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Abstract: In this study, we investigated the changes in topological architectures of brain functional net-
works in attention-deficit/hyperactivity disorder (ADHD). Functional magnetic resonance images
(fMRI) were obtained from 19 children with ADHD and 20 healthy controls during resting state. Brain
functional networks were constructed by thresholding the correlation matrix between 90 cortical and
subcortical regions and further analyzed by applying graph theoretical approaches. Experimental
results showed that, although brain networks of both groups exhibited economical small-world topol-
ogy, altered functional networks were demonstrated in the brain of ADHD when compared with the
normal controls. In particular, increased local efficiencies combined with a decreasing tendency in
global efficiencies found in ADHD suggested a disorder-related shift of the topology toward regular
networks. Additionally, significant alterations in nodal efficiency were also found in ADHD, involving
prefrontal, temporal, and occipital cortex regions, which were compatible with previous ADHD stud-
ies. The present study provided the first evidence for brain dysfunction in ADHD from the viewpoint
of global organization of brain functional networks by using resting-state fMRI. Hum Brain Mapp
30:638–649, 2009. VVC 2008 Wiley-Liss, Inc.
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INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD), as one
of the most commonly diagnosed childhood neurobehavio-
ral disorders, is characterized by developmentally inappro-
priate symptoms of excessive inattention, impulsivity, and
hyperactivity [American Psychiatric Association, 1994).
Arising in childhood and persisting into adolescence and
adulthood [Faraone et al., 2003], ADHD affects ~3–5% of
school-age children [Spencer et al., 1998]. Children with
ADHD have difficulties controlling their behaviors or fo-
cusing their attentions which result in an adverse effect on
academic performance and social function.
Structural and functional neuroimaging studies have

shown that the pathophysiology of ADHD is associated
with regional abnormalities involving frontal, parietal,
temporal, occipital, and subcortical regions [Bush et al.,
2005; Seidman et al., 2004, 2005]. The involved regions
have been identified as the components of various func-
tional networks, such as fronto-striatal [Castellanos et al.,
2006], fronto-parietal [Dickstein et al., 2006], and fronto-
temporal-parietal circuits [Smith et al., 2006]. The regional
abnormality may be associated with the dysfunction of the
corresponding networks [Bush et al., 2005; Seidman et al.,
2004]. Moreover, recent neuroimaging studies have found
that ADHD patients showed anatomical [Ashtari et al.,
2005; Hill et al., 2003; Hynd et al., 1991; Semrud-Clikeman
et al., 1994] and functional [Castellanos et al., in press;
Murias et al., 2007; Tian et al., 2006] connectivity abnormal-
ities involving frontal and subcortical regions. Although
there are extensive researches on ADHD-related abnormal-
ities in widespread regions and the connectivity, very few
studies have yet investigated the topological organization of
functional networks in the whole brain in ADHD.
Recent advances in graph theoretical approaches have

allowed us to characterize topological properties of com-
plex networks. Using these approaches, Watts and Strogatz
[1998] have shown that graphs with densely local connec-
tions and few long connections can be characterized as
small-world networks. Such a topology has been demon-
strated in many complex networks, including social, eco-
nomical, and biological networks [for a review, see
Boccaletti et al., 2006]. Moreover, several recent studies
have demonstrated the small-world topology in large-scale
structural [Hagmann et al., 2007; He et al., 2007; Hilgetag
et al., 2000; Sporns and Zwi, 2004] and functional [Achard
et al., 2006; Bassett et al., 2006; Ferri et al., 2007;
Micheloyannis et al., 2006a; Salvador et al., 2005a; Stam,
2004; Stephan et al., 2000] brain networks in humans and
nonhuman primates. There is also increasing evidence that
the small-world properties of brain networks are affected
by normal aging [Achard and Bullmore, 2007] and brain
diseases, such as schizophrenia [Micheloyannis et al.,
2006b], Alzheimer’s disease [Stam et al., 2007], epilepsy
[Ponten et al., 2007], spinal cord injury [De Vico Fallani
et al., 2007], and brain tumor [Bartolomei et al., 2006].
Small-world is an attractive model for the description of

complex brain networks, since it provides a quantitative
insight into relevant network parameters governing funda-
mental organization of the brain. In the current study, we
hypothesize that the small-world properties of brain func-
tional networks would be altered in children with ADHD.
To test this hypothesis, we used functional magnetic res-

