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Disrupted Functional Brain Connectome in Individuals
at Risk for Alzheimer’s Disease
Jinhui Wang, Xinian Zuo, Zhengjia Dai, Mingrui Xia, Zhilian Zhao, Xiaoling Zhao, Jianping Jia, Ying Han,
and Yong He

Background: Alzheimer’s disease disrupts the topological architecture of whole-brain connectivity (i.e., the connectome); however, whether this
disruption is present in amnestic mild cognitive impairment (aMCI), the prodromal stage of Alzheimer’s disease, remains largely unknown.

Methods: We employed resting-state functional magnetic resonance imaging and graph theory approaches to systematically investigate
the topological organization of the functional connectome of 37 patients with aMCI and 47 healthy control subjects. Frequency-dependent
brain networks were derived from wavelet-based correlations of both high- and low-resolution parcellation units.

Results: In the frequency interval .031–.063 Hz, the aMCI patients showed an overall decreased functional connectivity of their brain
connectome compared with control subjects. Further graph theory analyses of this frequency band revealed an increased path length of the
connectome in the aMCI group. Moreover, the disease targeted several key nodes predominantly in the default-mode regions and key links
primarily in the intramodule connections within the default-mode network and the intermodule connections among different functional
systems. Intriguingly, the topological aberrations correlated with the patients’ memory performance and differentiated individuals with
aMCI from healthy elderly individuals with a sensitivity of 86.5% and a specificity of 85.1%. Finally, we demonstrated a high reproducibility
of our findings across different large-scale parcellation schemes and validated the test-retest reliability of our network-based approaches.

Conclusions: This study demonstrates a disruption of whole-brain topological organization of the functional connectome in aMCI. Our
finding provides novel insights into the pathophysiological mechanism of aMCI and highlights the potential for using connectome-based

metrics as a disease biomarker.
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A lzheimer’s disease (AD) is a progressive, neurodegenerative
disease characterized by a decline in cognitive and memory
functions likely caused by aberrant neuronal circuitry (1–3).

Amnestic mild cognitive impairment (aMCI), a transition state be-
tween normal aging and AD, has a high risk of progressing to AD (4).
Numerous studies have reported that the brains of patients with
aMCI have impaired structural integrity (5,6) and functional connec-
tivity (7–10). However, whether aMCI patients also exhibit a dis-
rupted topological organization in their whole-brain networks re-
mains largely unknown.

Recent studies have suggested that human whole-brain struc-
tural and functional networks (i.e., the connectome [11,12]) can be
constructed using multimodal neuroimaging data and that their
topological organization can be characterized quantitatively using
various graph theory metrics (13–15). With these metrics, many
nontrivial organizational principles, including small-worldness,
modularity, and highly connected hubs, have been observed in the
human brain connectome. Moreover, these network properties are
disrupted in many neuropsychiatric disorders (13,16 –18). These
studies have accelerated the process of mapping the human con-
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ectome in healthy and diseased states. Specifically, in patients
ith AD, several research groups have reported topological altera-

ions in the whole-brain connectome, including a loss of small-
orldness and a redistribution of hubs (19 –23). With respect to

MCI, only two studies have explored the topological organization
f the whole-brain connectome. Using structural magnetic reso-
ance imaging, Yao et al. (24) found no differences in the topology
f cortical-thickness networks between patients with aMCI and
ealthy control subjects. However, using magnetoencephalogra-
hy data, Buldu et al. (25) reported reorganization of the functional
onnectome in aMCI patients during a memory task.

Here, we employed resting-state functional magnetic reso-
ance imaging (R-fMRI) to investigate the topological changes in

he functional connectome in patients with aMCI. R-fMRI measures
ntrinsic or spontaneous neuronal activity of the brain (26,27) and
as been applied to reveal aMCI-related breakdowns in functional
rain synchronization (7,9,28). The current study focuses exclu-
ively on the topological architecture of the intrinsic functional
rain connectome in aMCI. Specifically, we sought to determine
hether aMCI disrupts the topological organization of the whole-
rain functional network and, if so, whether those topological ab-
ormalities are associated with individual clinical or behavioral vari-
bles. Furthermore, we examined whether these abnormalities
ifferentiated patients with aMCI from healthy elderly individuals.

