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Abstract: The aim of this studywas to examine structural brain networks using regional graymatter volume,
aswell as to investigate changes in small-world andmodular organizationwith normal aging.We constructed
structural brain networks composed of 90 regions in young, middle, and old age groups. We randomly
selected 350 healthy subjects for each group from a Japanese magnetic resonance image database. Structural
brain networks in three age groups showed economical small-world properties, providing high global and
local efficiency for parallel information processing at low connection cost. The small-world efficiency and
node betweenness varied significantly and revealed a U- or inverted U-curve model tendency among three
age groups. Results also demonstrated that structural brain networks exhibited a modular organization in
which the connections between regions aremuch denserwithinmodules than between them. Themodular or-
ganization of structural brain networks was similar between the young and middle age groups, but quite dif-
ferent from the old group. In particular, the old group showed a notable decrease in the connector ratio and
the intermodule connections. Combining the results of small-world efficiency, node betweenness and modu-
lar organization,we concluded that the brain network changed slightly, developing into amore distributed or-
ganization from young tomiddle age. The organization eventually altered greatly, shifting to amore localized
organization in old age.Our findings provided quantitative insights into topological principles of structural brain
networks and changes related to normal aging.HumBrainMapp 33:552–568, 2012. VC 2011WileyPeriodicals, Inc.
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INTRODUCTION

New advances in the quantitative analysis of complex
networks, based largely on graph theory, have been
rapidly applied to studies of brain network topological
organization. The structural and functional systems of the
human brain show topological properties of complex net-
works, such as small-world properties, highly connected
hubs, and modularity [Bullmore and Sporns, 2009]. Signifi-
cant discoveries related to human brain functional net-
works have indicated that the brain exhibits small-world
properties characterized by a high clustering index and a
short average distance between any two regions [Latora
and Marchiori, 2001; Watts and Strogatz, 1998], using
modern neuroimaging techniques such as functional mag-
netic resonance imaging (fMRI), and electroencephalogram
(EEG) [Achard and Bullmore, 2007; Achard et al., 2006;
Bassett et al., 2006; Eguiluz et al., 2005; Ferri et al., 2007;
Micheloyannis et al., 2006; Salvador et al., 2005]. It has
been verified that structural networks of the human brain
revealed by measurements of cortical thickness or regional
gray matter volume (RGMV) have small-world properties
[Bassett et al., 2008; He et al., 2007, 2008, 2009a]. Moreover,
the small-world properties were confirmed in human brain
structural networks using diffusion MRI technique [Gong
et al., 2009b; Hagmann et al., 2007; Iturria-Medina et al.,
2008]. Achard and Bullmore were the first to demonstrate
economical small-world properties in brain functional net-
works, which provide high global and local efficiency for
parallel information processing at a low wiring cost
[Achard and Bullmore, 2007]. Efficiency metrics have also
provided a new measure to quantify differences between
patient groups and appropriate comparison groups [He
et al., 2009a; Liu et al., 2008; Wang et al., 2009b].

Modularity is thought to be one of the main organizing
principles in most complex systems, including biological,
social, and economical networks [Girvan and Newman,
2002; Guimerà et al., 2005; Hartwell et al., 1999; Newman,
2006a]. A key advantage of modular organization is that it
favors evolutionary and developmental optimization of
multiple or changing selection criteria: a modular-organized
network can evolve or grow one module at a time, without
risking loss of function in other modules [Kashtan and
Alon, 2005; Redies and Puelles, 2001]. Defining and charac-
terizing modular organization in the human brain can help
us to identify a set of modules structurally or functionally
associated with components that perform specific biological
functions. This investigation will also provide us with rich
quantitative insights into structural–functional mapping.
The modular organization of structural and functional net-
works in human brain has been demonstrated by several
previous studies [Chen et al., 2008; Ferrarini et al., 2009;
Hagmann et al., 2008; He et al., 2009b; Meunier et al.,
2009a,b; Robinson et al., 2009; Valencia et al., 2009].

Normal processes of brain maturation and senescence
might be reflected as quantifiable changes in structural
and functional network topological properties [Bullmore

and Sporns, 2009; Micheloyannis et al., 2009]. A previous
study on functional brain networks indicated that an older
age group had significantly reduced cost efficiency in com-
parison to a younger group [Achard and Bullmore, 2007].
Normal aging might thus be associated with changes in
the economical small-world properties of brain functional
networks. Furthermore, normal aging had been proven to
be associated with changes in modular organization of
human brain functional networks [Meunier et al., 2009a].
A recent study reported that the organization of multiple
functional brain networks shifts from a local anatomical
emphasis in children to a more distributed organization in
young adults [Fair et al., 2009]. The study also demon-
strated that community detection by modularity optimiza-
tion reveals stable communities within the graphs that are
clearly different between young children and young adults
[Fair et al., 2009]. A recent study also reported that the de-
velopment of large-scale brain networks is characterized
by weakening of short-range functional connectivity and
strengthening of long-range functional connectivity,
comparing the children group (7–9 years) with the young-
adults group (19–22 years), [Supekar et al., 2009]. How-
ever, few studies have analyzed the influences on both
small-world and modular organization with normal aging.
The main purpose of this study is to clarify topological
properties in structural brain networks among different
age groups. We hypothesized that the economical small-
world properties and the modular organization of struc-
tural brain networks would be altered with normal aging.