onance imaging (fMRI) to construct brain functional net-
works of both ADHD children and normal controls during
the resting state. The spontaneous low-frequency fluctua-
tion (LFF) measured by resting-state fMRI is highly syn-
chronous between different brain regions and is physiolog-
ically meaningful [Achard and Bullmore, 2007; Achard
et al., 2006; Biswal et al., 1995; Fox et al., 2005; Greicius
et al., 2003; Jiang et al., 2004; Kiviniemi et al., 2000, 2004;
Seeley et al., 2007]. Moreover, recent studies have sug-
gested that the LFF can be employed to characterize the
pathophysiological changes of brain disorders [Anand
et al., 2005; Cao et al., 2006; Tian et al., 2006; Wang et al.,
2006; Greicius et al., 2007; Zang et al., 2007]. In this study,
we measured functional connectivity [Friston et al., 1993]
by calculating correlations between the time series of any
pair of the 90 cortical and subcortical regions of the whole
brain during the resting state and then obtained a set of
interregional correlation matrices. The resulting correlation
matrices were further thresholded into undirected graphs
to construct brain functional networks. Finally, the topo-
logical properties of the networks were characterized by
graph theoretical approaches, and the differences between
two groups were further statistically evaluated.

MATERIALS AND METHODS

Participants

A total of 56 children (29 ADHD and 27 control boys)
participated in the experiment. All subjects were right-
handed and claimed to be in no lifetime history of head
trauma with loss of consciousness and neurological illness
or other severe psychical disease. All subjects scored intel-
ligence quotient (IQ) of higher than 80 on the Wechsler
Intelligence Scale for Chinese Children-Revised Version
[Gong and Cai, 1993]. The ADHD patients were recruited
from the outpatients of the Institute of Mental Health,
Peking University. A structured diagnostic interview, the
Clinical Diagnostic Interviewing Scale [Yang et al., 2001],
which is based on Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition criteria, was adminis-
tered to diagnose ADHD. The criteria for ADHD included
(1) predominantly inattention type (ADHD-I) or combined
type (ADHD-C), (2) no history of emotional disorders,
affective disorders, Tourette disorder, and other Axis I
psychiatric disorder, (3) no evidence of severe language
development delay and communication problems as deter-
mined through clinical history, parents interview, and ob-
servation of the children. Boys with hyperactivity disorder
with comorbid conduct disorder or oppositional defiant
disorder were not excluded. Controls were recruited from
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local middle school. They were excluded from the diagno-
sis of ADHD according to Clinical Diagnostic Interviewing
Scale [Yang et al., 2001] and had no history of emotional
disorders, affective disorder, Tourette disorder, and other
Axis I psychiatric disorder. This study was approved by
the Research Ethics Review Board of Institute of Mental
Health, Peking University. After completing the descrip-
tion of the nature of the procedure, informed consent was
obtained from the parents of each subject, and all of the
children agreed to participate in this study. Data from 17
subjects were excluded due to excessive motion (see Pre-
processing). Data of 19 ADHD and 20 control boys were
used in this study (age: Controls 13.32 6 0.97 years,
ADHD 13.59 6 1.52 years, t(37) 5 20.66, P 5 0.516; IQ:
Controls 115.25 6 11.85, ADHD 102.59 6 8.62, t(37) 5
3.66, P < 0.001).

fMRI Data Acquisition and Preprocessing

All MR images were acquired using a Siemens Trio 3-T
scanner (Siemens, Erlangen, Germany) in the Institute of
Biophysics, Chinese Academy of Sciences. Each subject lay
supine with the head snugly fixed by belt and foam pads
to reduce the effects of head movement. A T1-weighted
sagittal three-dimensional spoiled gradient-recalled
sequence was acquired covering the whole brain: 176 sli-
ces, thickness/gap 5 1.0/0 mm, matrix 5 256 3 256, repe-
tition time 5 1,700 ms, echo time 5 3.93 ms, flip angle 5
158, field of view 5 240 mm 3 240 mm. Functional images
were collected by using an echo-planar imaging (EPI)
sequence: 30 axial slices, thickness/gap 5 4.5/0 mm,
matrix 5 64 3 64, repetition time 5 2,000 ms, echo time 5
30 ms, flip angle 5 908, field of view 5 220 mm 3 220
mm. Subjects were instructed to keep their eyes closed,
relax their minds, and remain motionless as much as pos-
sible during the EPI data acquisition. The scan lasted for
480 s. For each dataset, the first 10 volumes were dis-
carded to allow for T1 equilibration effects and the adapta-
tion of the subjects to the circumstances, leaving 230 vol-
umes for further analysis.
Image preprocessing was carried out using the SPM5

software package (http://www.fil.ion.ucl.ac.uk/spm). All
datasets were corrected initially for temporal offsets using
the sinc interpolation and head movement-related effects
using a six-parameter (rigid body) spatial transformation
[Friston et al., 1995]. Data of 17 boys (10 ADHD and 7 con-
trols) with maximum displacement in any direction of
larger than 2 mm or head rotation of larger than 1.58 were
excluded from further analysis. The resulting datasets
were further spatially normalized to Talairach and Tour-
noux coordinate space [Talairach and Tournoux, 1998]
using an optimum 12-parameter affine transformation and
nonlinear deformations [Ashburner and Friston, 1999], and
then resampled to 3-mm isotropic voxels. Finally, the fMRI
data were temporally filtered (0.0083–0.15 Hz) by using an
ideal rectangle window filter of the AFNI software [Cox,
1996] to remove low-frequency drift and high-frequency

physiological noises [Greicius et al., 2003; Seeley et al.,
2007].