ethods and Materials

articipants
Eighty-four right-handed participants, comprising 37 patients

ith aMCI (17 men and 20 women) and 47 sex-, age-, and educa-
ion-matched healthy control subjects (HC: 20 men and 27 women),
articipated in this study. The patients were recruited from the
emory clinic of the neurology department of Xuanwu Hospital,

apital Medical University, Beijing, China. The control subjects were
ecruited from the local community using advertisements. At the

ime of the study, none of the patients had ever been treated with
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specific medications, such as anti-acetylcholinesterase drugs. Diag-
noses of aMCI were made by experienced neurologists using Pe-
tersen’s criteria (4,29). The detailed inclusion and exclusion criteria
are described in Supplement 1. Each participant was assessed using
a standardized clinical evaluation protocol that included the Mini-
Mental State Examination (MMSE) (30), the Clock Drawing Test
(CDT), the Auditory Verbal Learning Test (AVLT) (31), and the Clinical
Dementia Rating Scale (32). In Table 1, we present the detailed
demographics and clinical characteristics of the participants. Data-
sets from a subset of the general population have been used to
study local brain activity in patients with aMCI (33). This study was
approved by the Medical Research Ethics Committee and Institu-
tional Review Board of Xuanwu Hospital, and informed consent was
obtained from each participant.

Data Acquisition
All participants were scanned using a 3.0 T Siemens Trio scanner

(Erlangen, Germany) at Xuanwu Hospital, Capital Medical Univer-
sity, within a single session (Supplement 1). During the data acqui-
sition, participants were asked to lie quietly in the scanner with their
eyes closed. The scan lasted for 478 seconds in total and included
239 volumes for each participant.

Data Preprocessing
Data preprocessing was performed using the SPM8 package

(http://www.fil.ion.ucl.ac.uk/spm/software/SPM8/; Wellcome Trust
Center for Neuroimaging, University College London, United King-
dom; Supplement 1) and included the removal of the first five
volumes, correction for time offsets between slices and head mo-
tion, spatial normalization to the Montreal Neurological Institute
space, temporal high-pass filtering (cutoff frequency � .01 Hz), and
regression of nuisance signals of six head-motion profiles. Given the
controversy of removing the global signal in the preprocessing of
R-fMRI data (34,35), we did not regress the global signal out
(22,36,37). Notably, the head-motion profiles were matched be-
tween the aMCI and HC groups (p � .248 in any direction).

Network Construction
In this study, brain networks were constructed at the macroscale

Table 1. Demographics and Clinical Characteristics of the Participants

HC (n � 47) aMCI (n � 37) p Value

ender (Male/
Female) 20/27 17/20 .756a

Age (Years) 50–79 (63.4 � 7.7) 41–79 (66.8 � 9.4) .184b

Education (Years) 0–22 (11.4 � 5.0) 0–20 (9.8 � 4.2) .136b

MMSE 20–30 (28.5 � 2.0) 16–30 (24.7 � 3.5) �10�7b

CDT 1–3 (2.8 � .6) 1–3 (2.1 � .8) �10�4b

CDR 0 .5 —
AVLT-Immediate

Recall 6–14.7 (8.8 � 2.0) 2.7–10.7 (5.7 � 1.9) �10�9b

AVLT-Delayed
Recall 4–15 (9.8 � 2.8) 0–14 (5.1 � 3.3) �10�9b

AVLT-Recognition 3–15 (11.6 � 2.7) 1–14 (8.8 � 3.3) �10�4b

Data are presented as the range of minimum–maximum (mean � SD).
Notably, there were no outliers for any characteristics of both of the groups
using the criterion of 2.5 interquartile ranges from lower/upper quartile
values of the samples.

aMCI, amnestic mild cognitive impairment; AVLT, Auditory Verbal Learn-
ing Test; CDR, Clinical Dementia Rating Scale; CDT, Clock Drawing Test; HC,
healthy control subjects; MMSE, Mini-Mental State Examination.

aThe p value was obtained using a two-tail Pearson chi-square test.
bThe p value was obtained using a two-sample two-tail t test.
where nodes represented brain regions and edges represented m

www.sobp.org/journal
nterregional resting-state functional connectivity (RSFC). To define
etwork nodes, we divided the brain into 1024 regions of interest

