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Numerous studies argue that cortical reorganization may contribute to the restoration of motor function following stroke.

However, the evolution of changes during the post-stroke reorganization has been little studied. This study sought to identify

dynamic changes in the functional organization, particularly topological characteristics, of the motor execution network during

the stroke recovery process. Ten patients (nine male and one female) with subcortical infarctions were assessed by neurological

examination and scanned with resting-state functional magnetic resonance imaging across five consecutive time points in a

single year. The motor execution network of each subject was constructed using a functional connectivity matrix between

21 brain regions and subsequently analysed using graph theoretical approaches. Dynamic changes in topological configuration

of the network during the process of recovery were evaluated by a mixed model. We found that the motor execution network

gradually shifted towards a random mode during the recovery process, which suggests that a less optimized reorganization is

involved in regaining function in the affected limbs. Significantly increased regional centralities within the network were

observed in the ipsilesional primary motor area and contralesional cerebellum, whereas the ipsilesional cerebellum showed

decreased regional centrality. Functional connectivity to these brain regions demonstrated consistent alterations over time.

Notably, these measures correlated with different clinical variables, which provided support that the findings may reflect the

adaptive reorganization of the motor execution network in stroke patients. In conclusion, the study expands our understanding

of the spectrum of changes occurring in the brain after stroke and provides a new avenue for investigating lesion-induced

network plasticity.
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Introduction
Motor deficit is the most prominent symptom in ischaemic stroke,

and spontaneous recovery of motor function has been observed

during the first several months after stroke onset (Duncan et al.,

2000). This recovery has been commonly attributed to cortical

reorganization, which has been confirmed by the findings from

functional neuroimaging studies, including the increased recruit-

ment of contralesional motor areas (Johansen-Berg et al., 2002;

Small et al., 2002; Ward et al., 2003; Lotze et al., 2006; Calautti

et al., 2007), increased activity in non-primary motor areas

(Chollet et al., 1991; Weiller et al., 1992; Tombari et al., 2004),

and the focalization of ipsilesional sensorimotor areas (Feydy et al.,

2002; Jaillard et al., 2005) and language areas (Saur et al., 2006).

Moreover, the changes in functional and effective connectivity

(Friston, 1994), such as increased coherence over the contra-

lesional hemisphere (Gerloff et al., 2006), increased task-related

corticocortical coupling (Strens et al., 2004) and decreased

bidirectional coupling between ipsilesional supplementary motor

area and primary motor area (Grefkes et al., 2008), also imply

the existence of the functional reorganization. The cortical reorga-

nization hypothesis is also supported by structural neuroimaging

studies, in which the increased cortical thickness in the ipsilesional

sensorimotor areas was found (Schaechter et al., 2006). In addi-

tion, the white matter reorganization has been demonstrated by

studies finding increased integrity of whole brain white matter

(Wang et al., 2006). Despite these advances in the motor-related

reorganization literature, little is known about the dynamic

changes in the integrative ability of the whole motor network

associated with revealed alterations of both local brain activity

and functional and anatomical connectivity, which can enhance

our understanding of functional reorganization for the motor

restoration following stroke.

In recent years, graph theory has been introduced as a novel

method or studying functional networks in the central nervous

system (for a recent review, see Bullmore and Sporns, 2009).

This approach, based on an elegant representation of nodes (ver-

tices) and links (edges) between pairs of nodes, describes impor-

tant properties of complex systems by quantifying topologies of

network representations (Boccaletti et al., 2006). Nodes in

large-scale brain networks usually represent anatomically defined

brain regions, while links represent functional or effective connec-

tivity. Functional connectivity corresponds to magnitudes of

temporal correlations in activity (Friston et al., 1993) and may

occur between pairs of anatomically unconnected regions.

Depending on the measure, functional connectivity may reflect

linear or nonlinear interactions (Zhou et al., 2009), which can be

estimated using many methods such as linear correlation (Horwitz

et al., 1998; Fox et al., 2005; Salvador et al., 2005), coherence

(Sun et al., 2004), synchronization likelihood (Stam and van Dijk,

2002), (constrained) principal (Friston et al., 1993; Woodward

et al., 2006) or independent component analysis (McKeown and

Sejnowski, 1998) and partial least squares (McIntosh et al., 1996).

Effective connectivity represents direct or indirect influences that

one brain region exerts over another one (Friston, 1994), quanti-

fied by various mathematical models, such as structural equation

modelling (McIntosh and Gonzalez-Lima, 1994), Granger causality

(Roebroeck et al., 2005), multivariate autoregressive modelling

(Harrison et al., 2003), dynamic causal modelling (Friston et al.,

2003) and Bayesian networks (Zheng and Rajapakse, 2006). The

above-mentioned methods can really introduce measures that

describe the relationships between nodes. Based on these mea-

sures, graph theoretical methods can build abundant models of

complex networks to characterize connection patterns within the

brain further from a perspective of topological organization. It has

been generally believed that functional segregation and integra-

tion are two major organizational principles of the human brain.

An optimal brain requires a balance between local specialization

and global integration of brain functional activity (Tononi et al.,

1998). This is properly supported by graph indices [e.g. clustering

coefficients (an index of functional segregation) and path length

(an index of functional integration)] used in the analysis of func-

tional brain networks (Bassett and Bullmore, 2006; Stam and

Reijneveld, 2007). The resultant coordinated patterns with high

clustering coefficients and short path length, known as a

small-world network model (Watts and Strogatz, 1998), reflect

the need of the brain networks to satisfy the competitive demands

of local and global processing (Kaiser and Hilgetag, 2006). In addi-

tion, graph theoretical methods also allow one to evaluate regional

centrality in a graph using measures of centrality in contrast to the

connectivity methods mentioned above. So far, graph theoretical

approaches have been applied to study development (Fair et al.,

2009; Supekar et al., 2009), normal ageing (Achard and Bullmore,

2007; Wu et al., 2007; Meunier et al., 2009) and neuropsychiatric

diseases (for a recent review, see Bassett and Bullmore, 2009).

However, no study to date has used this model in an attempt

to investigate the possible alterations in the brain functional net-

works in stroke patients. Moreover, in previous studies the model

was mainly used in cross-sectional studies. In the current study, a

longitudinal design was employed to examine the changes in the

network topological pattern during stroke recovery.

In this study, we focused on the motor execution network, due

to the importance of executive function in the process of stroke

recovery (Wiese et al., 2005). We sought to investigate dynamic

changes in the topological patterns of the network during recovery

process. The main hypotheses were as follows:

(i) Several recent studies have shown that the brain functional

networks shifted towards the topological pattern of random

networks in different types of brain pathology, such as brain

tumours (Bartolomei et al., 2006a), Alzheimer’s disease

(Stam et al., 2009), schizophrenia (Micheloyannis et al.,

2006; Rubinov et al., 2009) and interictal recordings of

patients with epilepsy pathological networks (Ponten et al.,

2007) and severe traumatic brain injury (Nakamura et al.,

2009). It is possible that network randomization may be a

final common pathway for different types of brain damage,

resulting from a compensatory but non-optimized out-

growth of new connections because of impaired normal

connection pathway. In the current study, we hypothesized

that motor network randomization would be observed

during stroke recovery.
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(ii) Recent longitudinal studies have showed progressive

improvement in the ipsilesional primary sensorimotor

cortex (Dijkhuizen et al., 2001; Feydy et al., 2002) and

increasing brain activity in controlesional cerebellum (Small

et al., 2002) after stroke; we hypothesized that gradually

increased regional centralities and functional connectivity

related to such regions in the network would be observed

as time elapsed.

Materials and methods

Participants
Ten right-handed patients (nine male and one female; mean age 48.3

years; range 41–55 years) with left motor pathway subcortical stroke

were enrolled from the inpatient services at the Xuanwu Hospital of

Capital Medical University (Beijing, China). All participants were

first-onset stroke patients and showed motor deficits. None had a

history of neurological or psychiatric disorders. Conventional magnetic

resonance images (MRI) did not find any abnormalities except for the

infarct lesion in each patient. A series of neurological examinations

were performed, including the Motricity Index, Modified Rankin

Scale, the Barthel Index and the National Institutes of Health Stroke

Scale. The patients were scanned and clinically assessed at five time

points, i.e. 1 week, 2 weeks, 1 month, 3 months and 1 year after

stroke, as current literature suggests that the recovery process after

stroke was assumed to consist of three phases (Saur et al., 2006). The

clinical characteristics of the stroke patients are summarized in Table 1.

Nine age-matched healthy controls (mean age 48.1 years; range

41–53 years) were recruited in a single run to identify the

lesion-reduced functional reorganization in patients with stroke at

the early acute stage (about 2 weeks after stroke). In addition, to

validate whether brain functional networks of controls exhibited

stable network topology, two groups of healthy subjects were scanned

separately in either a cross-sectional (36 subjects; mean age

53.4 years; range 31–90 years) or longitudinal design (12 subjects;

mean age 24.1 years; range 22–29 years), where time points were

split into three 1-week intervals. The Ethics Committee of Xuanwu

Hospital approved this experiment and each participant gave informed

consent.

