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There have been many attempts at explaining age-related cognitive decline on the basis of regional brain changes, with the usual but
inconsistent findings being that smaller gray matter volumes in certain brain regions predict worse cognitive performance in specific
domains. Additionally, compromised white matter integrity, as suggested by white matter hyperintensities or decreased regional white
matter fractional anisotropy, has an adverse impact on cognitive functions. The human brain is, however, a network and it may be more
appropriate to relate cognitive functions to properties of the network rather than specific brain regions. We report on graph theory-based
analyses of diffusion tensor imaging tract-derived connectivity in a sample of 342 healthy individuals aged 72–92 years. The cognitive
domains included processing speed, memory, language, visuospatial, and executive functions. We examined the association of these
cognitive assessments with both the connectivity of the whole brain network and individual cortical regions. We found that the efficiency
of the whole brain network of cortical fiber connections had an influence on processing speed and visuospatial and executive functions.
Correlations between connectivity of specific regions and cognitive assessments were also observed, e.g., stronger connectivity in regions
such as superior frontal gyrus and posterior cingulate cortex were associated with better executive function. Similar to the relationship
between regional connectivity efficiency and age, greater processing speed was significantly correlated with better connectivity of nearly
all the cortical regions. For the first time, regional anatomical connectivity maps related to processing speed and visuospatial and
executive functions in the elderly are identified.

Introduction
Decline in information-processing resources, such as working
memory capacity, executive function, attention regulation, and
processing speed, is likely to occur in aging due to structural brain
changes (Buckner, 2004; Raz et al., 2005). There have been many
studies relating brain structure to cognitive function, with the
majority being focused on regional structural changes at the mac-
roanatomical level. Worse cognitive performances in specific do-
mains are often found to be associated with smaller gray matter
volumes in certain regions (Salat et al., 2002; Driscoll et al., 2003).
White matter hyperintensity (WMH) (Fazekas et al., 1993;
Gunning-Dixon and Raz, 2003) and decreased regional white
matter fractional anisotropy (FA) (Kennedy and Raz, 2009) ad-
versely impact cognitive functions. This is possibly due to the
continuing enthusiasm of researchers for the traditional localiza-

tionist view of the brain and the increasing accessibility of brain-
mapping tools to the researchers.

While particular brain regions are important for specific func-
tions, the capacity of information flow within and between re-
gions is also crucial. For instance, besides the atrophy often seen
in the medial temporal lobe, parietal lobe, and posterior cingulate
and prefrontal cortex, Alzheimer’s disease (AD) is a progressive
impairment of fiber-track connectivity characterized by the loss
of afferent and efferent connections of regional neocortical areas
associated with the death of pyramidal neurons (Morrison and
Hof, 2002). Cerebral small-vessel disease, manifesting as lacunar
infarcts (Chen et al., 2009) and WMH, has been found to slow
down information processing and lead to decline in executive
functions (Jorm et al., 2004; Wen and Sachdev, 2004; Prins et al.,
2005). It is therefore important to examine the characteristics of
the brain network.

While the large-scale connectivity structure of the human
brain represents a relatively invariant characteristic (Sporns et al.,
2005), the precise combinations and topological patterns may be
influenced by many factors, such as genetic differences, sex, ag-
ing, and/or pathologies. These factors may determine specific
constraints on brain dynamics, and thus contribute to the vari-
abilities of brain networks. An increasing number of brain net-
work studies have emerged recently using graph theoretical
analysis of structural and functional systems (Bullmore and
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Sporns, 2009). Recently, in vivo human anatomical networks
have been constructed using diffusion tensor imaging (DTI)
(Gong et al., 2009a) and diffusion spectrum imaging data (Hag-
mann et al., 2008). However, apart from one recent DTI network
study on 79 healthy young adults reporting that network effi-
ciency is associated with intelligence (Li et al., 2009), no other
study has related DTI network properties to cognitive functions.

In this work, we constructed corticocortical networks in a
cohort of older community-dwelling, nondemented native En-
glish speakers aged between 72–92 years using DTI tractography.
We examined correlations of brain cortical connectivity with
cognitive performances in a range of cognitive domains. We hy-
pothesized that some cognitive processes will be more dependent
on effective information transfer and integration between con-
nected clusters of particular cortical regions, while others will be
more globally distributed; thus, both the global and local cortical
networks will differentially influence cognitive performance in
different domains.