ROIs) according to a high-resolution, randomly generated brain
tlas (H-1024) (38). To measure interregional RSFC, we calculated
he Pearson correlation between any pair of ROIs in the wavelet
oefficients that were obtained by the maximal overlap discrete
avelet transform method (39). Here, we estimated RSFC in four
avelet scales (scale 1, .125–.250 Hz; scale 2, .063–.125 Hz; scale 3,

031–.063 Hz; and scale 4, .016 –.031 Hz). To further de-noise spuri-
us interregional correlations, only those correlations whose corre-
ponding p values passed through a statistical threshold (p � .05,
onferroni-corrected) were retained (40). Details on the network
onstruction can be found in Supplement 1.

etwork Analysis
For the constructed brain networks, we calculated both global

nd regional network metrics to characterize their overall architec-
ure and regional nodal centrality, respectively. The global network

etrics included small-world attributes (clustering coefficient,
Wand characteristic path length, LW) (41) and modularity (Qmax) (42)

nd their normalized versions using random networks (C̃W, L̃W, and

max). Typically, a small-world network shows C̃W� 1 and L̃W � 1 (41)

nd a modular network shows Q̃max� 1. For regional network mea-
ures, we employed nodal strength (i.e., weighted degree central-
ty) among numerous nodal metrics (43) because of its high test-
etest reliability (44). See Supplement 1 for the formulas and
ubinov and Sporns (45) for a recent review on the uses and inter-
retations of these network measures.

tatistical Analysis
Between-Group Differences. Between-group differences in to-

ological attributes (both global and regional measures) were inferred
y nonparametric permutation tests (21,46). Briefly, for each network
etric, we initially calculated the between-group difference of the
ean values. An empirical distribution of the difference was then ob-

ained by randomly reallocating all of the values into two groups and
ecomputing the mean differences between the two randomized
roups (10,000 permutations). The 95th percentile points of the empir-

cal distribution were used as critical values in a one-tailed test of
hether the observed group differences could occur by chance. To

ocalize the specific pairs of regions in which the functional connectiv-
ty was altered in the aMCI patients, we used a network-based statistic
NBS) approach (47). In brief, a primary cluster-defining threshold was
rst used to identify suprathreshold connections, within which the size

i.e., number of edges) of any connected components was then deter-
ined. A corrected p value was calculated for each component using

he null distribution of maximal connected component size, which was
erived empirically using a nonparametric permutation approach

10,000 permutations). Notably, before the permutation tests, multiple
inear regressions were applied to remove the effects of age and gen-
er, the age-gender interaction, and education level (43,48–53). The
etails of the statistical analyses can be found in Supplement 1.

Relationships Between Network Measures and Clinical
ariables. Multiple linear regressions were used to assess the

elationships between network metrics and clinical variables (AVLT-
mmediate recall, AVLT-delayed recall, AVLT-recognition, and

MSE score) in the aMCI group. Age, gender, the age-gender inter-
ction, and education level were also controlled.

etwork Classification
We plotted the receiver operating characteristic curves to deter-

ine whether graph-based network metrics might serve as bio-

arkers for diagnosing aMCI. This analysis was performed using the

http://www.fil.ion.ucl.ac.uk/spm/software/SPM8/
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public MATLAB codes (http://www.mathworks.com/matlabcentral/
fileexchange/199500 -roc-curve; Giuseppe Cardillo, Naples, Italy; Sup-
plement 1).

Validations: Reproducibility and Test-Retest Reliability
To validate the reproducibility of our results, we adopted four

procedures as follows.
Preprocessing Choices. We explored the reproducibility of

our results with and without regressing out white matter and cere-
brospinal fluid signals.

Regional Parcellation Effects. We employed three low-reso-
ution brain atlases (Table S1 in Supplement 1) to define network
odes, which allowed us to estimate the reproducibility of our
ndings against different parcellation schemes.

Network Types Effects. Besides the weighted network analy-
is, we also implemented binary network analyses to assess the
tability of our findings.

Test-Retest Reliability. We used a public R-fMRI dataset at
euroimaging Informatics Tools and Resources Clearinghouse

http://www.nitrc.org/projects/nyu_trt; New York University) to es-
imate the test-retest reliability of wavelet-based network metrics.
ntraclass correlation (54) was used (for details, see Supplement 1).