Table 1 Clinical and demographic data

Patient number 1 2 3 4 5 6 7 8 9 10

Age (years) 42 48 53 52 52 51 43 50 55 41

Gender M M M F M M M M M M

Localization of infarct IC IC IC IC IC IC IC IC IC IC

CR CR CR CR CR CR CR CR

BG BG BG BG

Past medical history Nil HT Nil HT HT HT Nil HT HT DT

HL DT

The number of scans 5 5 5 2 5 5 3 4 3 5

Scan time (day) 4 1 2 2 0 4 1 – 6 4

13 12 16 12 14 13 9 11 12 13

32 35 34 – 30 27 – 33 31 29

147 88 97 – 92 93 – 93 – 111

354 301 350 – 369 411 300 432 – 375

Motricity Index 33 0 14 14 141 14 28 – 37 0

(0–200) 88 14 58 28 183 37 47 86 53 14

130 19 88 – 198 47 – 138 91 33

190 82 113 – 198 88 – 179 – 78

190 95 113 – 198 116 130 183 – 83

Modified Rankin Scale 5 5 5 5 5 5 5 – 5 5

(0–5) 5 5 4 5 3 5 5 5 5 5

3 5 3 – 2 4 – 3 4 5

1 3 3 – 1 3 – 2 – 3

1 3 3 – 1 1 2 2 – 3

Barthel Index 20 0 20 0 0 10 20 – 25 0

(0–100) 55 25 60 25 85 25 30 15 25 15

85 35 95 – 90 50 – 70 60 25

100 80 95 – 100 75 – 100 – 60

100 85 95 – 100 100 90 100 – 60

National Institutes of Health Stroke Scale 10 14 8 11 5 10 7 – 8 15

(0–15) 3 11 6 6 2 8 5 6 7 13

2 10 3 – 2 8 – 5 5 13

0 8 2 – 0 5 – 2 – 6

0 5 2 – 0 2 1 1 – 6

M = male; F = female; IC = internal capsule; CR = corona radiate; BG = basal ganglia; HT = hypertension; DT = diabetes; HL = hyperlipidaemia; ‘–’ = no functional MRI data.
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Data acquisition
All images were acquired on a Siemens Trio 3.0 Tesla MRI scanner

(Siemens, Erlangen, Germany) at the Xuanwu Hospital of Capital

Medical University. The head of each participant was snugly fixed

by foam pads to reduce head movements and scanner noise. All func-

tional magnetic resonance imaging (fMRI) data of the whole brain

from the top of the brain to the lower part of the medulla oblongata

were acquired using an echo-planar imaging sequence: 32 axial slices,

thickness/gap = 3/1 mm, matrix = 64�64, repetition time = 2000 ms,

echo time = 30 ms, flip angle = 90�, field of view = 220 mm� 220 mm.

Structural images were obtained in a sagittal orientation employing a

magnetization prepared rapid gradient echo sequence over the whole

brain: 176 slices, thickness/gap = 1.0/0 mm, matrix = 256�224, repe-

tition time = 1600 ms, echo time = 2.6 ms, flip angle = 9�, field of

view = 256 mm�224 mm. T2-weighted images were acquired using a

turbo-spin-echo sequence: 20 axial slices, thickness/gap = 5/6.5 mm,

matrix = 512� 416, repetition time = 4140 ms, echo time = 92 ms, flip

angle = 150�, field of view = 187 mm� 230 mm. During the

echo-planar imaging data acquisition, subjects were instructed to

keep awake, relax with their eyes closed and remain motionless as

much as possible. Each scan lasted for 6 min and 180 image volumes

were obtained. For each patient, a different number of scans were

performed after stroke. In total, 42 acquisitions (up to five scanning

sessions per subject) were collected (Table 1).

Preprocessing of functional MRI data
For the dataset of each subject, the first 10 volumes were discarded to

allow for magnetization equilibrium effects and the adaptation of the

subjects to the circumstances, leaving 170 volumes for further analysis.

The resulting datasets were corrected for delay in slice acquisition and

motion using SPM5 (http://www.fil.ion.ucl.ac.uk/spm) software. The

realigned images were spatially normalized to the standard space of

the Montreal Neurological Institute and smoothed (4 mm isotropic

kernel). Finally, temporal filter (0.01–0.1 Hz) was carried out based

on an ideal rectangle window filter.

Regions of interest in the motor
execution network
In general, most stroke patients suffer from various degrees of motor

deficit. The recovery from stroke is a complex process, which has been

demonstrated to be associated with functional reorganization across

brain areas (for a review, see Calautti and Baron, 2003). Recently, a

study has demonstrated functional reorganization of motor execution

areas rather than motor preparation areas in post-stroke hemiparesis

(Wiese et al., 2005). Therefore, in this study, we mainly focused on

the dynamic changes in the organization of the motor execution net-

work controlling for the movement of the affected hand (right hand in

this study). We selected the regions of interest associated with the

motor execution network from our previous work with a simple

motor task using the right hand (Jiang et al., 2004). The regions of

interest included 24 regions, such as left primary motor cortex, bilat-

eral dorsolateral and ventrolateral premotor cortex, bilateral superior

parietal lobule, bilateral basal ganglia, bilateral thalamus, anterior infe-

rior cerebellum, postcentral gyrus, dentate nucleus, fusiform gyrus,

cuneus cortex and posterolateral cerebellum. Recent studies, however,

reported that brain activity in fusiform gyrus, cuneus cortex and pos-

terolateral cerebellum were probably associated with visual represen-

tation, motor imagery and instruction events (Allen et al., 1997;

Hanakawa et al., 2008) rather than motor execution. Therefore,

these five regions of interest were excluded from the current study.

In addition, we made two modifications. First, we separated the sup-

plementary motor area region of interest into two (left and right) in

order to study whether these performed different roles during the

recovery process. Second, we added the right motor cortex into the

studied regions of interest since this region might play a pivotal role in

stroke recovery (Calautti and Baron, 2003). The original motor cortex

coordinates were modified according to Fink et al. (1997) and Ward

et al.’s (2003) studies to locate accurately onto the motor hand area.

Thus, a total of 21 regions of interest were obtained by creating

10 mm diameter spheres around the predefined coordinates

(Table 2). In addition, to validate our results independently of the

regions of interest selection, we applied the same analysis procedures

mentioned below to the motor-related and motor-imagery areas

reported in Hanakawa et al.’s (2008) study. Notably, from the meth-

odological point of view, this study focused on the functional reorga-

nization on the basis of the changes in topological patterns of

coordinated networks, while many previous studies addressed this

issue using other approaches focusing on local features, such as

brain activity (for a review, see Calautti and Baron, 2003) and func-

tional connectivity (Gerloff et al., 2006; Saur et al., 2006; Grefkes

et al., 2008). From a network perspective, the graph theoretical

approaches employed in this study were interested in exploring

dynamic changes in the topology of network organization during

stroke recovery, as opposed to comparing to the methods mentioned

above.

Construction of brain functional
networks
The time series of all voxels in each region of interest were extracted

and averaged to obtain a representative time series. Using a multiple

linear regression model, spurious variance of the blood oxygen level

dependent signal unlikely reflecting neuronal activity was removed

from the mean time series (the dependent variable) by regressing

out signal attributable to the six parameters obtained by rigid-body

head motion correction (three for translation and three for rotation as

predictors). The residuals of this regression were then used to substi-

tute for the raw mean time series of the corresponding regions.

For each scan of every subject, we computed Pearson’s correlation

coefficients between the time series of all possible pairs of 21 regions,

yielding one symmetric correlation matrix (i.e. functional connectivity).

The network sparsity (i.e. connection density) was defined as the

number of existing connections divided by all of their possible connec-

tions (Achard and Bullmore, 2007; Wang et al., 2009), and used as a

threshold measure to convert each correlation matrix into a graph. For

a given sparsity, a data-specific correlation value can be determined

and separately used to threshold each correlation matrix. Only those

absolute correlation coefficients higher than the threshold value were

referred to as edge weights. We repeated the same procedure for all

correlation matrices. To assure that the functional connectivity used in

this study reflected coupling between regions of interest, we per-

formed statistical tests on the functional connectivity matrix con-

structed from each participant in each session by using one-sample

t-tests (P50.01). The ratios of significant connections to all the pos-

sible connections are represented in Supplementary Fig. S1. From this

figure, we found that the minimum sparsity was slightly more than

50%. Thus, the sparsity threshold of 0.5 was used to convert con-

nectivity matrices into weighted networks (see supplementary mate-

rials for the effect of different sparsity thresholds), which led to all
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regions of interest included in the network (except 3 sessions of the

42 scanning sessions including 19 regions).

Graph theoretical approaches
Small-world measures of a network (clustering coefficient Cp, and

shortest path length Lp) were originally proposed by Watts and

Strogatz (1998). Briefly, the Cp is the average of the clustering coef-

ficients over all nodes in a network, which quantifies the extent of

local cliquishness or local efficiency of information transfer of a net-

work. The Lp of a network is the average minimum number of con-

nections that link any two nodes of the network, which quantifies the

ability of parallel information propagation or global efficiency (Latora

and Marchiori, 2001) of a network. Most brain network studies to

date have investigated the brain’s topological properties by analysing

binarized graphs in which every network edge has an equal weight of

1. In this study, we characterized the dynamic changes in the coordi-

nated pattern of motor execution networks by a weighted network

analysis approach, which took into account of network edge strength

in terms of functional connectivity.

