, at least in here where the size of the
giant component varies considerably with the resolution
(see Fig. 2).

The clustering coefficients are displayed in Fig. 8. The
clustering coefficient of the N-node network increased until
the correlation threshold reached 7¥=0.39, and it remained
at the same level for higher correlation thresholds. For
example, under the FDR matching, the clustering coefficient
of the N-node network had a value of 0.41 for 7V=0.42, and
the clustering coefficient of the FDR-matched V-node
network had a value of 0.25 for 7"=0.31. The clustering
coefficients of V-node networks displayed a decreasing trend
with increasing correlation threshold, which is explained by

decrease in the connectivity of the networks (the V-node
networks with 77>0.31 had predominantly nodes with k; of
0 or 1 yielding ¢;=0). This was in contrast to what was found
for the N-node networks.

The quantities 2™, 17, " and ", where l’zEg[,yZ“b”d/E;,ob,
=) ey and I denotes either N or V, are shown in
Fig. 8. The quantity 2" had a value close to one for thresholds
=030 and 7=0.36, and then it started to increase,
indicating that randomly rewired network had a higher global
efficiency than the original network for higher correlation
thresholds. However, the increase in 1Y was more than
counterbalanced by the increase in 7, meaning that the
degree of clustering in the N-node networks was higher than
in the randomly rewired N-node networks, and the N-node
networks robustly displayed the small-world character in the
sense that y">>2". This can be seen also in Table 4, where a
summary measure SV = Z—:, (see Ref. [47]) is shown for
different correlation thresholds along with the summary
measures S” of the FDR-matched V-node networks. For
most thresholds, S and §” clearly exceeded the value of 1,
which Ref. [47] suggested as the limit point for the small-
world property. The SV values were higher than the matched
S” values suggesting — at least in light of this simple
summary measure — increased small-worldness of the
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Fig. 7. Parameters o and k, of the exponentially truncated power law
distributions. For N-node networks, the parameter oo was extremely stable
across the correlation thresholds, and &, decreased with an almost linear
trend with correlation threshold. £”, has been multiplied by N/¥ to account
for different scale of the networks.

vertex-level network. The summary measures S were stable
across the correlation thresholds, suggesting increased
robustness of the detection of the small-world phenomenon.

3.5. Betweenness centrality

The standardized BC values [see Eq. (3)] projected on a
population average surface are shown in Fig. 9. As is visible
in Fig. 9, the most central nodes appeared in clusters at
T%=030 and at 7"=0.36, whereas they were more equally
distributed throughout the cortex at 7"'=0.48. The thresholds
TV=0.42 and T"=0.48 showed more contrast in the
centrality analysis than the lower thresholds. Especially the
BC of zero was attributed to an increasing number of nodes:

6.80% of the nodes in the giant component received a
centrality value of 0 at T N=(.48, i.e., there were no shortest
paths passing through them.

The hub nodes found in this analysis corresponded to
some extent to 12 hub regions identified using a closeness
centrality measure in Ref. [4]; see, e.g., Ref. [43] for
discussions about different measures of node centrality.
Precentral gyri, parahippocampal gyri and superior parietal
lobule contained nodes with high vertex-level BC in
agreement to the earlier regional-level analysis. Interestingly,
high vertex-level BC was observed particularly in nodes in
insula and cingulate. In the earlier regional-level analysis, the
insula was connected to the rest of the network by a single
link (from right insula to right cingulate), and the cingulate
was not identified as a hub. Also, vertex-level BCs in middle
and medial frontal gyri and in middle temporal gyrus were
not particularly high here, but they were identified as hub
nodes in the earlier regional-level analysis.