Results

Demographic and Clinical Characteristics
There were no significant differences in age, gender, or years of

education (all p � .13) between the aMCI and HC groups. However,

Figure 1. (A) Between-group differences in the number of connections
functional networks and distribution of wavelet correlations with respect to

amnestic mild cognitive impairment (aMCI) patients exhibited fewer connection
analysis revealed that aMCI targeted more middle- and long-distance connection
he aMCI group had significantly lower scores on the MMSE (p �
0�7), CDT (p � 10�4), AVLT-immediate recall (p � 10�9), AVLT-
elayed recall (p � 10�9), and AVLT-recognition (p � 10�4) than the
C group (Table 1).

requency-Specific Alterations in the Wavelet Correlation
atrix

For each thresholded wavelet correlation matrix, we calculated
he total number of links, the mean correlation, and mean anatom-
cal distance (defined as the Euclidean distance between stereo-
axic coordinates of the centroids for two regions) for all signifi-
antly (p � .05, Bonferroni-corrected) existing connections. The
MCI networks had a significantly lower mean wavelet correla-
ion (p � .048) and contained a higher proportion of short-range
anatomical distance � 45 mm) connections (p � .046) only in

avelet scale 3 (.031–.063 Hz). Additionally, trends toward fewer
onnections (p � .080), shorter mean anatomical distances (p �

051), and lower proportion of middle-range (p � .058) and
ong-range connections (p � .058) were also detected in the
MCI connectome (Figure 1). No significant between-group dif-
erences were detected in other frequency bands (all p � .05).
hus, the subsequent network topological analyses focused only
n wavelet scale 3.

lobal Topological Organization of the
unctional Connectome

The whole-brain connectome of both the aMCI and HC groups
xhibited typical features of small-world topology and modular

mean correlation (middle), and mean anatomical distance (right) of the
f anatomical distance (B). In the specific wavelet scale 3 (.031–.063 Hz), the
(left),
bins o
s, lower mean correlation, and shorter mean anatomical distance. Further
s (B). *p � .05; #.05�p�.10. HC, healthy control subjects.

www.sobp.org/journal
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structure, i.e., compared with matched random networks, the func-
tional brain networks had larger clustering coefficients, almost
identical shortest path lengths, and larger modularity. Neverthe-
less, quantitative statistical analyses revealed significantly in-
creased characteristic path lengths in the aMCI group (HC: 7.950 �
5.236; aMCI: 14.506 � 22.250; p � .047). Additionally, the aMCI
group showed trends toward increased normalized characteristic
path lengths (HC: 1.673 � .412; aMCI: 1.928 � .694; p � .055) and

ecreased modularity (HC: 3.129 � 1.015; aMCI: 2.696 � .632; p �
084) compared with the HC group.

Figure 2. Mean nodal strength in the healthy control subjects (HC) (A) an

ifferences (C). The nodes and connections were mapped onto the cortical surfac
VLT, Auditory Verbal Learning Test.

www.sobp.org/journal
egional Topological Organization of the Functional
onnectome

The mean nodal strength (across subjects) was distributed het-
rogeneously across the brain. In the HC group, the most highly
onnected regions were located predominantly in the posterior
arietal and occipital cortices, such as the bilateral precuneus

PCUN), postcentral gyrus, superior parietal gyrus, cuneus, and cal-
arine fissure and surrounding cortex (Figure 2A). This pattern was
ighly preserved in the aMCI patients (r � .834, p � 10�10, Figure
B). Further between-group comparisons revealed that 27 brain

nestic mild cognitive impairment (aMCI) patients (B) and between-group
d am

es using the BrainNet Viewer package (http://www.nitrc.org/projects/bnv).

http://www.nitrc.org/projects/bnv
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structures were targeted (p � .01, uncorrected) by the disease that
resided predominantly in the frontal (e.g., the bilateral dorsolateral
superior frontal gyrus and middle frontal gyrus), parietal (e.g., the
bilateral PCUN and angular gyrus), and temporal (e.g., the bilateral
middle temporal gyrus [MTG] and left inferior temporal gyrus) re-
gions (Figure 2C). In addition, several subcortical regions of the
bilateral caudate nucleus and right putamen also showed de-
creased nodal strength in the aMCI patients (Figure 2C). We next
considered the roles of these structures in the context of modular
architecture derived from the HC group. Five modules were found (
Qmax� .536): the motor and somatosensory module, the default
network, the (ventral) attention network, the visual processing
module, and the auditory module (Figure 3A and Figure S1 in Sup-

lement 1). Based on the identified modular architecture, the tar-
eted ROIs in aMCI belonged mainly to the default network (19/27,
0.4%), followed by the attention (4/27, 14.8%), motor (2/27, 7.4%),
nd visual (2/27, 7.4%) modules.