Weighted clustering coefficient
For a weighted graph, the weighted clustering coefficient of a vertex i

is defined as (Barrat et al., 2004)

Cw
i ¼

1

siðki � 1Þ
�ðj,kÞ

wij þwik

2
aijaikajk ,

where the normalizing factor siðki � 1Þ [si is the strength of the vertex

defined as the sum of the weights wij(the correlation coefficients

between regions) of the connected edges: si ¼ �jwij] assures that

0 � Cw
i � 1; ki (generally called the node degree) is the number of

the edges connected to the node i; aij is the element of adjacency

matrix, which is 1 if there is a edge connecting the node i and node j,

otherwise is 0. Thus, the weighted clustering coefficient of a weighted

network with N nodes is defined as

Cw ¼
1

N
�N

i¼NCw
i :

Apart from the weighted clustering coefficient, we note that alter-

native definitions have recently been proposed (Onnela et al., 2005;

Stam et al., 2009).

Weighted shortest path length
The original Lp definition is problematic in graphs that include more

than one component. To avoid this situation, Lp is measured here by

using an inverse of the harmonic mean of the minimum path length as

proposed by Newman (2003). For a weighted graph, the weighted

shortest path length is defined as

Lw ¼
NðN� 1Þ

�N
i¼1�N

j6¼i1=l
w
ij

where lwij ¼ min
i,j
ðsumðdijÞÞ and dij ¼ 1=wij. Here, the shortest

weighted path length lwij between any pair of node i and j in

the graph indicates the minimum value of the sum of transformed

weights dij (i.e. functional distance) over all possible paths. Typically,

regular networks are high Cw with large Lw but random networks

are low Cw with small Lw. To correct for differences in the mean

connection weights across multiple scanning sessions and subjects,

we computed the normalized Cw (Gamma ¼ Cw=Cw
rand) and

Lw (Lambda ¼ Lw=Lw
rand) by comparing Cw and Lw values with the

Table 2 Regions of interest for the motor execution network

ID Region Abbreviation Side MNI coordinate

x y z

1 Superior cerebellum SCb R 16 �59 �21

2 Primary motor cortex M1 L �38 �22 56

3 Primary motor cortex M1 R 38 �22 56

4 Thalamus Th L �10 �20 11

5 Superior parietal lobule SPL L �22 �62 54

6 Supplementary motor area SMA L �5 �4 57

7 Supplementary motor area SMA R 5 �4 57

8 Dorsolateral premotor cortex PMd R 28 �10 54

9 Ventrolateral premotor cortex PMv L �49 �1 38

10 Superior cerebellum SCb L �25 �56 �21

11 Superior parietal lobule SPL R 16 �66 57

12 Dentate nucleus DN R 19 �55 �39

13 Ventrolateral premotor cortex PMv R 53 0 25

14 Anterior inferior cerebellum AICb L �22 �45 �49

15 Anterior inferior cerebellum AICb R 16 �45 �49

16 Postcentral gyrus PCG R 37 �34 53

17 Dorsolateral premotor cortex PMd L �22 �13 57

18 Basal ganglia BG R 22 �2 12

19 Basal ganglia BG L �25 �14 8

20 Thalamus Th R 7 �20 11

21 Dentate nucleus DN L �28 �55 �43

Note that the regions are selected from a previous study (Jiang et al., 2004). We carefully examined the location of each region of interest with a 10 mm diameter sphere
and did not observe any overlap between each pair of regions by their Euclidean distance. MNI = Montreal Neurological Institute.
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corresponding index averaged over 50�-matched surrogate networks

(Maslov and Sneppen, 2002; Sporns and Zwi, 2004).

Betweenness centrality
In this study, we also analysed nodal (regional) characteristics of the

brain network, which were measured by using betweenness centrality

(Freeman, 1977)

Bi ¼ �s6¼i 6¼t
PstðiÞ

Pst
,

where Bi is the betweenness of a node i in the network; PstðiÞ indicates

the number of shortest paths between any two nodes (s and t) that

pass through the node i; and Pst denotes the total number of shortest

paths between the two nodes (s and t). Furthermore, we calculated

the normalized betweenness centrality BCi ¼ Bi=5B4 (He et al.,

2008), where <B> is the averaged betweenness across all

the nodes. As a regional centrality measure, the BC captures the

influence of a node over information flow between other nodes in

the network.

Statistical analysis
In this study, a linear mixed model was employed to characterize

monotonic changes in network parameters (i.e. gamma, lambda,

betweenness centrality and functional connectivity) over time (or

degree of clinical recovery). The random intercept term accounts for

the correlation due to repeated measurements within single patient

(Gibbons et al., 1988). This model can allow us to use all available

data for each patient, even if some time points are missing. Each

patient was assumed to possess a common slope (fixed effect) with

only the intercepts allowed to vary (random effect). The model was

the following:

Yij ¼ �þ bi þ Xij�þ "ij, i ¼ 1, 2, :::, N,

where Yij is each network parameter from the jth scan (up to five

scans) of the ith patient;� is the intercept term common to all subjects;

bi is a random intercept allowing a unique intercept for each patient; �

is the scalar of fixed effect; Xij takes the values x of days post-stroke

operated by the exponential function (e�x=�) or normalized neurolog-

ical scores (calculated by subtracting the subject-specific mean from

the score of each session), where � is assigned by fitting the normal-

ized Motricity Index scores to the exponential expression, here �= 29;

N is the number of subjects; and "ij is the residual error of the model.

The model parameters were estimated by the restricted maximum

likelihood method and considered significant if the P values were

50.05.

Results

Behavioural data
The mean interval (�standard deviation) from stroke onset to each

of the five scans was 2.7� 1.9, 12.5� 1.8, 31.4� 2.7,

103.0� 20.7 and 361.5� 46.7 days. The lesions were represented

by T2-weighted images in the first session (Fig. 1) and were mea-

sured by manually tracing on the T2-weighted images using

MRIcro software (version 1.40, http://www.mricro.com). The

mean lesion volume was 11.2� 9.5 ml. In this study, of the ten

patients, six patients participated in all five functional MRI

sessions. For the other participants, the number of scans is

shown in Table 1. Based on these subjects, one-way repeated

measures analysis of variance (ANOVA) was performed on each

of the scales (i.e. Motricity Index, Modified Rankin Scale, the

Barthel Index and National Institutes of Health Stroke Scale) and

all the results demonstrated significant recovery (P50.001).

Dynamic changes in network topology
The gamma and lambda quantify the extent of local cliquishness

and globally parallel communication of information transfer of a

network, respectively, independent of mean connection strength.

In this study, the fitted gamma (for the actual values,

Supplementary Fig. S2) significantly decreased as a function of

post-stroke time (P = 0.011) after removing the correlation of

repeated measurements, whereas the fitted lambda exhibited

non-significant changes (P = 0.813) after removing the correlation

due to repeated measurements within each subject (Fig. 2). In

addition to sparsity thresholds, we also employed correlation

values as thresholds to generate graphs in order to strengthen

the reliability of this finding. Supplementary Fig. S3 illustrates

the effect of changes in significance levels on gamma. We

found that gamma was still significantly reduced during stroke

recovery (see online supplementary materials for details). These

findings suggest that over a year of recovery motor execution

networks in patients became increasingly random due to lower

normalized clustering. Considering that infarct lesion may affect

the neurovascular coupling (Murata et al., 2006), we also com-

pared gamma and lambda in the first session with those obtained

from the nine age-matched controls. No significant difference in

either gamma or lambda was observed (P40.05).

We used two groups of healthy subjects to investigate whether

the controls showed stable network efficiencies. First, a separate

permutation analysis was performed on the group of 36 healthy

subjects. From this dataset, we randomly sampled two groups of

10 individuals (in accordance with our study sample size) up to

5000 times. For each sample set, a two-sample t-test was con-

ducted on either gamma or lambda computed by the same

approaches. There were no significant differences in each of the

two parameters between any two healthy groups (P40.05).

Secondly, one-way repeated measures analyses of variance

(ANOVAs) were applied to the network parameters obtained

from the control dataset scanned over three time points.

Likewise, no significant difference was observed across the differ-

ent scanning sessions (Supplementary Table S2). Taken together,

these findings not only suggest that the analysis of control groups

could display stable network topology but also removed the pos-

sibility that scanner instability could explain the significant differ-

ences in the network indices.

To validate the robustness of our findings, we repeated our

analysis on the motor execution network constructed by the

motor-related areas as found by Hanakawa et al.’s (2008)

study. The results from the reconstructed network were consistent

with our aforementioned findings, i.e. significant decreases in

gamma (P = 0.003) and lambda (P = 0.014) over time, suggesting

a shift towards random networks. Moreover, the same analysis

methods were also applied to the motor-imagery network
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obtained from this study (Hanakawa et al., 2008). However, no

significant changes in gamma (P = 0.3) and lambda (P = 0.126)

were found in the motor-imagery network. These findings further

supported our results that the motor executive network architec-

ture was altered during the stroke recovery process rather than the

motor imaginary networks.