Materials and Methods
Subjects
Participants were drawn from Wave 2 of the Sydney Memory and Aging
Study, a longitudinal study examining the predictors of cognitive decline
in an elderly, nondemented, community-dwelling sample. They were
recruited randomly through the electoral roll from two electorates of
Eastern Sydney, Australia, where registration on the electoral roll is com-
pulsory. Participants were excluded from the study if any of the following
was evident: dementia, mental retardation, psychotic disorder, including
schizophrenia or bipolar disorder, multiple sclerosis, motor neuron dis-
ease, active malignancy, or English inadequate to complete a basic assess-
ment. At study entry, participants consisted of 1037 individuals aged
70 –90 years, of whom 542 (52.3%) had an MRI scan at Wave 1. Those
who had a Wave 1 MRI scan were offered a 2 year follow-up MRI at Wave
2. A total of 424 subjects had Wave 2 scans. After removing 19 scans with
artifacts (DTI artifacts: 9; T1-weighted artifacts: 10 —we used T1-
weighted scans to obtain brain parcellations, etc.), 405 were considered
usable and were of high quality. Finally, 342 (male/female � 158/184;
mean age � 79.70 � 4.55) of these 405 subjects were entered into the
study after exclusion of 63 participants on the basis of having non-
English-speaking background (acquired conversational English at �10
years of age), incomplete information, or extreme outliers on the neuro-
psychological test scores (�3 interquartile lengths below/above first/
third quartile). The study was approved by the Ethics Committee of the
University of New South Wales.

MRI acquisition
All subjects were scanned using a Philips 3T Achieva Quasar Dual scan-
ner (Philips Medical Systems) located at the Prince of Wales Medical
Research Institute, Sydney. Foam pads and headphones were used to
reduce head motion and scanner noise. To increase the signal-to-noise
ratio (SNR), all of the subjects were scanned twice for both DTI and 3D
T1-weighted sequences.

Diffusion tensor imaging scans. A single-shot echo-planar imaging
(EPI) sequence (TR � 7115 ms, TE � 70 ms) was used. Diffusion sensi-
tizing gradients were applied along 32 non-collinear directions (b � 1000
s/mm 2), together with a non-diffusion-weighted acquisition (b � 0
s/mm 2). For each DTI scan, 55 axial slices were collected. The field of
view was 240 mm � 240 mm � 137.5 mm with acquisition matrix 96 �
96 and zero filled into 240 � 240; and slice thickness 2.5 mm with no gap,
yielding 1 mm � 1 mm � 2.5 voxels. Two extra non-diffusion-weighted
(b � 0 s/mm 2) EPIs were separately acquired and then combined with
DTI scans for higher SNR.

3D T1-weighted structural scans. The main parameters for 3D T1-
weighted structural MRI were as follows: TR � 6.39 ms, TE � 2.9 ms, flip
angle � 8°, matrix size � 256 � 256, FOV � 256 � 256 � 190, and slice
thickness � 1 mm with no gap between; yielding 1 mm � 1 mm � 1 mm
isotropic voxels. Both the DTI data and T1-weighted data were visually

inspected for apparent artifacts arising from subject head motion and
instrument malfunction. Those showing apparent artifacts were re-
moved from the study.

Neuropsychological testing battery and cognitive domains
A comprehensive battery of neuropsychological tests, covering five cog-
nitive domains of processing speed and memory, language, visuospatial,
and executive function, was administered by trained psychologists. The
processing speed domain was defined by two tests, Digit Symbol-Coding
(Wechsler, 1997) and Trail Making Part A (Reitan and Wolfson, 1985;
Strauss et al., 2006). The spatial domain was defined by a single test, Block
Design (Wechsler, 1981). The executive domain was defined by the
Stroop interference score (MacLeod, 1991) (difference between incon-
gruent color-word naming and color naming), a phonemic fluency test
(FAS), and Trail Making Test Part B (Strauss et al., 2006). The memory
domain comprised Logical Memory Story A (immediate and delayed
recall) (Wechsler, 1997), the Rey Auditory Verbal Learning Test (short-
term and long-term delayed recall, and learning score; sum of five learn-
ing trials) (Rey, 1964), and the Benton Visual Retention test (Benton and
Spreen, 1996). The language domain score was obtained from the Boston
Naming Test (30 items) (Kaplan et al., 2001) and a semantic fluency test
(Animals) (Spreen and Benton, 1969). For each participant, we calcu-
lated the Z-scores of the individual tests using the sample means and SDs.
A score for each domain was then calculated as the average of the Z-scores
of tests comprising the domain. Finally, to simplify the interpretation of
results, each of these scores was converted to a Z-score to produce standard-
ized scores for each of the five cognitive domains that were included in the
analyses, i.e., processing speed, spatial, executive, language, and memory.