isrupted Functional Network Connectivity in aMCI
Under the cluster defining threshold of p � 5�10�4, a single

network of 363 connections linking widely distributed brain struc-
tures was revealed to show decreased functional connectivity in the
aMCI group (p � .006, corrected). Using a more rigorous threshold

f p � 1�10�4, the network split into two independently con-
ected components: one included 65 connections (p � .004, cor-

ected) and the other 22 connections (p � .011, corrected). Using
the normal modular architecture as a reference (Figure 3A), we

Figure 4. The relationship between global network met-
ics and cognitive performance of patients with amnestic

ild cognitive impairment. AVLT, Auditory Verbal Learn-
ng Test.
ound that the larger component was comprised mainly of inter-
odule connections (46/65, 70.8%), which linked regions in the
otor and somatosensory module, the visual processing module,

nd the auditory module (Figure 3B). In contrast, the smaller com-
onent was comprised predominantly of intramodule connections

15/22, 68.2%) within the default network (Figure 3B). These de-
reased functional connectivities were correlated significantly with
he abnormal global network metrics mentioned above (LW: r �

.354, p � .001; L̃W: r � �.574, p � 10�6).

elationship Between Network Metrics and Behavioral
erformance

Within the aMCI group, the whole-brain topology (LW, L̃W, and Q̃max)
Figure 4) and nodal strength (angular gyrus, MTG, inferior temporal
yrus, and middle frontal gyrus) (Figure 2C) correlated significantly

p � .05) with the AVLT-recognition and immediate recall ability of the
atients (Table 2). Additionally, the mean functional connectivity
trength of the NBS-based connected network (cluster-defining
hreshold, p � 1�10�4) exhibited a trend toward positive correlation
ith the AVLT-cognitive recognition (Figure 3C).

ensitivity and Specificity of Network Metrics in
ifferentiating the aMCI Patients from HCs

The mean functional connectivity strength of the NBS-based
onnected network (cluster-defining threshold, p � 1�10�4) ex-
ibited the highest power (area under curve � .904, p � 10�6), with

Figure 3. Modular architecture (A), amnestic mild cogni-
tive impairment (aMCI)-related decrease in functional
connectivity (B), connectivity-cognitive performance cor-
relation (C), and aMCI-control classification (D). See Re-
sults for a description of these findings. AVLT, Auditory
Verbal Learning Test; ROC, receiver operating characteris-
tic.
www.sobp.org/journal
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a sensitivity of 86.5% and a specificity of 85.1% (accuracy � 85.7%)
or distinguishing patients from HCs (Figure 3D). As such, 32 out of
he 37 patients with aMCI and 40 out of the 47 HCs were classified
orrectly. All of the other network metrics studied exhibited rela-
ively poor discriminant performances (all areas under curve �.7).

eproducibility of the Findings and Test-Retest Reliability of
avelet-Derived Network Metrics

Most of the findings reported above were reproducible across dif-
erent parcellation schemes (Table 3, Figures S2 and S3 in Supplement

Table 2. Partial Correlation Coefficients Between Globa
Patients with aMCI

Network
Metric

Partial C

MMSE AVLT-Immediate

CW �.123 (.497) .114 (.528
LW .071 (.694) �.207 (.247
Qmax �.001 (.995) �.214 (.232

C̃W �.177 (.325) �.300 (.089

L̃W �.039 (.830) �.232 (.194

Q̃max
�.003 (.989) �.286 (.106

ANG, L �.103 (.570) �.360 (.39)a

MTG, L/ITG, L �.031 (.863) �.369 (.035
MFG, R �.028 (.878) �.025 (.890
MTG, L �.021 (.906) �.214 (.231
MTG, R �.096 (.594) �.195 (.277

The partial correlations were computed using age,
founding covariates.

aMCI, amnestic mild cognitive impairment; ANG, ang
temporal gyrus; L, left; MFG, middle frontal gyrus; MMSE,
R, right.

aSignificant (p � .05) correlations.