Functional Connectivity Matrix and

Graph Construction

To measure the functional connectivity among regions,
the brain was first parcellated into 90 anatomical regions
of interest (45 in. each hemisphere, see Table I) using the
anatomical automatic labeling (AAL) template [Tzourio-
Mazoyer et al., 2002]. The mean time series of each region
was then obtained by averaging the time series of all vox-
els in the region. Several sources of variance of BOLD sig-
nal were further removed from the mean time series using
a multiple linear regression model. The regressors con-
sisted of the estimated profiles of head motion (three for
translation and three for rotation) and the global brain ac-
tivity [Fox et al., 2005]. The residuals of this regression
were then used to substitute for the raw mean time series
of the corresponding regions. Pearson’s correlation coeffi-
cients between the residual time series of each possible
pair of the 90 regions were further computed to produce a
symmetric correlation matrix (i.e., functional connectivity
matrix) for each subject.
To investigate the properties of brain functional net-

works, each correlation matrix was thresholded into a bi-
nary graph (i.e., network), where nodes represent brain
regions and edges represent undirected connections. In
this study, network cost was adopted as a threshold mea-
surement since it concisely couples with network efficiency
(see the following section for the definition of efficiency
measures), thus providing a biologically meaningful
description of the performance of a network [Achard and
Bullmore, 2007; De Vico Fallani et al., 2007; Latora and
Marchiori, 2001]. CG, the cost of a graph G, is defined in
(1)

CG ¼ K

NðN � 1Þ=2 ð1Þ

where N and K are the total number of nodes and edges
in the graph G, respectively. N(N 2 1)/2 is the number of
all the possible edges in the G. CG measures how expen-
sive it is to build a network. It needs to note that the selec-
tion of different cost thresholds may lead to graphs with
distinct topologies: high thresholds yield sparser graphs
and low thresholds yield denser ones. However, since
there is no definitive way currently to select a precise
threshold in complex brain networks studies [Achard and
Bullmore, 2007; Bassett et al., 2006; He et al., 2007], in the
present study, we thus investigated the properties of the
networks over a wide range of threshold values. This can
allow us to explore the differences in network properties
between two groups at each threshold level. Here, the
range of cost threshold was set from 0.05 to 0.5 to make
(1) the small-world attributes estimable [i.e., the mean
degree k of the graph is greater than the log of the number
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of nodes (N 5 90); Watts and Strogatz, 1998. Note that k is
the average of the degree over all nodes, where the degree
of a node represents the number of connections to that
node], and (2) the resulting matrices have sparse proper-
ties. Such a criteria of threshold selection has been utilized
in several recent studies [Achard and Bullmore, 2007;
Achard et al., 2006; He et al., 2007].

Efficiency of Small-World Networks

For a given binary graph G with a wiring cost CG, we
can evaluate its small-world attributes. Originally, Watts
and Strogatz [1998] proposed clustering coefficient (Cp)
and shortest path length (Lp) to quantify small-world prop-
erties of a network. Recent studies have indicated that, in
small-world analysis, efficiency measure has a number of
technical and conceptual advantages over conventional Cp

and Lp measures, since it provides a single measure to an-
alyze both the local and the global behavior of a network
and can also deal with either the disconnected or non-
sparse graphs or both [Latora and Marchiori, 2001].
Recently, Achard and Bullmore [2007] applied the effi-
ciency metric for the first time to investigate human brain
functional networks. They found that human brain func-
tional networks exhibited economical small-world proper-
ties and that the economical performance of these net-
works was affected by normal aging and a dopamine re-
ceptor antagonist. Using the efficiency measures, in this
study, we investigated brain functional networks in the
ADHD and control boys. Briefly, the efficiency of a graph
G in (2) is defined as the inverse of the harmonic mean of

the minimum path length, Li,j (i.e., the shortest length of
the path from node i to node j) [Latora and Marchiori,
2001].