In the present study, we divided all healthy subjects
into three groups by age. Study participants were selected
from a large-scale brain MRI database of normal Japanese
(1421 subjects, ages from 18 to 80 years), [Sato et al., 2003].
The structural connectivity in the human brain consisting
of 90 regions was constructed by computing the correla-
tion matrix of RGMV across subjects within each group.
Efficiency metrics were applied to investigate whether
structural brain networks show economical small-world
attributes and whether significant differences exist in
properties of brain networks among three age-specific
groups. We investigated the regional nodal characteristics
of brain networks and compared the between-group differ-
ences in node betweenness. Furthermore, we examined the
modular organization of structural brain networks and
identified several modules of the brain network in each
age-specific group. To clarify differences on the modular
organization of brain networks among three groups, we
compared the constitution of modules and computed
attributes using, for example, the connector ratio and the
distribution efficiency.

MATERIALS AND METHODS

Subjects

The subjects were all community-dwelling normal
Japanese subjects recruited by two projects; the Aoba Brain
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Imaging Project, Sendai, Japan and the Tsurugaya Project,
Sendai, Japan. The Aoba Brain Imaging Project was per-
formed to create a database of normal Japanese brain
images [Sato et al., 2003]. To perform this, we obtained
1,637 brain MR images from normal Japanese volunteers
who were living in and around Sendai City, Japan. The
Tsurugaya Project study is a comprehensive geriatric
assessment (CGA) of the elderly population. It involved
1,179 subjects aged 70 years or older in 2002 who were liv-
ing in Tsurugaya district, Sendai City, Japan. We selected
210 subjects by random sampling from subjects who would
be willing to undergo brain MRI and submitted these
patients to MRI. The subjects of the two projects were all
healthy and had neither present illness nor a history of
neurological disease, psychiatric disease, brain tumor, or
head injury. Prior to the acquisition of MR images, all sub-
jects enrolled in the two projects were interviewed by med-
ical doctors for screening to determine whether he/she
was normal and to obtain clinical data. In both projects, we
excluded in advance those subjects who had past or pres-
ent history of malignant tumors, head traumas, cerebrovas-
cular diseases, epilepsy, or psychiatric diseases. After the
interview, brain MR images were obtained from each sub-
ject. The MR images were inspected by two to three well-
trained radiologists. Images with the following findings
were excluded from this study: head injuries, brain tumors,
hemorrhage, major and lacunar infarctions, and moderate
to severe white matter hyperintensities. We did not exclude
the images with mild spotty white matter hyperintensities.

We collected brain images of 1,483 subjects in this study
(mean � S.D.; age, 46.30 � 16.98 years; range: 18–80 years).
To investigate the topological properties and organization
of structural brain networks with normal aging, we di-
vided all subjects into three groups by age (young, 18–40
years; middle, 41–60 years; old, 61–80 years), without
regard to sex. Group ID naming and characteristics of the
subjects are shown in Table I.

MRI data acquisition and the use of them for the studies
by Fukuda H (the last author of the study) were approved
by the Institutional Review Board of Tohoku University
School of Medicine. Informed consent was obtained from
each subject after a full explanation of the purpose and
procedures of the study, according to the Declaration of
Helsinki (1991), prior to MR image scanning.

Image Acquisition

Brain images were obtained from each subject using two
0.5 T MR scanners (Sigma contour, GE-Yokogawa Medical
Systems, Tokyo) with two different pulse sequences: (1)
124 contiguous, 1.5-mm thick axial planes of three dimen-
sional T1-weighted images (spoiled gradient recalled ac-
quisition in steady state: repetition time (TR), 40 ms; echo
time (TE), 7 ms; flip angle (FA), 30�; voxel size, 1.02 mm �
1.02 mm � 1.5 mm); (2) 63 contiguous, 3 mm-thick axial
planes of gapless (using interleaving) proton density-
weighted images/T2-weighted images (dual echo fast spin
echo: TR, 2,860 ms; TE, 15/120 ms; voxel size, 1.02 mm �
1.02 mm � 3 mm). T1 images were used for the present
analysis and all three images were used to exclude those
MRIs with abnormalities, as described above.

Measurements of Regional Gray Matter Volume

After the image acquisition, RGMV for each subject was
measured by using statistical parametric mapping 2
(SPM2) (Wellcome Department of Cognitive Neurology,
London, UK) [Friston et al., 1995] in Matlab (Math Works,
Natick, MA). First, T1-weighted MR images were trans-
formed to the same stereotactic space by registering each
of the images to the ICBM 152 template (Montreal Neuro-
logical Institute, Montreal, Canada), which approximates
the Talairach space [Jean Talairach, 1988]. Then, tissue seg-
mentation from the raw images to the gray matter, white
matter, cerebrospinal fluid space, and non-brain tissue was
performed using the SPM2 default segmentation proce-
dure. We applied these processes using the MATLAB file
‘‘cg_vbm_optimized’’ (http://dbm.neuro.uni-jena.de/vbm.
html). WFU_PickAtlas software was employed to label the
regions in the gray matter images, which provided a
method for generating ROI masks based on the Talairach
Daemon database [Lancaster et al., 2000; Maldjian et al.,
2003, 2004]. We parcellated the entire gray matter into 45
separate regions for each hemisphere (90 regions in total,
see Supporting Information Table SI) defined by the Auto-
mated Anatomical Labeling (AAL) atlas [Tzourio-Mazoyer
et al., 2002] to calculate the RGMV for each subject.