Construction of structural networks
One structural network graph was generated for each subject using the
subject’s DTI data. In graph theory, a network is defined as a set of nodes
and the edges between them (Bullmore and Sporns, 2009). Due to the
inability of DTI tractography to differentiate efferent from afferent fibers,
the graphs we constructed were all undirected. We describe here some of
the major steps that we went through from image preprocessing to com-
puting of the nodes and edges of the graph.

Preprocessing of DTI. The software package FSL version 4.1.2. (FMRIB
Software Library) (Smith et al., 2004) (http://www.fmrib.ox.ac.uk/fsl)
was used for most of the DTI preprocessing steps. The two DTI scans
acquired for each subject for an increased SNR were concatenated to
form a single combined set. Distortions in the diffusion tensor images
caused by eddy currents and head motions were corrected using the first
scan’s b0 image as the target. The eddy current- and motion-corrected
combined image was then split into two sets of images, which were aver-
aged. The average diffusion image was used to calculate the three-
dimensional maps of the diffusion tensor and the FA.

Definition and computation of network nodes. Regional cortical areas
were defined as the network nodes, with only cortical, and not subcorti-
cal, regions being used for reasons of accuracy. While satisfactory gray
and white matter segmentation could be achieved for the cortex, accu-
rately differentiating subcortical boundaries proved to be difficult. The
software package FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) ver-
sion 4.5.0 was used for coregistering and averaging two sets of T1-
weighted images of each subject and then performing tissue segmentation to
obtain the white matter and cortex boundary. The labeled mesh that defined
68 gyral-based cortical regions (34 on each hemisphere) on an averaged
brain (Desikan et al., 2006) was registered onto the brain of each individual,
thus parcellating the white matter and cortex boundary of each brain into 68
regions of interest (supplemental Fig. S1, Table S1, available at www.
jneurosci.org as supplemental material). The 3D T1-weighted anatomical
images were registered and resampled onto the b0 of the diffusion scan using
the rigid body registration tool of SPM8 (http://www.fil.ion.ucl.ac.uk/spm).
The labeled white matter and cortex boundary that was originally defined
in the T1-weighted scan space was then mapped onto the corresponding DTI
scan space. These gyral-based cortical regions served as 68 nodes in the net-
work of each individual.

Definition and computation of network edges. Network edges were de-
fined as the interregional anatomical connections determined using DTI
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tractography. MedINRIA version 1.8.0 (http://www-sop.inria.fr/asclepios/
software/MedINRIA/index.php) was used to generate the white matter
fiber bundles of the whole brain. The following default fiber-tracking
settings of MedINRIA were used: FA threshold � 0.2; smoothness � 20;
minimum length � 10 mm; and sampling � 1. An edge existed between
two nodes (representing two cortical areas) if there was at least one fiber
connecting them. Otherwise these two nodes were not directly connected
(although they could still be connected via another node or nodes). Be-
sides the route for each white matter fiber that had been generated, the
number of fibers that connected every two cortical areas could also be
estimated by initiating the same number of fibers in each voxel. We
calculated the mean FA for each fiber, and then the average FA value of all
the fibers that connected cortical areas i and j was used as the weighting
(wij) of the edge to describe the strength of the connectivity of cortical
areas i and j.

Using the binary information of whether or not any two nodes in the
graph were directly connected and the quantitative information of the
mean FA of the fibers if they were connected, we constructed two con-
nectivity matrices for each subject, i.e., a binary matrix and a weighted
matrix (see supplemental Figs. S3, S4, available at www.jneurosci.org as
supplemental material). Each element of the binary matrix indicated
whether the two cortical regions as labeled in the row and column were
directly connected. In the weighted matrix, each element was the weight-
ing factor for the two cortical areas. These two matrices determined the
existence or absence and the weighting of an edge between two nodes that
represented two regional cortical areas. An undirected, weighted graph
was constructed for each subject (see supplemental Fig. S5, available at
www.jneurosci.org as supplemental material) using these two matrices.
As there were 68 cortical areas for each brain, the maximum number of
all possible edges was 2278 [N(N � 1)/2; N � 68].