Dynamic changes in regional centrality
The regional betweenness centrality is a measure of functional

importance of a node by acting as a critical station for information

processing; nodes with high connection weights usually have high

betweenness centrality. During the process of recovery,

significantly increased regional centrality was found in ipsilesional

motor cortex (P = 0.03) and contralesional dentate nucleus

(P = 0.03), whereas the decreased centrality was observed in ipsi-

lesional anterior inferior cerebellum (P = 0.002) and ipsilesional

thalamus (P = 0.06) (Table 3), suggesting that ipsilesional primary

motor cortex and contralesional cerebellum show increased cen-

trality in the network, while ipsilesional cerebellum and thalamus

show decreased centrality. In addition, compared to the nine

age-matched controls, a trend towards a significant decrease

was detected in the left primary motor cortex (P = 0.06) in

stroke patients, which may be associated with decreased func-

tional connectivity to the region mentioned below. There was no

significant difference in the regional centrality obtained

Figure 1 Individual T2-weighted images in the first session. The panel shows the slice with maximum infarct volume. Each subject is coded

by the same serial number as the first row in Table 1.

Figure 2 The fitted gamma (A) and the lambda (B) over time, post-stroke. Y-axis values denote the measurements after removing the

correlation due to repeated measurements within each subject. The gamma significantly declines as a function of time after stroke onset,

whereas lambda does not change significantly. The abscissa shows the mean scan days after stroke onset (an exponential scale, see the

‘Materials and methods’ section). Circles show data for individual participants in each session.
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from healthy controls scanned over three time points by

using one-way repeated measures ANOVAs (Supplementary

Table S2).

Dynamic changes in functional
connectivity
Functional connectivity could reflect the interactions between two

remote regions. In this study, several resting state functional con-

nectivities between brain regions showed monotonic changes

(Fig. 3). Significantly increased connectivity was observed between

ipsilesional motor cortex and contralesional motor areas (i.e. post-

central gyrus, ventrolateral premotor cortex, bilateral dorsolateral

premotor cortex and motor cortex), between contralesional den-

tate nucleus and ipsilesional ventrolateral premotor cortex, and

between ipsilesional bilateral dorsolateral premotor cortex and

contralesional bilateral superior parietal lobule, while significantly

decreased connectivity was detected between ipsilesional bilateral

thalamus and contralesional areas (i.e. bilateral dorsolateral pre-

motor cortex, supplementary motor area and bilateral basal gan-

glia); between ipsilesional anterior inferior cerebellum and

contralesional areas (i.e. superior cerebellum and bilateral basal

ganglia); and between ipsilesional dentate nucleus and bilateral

basal ganglia. The altered functional connectivities to the ipsile-

sional motor cortex, bilateral thalamus, anterior inferior cerebellum

and contralesional dentate nucleus were consistent with these

areas representing changed regional centrality mentioned above,

providing support of the functional reorganization within the

motor network after stroke. Together, these findings suggest an

adaptive change of functional connectivity paralleling recovery in

patients with stroke. Additionally, in the early acute stage, signifi-

cantly decreased functional connectivity to the ipsilesional motor

cortex and increased functional connectivity to the ipsilesional tha-

lamus and cerebellum were observed compared to the nine

age-matched controls (Supplementary Table S3).

Relationship between the network
parameters and the clinical measures
In this study, we were also interested in the relationship between

the network parameters and the actual recovery rate reflected by

neurological examinations in stroke population. The fitted normal-

ized Cw(gamma) significantly correlated with all of the neurolog-

ical scales during the stroke recovery at the significance level of

P50.05 (Table 4). The centralities of several areas were related to

these scales, such as ipsilesional motor cortex, supplementary

motor area, bilateral thalamus and anterior inferior cerebellum as

well as contralesional anterior inferior cerebellum and dentate

nucleus. The findings suggest that the network parameter could

predict the recovery degree after stroke. From visual inspection of

Table 4, the centralities of these areas and gamma showed con-

sistent correlations with different neurological examinations.

Likewise, the fitted functional connectivity also indicated signifi-

cant correlations with these examinations (Table 6), which was in

accordance with altered functional connectivity over time

(Table 5). In addition, the correlations between lesion volumes

obtained from the first time point and gamma (r = –0.44) and

lambda (r = 0.31) were observed (Supplementary Fig. S4).

Although the correlations did not reach a significant level, possibly

due to the small sample size (nine subjects), this finding indicated

that a larger lesion volume could possibly disrupt the

Figure 3 Monotonically increased and decreased functional connectivity over time. All regions of interest (IH, 10 areas; CH, 11 areas) are

projected to the medial sagittal section of the fiducial brain using CARET software (http://brainmap.wustl.edu/caret/). The gradually

increased connections (red lines) are mainly located between ipsilesional primary cortex area and contralesional key motor areas, whereas

the decreased connections (blue lines) involve ipsilesional subcortical areas and cerebellum. Each area is displayed with a unique colour and

homologous areas show the same colour. IH = ipsilesional hemisphere; CH = contralesional hemisphere. See Table 2 for the abbreviations

of brain regions.

Table 3 Altered regional centrality over time (P50.05)

Region t-value P-value

Left primary motor cortex 2.00 0.03

Right dentate nucleus 1.98 0.03

Left supplementary motor area 1.52 0.07*

Left anterior inferior cerebellum �3.10 0.002

Left thalamus �1.58 0.06*

The positive t-values show increased regional centrality over time in stroke

patients. The P-values marked by asterisk become marginally significant.
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reorganization pattern of the motor executive networks in terms

of decreased gamma and increased lambda. Similarly, the regional

centrality and functional connectivity related to ipsilesional motor

cortex and contralesional cerebellum showed significantly positive

correlations with stroke recovery scores, whereas these measures

related to ipsilesional thalamus and cerebellum showed signifi-

cantly negative correlations. The specific relations between coor-

dinated network topological patterns and differential behavioural

recovery strengthened the putative relation between resting-state

brain measures and active behaviours. Also, inadvertent head

motion during data acquirement may induce false-positives

(Calautti and Baron, 2003). In this study, head motion from the

two subjects (1 and 10) at the first session was greater than 3 mm

in displace transform compared to other data sets. Though the

influence of head motion had been attenuated by a multiple

regression model, the two subjects were discarded from the

sample for accurate measurements. The resulting data were

recomputed and no obvious alterations were obtained for both

network parameters and subsequent correlations with behavioural

examinations. In addition, to avoid the effect of the parameter �

on our results in the mixed regression model, we reset the � range

from 20 to 40 corresponding to a range of �30% at the

upper and lower bounds. All analyses were recomputed

and new results were basically similar to the aforementioned

results.

Discussion
This study used graph theoretical approaches to investigate func-

tional reorganization of the motor execution network after sub-

cortical motor pathway stroke. We found that the topology of the

Table 4 The correlation between regional centrality and the clinical measures (P50.05)

Region Side t-value P-value Region Side t-value P-value

MI ("") MRS (#")

SMA L 1.94 0.03 AICb L 2.14 0.02

DN R 1.88 0.04 Th L 1.42 0.08*

AICb R 1.80 0.04 DN R �1.98 0.03

M1 L 1.58 0.06* SMA L �1.97 0.03

AICb L �3.11 0.002 M1 L �1.76 0.04

Th L �1.33 0.09* AICb R �1.36 0.09*

Normalized Cw
�1.95 0.03 Normalized Cw 1.88 0.03

BI ("") NIHSS (#")

DN R 2.30 0.01 AICb L 3.33 0.001

M1 L 2.00 0.03 Th L 2.08 0.02

AICb R 1.79 0.04 M1 L �2.40 0.01

SMA L 1.67 0.05 AICb R �2.00 0.03

AICb L �3.00 0.003 SMA L �1.94 0.03

Th L �1.70 0.05 DN R �1.94 0.03

Normalized Cw
�2.65 0.01 Normalized Cw 2.13 0.02

The double arrows ("") following each neurological scale indicate more scores (the first arrow), more recovery from stroke (the second arrow) and vice versa. Positive
t-values show positive correlations. Increased regional centrality over time is highlighted by light grey background in stroke patients. The P-values marked by asterisk are

marginally significant. The normalized Lwmeasures are not presented due to non-significant correlation. See Table 1 for the neurological scores in detail. See Table 2 for the
abbreviations of the regions.