Construction of Brain Structural

Connection Matrix

To study the topological properties of structural brain
networks among three age-specific groups, we examined
the correlation matrices using graph-theoretical analysis:
GroupIDs were Young, Middle, and Old. Since there was
a large difference in the number of subjects in each group,
we randomly selected 350 subjects for each age group (the
original group) (Table I) to reduce the influence due to
varying degrees of freedom for each group in computing
inter-regional correlation across subjects. We also repeated
this randomly-selected grouping method 20 times in each
age group to examine whether subject characteristics were

TABLE I. Characteristics of the subjects

Group ID Age range Number of subjects Age (mean � SD)

Young (Y) 18–40 551 (F: 231/M: 320) 27.42 � 6.77
350 (F: 158/M: 192) 27.31 � 6.65

Middle (M) 41–60 560 (F: 331/M: 229) 50.94 � 5.22
350 (F: 196/M: 154) 51.07 � 5.26

Old (O) 61–80 372 (F: 198/M: 174) 68.32 � 4.58
350 (F: 188/M: 162) 68.17 � 4.03

The italic and bold characters indicate the characteristics of 350
subjects randomly selected for each group.
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significantly changed. As a result, the characteristics of 350
subjects randomly selected for each age group were not
significantly different from those of the original group. We
used a linear regression analysis to remove the effects
from total gray matter volume and sex, so that the resid-
uals of this regression were employed as the substitute for
the raw RGMV, denoted as corrected RGMV (cRGMV). To
analyze the structural brain network by using RGMV, we
first applied the method introduced by He et al. to con-
struct the structural connection matrix [He et al., 2007].
We computed the Pearson correlation coefficient between
cRGMV across 350 subjects randomly chosen from each
group to construct the interregional correlation matrix (N �
N, where N is the number of gray matter regions, here N ¼
90) for each group. Each connection matrix can be con-
verted to a binarized and undirected graph (network) G by
using a correlation or cost threshold. Then the networks
were analyzed by using graph theoretical methods. All top-
ological parameters of the networks calculated in this study
and their implications are shown in Table II.

Small-World Properties

Small-world properties (clustering coefficient, Cp and
characteristic path length, Lp) were originally defined by
Wattz and Strogatz [1998]. In addition to the conventional
small-world parameters (Cp and Lp), more biologically sen-
sible properties of brain networks are the efficiency met-
rics (global efficiency, Eglob and local efficiency, Eloc),
which measure the capability of the network with regard
to information transmission at the global and local levels,
respectively [Latora and Marchiori, 2001]. In several recent
studies, the efficiency metrics have been applied to human

brain functional [Achard and Bullmore, 2007; Wang et al.,
2009a,b] and structural [He et al., 2009a; Iturria-Medina
et al., 2008] network studies. For a graph G with N nodes
and K edges, the global efficiency of G can be computed
as [Latora and Marchiori, 2001]:

EglobðGÞ ¼ 1

NðN � 1Þ
X
i 6¼j2G

1

dij
(1)

where dij is the shortest path length between node i and
node j in G. The local efficiency of G is defined as [Latora
and Marchiori, 2001]:

ElocðGÞ ¼ 1

N

X
i2G

EglobðGiÞ (2)

where Eglob(Gi) is the global efficiency of Gi, the sub-graph
of the neighbors of node i. In this study, we generated a
population (n 1,000) of regular networks and random net-
works that preserved the same number of nodes and
edges, respectively. The efficiency metrics (Eglob and Eloc)
of real brain networks (G) were compared with those of
regular graphs (Greg) and random graphs (Grand), respec-
tively. The real brain network G is considered to be a
small-world network if it meets the following criteria
[Latora and Marchiori, 2001]:

EglobðGregÞ < EglobðGÞ < EglobðGrandÞ andElocðGrandÞ
< ElocðGÞ < ElocðGregÞ ð3Þ

In this study, we applied a cost threshold to investigate
economical small-world properties of networks. Such a
thresholding approach can normalize all networks to have

TABLE II. Topological parameters of structural brain networks used in this study

Network properties Characters Descriptions

Economical small-world
properties

Cost The cost or the sparsity to construct a network.
Eloc The local efficiency measures how efficient are the network to exchange the infor-

mation at the clustering level.
Eglob The global efficiency measures how efficient are the network to exchange the infor-

mation at the global level.
IEloc The integrated local efficiency is the integrals of the local efficiency curves over

the preselected range of cost threshold.
IEglob The integrated global efficiency is the integrals of the global efficiency curves over

the preselected range of cost threshold.
Nodal characteristics BC The normalized betweenness measures the ability of a node relative to information

flow between other nodes throughout the network.
IBC The integrated normalized betweenness is the integrated normalized betweenness

over the preselected range of cost threshold.
Modularity B The modularity measures how the network is organized into modules with high

level of local clustering.
sBC The within-module betweenness centrality measures the importance of a node rel-

ative to the information flow between other nodes in the module.
PC The participant coefficient measures the ability of a node to maintain the commu-

nication between its own module and the other modules.
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the same number of edges or wiring cost and thus provide
an avenue to detect changes in topological organization
with aging [Achard and Bullmore, 2007; He et al., 2009a].
To estimate the small-world properties of structural brain
networks and to define a small-world regime, we first
applied a broad cost threshold range (0.05 � cost �0.5,
increased by 0.01) to all the connection matrices. The cost
(or sparsity) was computed as the ratio of the number of
actual connections divided by the maximum possible
number of connections in the network. We then adopted
the following complementary approaches to choose the
small-world regime: (1) the small-world properties were
estimable (K > log(N) ¼ 4.5, N ¼ 90) [Watts and Strogatz,
1998], (2) all brain networks were fully connected, and (3)
the resulting brain networks have sparse properties and
distinguishable properties in comparison to the degree-
matched random networks [Bassett et al., 2008; Liu et al.,
2008; Wang et al., 2009a]. Finally, we selected the small-
world regime as a range of cost threshold (0.11 � cost
�0.25, step ¼ 0.01). These thresholds were also used for
the following calculation of regional nodal characteristics
and modularity.