Table 3. Reproducibility of Our Principal Findings Over

Parcellation CW LW

Between-Group Difference
L-AAL (n � 90) 2a 1b

L-HOA (n � 112) 2a 1b

L-Crad (n � 200) 2a ns
H-1024 (n � 1024) ns 1a

Correlation Analysis
L-AAL (n � 90) �a �a

L-HOA (n � 112) �a �a

L-Crad (n � 200) �b �b

H-1024 (n � 1024) �a �a

Discriminant Analysis
L-AAL (n � 90) Poor Poor
L-HOA (n � 112) Poor Poor
L-Crad (n � 200) Poor Poor
H-1024 (n � 1024) Poor Poor

Correlations were significant only for AVLT-recognition
incomparability across various parcellation schemes. All an
2, aMCI � healthy control subjects; 1, aMCI � he

correlation; AUC, area under curve; Excellent, AUC � 90%
high-resolution randomly generated atlas (38); L-AAL,
L-Crad, Low-resolution Craddock et al. functional atlas
NBS, network-based statistic; the mean functional conn
network-based statistic method; ns, nonsignificant (p �

a
p � .05.
b.05 � p � .10.

www.sobp.org/journal
), preprocessing strategies and network types (data not shown). It
hould be noted that high-resolution parcellation outperformed low-
esolution parcellation in discriminating patients with aMCI from HCs
Table 3). In the specific wavelet scale 3, most global wavelet-derived
etwork metrics exhibited fair to excellent (.4 � intraclass correla-

ion � .9) test-retest reliability (Figure S4 in Supplement 1), whereas
he reliability of nodal strength distributed unequally across the
rain (Figure S5 in Supplement 1). Notably, most of those metrics
nd brain structures that showed between-group differences ex-
ibited moderate to high reliability.

Nodal Network Metrics and Cognitive Performance of

ation Coefficient (p Value)

ll AVLT-Delayed Recall AVLT-Recognition

�.044 (.809) .348 (.048)a

�.114 (.529) �.409 (.018)a

�.187 (.297) �.446 (.009)a

�.203 (.257) �.455 (.008)a

�.105 (.560) �.523 (.002)a

�.038 (.835) �.352 (.045)a

�.205 (.253) �.428 (.013)a

�.222 (.214) �.082 (.650)
�.016 (.929) �.414 (.017)a

�.101 (.574) �.467 (.006)a

�.147 (.413) �.360 (.039)a

er, the age-gender interaction, and education as con-

gyrus; AVLT, Auditory Verbal Learning Test; ITG, inferior
Mental State Examination; MTG, middle temporal gyrus;

us Parcellation Schemes

ax C̃W L̃W Q̃max NBS

b ns ns ns 2a

b ns ns ns 2a

b ns ns 2b 2a

ns 1b 2b 2a

a �a ns �b ns
a �a �a �b ns
a �a ns �b ns
a �a �a �a �b

or Poor Poor Poor Fair
or Poor Poor Poor Good
or Poor Poor Poor Good
or Poor Poor Poor Excellent

id not describe the results of node analysis because of the
were performed in wavelet scale 3 (.031–.063 Hz).
control subjects; �, positive correlation; �, negative

, 70% � AUC � 80%; Good, 80% � AUC � 90%; H-1024,
esolution Anatomical Automatic Labeling atlas (100);
L-HOA, low-resolution Harvard-Oxford atlas (102,103);
ty strength within the component identified using the
Poor, 60% � AUC � 70%.
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Discussion

We investigated the topological architecture of the functional
connectome in patients with aMCI. We showed abnormal organiza-
tion of the aMCI connectome from .031 Hz to .063 Hz, which was
summarized as 1) an increased characteristic path length; 2) de-
creased nodal strength in the default network; and 3) impaired
functional connectivity between different functional modules.
Moreover, the abnormal network metrics correlated with patients’
cognitive performance and distinguished patients from healthy
elderly individuals with high sensitivity and specificity.