Table 5 Altered functional connectivities over time (P50.01)

Region Region t-value P-value

Increased functional connectivity

Left primary motor cortex Right postcentral gyrus 3.66 0.001

Left primary motor cortex Right ventrolateral premotor cortex 3.11 0.002

Right dentate nucleus Left ventrolateral premotor cortex 2.81 0.004

Left primary motor cortex Right dorsolateral premotor cortex 2.68 0.006

Left dorsolateral premotor cortex Right superior parietal lobule 2.66 0.006

Left primary motor cortex Right primary motor cortex 2.56 0.008

Decreased functional connectivity

Left thalamus Right dorsolateral premotor cortex �3.48 0.001

Left anterior inferior cerebellum Right superior cerebellum �3.37 0.001

Left thalamus Right supplementary motor area �2.87 0.004

Left thalamus Left basal ganglia �2.58 0.008

Left dentate nucleus Left basal ganglia �2.48 0.01

Left anterior inferior cerebellum Right basal ganglia �2.47 0.01
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reorganized network in stroke patients showed a gradual shift

towards a random mode over time. The betweenness centrality

in the ipsilesional motor cortex and contralestional cerebellum as

well as functional connectivity to these regions progressively

increased during stroke recovery. Moreover, these metrics corre-

lated with different clinical variables and thus served as a predictor

of stroke recovery. Collectively, our findings suggest that persis-

tent functional reorganization within the motor network may

underlie the motor recovery process after the subcortical motor

pathway stroke.

Altered network organization during
stroke recovery
An increasing number of studies have utilized graph theory to

investigate the effect of lesions on brain functional networks.

Recently, De Vico Fallani et al. (2007) compared the cortical

motor networks obtained from the patients with spinal cord

injury with those from controls. Significant increases in the local

efficiency but not in the global efficiency were shown in the spinal

cord injury group compared to the healthy group, suggesting that

the motor networks in patients with spinal cord injury tend to

have regular configuration. Bartolomei et al. (2006b) indicated a

tendency for the large-scale functional networks to be close to a

random configuration in patients with brain tumours. In the cur-

rent study, we observed a significant decrease in the normalized

clustering coefficients (gamma) during the recovery process, but

not in the normalized shortest path length (lambda), which sug-

gests that the motor network configuration related to the affected

hand shifts towards a configuration of random network. Such a

shift was in line with changes found in graph theoretical studies

of other disorders (Bartolomei et al., 2006a; Micheloyannis

et al., 2006; Ponten et al., 2007; Rubinov et al., 2009; Stam

et al., 2009). Moreover, we found a correlation between restora-

tion of function and gamma values over time, suggesting that the

restoration of function was accompanied by a shift towards a

non-optimal network configuration. The network randomization

may result from random outgrowth of new connections, which

have been validated by many studies on stroke (for a review,

see Wieloch and Nikolich, 2006). On a cellular level, one of the

major regenerative events occurring in the peri-infarct cortex

involves axons sprouting new connections and establishing novel

projection patterns (Carmichael, 2006, 2008). Meanwhile, stroke

induces a unique permissive environment for axonal sprouting,

when neurons activate growth-promoting genes in successive

waves and many growth-inhibitory molecules are not yet activated

(Carmichael, 2006, 2008). Many animal studies have suggested

that axonal sprouting after stroke progresses through specific

biological time points: trigger (1–3 days after stroke) (Carmichael

and Chesselet, 2002), initiation and maintenance (7–14 days after

stroke) (Stroemer et al., 1995; Leon et al., 2000) and maturation

(28 days after stroke) phases (Carmichael et al., 2001). Moreover,

the time points might be prolonged after stroke in the

Table 6 The correlation between functional connectivity and the clinical measures (P50.01)

Region Side Region Side T-value P-value Region Side Region Side t-value P-value

MI ("") MRS (#")

M1 L PCG R 4.63 50.001 Th L PMd R 3.77 50.001

M1 L PMv R 3.32 0.001 AICb L SCb R 2.74 0.005

DN R PMv L 3.11 0.002 Th L BG R 2.68 0.006

M1 L PMd R 2.84 0.004 DN L SCb R 2.48 0.009

PMd L SPL R 2.66 0.006 M1 L PCG R �4.10 50.001

PMd L PMv R 2.62 0.007 M1 L PMv R �3.50 50.001

M1 L M1 R 2.61 0.007 M1 L M1 R �3.14 0.002

Th L PMd R �3.65 50.001 PMd L SPL R �3.03 0.002

DN L BG L �2.88 0.004 M1 L PMd R �2.61 0.007

Th L BG R �2.78 0.005

AICb L SCb R �2.68 0.006

BI ("") NIHSS (#")

M1 L PCG R 3.66 50.001 Th L PMd R 3.55 50.001

M1 L PMv R 3.17 0.002 Th L SMA R 2.59 0.007

DN R PMv L 3.10 0.002 M1 L PCG R �4.46 50.001

SMA L SCb R 2.79 0.005 M1 L M1 R �3.28 0.001

PMd L PMv R 2.69 0.006 DN R PMv L �3.04 0.002

M1 L M1 R 2.63 0.007 M1 L PMv R �2.75 0.005

PMd L SPL R 2.61 0.007 M1 L PMd R �2.63 0.007

PMd L M1 R 2.60 0.007 DN L SMA R �2.60 0.007

Th L PMd R �3.76 50.001 DN L PCG R �2.55 0.008

Th L SMA R �3.18 0.002

AICb L SCb R �2.77 0.005

SCb R SPL R �2.67 0.006

The double arrows ("") following each neurological scale indicate more scores (the first arrow), more recovery from stroke (the second arrow) and vice versa. The positive
t-values show positive correlations. The increased functional connectivity over time is highlighted by light grey background.
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human brain. In addition, computational neuroscience has indi-

cated that synaptic formation can be described as a process with

random outgrowth patterns (Kaiser et al., 2009). This evidence

suggests that new axonal outgrowth may partly account for the

randomized network organization found in patients during stroke

recovery. However, caution must be taken when interpreting the

results on this level. Since a few of the patients did show reduced

gamma within the first 10–14 days after stroke (Fig. 2), the inter-

pretation mentioned above can only, at best, partially account for

the results because novel connections could not lead to the

changes in the large-scale networks found during this early time

period based on the estimated time points mentioned above.

Hence, axonal outgrowth may be one reason for network ran-

domization but it cannot be the only one. After stroke, other

changes in structural and functional plasticity (Schaechter et al.,

2006) may also contribute to the continued randomization of the

network configuration.

The outgrowth of new connections may compensate for

impaired normal pathways connecting important nodes after the

motor pathway stroke, which has been demonstrated by previous

evidence. For example, a previous study on animals has demon-

strated increased connections from the ventral premotor cortex to

the somatosensory cortex in a monkey with an ischaemic lesion to

motor cortex (Dancause et al., 2005). Several studies in humans

have found that the pre-existing uncrossed corticospinal tract

pathways originating from the contralesional hemisphere were

recruited to compensate for the damage to the crossed pathways

(Ago et al., 2003; Thomas et al., 2005). Moreover, increased

recruitment of the undamaged hemisphere was most commonly

seen in patients following stroke (Chollet et al., 1991; Weiller

et al., 1992; Ward et al., 2003; Tombari et al., 2004; Gerloff

et al., 2006). This phenomenon was also confirmed by two

other studies. One study found that the disruption of contra-

lesional premotor cortex activity affected the movement ability of

the affected hand, especially in patients that demonstrated poor

recovery (Johansen-Berg et al., 2002). Another study showed

that during performance of complex motor tasks, the disruption

of contralesional sensorimotor areas influenced performance even

in well-recovered patients (Lotze et al., 2006). Also, the changes in

functional connectivity (Table 5) contributed to the topological

reorganization of the motor execution network after stroke.

Notably, it seemed counterintuitive to find that compared with

normal controls gamma, lambda and betweenness centrality were

not altered in the acute stage after stroke. Recently, a computa-

tional model of brain lesions was used to explore how focal brain

lesions could affect the overall performance of brain networks in

the non-human primate (Honey and Sporns, 2008) and human

brain networks (Alstott et al., 2009). These studies indicated

that modelling lesions resulted in non-local, disturbed interactions

among regions by deleting central nodes (e.g. association cortex)

and edges (the corpus callosum connecting bilateral homogenous

regions of cortex). In this regard, the different findings in these

studies compared to ours may be accounted for by several rea-

sons. First, in our study, patients with subcortical motor pathway

stroke were recruited. Such a lesion damages only a few connec-

tions (such as the corticospinal tract) within the executive motor

network, rather than cutting off all connections, while the two

previous studies mentioned above simulated the process of remov-

ing edges by cutting off all connections in the corpus callosum.

Secondly, it has been suggested that the subcortical infarction may

further impair the structural anatomy of the regions of interest

(such as the primary motor cortex) through the process of

axonal degeneration. Although the two previous studies demon-

strated that instantly removing primary cortices would show very

little effect on network organization, the effect of any subse-

quently degenerative changes on network configuration were

not investigated in those studies. The longitudinal design of our

study complemented these investigations by investigating the

dynamic changes in the network structure over the stroke recov-

ery continuum, as many of the apparent contradictions can be

explained by the differences in the study design. In the acute

stage after stroke, our findings may indicate that the network

parameters are not sensitive to the acute, localized subcortical

lesions. In this study, the post-stroke time (mean value = 3 days)

in the first session may be too short to result in diffusively

structural changes, in terms of the notion that the subcortical

ischaemic lesions may need a certain amount of time to affect

these cortical regions of interest. The preserved structural anatomy

may partially account for our findings. In contrast, few altered

functional connectivity (Supplementary Table S2) in this stage

indeed indicated the appearance of deleterious effect of the

lesion. However, the local abnormalities have not spread among

the whole network in this time period. As time elapses, the

damaged structural anatomy of the regions of interest may

induce the deterioration of the network indices and simultaneously

affect the reorganization of the network topology mentioned

above.