Regional Nodal Characteristics

In this study, we examined the node betweenness in the
networks. The betweenness bci of a node i is defined as
the number of shortest paths between any two nodes that
run through node i [Freeman, 1977]. We defined the nor-
malized betweenness as BCi ¼ bci/<bci>, where <bci>
was the average betweenness of all nodes. Thus, the nor-
malized betweenness of BCi measures the ability of a node
relative to information flow between other nodes through-
out the network. Finally, we averaged the normalized
betweenness across the range of cost threshold (0.11 �
cost �0.25). Regions with a higher value of BCi (> mean þ
SD) were identified as global hubs in the brain network
[Sporns et al., 2007].

Modularity and Regional Role

A module can be generally defined as a subset of nodes
in the graph that are more densely connected to the other
nodes in the same module than to nodes outside the mod-
ule [Radicchi et al., 2004]. Several algorithms have been
proposed to define the modular decomposition of an
undirected graph [Clauset et al., 2004; Danon et al., 2005;
Guimerà and Amaral, 2005a, 2005b; Guimerà et al., 2004;
Newman 2006a, 2006b, 2004; Newman and Girvan, 2004;
Reichardt and Bornholdt, 2006]. Despite the many interest-
ing alternative methods, it should be noted that the prob-
lem of community finding remains a challenge because no
single method is fast and sensitive enough to ensure ideal
results for general, large networks, a problem that is com-
pounded by the lack of a clear definition of communities.
Here, we adopted the spectral algorithm [Guimerà and

Amaral, 2005b; Guimerà et al., 2004; Newman, 2006a] for
community detection, which is believed to be the most
precise and be able to find a division with the highest
value of modularity for many networks [Costa et al.,
2007]. This algorithm reformulates the modularity concept
in terms of the eigenvectors of a new characteristic matrix
for the network, called the modularity matrix [Newman,
2006a].

For each subgraph g, its modularity matrix B(g) has
elements

b
ðgÞ
ij ¼ aij �

kikj

2M
� dij

X
u2NðgÞ

aiu � kiku
2M

� �
(4)

for vertices i and j in g. In Eq. (4), the actual number of
edges falling between a particular pair of vertices i and j is
aij; ki is the degree of a vertex i; dij ¼ 1 if i ¼ j and 0 other-
wise. Thus, to split the network in communities, the mod-
ularity matrix is constructed and its most positive
eigenvalue and corresponding eigenvector are determined.
According to the signs of the elements of this vector, the
network is divided in two parts (vertices with positive ele-
ments are assigned to one community and vertices with
negative elements to another). Next, the process is
repeated recursively to each community until a split that
makes a zero or negative contribution to total modularity
is reached. Similarly, Newman proposed a new definition
of communities as indivisible subgraphs, i.e., subgraphs
whose division would not increase the modularity.

In this study, we detected the community structure for
the structural brain networks of three groups, which were
thresholded by a specific cost threshold (cost ¼ 0.11). With
this threshold, we can capture the structural connectivity
backbone underlying the modular organization of the
most sparse and fully-connected brain networks. To fur-
ther distinguish the roles of nodes in terms of their intra-
and inter-module connectivity patterns, the two measure-
ments, the within-module betweenness centrality, sBC and
the participant coefficient (PC) were applied [Guimerà and
Amaral, 2005a; Guimerà et al., 2005]. The sBC (i) of a node
i is the betweenness centrality, but is calculated only
within the module s to which it belongs. This parameter
measures the importance of a node relative to the informa-
tion flow between other nodes in the module. The PC(i) of
a node i is defined as

PCðiÞ ¼ 1�
XNM

s¼1

kis
ki

� �2

where NM is the number of modules, kis is the number of
links of node i to nodes in module s and ki is the total
degree of node i. The PC(i) tends to 1 if node i has a ho-
mogeneous connection distribution with all the modules
and to 0 if it does not have any inter-module connections.
PC measures the ability of a node to maintain the
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communication between its own module and the other
modules. A high PC value for a given node usually means
the node has many inter-module connections. Depending
on the sBC, the nodes in the brain functional network
were classified as modular hubs (sBC >mean þ std) or
non-hubs (sBC �mean þ std), respectively. In terms of the
PC, the hub nodes were further subdivided into R1 con-
nector hubs (PC > 0.25) and R2 provincial hubs (PC �
0.25), and non-hub nodes were divided into R3 connector
non-hubs (PC > 0.25) and R4 peripheral non-hubs (PC �
0.25) [Guimerà and Amaral, 2005a; Guimerà, 2005].