The human brain is a complex network that continuously
integrates information across distributed brain regions. Recent
studies have demonstrated that this powerful functionality has
underlying substrates of nontrivial topological configuration,
such as small-worldness and modularity. Within a network,
small-worldness enables high efficiency of both specialized and
integrated processing (41,55), and modularity enables faster ad-
aptation by changing the functionality of one module without
losing functionality in other modules (56). In this study, small-
worldness and modularity were found in both the HC and aMCI
groups, suggesting an optimal organization of the human brain
to support efficient information transfer of both modular and
distributed processing (57).

Despite the common functional architecture, quantitative anal-
ysis revealed a longer characteristic path length at a global level in
patients with aMCI. A short path length ensures the effective integ-
rity and rapid information propagation between and across remote
regions of the brain that are believed to constitute the basis of
cognitive processing (58). The aMCI-related increase may reflect
disrupted neuronal integration between distant regions and is con-
sistent with previous AD studies (20,21,23). However, a recent mag-
netoencephalography study reported a decreased path length
in aMCI patients during a memory task (25). This discrepancy may
be attributed to the different cognitive states (task vs. resting).
During a memory task, aMCI patients may require more connec-
tions to achieve the same level of cognitive output (25), whereas
during resting, the patients had fewer connections, which may
reflect essential disconnections of spontaneous neural activity. No-
tably, using three low-resolution parcellation schemes, decreased
clustering coefficients were also detected in the aMCI connectome,
indicating a distinct specificity of different parcellation strategies in
revealing the organization of the functional connectome.

Besides the global topologies, we also studied the node and
connectivity attributes of the brain connectome. The posterior pa-
rietal and occipital cortex regions (e.g., the PCUN, postcentral gyrus,
superior parietal gyrus, cuneus, and calcarine fissure and surround-
ing cortex) showed the highest nodal strength (i.e., hubs) in both
the aMCI and HC groups, consistent with previous findings (43,59 –
61). Hub regions play pivotal roles in supporting high-level cogni-
tive functions by coordinating the overall information flow and
maintaining the integrity of the brain connectome. The similar hub
distributions suggest a preservation of hubs in aMCI. Nevertheless,
the patients showed decreased nodal strength in regions that re-
side predominantly in the default network (e.g., dorsolateral supe-
rior frontal gyrus, PCUN, and MTG). Previous studies have sug-
gested that the default regions are structurally connected (62,63)
and show coherent brain activity in both humans (64,65) and mon-
keys (66). These regions are involved primarily with episodic mem-
ory processes (64) and show a breakdown in spontaneous brain
activity in mild cognitive impairment (MCI) (7,9,10,28). Thus, the
decline of nodal strength in the default network is consistent with

the previous studies and provides important implications for the o
emory-related deficits in aMCI patients. Additionally, a few nodes
n attention, motor, and visual modules also showed decreased
odal strength, indicating the impaired functioning in these do-
ains as demonstrated in several previous studies (28,67– 69).

Beyond the default network, the subcortical caudate and puta-
en also showed decreased nodal strength in patients with aMCI.

he caudate and putamen are key nodes in the neostriatum; they
eceive numerous inputs from the cortex, send the connections to
he basal ganglia nuclei, and then project back to the cortex via the
halamus (70,71). Several previous studies have shown that the
audate and putamen exhibit gray matter atrophy (72) and meta-
olic disruption (73) in patients with MCI. In the resting state, these
tructures also exhibited abnormal functional connectivity (28,74).
hese previous findings and our results provide evidence for both
tructural and functional MCI-related abnormalities in subcortical
rain areas.

We identified a large, single disconnected network in the aMCI
atients. This network comprised two components of connections

inking different functional modules and connections within the
ingle default network. This finding is comparable with previous
eports of selected reductions of network-related activity in aMCI
atients (7). Moreover, these connections were related directly to
hole-brain network topology, suggesting their contribution to

he observed global topological abnormalities. Therefore, it is rea-
onable to speculate that these disconnections led to decreased
unctional integration throughout the brain, which may further
ccount for cognitive deficits in patients. Overall, our results pro-
ide empirical evidence for disrupted network organization in aMCI
t three (global, nodal, and connectional) levels.

We found that the altered network metrics mentioned above
orrelated specifically with memory-related (AVLT) cognitive per-
ormance in patients with aMCI, indicating their potential in captur-
ng the progress of aMCI. Notably, we did not detect significant
orrelations between network metrics and MMSE scores, which
easure an overall cognitive performance covering multiple do-
ains (30). Given the predominant cognitive deficits in memory

unction caused by aMCI, we speculate that the nonsignificant cor-
elations between network metrics and MMSE could be obscured
y other cognitive domains that are relatively preserved in aMCI.