In Ref. [4], the hub nodes were identified based on the
closeness centrality, while in the present work, we chose to
use BC to cope with the networks that were not connected
[42]. Therefore, in order to compare the vertex- and regional-
level results, we reperformed the regional-level analysis
using BC while averaging the BC values over the two
hemispheres. This analysis identified 10 hub regions, the
most important ones being precentral gyrus, middle temporal
gyrus, superior parietal lobule, and inferior and superior
frontal gyri, much in the same order as with the analysis
based on the closeness centrality. The major differences were
that the posterior central and middle frontal gyri were clearly
hubs based on the regional closeness centrality, but not based
on the regional BC. Qualitatively, the regional closeness
centrality results seemed to match better with the vertex-
level BC results.

4. Discussion

We have compared the cortical thickness networks where
nodes represented brain regions (regional level) to the
networks where the nodes represented individual points of
the cortical surface mesh (vertex level). The basic conclu-
sions were the same for both resolutions of representation:
the networks displayed small-world character with the
degree distributions following the exponentially truncated
power law. However, many network properties appeared
more stable across the correlation thresholds with the vertex-
level resolution, and additional detail was visible in this finer
level of representation. In particular, we found that the
overall connectivity of nodes was greater in the vertex level,
degree of clustering was smaller in the vertex level, small-
worldness was increased in the vertex level and the node
centralities were different between the levels.

One of basic findings was that vertex-level networks
featured increased connectivity — referring to the increased
relative size of the giant component of the network. In
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Fig. 8. The small-world properties. The global efficiency, clustering coefficient, A and y of the V-node and N-node networks as a function of the correlation
threshold. y" is plotted only under FDR matching because <c¢>"""? was zero for high thresholds of 77=0.45 and 7"=0.48. The N-node networks displayed

small-world character in the sense that Y*>\".

addition, the number of realized edges within a region of the
atlas was small compared to the potential number of edges
within that region (see Section 3.2). These findings indicate
that there existed a considerable variability of cortical
thickness within a region of the applied atlas and, thus,
there are likely to exist network-analytical aspects of the
brain which are not completely characterized by a regional-
level network analysis.

Table 4
Summary measures of small-worldness of the N-node networks (™) and
V-node networks (")

v 0.36 0.39 0.42 0.45 0.48
sV 25.69 28.25 26.41 20.19 15.90
sv 1.48 1.59 1.33 4.65 0.94
v 0.23 0.29 0.31 0.38 0.42

Correlation thresholds were FDR matched.

We observed a similar increase in the small-world
summary measure with increasing number of nodes in
networks to that observed in Ref. [12] for anatomical
connectivity networks based on diffusion MRI. In Ref. [12],
the authors attributed the observation to disproportionate
increase in the clustering coefficient and discussed that
causes for this phenomenon could include increased network
sparsity, intrinsic properties of small-world networks and
technical reasons. We did not observe a clear increase in raw
clustering coefficient values between levels of representa-
tion. However, the clustering coefficient versus correlation
threshold (that is directly related to network sparsity)
mapping behaved differently between the levels of repre-
sentation (see Fig. 8), and the parameter p — clustering
coefficient normalized by a clustering coefficient of a
random network — had a higher value in the vertex level.
Thus, the increase in small-world summary measure might
depend partially on the random network generation
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Fig. 9. Betweenness centrality. The standardized logarithmic BC values of the nodes for several correlation thresholds. Only nodes whose BC exceeds the median
BC value are shown; other nodes are depicted in gray color. From left, superior, inferior, right and left views of the cortical surface are shown. The distribution of
hub nodes appeared similar at TN:0.30, ™=0.36 and, ™V=0.42. At T =0.48, hubs were more evenly distributed throughout the cortex.

procedure or, on a more general level, the set of networks to
which the observed network is compared for establishing the
small-world property. Also, the small-world summary
measures for the N-node networks were stable across
different correlation thresholds. This suggests that an
increased small-worldness in our case was not due to the
increase in sparsity. We note that, besides the different
aspects of anatomical connectivity studied, the criteria of

small-worldness and random network generation differed
between this work and Ref. [12], where small-world
quantities were derived based on the characteristic path
length instead of the global efficiency and Erdés—Renyi
random graphs-based normalization was used instead of
rewiring-based normalization.