Sparsity of networks. The number of nodes was 68, the same for all
individual brain networks since each brain cortex was parcellated using
the same scheme. However, the graph of each subject normally differs in
both the number and weighting on the edges. The numbers of edges were
likely to differ for different networks as the result of varying strengths and
presence/absence of the connectivity of cortical areas in the subjects.
Therefore, the corticocortical networks were examined using two differ-
ent strategies. In the first strategy, the network of each subject was exam-
ined as it was constructed, i.e., all the edges were kept as long as there was
a defined connection between two nodes. This was called the unmatched
strategy as the number of edges of each individual network were different
from each other. In the second strategy, which was called the matched
strategy, a series of thresholds was set up on the connectivity matrices so
that each graph would have the same number of edges under investiga-
tion. Computing and comparing graphs with the unmatched strategy is
biologically meaningful as such graphs reflect the integrity and con-
straints of the brain networks they represent. On the other hand, both
global and local network efficiencies have a propensity for being higher
with greater numbers of edges in the graph. Therefore, besides the anal-
yses on the networks with all the possible connections, i.e., using un-
matched strategy, in the matched strategy, we also used the concept of
sparsity to analyze the networks of not only the same number of nodes,
but also the same number of edges, pertaining to the intrinsic network
topological organization. For instance, if there were 228 edges in a graph
of 68 nodes, the sparsity of the graph was 0.10 [228 divided by N(N �
1)/2; N � 68]. Obviously, altering sparsity values of a graph also altered
the graph’s structure. As a result of using a series of sparsity values for all
individual brain networks, the interpretation of topological property
comparisons were sometimes more meaningful and the individual brain
network difference reflected the difference of the intrinsic properties of
the graphs. Rather than setting a static sparsity value, we thresholded
each connectivity matrix repeatedly over a wide range of sparsities, start-
ing from the lowest at which the networks appeared to have small-world
properties and finishing with the unthresholded networks. We then ex-
amined the graph topological attributes of the resulting graphs at each
sparsity point.

Network small-worldness test
The “small-world” network, characterized by a high degree of clustering
and short path length linking different network nodes, is an attractive
model for the description of brain networks because it not only supports
both specialized and integrated information processing but also mini-
mizes wiring costs while maximizing the efficiency of information prop-
agation (Watts and Strogatz, 1998; Kaiser and Hilgetag, 2006; Achard
and Bullmore, 2007). A network is considered a small-world network if it
has almost identical path length (� � Lp

real/Lp
rand � 1) (see Appendix for

the mathematical expressions of brain network topology properties used
in this work) but is more locally clustered (� � Cp

real/Cp
rand � 1 and � �

�/� � 1) in comparison with the matched random networks (Watts and
Strogatz, 1998). Therefore, to examine the small-world properties, the
values of Lp

real and Cp
real of the weighted anatomical network were com-

pared with Lp
rand and Cp

rand, respectively. In this study, Lp
rand and Cp

rand

were calculated from 2000 random networks generated using a previ-
ously determined random rewiring procedure (Maslov and Sneppen,
2002; Milo et al., 2002). These randomly generated networks had the
same number of nodes and sparsities as the real networks constructed
using each individual’s DTI tractograph.

Computation of network properties and statistical analysis
The network properties computed included weighted global efficiency,
weighted regional efficiency (as defined in Eqs. 16 and 18 in the Appen-
dix, respectively), and their binarized counterparts, i.e., unweighted
global efficiency and unweighted regional efficiency (as defined in Eqs. 15
and 17, respectively), using the Brain Connectivity Toolbox (http://sites.
google.com/a/brain-connectivity-toolbox.net/bct/Home) (Rubinov and
Sporns, 2009). The relevant mathematical definitions of network prop-
erties are listed in the Appendix.

All computations of network properties were performed by imple-
menting algorithms using Matlab version R2008a (MathWorks). SPSS
version 17 was then used for the statistical analyses. Linear regression
analysis was used for the prediction of global network efficiency accord-
ing to age and for the prediction of cognitive domain scores based on
weighted global network efficiency. In all linear regression analyses, the
sex and years of education of the participants were included in the models
as control variables. Age was also included as a control variable, except
for the regression analyses of global efficiency on age. In the analyses of
age and cognitive functions versus regional connectivity efficiency of 68
cortical areas, partial correlation was used to control for age, sex, and
years of education. Sex and years of education were controlled for in the
age regional efficiency relationship analyses. The false discovery rate
(FDR) (Benjamini and Hochberg, 1995) was used for multiple-
comparison corrections.

Results
Small-world properties of the DTI-tract-based
brain networks
The structural brain networks of all subjects had small-world
architecture (unmatched strategy), i.e., network nodes had high
levels of clustering and were linked through relatively few inter-
mediate steps (supplemental Fig. S6, available at www.jneurosci.
org as supplemental material) regardless of the age and cognitive
performance of the participants. Although there were significant
individual global and regional connectivity variations, the overall
topological properties were largely invariant because small-
worldness was preserved in all the structural networks studied.