Statistical Analysis

To analyze statistical significance of between-group dif-
ferences with regard to the efficiency metrics (local and
global efficiency) among three age-specific groups, a non-
parametric permutation test method was applied in the
small-world regime defined above (0.11 �cost �0.25, step
¼ 0.01), [Bullmore et al., 1999; He et al., 2008]. Thus, we
can explore the between-group differences in efficiency
metrics at each threshold level. Here, we performed three
comparisons (ZI, ZII, ZIII) including the young versus mid-
dle (Y vs. M), the middle versus old (M vs. O), and the
young versus old (Y vs. O), respectively. For each compar-
ison, the efficiency metrics of binarized graphs at a given
threshold were computed separately for each group. Then
one randomization procedure of the permutation test
yielded two new groups that were generalized by ran-
domly reallocating each subject’s set of cRGMV measures
from previous groups. The correlation matrices for new
groups were recomputed and binarized by thresholding to
achieve the same threshold as in the real networks. The ef-
ficiency metrics of corresponding binarized graphs and
their between-group differences were calculated. This per-
mutation test randomization procedure was repeated 1,000
times at each threshold, consistent with the real networks.
Finally, the 95th percentile points of each distribution
were used as the critical values for a one-tailed test of the
null hypothesis with a probability of Type I error of 0.05.
Moreover, we calculated the integrals of the efficiency
metrics curves as the integrated metrics (IEloc, the inte-
grated local efficiency; IEglob, the integrated global effi-
ciency) over the preselected range of cost threshold.
Between-group significances of three comparisons on the
integrated metrics were also estimated by 1,000 permuta-
tion tests. For the investigation of node betweenness, we
also computed the between-group significance of two com-
parisons (Y vs. M and M vs. O) on the integrated normal-
ized betweenness (IBCi) over the cost threshold range,
using 1,000 permutation tests. To adjust for the multiple
comparisons, a false discovery rate (FDR) procedure was
applied at a q value of 0.05 [Genovese et al., 2002]. We
also calculated the ratio of intermodule connections under
a cost threshold range (0.11 � cost �0.25, step ¼ 0.01)
with the modular organization by the cost of 0.11. An

ANOVA analysis was applied to test the between-group
significance of the ratio of intermodule connections.

RESULTS

Economical Small-World Properties and

Age-Related Changes

We used a range for cost threshold (0.11 � cost �0.25,
step ¼ 0.01) to verify the properties of structural brain net-
works from three age-specific groups (Young, 18–40 years;
Middle, 41–60 years; Old, 61–80 years). With the cost
thresholding strategy, both the local and global efficiency
curves of structural brain networks in three groups were
intermediate compared with those of the matched random
and regular networks (Fig. 1A,B). The structural brain net-
works in three age-specific groups exhibited economical
small-world properties, indicated by higher local and
global efficiency than comparable random and regular net-
works, respectively [Latora and Marchiori, 2001].

As shown in Figure 1A, the local efficiency in the young
group was significantly larger than those of the middle
and old groups, whereas no significant difference was
found between the middle and old groups. The global effi-
ciency of the young group was significantly lower than
that of the middle and old groups, and the old group had
significant lower values than the middle group (Fig. 1B).
Using the integrated efficiency metrics over the small-
world regime, we defined a U-curve model to clarify the
trend of topological properties of structural brain networks
with normal aging. The integrated local and global
efficiency showed a U-curve and an inverted-U-curve,
respectively (Fig. 1C,D).

Regional Nodal Characteristics and

Age-Related Changes

To identify the global hubs in structural brain networks,
we averaged the normalized node betweenness centrality
BCi of each region over the cost threshold regime. The
regions with higher BCi (> mean þ sd) were identified as
the global hubs (Table III). In the young group, 16 regions
were designated as the global hubs, specifically 14 associa-
tion regions and 2 limbic/paralimbic regions. In the mid-
dle group, 14 regions were identified as the global hubs,
specifically 10 association regions and 4 limbic/paralimbic
regions. In the old group, 14 regions were identified as the
global hubs, specifically 10 association regions, 3 limbic/
paralimbic regions and 1 subcortical region. Among the
identified global hubs, 12 of 16 regions in the young
group, 9 of 14 regions in the middle group, and 7 of 14
regions in the old group were frontal and parietal regions.
Results also indicated that 10 out of all 14 global hubs in
the middle group and 6 out of all 14 global hubs in the
old group were also identified as the global hubs in the
young group. To further clarify the alteration of regional
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nodal characteristics, we applied 1,000 permutation tests
to compute the significance of between-group differences
in node betweenness (P < 0.001, FDR-corrected). The
results indicated that six regions in the dorsal frontal-
parietal junction [IFGoperc.L, SFGmed.L, SFGmed.R,
SFGdor.L, IPL.L, PCUN.L; for abbreviation see Supporting
Information Table SI] showed decreased node betweenness
from young to middle age, whereas only three regions in
the ventral frontal and temporal lobes [ORBinf.L,
ORBinf.R, STG.L] revealed increased node betweenness
(see Supporting Information Table SII). For the period
from middle to old age, five ventral lateral cortices in
the frontal and temporal lobes [ORBinf.L, ORBinf.R,
ORBmed.R, MTG.L, MTG.R] showed decreased node
betweenness, whereas nine regions mostly in the lateral
occipital-parietal junction [MOG.L, MOG.R, ANG.L,
ANG.R] and the paralimbic/subcortical area [PHG.R,
AMYG.R, CAU.L, THA.L] revealed increased node betwe-

enness (see Supporting Information Table SIII). The global
hubs and the significant age-related changes in node
betweenness were visualized by surface representations of
structural brain networks using the Caret software [Van
Essen, 2005], (see Fig. 2).