Altered regional centrality during
stroke recovery
In this study, as patients demonstrated recovery from stroke, grad-

ual increases in regional centrality were observed in several

regions, including the ipsilesional primary motor areas and con-

tralesional dentate nucleus; while the opposite change was seen

in ipsilesional anterior inferior cerebellum and ipsilesional thalamus.

Basically, increasing importance of ipsilesional primary motor areas

in the network may contribute to the gradual recovery of con-

tralesional affected hand in terms of contralateral motor control.

Moreover, a recent study using active motor tasks showed the

ipsilesional primary sensorimotor cortex progressing focalization

(Feydy et al., 2002). Consistent with existing evidence

(Dijkhuizen et al., 2001; Small et al., 2002), our findings indicated

a general trend for the focusing of the brain activity towards the

primary motor area of lesioned hemisphere as time elapses. Recent

studies have shown that the cerebellum is exclusively associated

with motor actions ipsilateral to the hand movement (Allen et al.,

1997; Shibasaki et al., 1993). Imaging studies have shown

increased activity in the contralesional cerebellum as the restora-

tion of motor function (Chollet et al., 1991; Weiller et al., 1992;

Jaillard et al., 2005). Importantly, a significant positive nonlinear

correlation between the activated volume of the contralesional

cerebellum and motor performance was reported across four
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time points during the recovery from stroke (Small et al., 2002);

that is to say, the larger the contralesional cerebellum activation,

the better the recovery. A more direct role of the contralesional

cerebellum for motor recovery was also observed from patients

with focal brain lesion in motor learning (Bracha et al., 2000;

Dong et al., 2007).

In addition, the regional centrality of the ipsilesional anterior

inferior cerebellum decreased with the stroke duration and signifi-

cantly correlated with the degree of recovery. In the acute stroke

stage, hemiparetic patients cannot move the affected limbs but

overuse the unaffected limbs, which may lead to an increase in

the centrality of this area in the motor network (Table 3).

However, during recovery of motor function of the affected

limbs, such over-recruitment could decline and probably resulted

in decreases in the centrality of this area over time. This hypothesis

is also supported by the negative correlation between the central-

ity of this area and behavioural recovery as well as the reduced

connectivity related to ipsilesional cerebellum (Table 4) in this

study. Taken together, to obtain the more recovery after subcor-

tical stroke, the coordinated motor network might evolve to an

adaptive, albeit less optimized, topological configuration through

modulating the importance of some region.

Altered functional connectivity during
stroke recovery
The changes in the topological patterns of the motor execution

network were associated with alterations in the strength of each

connection. In this study, we found that connectivity between

ipsilesional primary motor cortex and contralesional key motor

areas (e.g. postcentral gyrus, ventrolateral premotor cortex, bilat-

eral dorsolateral premotor cortex and motor cortex) were signifi-

cantly increased. Moreover, most of these connectivities

significantly correlated with the degree of motor recovery

(Table 6), yielding strong relations to behavioural measures. The

importance of the ipsilesional primary motor cortex in recovery has

been suggested by a previous study (Mima et al., 2001), in which

the authors found all direct functional connections to muscle after

recovery from subcortical stroke originated from the ipsilesional

motor cortex. The connectivity between left primary motor areas

and right postcentral gyrus was disrupted in the acute stage

(Supplementary Table S3) but fully recovered in the chronic

stage, and the increased connectivity correlated with the degree

of behavioural recovery, which was compatible with a previous

study on patients with spatial neglect after stroke (He et al.,

2007). In stroke patients, recent studies have argued for a bene-

ficial role of the sensorimotor cortex of the contralesional hemi-

sphere on some aspects of effectively recovered motor behaviour

(Gerloff et al., 2006; Lotze et al., 2006). Also, the connectivity

related to these areas in the unaffected side may reflect over

recruitments of a pre-existing large-scale distributed motor net-

work (Nelles et al., 1999; Calautti et al., 2001), possibly involving

the uncrossed corticospinal tract originated from the contralesional

primary motor area. This provides a route by which signals from

the undamaged hemisphere could reach the muscles of the

affected side of the body (Nathan and Smith, 1973),

compensating for damage of the ipsilesional corticospinal tract.

Although a significant interaction between the ipsilesional and

contralesional primary motor area was detected over time, which

was compatible with a recent cross-sectional study that employed

a model of effective connectivity (Grefkes et al., 2008), our study

did not provide further evidence whether such a relation should be

categorized as an inhibitory or excitatory connection. Moreover,

changes in functional connectivity during stroke recovery did not

involve all brain regions to the same extent, suggesting a hetero-

geneous plasticity of the overall network structure.

We also found that significantly decreased connections after

stroke mainly involved subcortical structures (e.g. the thalamus

and basal ganglia) and the ipsilesional cerebellum. In this study,

the infarct lesion involved the subcortical areas and further dis-

rupted the anatomical connections between these areas and other

brain areas, which may result in the reduced connectivity to the

areas. The decreased connections with the ipsilesional cerebellum

may result from the aberrant over-recruitment in the early acute

stage and return to a normal level in the chronic stage. Also,

reduction in functional connectivity may be explained by the rel-

atively decreased centrality in the areas (Table 3).

There are some limitations to this study. First, we used a rela-

tively small sample size to characterize the dynamic functional

reorganization of the motor execution network from stroke

onset to 1 year post-stroke. However, it is unclear how the topol-

ogy of the network organization changes after 1 year. In future

studies, it would be interesting to collect these stroke patients

continually and confirm further the clinical usefulness of these

findings. Second, in this study, Pearson’s correlation was employed

to estimate the relationships between brain regions. However, in

recent years, computational methods of neuroimaging have made

enormous advances and provided various approaches mentioned

above to perform the estimation. In future studies, it would be

worthwhile to investigate the effect of different methods on topo-

logical characteristics of the brain networks in order to understand

the relations between the network structure and the processes

taking place on these networks better. Third, in this study we

indentified dynamic changes of functional network topology in

the motor execution networks. However, the function of the

brain is always closely associated with its structure (Alstott et al.,

2009; Honey et al., 2009; van den Heuvel et al., 2009). A recent

study has indicated that disrupted functional connectivity was

related to injuries of white matter tracts measured by diffusion

tensor imaging (He et al., 2007). In future studies it will be vital

to investigate whether the functional reorganization shown here is

associated with the anatomical changes after stroke. Fourth, the

focus on pre-defined regions of interest limited the region and

connection set. Recently, several studies reported that the recov-

ery process may be accompanied by ‘displaced’ activation in a few

motor-related regions (Pineiro et al., 2001; Calautti et al., 2003;

Delvaux et al., 2003; Carmichael, 2006; Nair et al., 2007), which,

in this study, may have resulted in the omission of some

motor-related regions or the inclusion of some regions that were

no longer motor-related following stroke. In general, a motor task

may be effective for fully identifying specific regions of interest in

individual patients during recovery. In this regard, we previously

tried to instruct stroke patients to perform a simple motor task

Functional reorganization after stroke Brain 2010: 133; 1224–1238 | 1235

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article-abstract/133/4/1224/311974 by N

ational Science and Technology Library -R
oot user on 10 N

ovem
ber 2019



during the initial scan stage. However, only a subset of the

patients was able to perform the task. Therefore, we employed

a widely used region of interest approach to construct

resting-state functional connectivity networks (Fox et al., 2006;

Dosenbach et al., 2007; He et al., 2007; Fair et al., 2008,

2009; Church et al., 2009). On the other hand, in this study we

adopted 10 mm diameter spheres to create the regions of interest,

which could reduce this influence of the displacement to a certain

extent. In addition to this, 12 mm diameter spheres were also

employed to create regions of interest and then the similar results

as mentioned above on changes in network parameters were

observed, which further validated the reliability of the findings.

Although our study did not provide complete coverage of all acti-

vated regions, we note that the topological properties of reorga-

nized cortical network are correlated with the clinical variables

quantifying functional recovery. Despite that, we cannot abso-

lutely exclude the influence of displaced activation on network

parameters. Further studies would be needed to clarify this issue.

In conclusion, to our knowledge, this study is the first to suggest

that the topological structure of the motor-related network under-

went dynamic reorganization during stroke recovery. However,

the reorganized network deviated away from the optimal network

architecture. The gradually decreased clustering property is predic-

tive of the restoration of function over time. In addition, the

increased betweenness in ipsilesional primary motor cortex and

contralestional cerebellum may contribute to stroke recovery.

Taken together, the study expands our understanding of the spec-

trum of changes occurring in the brain after stroke and opens up a

new avenue for investigating lesion-induced network plasticity.

Acknowledgements
We thank all the volunteers and patients for their participation in

the study, and three anonymous reviewers for their insightful

comments and suggestions. We also thank Dr Rajamannar

Ramasubbu of University of Calgary for helpful comments.

Funding
National Key Basic Research and Development Program (973)

(Grant No 2003CB716101); the Natural Science Foundation of

China (Grant Nos 30670601 and 30970773); Program for New

Century Excellent Talents in University (NCET-07-0568).