There were substantial differences in the centrality of
nodes between the regional and the vertex levels; some of the
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brain regions which were central in the regional level (middle
temporal and middle frontal gyri) did not contain hub nodes
in the vertex level. On other hand, cingulate and insula
contained central nodes in the vertex level but were not
identified as hub nodes in the regional-level analyses.
Although there were differences in the node centralities
between the regional and vertex levels, the vertex-level hubs
matched well to our expectations based on previous studies
concerning anatomical and functional connections. High BC
values in precentral gyrus agreed with a previous study in
primates [48] that suggested that the motor cortex has
widespread anatomical connections with parietal, prefrontal
and cingulate cortical regions. Insula, parahippocampus and
cingulate have been found to be highly interconnected with
the prefrontal regions and subcortical regions [49]. In
addition, the high BC in the primitive paralimbic and limbic
cortical regions may provide evidence to support the
‘preferential attachment,” an important concept in the
network evolution in which new nodes are preferentially
attached to the nodes that are already well connected [50].
Interestingly, hub regions identified here showed a large
overlap with those found in functional networks of the human
brain [51]. It could imply an association of morphological and
functional organization in the brain. The differences between
the centrality analysis results between the regional and vertex
level indicate that there were variations in the cortical
thickness within a brain region. While this does not nullify the
regional network analysis results in any way, it is evidence
that additional detail can be found at the vertex level.

A similar methodology as the one used here could be used
to study effects of the sampling density in other correlation-
derived brain-imaging-based networks, for example, in
resting-state fMRI (rs-fMRI). Drawing direct conclusions
about the sampling density effects on rs-fMRI networks
based on the analysis of cortical thickness networks, or vice-
versa, should however be avoided. This is because, albeit
similar spatial patterns of functional and anatomical
connectivity have been observed in specific networks [52],
the mechanisms behind functional time-series correlations in
rs-fMRI and cortical thickness correlations are different
(although potentially related). A recent study [53] compared
the results of the regional and voxel-based rs-fMRI network
analysis. The overall conclusions of that study were similar
to our conclusions concerning cortical thickness networks. In
particular, Ref. [53] reported a trend for increased connec-
tivity and greater small-worldness at increasing resolutions;
however, increases were less extreme than in our analysis.
In contrast, Ref. [54], also studying scaling effects on rs-
fMRI networks, found a trend for higher resolutions to be
associated with lower small-worldness when 7y and 4 were
calculated using the same rewiring-based normalization as in
this work. As speculated in Ref. [54], this inconsistency
between the findings of the two studies may relate to
different criteria used to match networks with different
number of nodes and indicates that the selection of the
matching criterion is an important methodological

consideration in studies of sampling density effects on
brain imaging networks.

Studies comparing different representations of connectiv-
ity networks derived based on brain imaging data are
warranted because it is not obvious how to correctly define
a network node at the current resolution of the brain imaging
data — if there is a correct definition. This problem is much
broader than just being brain imaging network related [16]. A
closely related problem is the definition of a connection
between a pair of nodes. We chose to ignore this problem
almost entirely in this work and only repeated our analysis for
varying correlation thresholds, which is the standard ap-
proach in the brain imaging network analysis. It might be that
the weighted networks provide at least a partial answer to this
problem. However, weighting edges based on the correla-
tions they receive requires a choice of the correlation to
weight mapping, which might be different for different
applications. Moreover, there is no generally accepted
method for a generation of a random network which
replicates the desired properties of a given weighted network.

In summary, regional-level representation provided a
smooth overall view to the cortical networks, while vertex-
level representation provided more detail but probably
included also details that were not interesting, e.g.,
connections between neighboring vertices. Interestingly, the
jackknife estimates for S.E. of regional- and vertex-level
correlation coefficients were similar, which suggest that, in
this sense, the noise level was similar between the regional
and vertex levels. The optimal resolution for the representa-
tion of cortical networks, if there is one, depends probably on
the application, and probably, multiple levels of representa-
tion are useful as they provide complementary information.
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