EðGÞ ¼ 1

NðN � 1Þ
X

i6¼j2G

1

Li;j
ð2Þ

According to the definition, Li,j would be infinite if there
is no path between node i and node j, thus contributing
nothing to the sum. When the graph G represents a whole
network, E(G) measures the global efficiency, Eglob(G), of
the network that quantifies the efficiency of information
propagation over it. When considering a subgraph of the
whole graph G, such as Gi, which is composed of the near-
est neighbors of node i, E(Gi) indicates the efficiency of the
subgraph Gi, measuring how efficient the information is
exchanged in the subgraph. Thus, the local efficiency,
Eloc(G), of the whole network is defined in (3) as the aver-
age of the efficiency E(Gi) over all subgraphs included in
the network [Latora and Marchiori, 2001].

ElocðGÞ ¼ 1

N

X

i2G
EðGiÞ ð3Þ

Besides the two global metrics, Eglob(G) and Eloc(G), in
this study, we also investigated regional nodal efficiency
in (4), Enodal(G,i), defined as the inverse of the harmonic
mean of the minimum length of path between node i and
all other nodes in a graph [Achard and Bullmore, 2007].
Enodal(G,i) measures the communication efficiency between
a node i and all the other nodes in the network G.

TABLE I. Regions of interest in an entire human brain functional network

Region Abbrevation Region Abbrevation

Precentral gyrus PreCG Lingual gyrus LING
Superior frontal gyrus (dorsal) SFGdor Superior occipital gyrus SOG
Orbitofrontal cortex (superior) ORBsup Middle occipital gyrus MOG
Middle frontal gyrus MFG Inferior occipital gyrus IOG
Orbitofrontal cortex (middle) ORBmid Fusiform gyrus FFG
Inferior frontal gyrus (opercular) IFGoperc Postcentral gyrus PoCG
Inferior frontal gyrus (triangular) IFGtriang Superior parietal gyrus SPG
Orbitofrontal cortex (inferior) ORBinf Inferior parietal lobule IPL
Rolandic operculum ROL Supramarginal gyrus SMG
Supplementary motor area SMA Angular gyrus ANG
Olfactory OLF Precuneus PCUN
Superior frontal gyrus (medial) SFGmed Paracentral lobule PCL
Orbitofrontal cortex (medial) ORBmed Caudate CAU
Rectus gyrus REC Putamen PUT
Insula INS Pallidum PAL
Anterior cingulate gyrus ACG Thalamus THA
Middler cingulate gyrus MCG Heschl gyrus HES
Posterior cingulate gyrus PCG Superior temporal gyrus STG
Hippocampus HIP Temporal pole (superior) TPOsup
Parahippocampal gyrus PHG Middle temporal gyrus MTG
Amygdala AMYG Temporal pole (middle) TPOmid
Calcarine cortex CAL Inferior temporal gyrus ITG
Cuneus CUN

The regions are described by Tzourio-Mazoyer et al. (2002), and the abbreviations are provided according to
Salvador et al. (2005a) and Achard et al. (2006).
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EnodalðG; iÞ ¼ 1

N � 1

X

j2G

1

Li;j
ð4Þ

Statistical evaluation of small-world properties requires
comparable regular and random networks [Watts and Stro-
gatz, 1998]. In this study, we generated populations of reg-
ular networks (n 5 100) and random graphs (n 5 100) that
preserved the same number of nodes and edges, respec-
tively. The efficiency of G was compared with that of ran-
dom graphs, Grand, and regular graphs, Greg. The graph G
would be considered a small-world if it met the following
conditions [Achard and Bullmore, 2007]:

EglobðGregÞ < EglobðGÞ < EglobðGrandÞ and
ElocðGrandÞ < ElocðGÞ < ElocðGregÞ ð5Þ

In the present study, we also measured the cost efficiency
as the difference between global efficiency and cost, i.e.,
Eglob(G) 2 CG, which would be positive in the case of an
economical network [Achard and Bullmore, 2007].

Statistical Analysis

In the present study, we first performed a lilliefors test
(MATLAB Statistics Toolbox, The MathWorks, Natick,
MA) to verify whether the small-world parameters (Eglob,
Eloc, and Enodal) followed a normal distribution [Conover,
1980]. According to the hypothesis-test results, the data
had a normal distribution over the selected cost range.

Then, we compared the global metrics (Eglob and Eloc) at
each cost value to evaluate the small-world topological dif-
ferences between the two groups using a two-sample t-
test. In addition, between-group difference in nodal effi-
ciency of each region was also tested by a two-sample t-
test at a given cost.

RESULTS

Small-World Brain Functional Networks in

Children

Figure 1 illustrates the global and local efficiencies of the
random, regular, and brain networks of both the groups
(ADHD and control) as a function of cost.
We found that the global efficiency was higher in the

random graphs than that in the corresponding regular net-
works (Fig. 1A), but the local efficiency was higher in the
regular networks than that in the corresponding random
graphs (Fig. 1B). Furthermore, we found that the efficiency
curves of brain networks of both the groups located
between the curves of the random and regular graphs in a
wide range of cost, suggesting small-world architectures in
the brain functional networks. Additionally, we also
observed that the cost efficiency (i.e., Eglob 2 CG) of brain
networks of both groups were greater than zero over the
whole range of cost threshold (see Fig. 2) and had a maxi-
mum positive value at an approximate cost of 0.20 (Fig. 2,
black arrows), suggesting economical properties in brain

Figure 1.