Modularity and Age-Related Changes

Maximum modularity (M) of brain networks decreased
as a function of increasing cost threshold (see Supporting
Information Fig. S1). It is generally accepted that M � 0.3
are indicative of nonrandom community structure [New-
man and Girvan, 2004]. In this study, as the values of
modularity were all larger than 0.3 over the preselected
cost threshold range, and structural brain networks were
consistently modularly organized in three age groups.
However, there was no significant difference in modularity

Figure 1.

Economical small-world properties and age-related changes. Left:

The local and global efficiency of brain networks as a function of

cost threshold. Right: The trend for the integrated efficiency

metrics in age-specific groups. A: Local efficiency calculated

under the cost threshold range of 0.11–0.25. B: Global effi-

ciency calculated under the cost threshold range of 0.11–0.25.

Significant differences between age groups were tested by per-

mutation test under uncorrected conditions (P < 0.05). ~; Y

vs. M, �; Y vs. M, ^; Y vs. O. C: Integrated local efficiency. D:

Integrated global efficiency. Three comparisons were performed

as follows: ZI (Young vs. Middle), ZII (Middle vs. Old), and ZIII
(Young vs. Old).
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among the age-specific groups. Using the fixed cost thresh-
old (cost ¼ 0.11), the obtained brain networks that cap-
tured the structural connectivity backbone underlying the
principal topological organization were separated into
modules according to the spectral method proposed by
Newman [2006a]. As a result, the brain networks were
separated into five, six, and five modules in young, mid-
dle, and old groups, respectively (Table IV, see Supporting
Information Table SIV). The brain regions included in
modules with three age groups were described in Support-
ing Information Text S1. The surface representations for
modules in structural brain networks are shown in Figure
3. Moreover, the modular organization of structural brain
networks shown here was also reproduced by using differ-
ent specific cost thresholds (cost ¼ 0.15 and 0.20), (see
Supporting Information Fig. S2). We showed the modular
organization of the structural brain networks in topological

spaces (Fig. 4A–C). The topological representations were
drawn by the Pajek software package (http://vlado.fmf.
uni-lj.si/pub/networks/pajek) using a Kamada-Kawai
algorithm [Kamada Kawai, 1989]. With this algorithm, the
geometric distance between two brain regions on the
drawing space approximates the shortest path length
between them.

In this study, according to the patterns of intra- and
inter-module connections, the four possible roles of
regions were defined as connector hub (R1), provincial
hub (R2), connector non-hub (R3), and provincial non-hub
(R4). To show the node roles of regions in each module,
we arranged the connector nodes (R1 and R3) in a central
ring. In the young and middle group, 49 regions (8 R1 and
41 R3) and 49 regions (7 R1 and 42 R3) were identified as
connector nodes (Table IV, Fig. 4D,E). However, only 28
regions (3 R1 and 25 R3) were defined as the connectors

TABLE III. The global hubs of the structural brain networks

Abbreviations Class

Young Middle Old

ReferenceNbc(i) Module Role Nbc(i) Module Role Nbc(i) Module Role

SFGmed. L Association 4.559 IV R2 4.762 IV R3 E
MTG. L Association 4.305 V R3 3.543 V R3 B, C, E, F, G
SFGmed. R Association 3.698 IV R4 A, C, D, E
MOG. R Association 3.569 I R3 2.737 II R3 A, G
ORBmed. R Paralimbic 2.876 V R3 3.451 V R3
LING. R Association 2.865 III R3 1.945 II R3 B, G
SMG. L Association 2.846 I R3 2.579 I R3 1.997 I R3 B
SMG. R Association 2.496 III R3 1.853 IV R3 2.249 I R3 C
PCUN. L Association 2.442 III R3 A, D, G
IFGtriang. R Association 2.321 I R3 2.610 I R3 2.999 I R3 E, G
ORBmed. L Paralimbic 2.289 V R3 2.009 V R3 C
SFGdor. L Association 2.261 IV R2 A, D, E, G
MTG. R Association 2.162 V R3 3.631 V R3 B, C, E, F, G
IFGtriang. L Association 2.086 I R3 1.854 I R3 2.689 I R3 E, G
PCUN. R Association 2.050 III R1 A, D, G
SFGdor. R Association 2.028 IV R4 1.941 IV R2 A, C, D, E, F, G
ANG. R Association 3.431 II R3 B
AMYG. R Paralimbic 3.389 V R3
PHG. R Paralimbic 2.760 V R2 E, F
STG. R Association 2.986 I R3 2.665 I R4 B, C, G
ANG. L Association 2.318 II R3 B
INS. L Paralimbic 2.211 I R2 D
MOG. L Association 2.016 II R3 A, G
THA. L Subcortical 1.948 I R3
STG. L Association 1.991 I R1 B, G
ORBinf. L Paralimbic 3.037 V R1 B, C
ORBinf. R Paralimbic 3.018 V R3 B

The hub regions (normalized node betweenness, Nbc(i)>mean þ SD) in structural brain networks of three age groups are listed in
decreasing order of the node betweenness in the young group. The regions are classified as association, primary, limbic/paralimbic or
subcortical regions as described by Mesulam [2000]. The module column indicates the anatomical modules that the hub regions belong
to, and the role column indicates the roles that the hub regions play in terms of their intra- and inter-module connectivity patterns; con-
nector hub (R1), provincial hub (R2), connector non-hub (R3), and provincial non-hub (see Materials and Methods). R: right; L: left. For
the description of the abbreviations, see supplementary Table S1.
The reference column indicates the hub regions previously identified in human brain structural (A, B, C, D, E), or functional (F, G) net-
works. A; Gong et al. [2009], B; He et al. [2008], C; Chen et al. [2008], D; Iturria-Medina [2008], E; He et al. [2007], F; He et al. [2009b],
G; Achard et al. [2006].
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(Table IV, Fig. 4F). Most global hubs (Young, 12/16;
Middle, 13/14; Old, 11/14) played R1 or R3 (connector)
roles, with numerous inter-module connections executing
a critical impact on the coordination of information flow
through the whole network (Table III).