Age and cognitive functions versus global network efficiency
The networks that included all fibers present were examined, i.e.,
a connection (edge) between two cortical areas was considered to
exist if there were one or more fibers connecting them. The
weight of the edge was the mean FA value of the fibers that con-
nected the two cortical areas. The number of edges in the 342
graphs ranged from 423 (sparsity: 0.185) to 863. Using a linear
regression model, after controlling for sex and years of educa-
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tion, we found that global network efficiency significantly re-
duced with older age (N � 342, � � �0.273, T � �5.300; p �
0.0001).

Higher weighted global network efficiency had a positive as-
sociation with performances in processing speed (N � 331, � �
0.316, T � 6.071; p � 0.0001), visuospatial ability (N � 333, � �
0.185, T � 3.381; p � 0.001), and executive function (N � 327,
� � 0.153, T � 2.821; p � 0.005) after controlling for age, sex,
and years of education. However, no significant association be-
tween global efficiency and memory performance (N � 341, � �
0.020, T � 0.398; p � 0.691) was found; and only marginal asso-
ciation between weighted global efficiency and language (N �
338, � � 0.107, T � 1.959; p � 0.051) was found (Fig. 1). Some
studies (Gong et al., 2009b; Yan et al., 2010) have considered
brain size. Due to the fact that the variability in the number of
edges in our 342 subjects was large, we performed a linear regres-
sion analysis before the analyses. Our linear regression analysis
set the number of edges as the dependent variable and age, sex,
ICV (intracranial volume), and total white matter volume as in-
dependent variables. We examined total white matter volume as

well as ICV, as we consider that it is a bet-
ter measure for studying white matter
tracts. We found that neither ICV (N �
341, � � 0.103, T � 1.353; p � 0.177) nor
total white matter volume (N � 341, � �
0.120, T � 1.664; p � 0.097) significantly
contributed to the number of edges. Con-
versely, age (N � 341, � � �0.189, T �
�3.448; p � 0.001) and sex (N � 341, � �
0.140, T � 2.192; p � 0.029) did have a
significant correlation with number of
edges. We therefore controlled for age,
sex, and years of education.

Significant correlations were found be-
tween weighted global efficiency and pro-
cessing speed, as well as visuospatial
functions, at all sparsity values of 0.05–
0.18 (range of the number edges:
114 – 410) examined (see supplemental
Table S2, available at www.jneurosci.org
as supplemental material), providing fur-
ther evidence for a robust association be-
tween these two cognitive functions and
global efficiency of the weighted brain
structural network.

Age and cognitive functions versus
regional network efficiency
The regional efficiency of all 68 cortical
regions (Fig. 2) was then examined. Age
was found to have a negative effect associ-
ation with regional efficiency of many
cortical regions, including most of the
frontal and temporal cortical areas and
the entire cingulate cortex (59 regions out
of 68 in total) (see Fig. 3 and supplemental
Table S3, available at www.jneurosci.org
as supplemental material). After control-
ling for age, sex, and years of education
and correcting for multiple comparisons,
higher regional connectivity efficiency of
nearly all cortical regions was associated
with greater processing speed (63 regions

out of 68 in total) (see Fig. 3 and supplemental Table S4, available
at www.jneurosci.org as supplemental material). Better perfor-
mance in the visuospatial domain was related to higher regional
connectivity efficiency of superior frontal gyrus of both left and
right sides, some parts of middle frontal gyrus and inferior frontal
gyrus, most cingulate cortex and insular cortex regions, and some
left parietal regions (25 regions out of 68 in total) (see Fig. 3 and
supplemental Table S5, available at www.jneurosci.org as supple-
mental material). Better executive performance was significantly
correlated with greater regional connectivity of superior frontal
gyrus of both left and right sides, posterior cingulate cortex of
both left and right sides, left superior parietal cortex, left precu-
neus cortex, left caudal middle frontal gyrus, right precentral
gyrus, right superior temporal gyrus, etc. (9 regions out of 68 in
total) (see Fig. 3 and supplemental Table S6, available at www.
jneurosci.org as supplemental material). Even though there were
individual cortical regions that were associated with language,
these correlations were not significant after corrections for mul-
tiple comparisons using FDR (see Fig. 3 and supplemental Table
S7, available at www.jneurosci.org as supplemental material).

Figure 1. Regression analyses for the prediction of weighted global network efficiency from age, and for the prediction of
cognitive domain scores from weighted global network efficiency. N, Number of subjects; �, standardized regression coefficient;
T, T value for regression coefficient; and p, significance of the regression coefficient. For the plot of age versus FA-weighted global
efficiency, we used linear regression to remove the influence of sex and years of education from the weighted global efficiency
values. For the other five plots, we used the cognitive scores (including processing speed, executive, visuospatial, language, and
memory) that had been adjusted for age, sex, and years of education.
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There was no association between mem-
ory function and the connectivity of any
of the 68 cortical regions. Since the mem-
ory domain examined consisted of several
components, such as immediate and de-
layed narrative recall, short- and long-
term delayed recall, and visual memory,
we further analyzed the network con-
nectivity in relation to each individual
component. No significant correlation
was found between the connectivity of
any cortical region and these memory
submeasures after multiple-comparison
correction.