Supplementary material
Supplementary material is available at Brain online.

References
Achard S, Bullmore E. Efficiency and cost of economical brain functional

networks. PLoS Comput Biol 2007; 3: e17.
Ago T, Kitazono T, Ooboshi H, Takada J, Yoshiura T, Mihara F, et al.

Deterioration of pre-existing hemiparesis brought about by subsequent

ipsilateral lacunar infarction. J Neurol Neurosurg Psychiatry 2003; 74:

1152–3.

Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of

the cerebellum independent of motor involvement. Science 1997; 275:

1940–3.

Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O. Modeling

the impact of lesions in the human brain. PLoS Comput Biol 2009; 5:

e1000408.

Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A. The architec-

ture of complex weighted networks. Proc Natl Acad Sci USA 2004;

101: 3747–52.

Bartolomei F, Bosma I, Klein M, Baayen JC, Reijneveld JC, Postma TJ,

et al. Disturbed functional connectivity in brain tumour patients: eva-

luation by graph analysis of synchronization matrices.

Clin Neurophysiol 2006a; 117: 2039–49.

Bartolomei F, Bosma I, Klein M, Baayen JC, Reijneveld JC, Postma TJ,

et al. How do brain tumors alter functional connectivity? A magne-

toencephalography study. Ann Neurol 2006b; 59: 128–38.

Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist 2006;

12: 512–23.

Bassett DS, Bullmore ET. Human brain networks in health and disease.

Curr Opin Neurol 2009; 22: 340–7.

Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. Complex

networks: structure and dynamics. Phys Rep 2006; 424: 175–308.

Bracha V, Zhao L, Irwin KB, Bloedel JR. The human cerebellum and

associative learning: dissociation between the acquisition, retention

and extinction of conditioned eyeblinks. Brain Res 2000; 860: 87–94.

Bullmore E, Sporns O. Complex brain networks: graph theoretical ana-

lysis of structural and functional systems. Nat Rev Neurosci 2009; 10:

186–98.

Calautti C, Baron JC. Functional neuroimaging studies of motor recovery

after stroke in adults: a review. Stroke 2003; 34: 1553–66.

Calautti C, Leroy F, Guincestre JY, Baron JC. Dynamics of motor network

overactivation after striatocapsular stroke: a longitudinal PET study

using a fixed-performance paradigm. Stroke 2001; 32: 2534–42.
Calautti C, Leroy F, Guincestre JY, Baron JC. Displacement of primary

sensorimotor cortex activation after subcortical stroke: a longitudinal

PET study with clinical correlation. Neuroimage 2003; 19: 1650–4.

Calautti C, Naccarato M, Jones PS, Sharma N, Day DD, Carpenter AT,

et al. The relationship between motor deficit and hemisphere activa-

tion balance after stroke: a 3T fMRI study. Neuroimage 2007; 34:

322–31.
Carmichael ST. Cellular and molecular mechanisms of neural repair after

stroke: making waves. Ann Neurol 2006; 59: 735–42.

Carmichael ST. Themes and strategies for studying the biology of stroke

recovery in the poststroke epoch. Stroke 2008; 39: 1380–8.

Carmichael ST, Chesselet M-F. Synchronous neuronal activity is a signal

for axonal sprouting after cortical lesions in the adult. J Neurosci 2002;

22: 6062–70.

Carmichael ST, Wei L, Rovainen CM, Woolsey TA. New patterns of

intracortical projections after focal cortical stroke. Neurobiol Dis

2001; 8: 910–22.
Chollet F, DiPiero V, Wise RJ, Brooks DJ, Dolan RJ, Frackowiak RS. The

functional anatomy of motor recovery after stroke in humans: a study

with positron emission tomography. Ann Neurol 1991; 29: 63–71.

Church JA, Fair DA, Dosenbach NU, Cohen AL, Miezin FM, Petersen SE,

et al. Control networks in paediatric Tourette syndrome show imma-

ture and anomalous patterns of functional connectivity. Brain 2009;

132: 225–38.
Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, et al.

Extensive cortical rewiring after brain injury. J Neurosci 2005; 25:

10167–79.

De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S,

et al. Cortical functional connectivity networks in normal and spinal

cord injured patients: evaluation by graph analysis. Hum Brain Mapp

2007; 28: 1334–46.
Delvaux V, Alagona G, Gerard P, De Pasqua V, Pennisi G,

de Noordhout AM. Post-stroke reorganization of hand motor area: a

1236 | Brain 2010: 133; 1224–1238 L. Wang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article-abstract/133/4/1224/311974 by N

ational Science and Technology Library -R
oot user on 10 N

ovem
ber 2019



1-year prospective follow-up with focal transcranial magnetic stimula-

tion. Clin Neurophysiol 2003; 114: 1217–25.

Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM,

Moskowitz MA, et al. Functional magnetic resonance imaging of reor-

ganization in rat brain after stroke. Proc Natl Acad Sci USA 2001; 98:

12766–71.
Dong Y, Winstein CJ, Albistegui-DuBois R, Dobkin BH. Evolution of

FMRI activation in the perilesional primary motor cortex and cerebel-

lum with rehabilitation training-related motor gains after stroke: a pilot

study. Neurorehabil Neural Repair 2007; 21: 412–28.

Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK,

Dosenbach RA, et al. Distinct brain networks for adaptive and stable

task control in humans. Proc Natl Acad Sci USA 2007; 104: 11073–8.
Duncan PW, Min Lai S, Keighley J. Defining post-stroke recovery:

implications for design and interpretation of drug trials.

Neuropharmacology 2000; 39: 835–41.

Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM,

et al. The maturing architecture of the brain’s default network.

Proc Natl Acad Sci USA 2008; 105: 4028–32.

Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA, Miezin FM,

et al. Functional brain networks develop from a ‘‘local to distributed’’

organization. PLoS Comput Biol 2009; 5: e1000381.

Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L, et al.

Longitudinal study of motor recovery after stroke: recruitment and

focusing of brain activation. Stroke 2002; 33: 1610–7.

Fink GR, Frackowiak RS, Pietrzyk U, Passingham RE. Multiple nonprim-

ary motor areas in the human cortex. J Neurophysiol 1997; 77:

2164–74.

Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous

neuronal activity distinguishes human dorsal and ventral attention

systems. Proc Natl Acad Sci USA 2006; 103: 10046–51.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME.

The human brain is intrinsically organized into dynamic,

anticorrelated functional networks. Proc Natl Acad Sci USA 2005;

102: 9673–8.

Freeman LC. A set of measures of centrality based on betweenness.

Sociometry 1977; 40: 35–41.

Friston K. Functional and effective connectivity in neuroimaging: a synth-

esis. Hum Brain Mapp 1994; 2: 56–78.

Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity:

the principal-component analysis of large (PET) data sets. J Cereb

Blood Flow Metab 1993; 13: 5–14.

Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage

2003; 19: 1273–302.

Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T,

et al. Multimodal imaging of brain reorganization in motor areas of the

contralesional hemisphere of well recovered patients after capsular

stroke. Brain 2006; 129: 791–808.

Gibbons RD, Hedeker D, Waternaux C, Davis JM. Random regression

models: a comprehensive approach to the analysis of longitudinal

psychiatric data. Psychopharmacol Bull 1988; 24: 438–43.

Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, Karbe H, et al.

Cortical connectivity after subcortical stroke assessed with functional

magnetic resonance imaging. Ann Neurol 2008; 63: 236–46.
Hanakawa T, Dimyan MA, Hallett M. Motor planning, imagery, and

execution in the distributed motor network: a time-course study

with functional MRI. Cereb Cortex 2008; 18: 2775–88.

Harrison L, Penny WD, Friston K. Multivariate autoregressive modeling

of fMRI time series. Neuroimage 2003; 19: 1477–91.

He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M.

Breakdown of functional connectivity in frontoparietal networks

underlies behavioral deficits in spatial neglect. Neuron 2007; 53:

905–18.
He Y, Chen Z, Evans A. Structural insights into aberrant topological

patterns of large-scale cortical networks in Alzheimer’s disease.

J Neurosci 2008; 28: 4756–66.

Honey CJ, Sporns O. Dynamical consequences of lesions in cortical net-

works. Hum Brain Mapp 2008; 29: 802–9.

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al.

Predicting human resting-state functional connectivity

from structural connectivity. Proc Natl Acad Sci USA 2009; 106:

2035–40.
Horwitz B, Rumsey JM, Donohue BC. Functional connectivity of the

angular gyrus in normal reading and dyslexia. Proc Natl Acad Sci

USA 1998; 95: 8939–44.

Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M. Vicarious

function within the human primary motor cortex? A longitudinal

fMRI stroke study. Brain 2005; 128: 1122–38.

Jiang T, He Y, Zang Y, Weng X. Modulation of functional connectivity

during the resting state and the motor task. Hum Brain Mapp 2004;

22: 63–71.
Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U,

Wimalaratna S, Matthews PM. The role of ipsilateral premotor

cortex in hand movement after stroke. Proc Natl Acad Sci USA

2002; 99: 14518–23.