Small-world properties of brain functional networks. The (A)

global and (B) local efficiency (y-axis) are shown as a function of

the cost (x-axis) for random, regular, and brain networks. Error

bars denote standard error of the mean for a network type. For

each network, the global and local efficiency increase with the

cost. The efficiency curves locate between random graphs and

regular networks over the entire cost range (0.05 � cos t �

0.50, with an incremental interval of 10 edges). There are no sig-

nificant differences in the global efficiency between the two

groups, whereas there are significant differences found in local

efficiency at an intermediate range of the cost (0.12–0.16).

Color-coded upright triangles indicate significant differences

between the two groups (two-sample t-test, P < 0.05).
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networks. These results are consistent with a recent study
[Achard and Bullmore, 2007].

Altered Small-World Topology of Brain Functional

Networks in ADHD

At a wide range of cost threshold, the brain networks of
the ADHD group demonstrated decreased global efficiency
and increased local efficiency compared with controls (see
Fig. 1). Statistical analysis further revealed that there were
no significant differences in global efficiency between the
two groups (Fig. 1A), whereas there were significantly dif-
ferent (P < 0.05) in local efficiency at a range of cost (0.12
< cost < 0.16) (Fig. 1B, upright triangles). Furthermore, we
found that, at a cost of 0.15, there was the most significant
between-group difference (P 5 0.016) in the local efficiency
and there was a decreased trend in the global efficiency of
functional network in ADHD (P 5 0.144) (see Fig. 3). The
patterns of the changes in the network efficiency in ADHD
reflect the tendency of a disorder-related shift toward reg-
ular networks.

Altered Nodal Efficiency in ADHD

To further reveal the influence of the disorder on region-
ally nodal characteristics of the brain networks, the group
difference in nodal efficiency was tested at the cost of 0.15
corresponding to the maximal between-group difference in
the local efficiency. We found that ADHD patients demon-
strated significant decreases in nodal efficiency in the
medial prefrontal, temporal, and occipital cortex regions

(see Fig. 4) and increases in the inferior frontal cortex and
subcortical regions (see Fig. 4; Table II). Our results sug-
gest that the nodal efficiency of brain functional networks
is profoundly affected by ADHD. To highlight the affected

Figure 2.

Economical properties of brain functional networks. The global

(i.e., Eglob) and local efficiency (i.e., Eloc) of brain networks in

both controls and ADHD groups increase monotonically with

the cost. The cost efficiency (the difference between the global

efficiency and cost, i.e., Eglob 2 CG) has a maximum value at the

cost of 0.2 (the black arrows). The broken lines denote plus

and minus one standard error of the mean corresponding

to network parameters. The vertical lines denote the cost of

0.15, associated with the sparse networks used in Fig. 3 through

Fig. 6.

Figure 3.

Box-plots showing median, interquartile, and range for global ef-

ficiency (A) and local efficiency (B) in each group at the cost of

0.15. P values correspond to the significant level by means of a

two-sample t-test. Note that there is an outlier (black plus sign)

in the Eglob of the control group. There would be significantly

different in the Eglob (P 5 0.039) and Eloc (P 5 0.026) between

the two groups if this outlier is removed.
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brain regions, the whole brain topological map was
mapped into anatomical space for one control (Fig. 5A)
and one ADHD subject (Fig. 5B).

The Relation Between Network Efficiency and IQ

In order to evaluate the potential effect of IQ on our
results, we examined the correlations between the topolog-

ical parameters (Eglob, Eloc, and Enodal) and IQ within each
group. We found that, although there was significant
group difference in IQ, the correlation was not significant
between the IQ scores and the global efficiency (ADHD: r
5 0.296, P 5 0.249; Controls: r 5 0.027, P 5 0.911) or the
local efficiency (ADHD: r 5 0.014, P 5 0.959; Controls: r 5
0.061, P 5 0.797) values within each group. There were
also no significant correlations between the IQ and nodal
efficiency of brain regions showing significantly between-
group difference except the left lingual gyrus in the
ADHD group (r 5 0.633, P 5 0.006).

Figure 4.

ADHD-related changes in nodal efficiency at the cost of 0.15.

Red and black error bars correspond to the mean and standard

error of the mean for the ADHD and control group, respec-

tively. See Table II for the details of the regions. See Table I for

the abbreviations of the regions.