In addition to discrepancies in the composition and
numbers of modules, we also found differences in the top-
ological roles of the modules in the brain networks of
three groups. We defined the connector-module as the
module that had both a high connector ratio (the ratio of

the connectors to the regions in the module was larger
than 0.6) and a high ratio of intermodule connections (the
ratio of the intermodule connections in the modules to
that in the whole network was larger than <1/numbers of
modules>) (Table IV). In both the young and the middle
group, Modules I, III, and V were identified as the connec-
tor-modules (Table IV). The young brain network was
observed to have dense inter-module connections between
Module I and V (53/109), as well as between Module I
and III (25/109) (see Supporting Information Table SV). In

Figure 2.

Surface representations for global hubs and the significant age-

related changes in node betweenness. Top: The global hubs in

the young group. Middle: The global hubs in the middle group

and the significant age-related changes in node betweenness

from young to middle age. Bottom: The global hubs in the old

group and the significant age-related changes in node between-

ness from middle to old age. The global hubs and non-hubs are

indicated by spheres in big and small size, respectively. The

nodes with significant decreased and increased age-related

changes are indicated by green and red spheres, respectively.

The nodes without significant age-related change are indicated

by blue spheres.

TABLE IV. The distribution of connectors and inter-module connections in each module

Module

Young Middle Old

Regions Connector Intermodule Regions Connector Intermodule Regions Connector Intermodule

I 16 11(0.69) 80(0.37) 13 9(0.69) 49(0.25) 26 7(0.27) 51(0.36)
II 21 8(0.38) 16(0.07) 18 6(0.33) 25(0.13) 10 4(0.40) 43(0.30)
III 14 12(0.86) 43(0.20) 18 12(0.67) 35(0.18) 8 4(0.50) 12(0.09)
IV 20 3(0.15) 10(0.05) 19 6(0.32) 16(0.08) 18 6(0.33) 19(0.13)
V 19 15(0.79) 69(0.32) 14 11(0.79) 58(0.30) 28 3(0.11) 13(0.09)
VI 8 5(0.63) 15(0.08)
Total number 90 49 109 90 49 99 90 24 69

The ‘‘Connector’’ column indicates the numbers of connector nodes in each module and its ratio to the total number of regions in the
module (in parentheses). The ‘‘Intermodule’’ column indicates the numbers of intermodule connections in each module and its ratio to
the total number of intermodule connections in the whole network (in parentheses). The bold and italic characters indicate the values of
the connector-module in each age group, with both the higher connector ratio (>0.6) and the higher ratio of intermodule connections
(larger than <1/number of modules>).
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the middle group, the inter-module connections spread
around modules and abundant connections existed only
between Modules I and V (28/99) (see Supporting Infor-
mation Table SVI). Although no module was recognized
as the connector-module in the old group, there were rela-
tively dense inter-module connections between Modules I
and II (32/69) (see Supporting Information Table SVII).
Furthermore, the young and middle groups showed signif-
icantly higher proportions of intermodule connections
than did the old group (ANOVA, P ¼ 0.007), (Fig. 5).

DISCUSSION

This is the first study, to our knowledge, to investigate
both small-world properties and modularity of structural
brain networks in healthy individuals across a broad age
range. We found that structural brain networks exhibited
economical small-world properties in three age-specific
groups. We defined the global hubs to account for higher
node betweenness in each group. In particular, the small-
world properties and node betweenness showed signifi-
cant changes with normal aging. Moreover, our results
demonstrated that structural brain networks showed mod-
ular organization in three groups and changed greatly in
the old age group. Structural brain networks developed
into a more distributed organization from young to middle
age, then organized into a localized organization with sub-
stantial alterations in old age. Thus, understanding
changes in topological properties in structural brain
networks may help elucidate normal processes of brain
maturation and senescence.

Economical Small-World Properties and

Age-Related Changes

In this study, structural brain networks exhibited eco-
nomical small-world properties in all age-specific groups,
as determined using RGMV with MR images. Our findings
of high global and local efficiency in structural brain net-
works with three age-specific groups were compatible
with previous functional and structural brain networks
studies [Achard and Bullmore, 2007; Bassett et al., 2008;
He et al., 2008, 2009a; Wang et al., 2009b]. Computational
modeling simulations [Sporns et al., 2000] and experimen-
tal studies [Chen et al., 2008] have also suggested the
emergence of small-world topology when networks are
evolved for the great complexity of dynamic behavior,
defined as an optimal balance between local specialization
and global integration [Strogatz, 2001]. Thus, our results
provided further support for the standpoint that brain net-
works might have evolved to maximize the cost efficiency
of parallel information processing.