Discussion
The two main organizing principles
found in the brain, i.e., segregation and
integration of information processing
(Friston, 2002; Sporns et al., 2005), pro-
vides a theoretical framework for concep-
tualizing the brain as a network. The
approach of characterizing brain net-
works using connectivity matrices and
graphs has the important advantage of a
rich structural description that allows ef-
ficient computation and comparison of
different connection topologies within a
common theoretical framework (Bull-
more and Sporns, 2009). Functional net-
works have previously been explored
using functional MRI (fMRI) (Eguíluz et
al., 2005; Salvador et al., 2005). Structural
networks using interregional cortical
thickness correlations (He et al., 2007)
and DTI tractography (Hagmann et al.,
2007; Iturria-Medina et al., 2008; Gong et
al., 2009a) have been studied to under-
stand the fundamental architecture of interregional connections.
Some recent studies (Hagmann et al., 2008; Honey et al., 2009;
Stephan et al., 2009) also reported a substantial correspondence be-
tween structural connectivity and functional connectivity. Using
brain network approaches, attention has been paid to normal aging
using fMRI (Achard and Bullmore, 2007), brain diseases such as AD
(He et al., 2008) and multiple sclerosis (He et al., 2009) using inter-
regional cortical thickness correlations, and schizophrenia using
EEG (Rubinov et al., 2009), cortical volume correlations (Bassett et
al., 2008), and fMRI (Liu et al., 2008).

Structural connectivity is best supported by fiber tracking,
which demonstrates a physical connection between brain re-
gions. DTI tractography provides this information and is ideal for
such a connectivity study. Some recent analyses of the structural
network using DTI (Hagmann et al., 2007, 2008; Iturria-Medina
et al., 2008; Gong et al., 2009a) aimed to describe the network of
elements and connections within the human brain, including the
existence of modules, hubs, and structural cores. Age and sex (Gong
et al., 2009b) and sex and brain size (Yan et al., 2010) have also been
studied using DTI network approach.

Our study shows that the global efficiency of the corticocorti-
cal network decreases with age in the eighth and ninth decades of
life. This decrease may be related to morphomolecular changes in
neurons, axons, dendrites, and synapses, as well as the accumu-
lation of neuropathologies that occur with age (Hof and Morri-

son, 2004). Nevertheless, one of the fundamentally important
questions using a fiber-tracking-based network approach is how
the network connectivity influences cognitive functions. This
field has been largely unexplored except for one recent study that
reported that general intelligence (Li et al., 2009) is associated
with structural network properties such as network efficiency.

We examined for the first time not only the correlations of
neuroanatomical connections as a system, but also whether neu-
roanatomical connectivity can be segregated to explain specific
cognitive functions. The connections between segregated cortical
regions may have two aspects. The first involves the existence or
absence, and the strength and topological patterns, of the con-
nections, i.e., the efficiency of the information exchange within
the network. The second involves the effective coupling and
grouping of certain cortical regions as neural sites that are re-
quired to respond together to different sensory inputs, task de-
mands, and attentions. The disruption or weakening of the
connections between certain cortical regions may therefore neg-
atively affect some cognitive functions more than others. It is
from this perspective that we should look into the regional effi-
ciency of each individual cortical region. Cognitive functions de-
pend not only on the patterns of network connectivity but also
the coupling of cortical regions that global network efficiency
may reflect. Processing speed is a reflection of an individual’s
ability to rapidly carry out many different types of processing

Figure 2. The abbreviations for the nodes of the network. Each node represents a cortical region, and there are 68 nodes in each
network (34 in each hemisphere). The full names of the cortical regions are listed in supplemental Table 1 (available at www.
jneurosci.org as supplemental material).
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operations, which are embedded in the particular task measured
(Salthouse, 1996). It is therefore not surprising that poorer con-
nectivity both globally in the brain and locally in large numbers of
regional cortical areas could result in slower processing speed.
The globally distributed nature of processing speed performance
observed here is consistent with observations that brain lesions
associated with variable etiologies and locations may commonly
produce impairments in processing speed (DeLuca et al., 2004;
Habekost and Rostrup, 2007; Willmott et al., 2009). Such a global
network may be expected to be more vulnerable to disruptions
due to age-related neuropathological changes in any part of the
network resulting in a loss of efficiency and leading to a decline in
processing speed that is typically associated with aging (Salt-
house, 2000). Memory, however, may not be related to the same
extent as processing speed to corticocortical connectivity because
of the key role some subcortical structures such as the hippocam-
pus play in this cognitive domain (Raz et al., 2005), and the