TABLE II. Regions showing significant changes in nodal

efficiency in ADHD (cost 5 0.15)

Region Hemisphere t value P value

Decreased nodal efficiency in ADHD
Orbitofrontal cortex
(medial)

R 3.41 0.001

Rectus gyrus L 2.38 0.022
Lingual gyrus L 2.18 0.035
Calcarine cortex L 2.10 0.042
Middle temporal gyrus L 2.37 0.023

R 2.16 0.037
Inferior temporal gyrus R 2.24 0.032
Temporal pole (middle) L 2.22 0.033

Increased nodal efficiency in ADHD
Inferior frontal gyrus
(triangle)

L 23.26 0.002
R 22.57 0.014

Pallidum L 22.16 0.038

t, statistical value showing nodal difference (P < 0.05) between
two groups (positive t-value means decreased nodal efficiency in
the ADHD group); R, right; L, left.

Figure 5.

ADHD-related changes in nodal efficiency in topological maps.

The networks were constructed by converting the individual

correlation matrices to generate sparse networks with the cost

of 0.15 (the vertical lines in Fig. 2) and shown in a sagittal view

of the brain. These black dots represent the brain regions that

were visualized by locating their y and z centroid coordinates in

the anatomical space. Cyan and magenta squares show signifi-

cantly lower and higher nodal efficiency of brain regions in the

ADHD patients compared with the controls, respectively. See

Table II for the details of the regions.
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DISCUSSION

This is the first study, to our knowledge, to investigate
small-world properties of brain functional networks in chil-
dren with and without ADHD. We found that brain func-
tional networks exhibited economical small-world topology
in both groups. An altered functional network, however,
was found in the brain of ADHD. In particular, a tendency
of shift toward regular networks was demonstrated in
ADHD when compared with normal controls. Moreover,
our study revealed that nodal efficiency was profoundly
affected at several regions of prefrontal, temporal, and occi-
pital cortices, which were compatible with previous studies
in ADHD. Our results suggested that the widely distributed
functional brain networks are altered in ADHD, thus pro-
viding further evidence for brain dysfunction associated
with this disease [Bush et al., 2005; Seidman et al., 2004].
Since small-world networks were quantitatively

described by Watts and Strogatz [1998], human brain func-
tional networks with a small-world configuration have
been validated by using various imaging techniques, such
as MEG, EEG, and fMRI [for reviews, see Bassett and Bull-
more, 2006; Stam and Reijneveld, 2007]. In agreement with
these previous findings, in the present study, we also
observed the features of small-world architecture in the
functional brain networks in children both with and with-
out ADHD using the resting-state fMRI (see Fig. 1), thus
providing further support for the opinion that small-world
brain networks have the ability to display tolerance in the
face of developmental aberration or disease [Achard et al.,
2006]. Moreover, the functional networks with small-world
features were also found to show economical properties
(see Fig. 2), consistent with previous studies [Achard and
Bullmore, 2007]. Together, these findings supported the
standpoint that brain networks might have been evolved
to maximize cost efficiency of parallel information process-
ing, i.e., high efficiency of parallel information transfer at
low cost [Kaiser and Hilgetag, 2006; Sporns et al., 2004].
Although both of ADHD and control groups had eco-

nomical small-world properties as elucidated earlier, the
topology of the ADHD group was altered compared to the
control group. A tendency of decreased global efficiency of
the brain networks was found in ADHD over the whole
cost range. It has been suggested that the global efficiency
is affected by the loss of long-range connections [Latora
and Marchiori, 2001]. Structural and diffusion imaging
studies found that the regions showing the ADHD-related
abnormality are associated with long fibers in ADHD chil-
dren, such as the corpus callosum (connecting the left and
right cerebral hemispheres) [Hill et al., 2003; Hynd et al.,
1991; Semrud-Clikeman et al., 1994] and the anterior limb
of internal capsule (containing thalamocortical fibers and
corticopontine fibers) [Ashtari et al., 2005]. The abnormal-
ities may incur the disruption to the long-range communi-
cation among parts of the brain. A recent research has also
indicated abnormal long-range connections (dorsal anterior
cingulate and medial parietal lobe) in ADHD [Castellanos

et al., in press]. All these abnormalities may contribute to
the decreasing tendency of global efficiency of brain net-
work in ADHD. In the current study, significantly increased
local efficiency of the brain networks was also found in
ADHD children compared to the controls. The underlying
mechanisms of increased local efficiency of a network have
been widely discussed in various studies. For example, De
Vico Fallani et al. [2007] reported that increased local effi-
ciency in spinal cord injured patients could be attributable
to a functional reorganization (i.e. brain plasticity). Latora
and Marchiori [2001] indicated that the higher the local effi-
ciency of a network, the larger fault tolerance was the net-
work at the face of external attack. We thus suspected that
the higher value of local efficiency in ADHD observed here
might suggest a kind of defense mechanism responsible for
suppressing the disorder affection.
Although both the ADHD children and controls showed