Kaiser M, Hilgetag CC. Nonoptimal component placement, but short

processing paths, due to long-distance projections in neural systems.

PLoS Comput Biol 2006; 2: e95.

Kaiser M, Hilgetag CC, van Ooyen A. A simple rule for axon outgrowth

and synaptic competition generates realistic connection lengths and

filling fractions. Cereb Cortex 2009; 19: 3001–10.
Latora V, Marchiori M. Efficient behavior of small-world networks.

Phys Rev Lett 2001; 87: 198701.

Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI. Lens injury stimulates

axon regeneration in the mature rat optic nerve. J Neurosci 2000; 20:

4615–26.

Lotze M, Markert J, Sauseng P, Hoppe J, Plewnia C, Gerloff C. The role

of multiple contralesional motor areas for complex hand movements

after internal capsular lesion. J Neurosci 2006; 26: 6096–102.

Maslov S, Sneppen K. Specificity and stability in topology of protein

networks. Science 2002; 296: 910–3.

McIntosh AR, Bookstein FL, Haxby JV, Grady CL. Spatial pattern analysis

of functional brain images using partial least squares. Neuroimage

1996; 3: 143–57.
McIntosh AR, Gonzalez-Lima F. Structural equation modeling and its

application to network analysis in functional brain imaging.

Hum Brain Mapp 1994; 2: 2–22.

McKeown MJ, Sejnowski TJ. Independent component analysis of fMRI

data: examining the assumptions. Hum Brain Mapp 1998; 6: 368–72.

Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in

modular organization of human brain functional networks.

Neuroimage 2009; 44: 715–23.

Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P,

Vourkas M, et al. Small-world networks and disturbed functional con-

nectivity in schizophrenia. Schizophr Res 2006; 87: 60–6.
Mima T, Toma K, Koshy B, Hallett M. Coherence between cortical

and muscular activities after subcortical stroke. Stroke 2001; 32:

2597–601.

Murata Y, Sakatani K, Hoshino T, Fujiwara N, Kano T, Nakamura S, et al.

Effects of cerebral ischemia on evoked cerebral blood oxygenation

responses and BOLD contrast functional MRI in stroke patients.

Stroke 2006; 37: 2514–20.
Nair DG, Hutchinson S, Fregni F, Alexander M, Pascual-Leone A,

Schlaug G. Imaging correlates of motor recovery from cerebral infarc-

tion and their physiological significance in well-recovered patients.

Neuroimage 2007; 34: 253–63.

Nakamura T, Hillary FG, Biswal BB. Resting network plasticity following

brain injury. PLoS One 2009; 4: e8220.

Nathan PW, Smith MC. Effects of two unilateral cordotomies on the

motility of the lower limbs. Brain 1973; 96: 471–94.

Nelles G, Spiekramann G, Jueptner M, Leonhardt G, Muller S,

Gerhard H, et al. Evolution of functional reorganization in hemiplegic

stroke: a serial positron emission tomographic activation study.

Ann Neurol 1999; 46: 901–9.

Newman MEJ. The structure and function of complex networks. SIAM

Rev 2003; 45: 167–256.

Functional reorganization after stroke Brain 2010: 133; 1224–1238 | 1237

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article-abstract/133/4/1224/311974 by N

ational Science and Technology Library -R
oot user on 10 N

ovem
ber 2019



Onnela JP, Saramaki J, Kertesz J, Kaski K. Intensity and coherence of
motifs in weighted complex networks. Phys Rev E Stat Nonlin Soft

Matter Phys 2005; 71: 065103.

Pineiro R, Pendlebury S, Johansen-Berg H, Matthews PM. Functional

MRI detects posterior shifts in primary sensorimotor cortex activation
after stroke: evidence of local adaptive reorganization? Stroke 2001;

32: 1134–9.

Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy:

graph theoretical analysis of intracerebrally recorded mesial temporal
lobe seizures. Clin Neurophysiol 2007; 118: 918–27.

Roebroeck A, Formisano E, Goebel R. Mapping directed influence over

the brain using Granger causality and fMRI. Neuroimage 2005; 25:
230–42.

Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AW,

Williams LM, et al. Small-world properties of nonlinear brain activity

in schizophrenia. Hum Brain Mapp 2009; 30: 403–16.
Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E.

Neurophysiological architecture of functional magnetic resonance

images of human brain. Cereb Cortex 2005; 15: 1332–42.

Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K,
Rijntjes M, et al. Dynamics of language reorganization after stroke.

Brain 2006; 129: 1371–84.

Schaechter JD, Moore CI, Connell BD, Rosen BR, Dijkhuizen RM.

Structural and functional plasticity in the somatosensory cortex of
chronic stroke patients. Brain 2006; 129: 2722–33.

Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T,

et al. Both primary motor cortex and supplementary motor area play
an important role in complex finger movement. Brain 1993; 116:

1387–98.

Small SL, Hlustik P, Noll DC, Genovese C, Solodkin A. Cerebellar hemi-

spheric activation ipsilateral to the paretic hand correlates with func-
tional recovery after stroke. Brain 2002; 125: 1544–57.

Sporns O, Zwi JD. The small world of the cerebral cortex.

Neuroinformatics 2004; 2: 145–62.

Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van
Cappellen van Walsum AM, et al. Graph theoretical analysis of mag-

netoencephalographic functional connectivity in Alzheimer’s disease.

Brain 2009; 132: 213–24.
Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks

in the brain. Nonlinear Biomed Phys 2007; 1: 3.

Stam CJ, van Dijk BW. Synchronization likelihood: an unbiased measure

of generalized synchronization in multivariate data sets. Physica D
Nonlinear Phen 2002; 163: 236–51.

Strens LH, Asselman P, Pogosyan A, Loukas C, Thompson AJ, Brown P.

Corticocortical coupling in chronic stroke: its relevance to recovery.

Neurology 2004; 63: 475–84.
Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting,

synaptogenesis, and behavioral recovery after neocortical infarction

in rats. Stroke 1995; 26: 2135–44.

Sun FT, Miller LM, D’Esposito M. Measuring interregional functional

connectivity using coherence and partial coherence analyses of fMRI

data. Neuroimage 2004; 21: 647–58.

Supekar K, Musen M, Menon V. Development of large-scale functional

brain networks in children. PLoS Biol 2009; 7: e1000157.

Thomas B, Eyssen M, Peeters R, Molenaers G, Van Hecke P, De Cock P,

et al. Quantitative diffusion tensor imaging in cerebral palsy due to

periventricular white matter injury. Brain 2005; 128: 2562–77.

Tombari D, Loubinoux I, Pariente J, Gerdelat A, Albucher JF, Tardy J,

et al. A longitudinal fMRI study: in recovering and then in clinically

stable sub-cortical stroke patients. Neuroimage 2004; 23: 827–39.

Tononi G, Edelman GM, Sporns O. Complexity and coherency: integrat-

ing information in the brain. Trends Cogn Sci 1998; 2: 474–84.
van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE. Functionally

linked resting-state networks reflect the underlying structural connec-

tivity architecture of the human brain. Hum Brain Mapp 2009; 30:

3127–41.
Wang C, Stebbins GT, Nyenhuis DL, deToledo-Morrell L, Freels S,

Gencheva E, et al. Longitudinal changes in white matter following

ischemic stroke: a three-year follow-up study. Neurobiol Aging

2006; 27: 1827–33.

Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, et al. Altered small-

world brain functional networks in children with attention-deficit/

hyperactivity disorder. Hum Brain Mapp 2009; 30: 638–49.

Ward NS, Brown MM, Thompson AJ, Frackowiak RS. Neural correlates

of motor recovery after stroke: a longitudinal fMRI study. Brain 2003;

126: 2476–96.

Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks.

Nature 1998; 393: 440–2.
Weiller C, Chollet F, Friston KJ, Wise RJ, Frackowiak RS. Functional

reorganization of the brain in recovery from striatocapsular infarction

in man. Ann Neurol 1992; 31: 463–72.
Wieloch T, Nikolich K. Mechanisms of neural plasticity following brain

injury. Curr Opin Neurobiol 2006; 16: 258–64.
Wiese H, Stude P, Sarge R, Nebel K, Diener HC, Keidel M.

Reorganization of motor execution rather than preparation in post-

stroke hemiparesis. Stroke 2005; 36: 1474–9.

Woodward TS, Cairo TA, Ruff CC, Takane Y, Hunter MA, Ngan ET.

Functional connectivity reveals load dependent neural systems under-

lying encoding and maintenance in verbal working memory.

Neuroscience 2006; 139: 317–25.
Wu T, Zang Y, Wang L, Long X, Hallett M, Chen Y, et al. Aging influ-

ence on functional connectivity of the motor network in the resting

state. Neurosci Lett 2007; 422: 164–8.
Zheng X, Rajapakse JC. Learning functional structure from fMR images.

Neuroimage 2006; 31: 1601–13.

Zhou D, Thompson WK, Siegle G. MATLAB toolbox for functional con-

nectivity. Neuroimage 2009; 47: 1590–607.

1238 | Brain 2010: 133; 1224–1238 L. Wang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article-abstract/133/4/1224/311974 by N

ational Science and Technology Library -R
oot user on 10 N

ovem
ber 2019