connectivity between the hippocampus and other subcortical
structures with cortical regions was not included in our study.
Both language and memory assessments involve retrieval of lex-
ical and semantic information and are supported by large-scale
networks of anterior (frontal) and posterior (temporoparietal)
language-related structures in both hemispheres of the brain with
left-sided predominance. At the whole brain network level, there
was some marginal association between weighted global effi-
ciency and language. At the individual cortical regional level,
some significant correlations were found, although these corre-
lations became insignificant after multiple-comparison correc-
tion. In our study, we found that the regions that were significant
(before correction for multiple comparisons) were consistent
with the findings from studies looking at functional and struc-
tural correlates of these language tasks (Pihlajamäki et al., 2000;
Grossman et al., 2004; Apostolova et al., 2008; Whitney et al.,
2009). We could have expected to see significant findings in the

Figure 3. Age and cognitive functions versus regional efficiency for the FA-weighted networks of the 68 cortical areas (34 in each hemisphere). Partial correlation analyses were carried out. Age,
sex, and years of education were controlled for in the cognitive function versus regional efficiency analyses (including processing speed, language, executive, memory, and visuospatial). In the age
versus regional efficiency analyses, sex and years of education were controlled for. To correct for multiple comparisons, we used FDR to calculate the new thresholds for p values, and 0.0320, 0.0363,
0.0190, and 0.0025 were used for the multiple comparisons for age, processing speed, and visuospatial and executive functions, respectively. The colors of the nodes refer to: red, significant after FDR
correction for multiple comparisons; green, p � 0.05, significant before FDR correction; blue, p � 0.05, not significant.
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left temporal region and medial temporal regions (hippocampus
and parahippocampus) (Pihlajamäki et al., 2000; Whitney et al.,
2009). One reason we did not observe stronger relationships be-
tween cortical networks and language could be that the tracts
known to be implicated in language functions, namely the arcu-
ate fasciculus and the inferior occipitofrontal fasciculus, which
connect the anterior and posterior language areas, have an origin
(or component) in subcortical regions, and in our study subcor-
tical– cortical connections were not included. Visuospatial func-
tions have been consistently associated with predominantly right
posterior regions (Marshall and Fink, 2001). The test used to
measure visuospatial function in this study, Block Design, places
demands on higher-order cognitive functions, including percep-
tual reasoning and problem solving, in addition to more basic
visuospatial perception (Lezak et al., 2004). Thus our finding of
multiple local efficiency networks represented bilaterally, anteri-
orly, and posteriorly in the brain is consistent with the multifac-
torial nature of this test. Interestingly, the regional distribution of
local networks associated with the executive domain was similar
to the visuospatial domain, although fewer nodes survived statis-
tical threshold after correction for multiple comparisons. Con-
siderable controversy exists about precisely what is measured by
tests of executive function. It has been suggested that tests used to
assess executive functioning may not reflect a unique aspect of
functioning but may be better explained in terms of other cogni-
tive processes involved in test performance, such as verbal abili-
ties, processing speed, or even intelligence (Greenaway et al.,
2009; Roca et al., 2010). Hence, our executive domain may not be
measuring a uniform set of processes, which may explain why
only a small network was commonly expressed.

Regardless of the age and cognitive performance of the partic-
ipants, we found that the brain structural networks of all subjects
had small-world architecture, i.e., network nodes had high levels
of clustering and were linked through relatively few intermediate
steps. It is clear that although there were significant individual
connectivity variations both globally and regionally, the overall
topological properties were largely invariant as small-worldness
was preserved in all of the structural networks that we studied.

Our study has some limitations. First, DTI tractography does
not differentiate between efferent and afferent fibers, but we con-
sider the FA of the fibers connecting two regions as a reasonable
index of the strength of the neuronal traffic between them. Sec-
ond, our neuroanatomical network consisted of only corticocortical
connectivity information, due to our inability to automatically
define the boundaries of subcortical structure with accuracy. An
anatomical network including both cortical and subcortical re-
gions may well be more informative of certain cognitive domains
such as memory. Third, we used the mean FA values of the fibers
as the weighting factor in the construction of the graphs, but
other measures such as number of fibers or mean diffusivity, or a
combination of measures, could also be considered as weighting
factors. Number of fibers and average FA are measures of differ-
ent aspects of the fibers, i.e., FA is relevant to fiber “integrity,” and
number of fibers is relevant to fiber “quantity.” The process of
quantifying diffusion indices and eventually comparing them be-
tween groups of subjects and/or correlating them with other pa-
rameters starts with the acquisition of the raw data, followed by a
long series of image processing steps. A recent paper (Jones and
Cercignani, 2010) points out that each of the processing steps is
susceptible to sources of bias. Despite these limitations, our work
demonstrates that the study of anatomical brain networks can
inform us about age-related brain changes as well as the structural
basis of cognitive functions.