small-world attributes in their brain functional networks,
the increased local efficiency combined with slightly
decreased global efficiency made their networks topology
exhibit the tendency of a shift toward regular networks
(see Fig. 1). It has been suggested that the small-world
structure reflects an optimal balance between local process-
ing and global integration [Sporns and Tononi, 2002].
Therefore, any abnormal shift caused by brain diseases to-
ward either random [Bartolomei et al., 2006; Micheloyannis
et al., 2006b; Ponten et al., 2007] or regular [De Vico Fallani
et al., 2007] networks may reflect a less optimal network
organization. Though the biological causes of underlying
the shift remain still unclear, the regular configurations in
complex networks have been found to demonstrate low
global coordination and slow information flow compared
to small-world arrangements [Barahona and Pecora, 2002;
Lago-Fernandez et al., 2000; Nishikawa et al., 2003; Stro-
gatz, 2001]. Hence, our results suggested that the ADHD-
related network shift may reflect the abnormalities of net-
work architecture.
As described by Achard and Bullmore [2007], the nodal

efficiency measures the extent to which the node connects
all other nodes of a network, which may indicate the im-
portance of the nodal area in the whole brain network.
Using this measure, we here found abnormal nodal effi-
ciency in several regions, involving the prefrontal, tempo-
ral, occipital, and subcortical regions (Table II) that were,
in general, concerned in ADHD studies. The orbital frontal
cortex (OFC) is associated with executive function network
[Makris et al., 2007]. The decreased nodal efficiency in the
OFC was in accordance with several structural and func-
tional imaging studies that have found cortical atrophy
and reduced activity in this region in the ADHD patients
[Lee et al., 2005; Makris et al., 2007], which might suggest
the abnormalities of executive function in the patients. In
addition, several regions belonging to temporal and occipi-
tal cortices were also found to have significant decreases
in nodal efficiency (Table II), which were compatible with
previous studies showing ADHD-related structural and
functional abnormalities in these regions [Castellanos
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et al., 2002; Durston et al., 2004; Schulz et al., 2004]. In con-
trast, the inferior frontal gyrus (IFG) exhibited significantly
increased nodal efficiency. The IFG was critical for
response inhibition [Aron et al., 2003], dysfunction of
which has been considered as the core deficit in ADHD
[Barkley, 1997; Schulz et al., 2004; Vaidya et al., 1998]. The
greater nodal efficiency may thus reflect greater inhibitory
effort in the ADHD children. Together, our findings of
ADHD-related changes in the nodal efficiency reported
here suggest that the nodal roles in brain functional net-
works are profoundly affected by this disorder.
In addition to the efficiency measures aforementioned, in

this study, we also investigated the degree distribution of
brain functional networks of both the ADHD and controls
groups. Our results demonstrated that the brain networks of
both groups followed a truncated power-law form (P(k) �
ka21 ek/kc, where a is an estimated exponent and kc is a cutoff
degree) as opposed to scale-free regime (see Fig. 6), consist-
ent with previous studies [Achard et al., 2006; He et al.,
2007]. Further statistical analysis indicated that there were
no significant difference in the fitted parameters [a: t(37) 5
0.412, P 5 0.683; kc: t(37) 5 20.141, P 5 0.889] between the
two groups, implying that the degree distribution property
of brain functional networks was not altered by this disor-
der. The truncated power-law distribution shown here sug-
gests that the human brain network includes some core
regions but prevents the appearance of the huge hubs with

many connections. Such a network structure has been dem-
onstrated to be more resilient to targeted attacks, but equally
resilient to random errors as compared to a scale-free net-
work [Achard et al., 2006; Albert et al., 2000]. Although
physical constraints may account for the form of this degree
distribution, it remains still unclear about the biological
causes underlying this network topology and would be
meaningful to further clarify the issue in future studies.
In the present study, although IQ scores between two

groups was significantly different, no significant correla-
tions were found between IQ and the global, local, and
nodal efficiency within each group, except the left lingual
gyrus in the ADHD group. The result indicated that our
finding of altered network efficiency in ADHD might not
be accounted for by the IQ scores. However, using an EEG
technique, Micheloyannis et al. [2006a] reported that the
IQ was correlated with the topological parameters of brain
networks during working memory tasks. Nonetheless, they
did not find significant correlations during the no-task or
rest condition, consistent with the current study. These
results suggest that the topology of brain networks during
the rest state is greatly distinct from that during the task
state. Future studies might be helpful to further clarify the
relation between IQ and network topology.
Several issues need to be further addressed. First, in