Currently, the clinical diagnosis of aMCI has limited specificity
nd is prone to bias from subjective knowledge and experience.
herefore, an accurate and objective diagnosis of aMCI has high
linical value in preventing the progression to dementia. With this
im, previous studies have made great efforts to seek aMCI-related
iomarkers by extracting regional features of cortical thickness

75,76), gray matter volume (76 –78), white matter microstructure
79,80), and functional metabolism (81). More recently, researchers
ave moved beyond focal brain abnormalities to dysfunctional

nterregional connectivity for distinguishing aMCI from healthy
ontrol subjects (82– 84). Using a receiver operating characteristic
nalysis, we showed that the NBS-based connectivity network dif-
erentiated aMCI patients from healthy individuals with high sensi-
ivity and specificity. Interestingly, we noticed that connectivity
trength outperformed both global and nodal network metrics in
he aMCI classification. These data suggest that the measurement
f connectivity is a preferential candidate for diagnosing aMCI. In

he future, the ability to diagnose aMCI could be further improved
y combining both structural and functional connectivity informa-

ion from multimodality imaging data (68).
It is important to state that the disrupted functional connec-

ome in patients with aMCI was detected exclusively in the specific
requency band of .031 Hz to .063 Hz. Previous studies have dem-

nstrated the frequency specificity of the functional architecture of
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the brain at multiple levels (36,85,86). Under clinical conditions,
accumulating evidence also revealed frequency-dependent func-
tional changes in the brain (33,37,87,88). These studies highlight
the important role of frequency for brain functioning. Previous
evidence indicates that neuronal oscillations are distributed lin-
early on the natural logarithmic scale and independent frequency
bands are generated by distinct oscillators with specific properties
and physiological functions (89,90). Higher frequency oscillations
tend to be confined to small ensembles of neurons, whereas lower
frequency oscillations allow for an integration of neuronal effects
(89,90). Even within the same neuronal networks, neighboring
bands are typically associated with different brain states and com-
pete with each other (89,91). In this study, we detected aMCI-re-
ated alterations only in the .031 Hz to .063 Hz frequency interval,
resumably as a consequence of impaired cognitive functioning in
pecific domains. However, it should be noted that the origins and

echanisms of the signals at different frequency bands remain
argely unknown. Further studies are necessary to clarify these is-
ues and to ascertain the underlying mechanisms of disease-fre-
uency interactions.

Several issues need to be further addressed. First, mapping the
rain connectome appropriately and precisely is a challenging task
t the present time (92,93). We used a test-retest reliable wavelet-
ased approach and found reproducible aMCI-related changes
cross different parcellation schemes. Nevertheless, future studies
mploying other connectivity measures and parcellation schemes
ill provide more comprehensive insights into the aMCI connec-

ome. Second, recent studies have shown significant effects of head
otion on functional connectivity (94,95). Thus, we reanalyzed our

ata with head motion as an extra covariate in our statistical models
nd observed similar results (data not shown). Third, the nodal
entrality results were not corrected by multiple comparisons; thus,
his finding should be considered an exploratory analysis. Future
tudies are required to increase the statistical power with a larger
ample size or by selecting ROIs relevant to aMCI a priori. Fourth,
ccumulating evidence suggests a shaping of structural pathways

n functional networks (96,97). However, different topological fea-
ures were observed between structural and functional brain net-
orks (98). Thus, combining multimodal neuroimaging data will aid

n uncovering structure-function relationships in aMCI patients.
ifth, aMCI patients exhibit different progressive trajectories, where
ome ultimately develop AD and others do not. Accordingly, fol-
ow-up longitudinal connectome-based studies are warranted to
lucidate the underlying mechanism that contributes to these dis-
arate disease trajectories. Finally, beyond the aMCI studied here,

here are other high-risk factors for developing AD, such as genetic
isk of apolipoprotein (APOE) �4 allele. A recent diffusion tensor
maging study has shown that the structural connectome in aging
s mediated by APOE �4 (99). However, the whole-brain functional
onnectome has been not studied in APOE �4 carriers, which would
e an interesting topic for the future.
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