Appendix: Mathematical Expressions of Brain
Network Topology Properties Used in This Work
Direct connection between two nodes
For a binary graph G with N nodes, the connection status between
any two nodes (i, j) can be represented by aij, when an edge exists
between these two nodes:

aij � 1; (1)

otherwise:

aij � 0. (2)

For a weighted graph Gw, the edge between nodes (i, j) is given the
weighting wij, which is a numerical value characterizing the
strength of the connection.

Degree of a node
To perform an analysis of local property on the ith node, we
define subgraph Gi, which includes all the directly connected
neighboring nodes of the node i. One of the most fundamental
network measures, with which most other measures are associ-
ated, is the degree of node i, denoted by Ki for a binary graph and
Ki

w for a weighted graph (Bullmore and Sporns, 2009).

Ki � �
j�Gi

aij; (3)

and the weighted degree of node i is as follows:

Ki
w � �

j�Gi

wij. (4)

Clustering coefficient
For an unweighted network, the clustering coefficient of node i is
the ratio of number of existing connections to the number of all
possible connections in the subgraph Gi:

Ci �
MGi

Ki�1 � Ki	 ⁄2
, (5)

where MGi
is the number of existing connections in Gi.

For a weighted network, we use the definition described by
Onnela et al. (2005), in which the clustering coefficient is defined
as follows:

Ci
w �

2

Ki�Ki � 1	 �
j,m�Gi

�WijWjmWmi	
1/3, (6)

where Wij is the normalized weighting between a pair of nodes i
and j. Nodes ( j, m) are direct neighbors of node i, and these three
nodes form a triangle. For weighted and unweighted graphs, we
defined the averaged clustering coefficient respectively as

Cp �
1

N �
i�G

Ci (7)

and

Cp
w �

1

N �
i�G

Ci
w. (8)
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Shortest path length
The shortest path length dij is the minimum number of edges that
must be passed to go from one node to another in a binary
network,

dij � �
auv�P

auv, (9)

where P is the shortest path length between node i and j.
However, for a weighted network, the shortest path length dij

w

is defined as the lowest-weighted path between node i and j. In
our study, a greater average FA value of all the fibers between two
anatomical regions indicates stronger connection; thus, the con-
nection that has a greater average FA values of all the fibers would
have a shorter distance in the graph. Therefore, the weighting is
the inverse of the average FA value. Note that these weightings are
only used when computing the shortest path length:

dij
w � �

auv�Pw

1

wuv
. (10)

The mean shortest path length of node i is the average distance
between node i and all other nodes:

Li �
1

N �
i, j�G
i
j

dij; (11)

and weighted:

Li
w �

1

N �
i, j�G
i
j

dij
w. (12)

Characteristic path length
The characteristic path length (Watts and Strogatz, 1998) is the
average mean shortest path length across all the nodes in the
graph:

Lp � �
i�G

Li; (13)

and the weighted graph:

Lp
w � �

i�G

Li
w. (14)

Global network efficiency
Global efficiency is the inverse of the harmonic mean of the min-
imum absolute path length between each pair of nodes (Latora
and Marchiori, 2001; Achard and Bullmore, 2007), for a binary
graph:

Eglobal �
1

N�N � 1	 �
j�G

�
i�G, j
i

1

dij
; (15)

and the weighted graph:

Eglobal
w �

1

N�N � 1	 �
j�G

�
i�G, j
i

1

dij
w. (16)

Regional network efficiency
The regional efficiency is defined as the inverse of the mean
harmonic shortest path length between the node under con-

sideration and all other nodes in the network. For a binary
graph:

Ei �
1

N � 1 �
i�G, j
i

1

dij
; (17)

and the weighted graph:

Ei
w �

1

N � 1 �
i�G, j
i

1

dij
w. (18)
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Onnela JP, Saramäki J, Kertész J, Kaski K (2005) Intensity and coherence of
motifs in weighted complex networks. Phys Rev E Stat Nonlin Soft Matter
Phys 71:065103.
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