order to construct functional brain networks, the present
study used a prior template (AAL) to parcellate the whole
brain into 90 regions. Although such a template has been
applied to several recent studies [Achard and Bullmore,
2007; Achard et al., 2006; Salvador et al., 2005a, 2005b], dif-
ferent parcellation schemes may affect our results. In
future studies, other available templates [He et al., 2007;
Toga et al., 2006] could be adopted to explore the effect of
the templates on the networks architectures. Second, a
wide range of cost thresholds were employed to investi-
gate network efficiency, and results without correction
were reported in this work. As discussed in the method
section, different thresholds may lead to graphs with dis-
tinct topologies, but no definitive approach is available to
determine a single precise threshold so far. Thus, the use
of the wide range of thresholds is reasonable for this pre-
liminary study. Moreover, while uncorrected results were
reported here, the present study provided a meaningfully
specific cost range (0.1–0.15) that could be employed in
future to reduce the problem of multiple comparisons. In
addition, the use of a large number of samples would be
also important to increase the statistical power. Third, in
this study, the brain functional networks were constructed
based on the thresholded correlation matrices. It is also
possible to construct the brain networks with continuous
weighting that provides more detailed connectivity infor-
mation between network nodes compared with the binary
graphs [Achard and Bullmore, 2007; Barrat et al., 2004;
Jiang et al., 2004; Latora and Marchiori, 2001]. However,
the weighted models could lead to the complications of
statistical features descriptions in graph theoretical analy-
sis, thus the initial study confined itself to a simple binary

Figure 6.

The degree distributions of human brain functional networks at

the cost of 0.15. The degree distribution of both the ADHD

(solid line) and control (broken line) subject can be well fitted

by an exponentially truncated power-law form (P(k) � ka21 ek/kc,

where a is an estimated exponent and kc is a cutoff degree) in

the log–log plot. Plus signs and open squares denote the data

points in the ADHD (a 5 1.266, kc 5 9.060) and the control (a
5 1.266, kc 5 7.914), respectively. Note that there are no signif-

icant differences in a (t(37) 5 0.412, P 5 0.683) and kc (t(37) 5
20.141, P 5 0.889) between the two groups.
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connectivity analysis. In future studies, it would be inter-
esting to apply efficiency and cost measurements to the
weighted networks and further investigate their topologi-
cal properties in ADHD. Fourth, in this work we used rest-
ing-state fMRI to investigate brain functional networks.
Previous work has suggested that spontaneous LFFs meas-
ured by BOLD fMRI probably reflect underlying anatomi-
cal connectivity of the cortex [Achard et al., 2006; Salvador
et al., 2005a]. For example, in macaque cortex, Honey et al.
[2007] have demonstrated that spontaneous neuronal dy-
namics at multiple temporal scales can be related to under-
lying anatomical connectivity. In human cortex, He et al.
[2007] have also demonstrated that the structural brain net-
works constructed from cortical thickness data exhibit top-
ological and anatomical similarity with the low-frequency
brain functional networks. Therefore, we suspected that
the ADHD-associated changes in topological organization
found in this study may reflect the abnormality in struc-
tural brain networks in patients, which needs to be further
studied in future. Finally, our results could be potentially
influenced by the preprocessing approaches used in this
study. To date, however, no systematic study is conducted
to evaluate the effects of the preprocessing approaches on
graphic properties. Nevertheless, there were evidences for
the effect of frequency band on the graphs. For example,
Salvador et al. [2005b, 2008] demonstrated that resting-
state functional connectivity between regions was related
to specific frequency intervals: low-frequency components
associated with long-distance connections and high-fre-
quency with short-distance connections. Achard et al.
[2006] also reported that brain functional networks exhib-
ited small-world properties at multiple time scales, but
most salient in the low-frequency interval (0.03–0.06 Hz).
In the current study, we also investigated topological pa-
rameters of brain functional networks constructed by time
series of other frequency band (lower than 0.0083 Hz or
higher than 0.15 Hz) and found that there were no signifi-
cant differences in Eglob, Eloc and Enodal between the two
groups. In future studies, it would be important to system-
atically analyze the effects of different preprocessing pro-
cedures on the topological properties of brain networks.
In summary, this is the first study to reveal the topological

properties of brain functional networks in children with
ADHD using the resting-state fMRI. Our results provided
further support for the presence of small-world features in
complex brain networks, and more importantly, we found
that the disorder had a deleterious effect on the topological
organization of brain functional networks. These findings
were compatible with previous ADHD studies from struc-
tural and functional imaging, thus enhancing our understand-
ing of the underlying pathophysiology of ADHD and dis-
criminating the neuropathological state of mental disorders.
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