We also noted age-related changes in efficiency metrics
of structural brain networks. First, the structural brain net-
work may develop into a more distributed organization
from young to middle age, accompanied by significant
decreases in local efficiency and robust increases in global
efficiency. The reduction of local efficiency might be
related to that healthy aging is associated with a regionally
distributed pattern of gray matter atrophy [Bergfield et al.,
2010]. Moreover, a previous study suggests that high
global efficiency assures effective integrity or rapid trans-
fers of information between and across remote regions
that are believed to constitute the basis of cognitive

Figure 3.

Surface representations for modules in structural brain networks. All of 90 brain regions are

plotted by different colored spheres (different colors represent distinct network modules) and

further mapped onto the cortical surfaces at the lateral and medial views, respectively.
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process [Sporns and Zwi, 2004]. Recent studies also dem-
onstrate a positive correlation between the global efficiency
of brain networks and intellectual performance, indicating
a more efficient parallel information transfer in the human
brain [Li et al., 2009; van den Heuvel et al., 2009]. Thus,
the period from young to middle age may reflect a matu-
ration process in the structural brain network. This finding
was also in accordance with that the age-related cognitive
changes involved in the age-related loss of gray matter
volume [Hedden and Gabrieli, 2004; Resnick et al., 2003;
Tisserand et al., 2004]. Second, the structural brain net-
work may evolve into a more local organization from mid-
dle to old age. The local efficiency did not differ
significantly between the middle and old groups (Fig. 1A),
whereas the integrated local efficiency increased signifi-
cantly (Fig. 1C). Besides, the global efficiency and the inte-
grated global efficiency decreased significantly (Fig. 1B,D).
This phenomenon may indicate a degeneration process in
the structural brain network with normal aging. It has
been suggested the regular networks have a slow signal
propagation speed and synchronizability in comparison to
small-world networks [Strogatz, 2001]. The regular config-
uration that upsets the optimal balance of a small-world
network was related to many neurological and psychiatric
disorders described as dysconnectivity syndromes [Catani
and ffytche, 2005]. Many previous studies have reported
the regular configuration of brain networks in patients
with diseases such as schizophrenia or AD, derived from
fMRI, EEG or structural MRI data [Bassett et al., 2008; He
et al., 2008; Stam et al., 2007]. There seems to be conver-
gent evidence from methodologically disparate studies
that both AD and schizophrenia are associated with abnor-
mal topological organization of structural and functional
brain networks [Bullmore and Sporns, 2009]. Thus, our
results suggested that aging has high risk for dysconnec-
tivity syndromes. Third, the U-curve model defined in this
study indicated a quadratic curve-like tendency of struc-
tural brain networks with normal aging. Our recent study
demonstrated that gray matter volume declined with age
in healthy community-dwelling individuals, whereas the
white matter ratio (WMR) had an inverted-U curve trajec-
tory with age. WMR increased until around 50 years of
age and then decreased in each gender [Taki et al., in
press]. This increase in the WMR is thought to represent
maturational changes such as myelination, which may

continue until middle adulthood. There are other support-
ing evidences that both gray and white matter magnetiza-
tion transfer ratio (MTR) histograms follow quadratic
curves: in both cases, they increase up until middle adult-
hood and then decline significantly, as determined by a
study that assessed age-related MTR histogram measure-
ments in healthy subjects (54 healthy volunteers Aged 20–
86 years), [Ge et al., 2002a,b]. Brain maturation includes
both regressive cellular events (such as synaptic pruning)
and progressive cellular events (such as myelination),
which could result in the appearance of regional gray mat-
ter volume decline or cortical thinning on MR images
[Sowell et al., 2003, 2004]. It has been noted that brain
maturational change continues to about the fifth decade of
age [Sowell et al., 2003], which may account for the matu-
ration of structural brain networks.

In addition to the above findings, we observed that the
young group showed higher local efficiency (Fig. 1A,C)
but lower global efficiency (Fig. 1B,D) as compared with
the old group. This finding was different from the results
of a previous study [Achard and Bullmore, 2007], in which
the young group (N ¼ 15; mean age ¼ 24.7 years) showed
higher values in the relative global efficiency and no sig-
nificant difference in the relative local efficiency compared
with the old group (N ¼ 11; mean age ¼ 66.5 years). The
discrepancies could be attributed to different network
modalities (structural vs. functional) and population size
(350 vs. 11/15).

Regional Nodal Characteristics and

Age-Related Changes

Node betweenness is an important metric that can be
used to determine the relative importance of a node with
a network and identify the pivotal nodes in the complex
network. As indicated by the higher values of node
betweenness, 16, 14, and 14 global hubs that are crucial to
efficient communication were identified in the young, mid-
dle, and old groups, respectively. These global hub regions
were mainly composed of recently evolved association and
primitive limbic/paralimbic regions. Association regions
have proven to contribute to the integrity of multiple func-
tional systems, such as attention and memory systems
[Mesulam, 1998], and tend to be hubs of the brain func-
tional network regardless of age [Achard and Bullmore,

Figure 4.

Modular organization of structural brain networks. Left: The

modular organization of young (A), middle (B), and old (C)

brain networks visualized by minimizing free energy using a

Kamada-Kawaki layout algorithm. The global hubs and non-hubs

are represented by the bigger and smaller circles, respectively.

The regions are represented by the module color. The intra-

module and intermodule connections are represented by the

light gray and black lines, respectively. Right: The regional node

roles in brain modules for young (D), middle (E), and old (F)

brain networks, with connector nodes located in a central ring

to highlight intermodule connections. The intramodule and inter-

module connections are shown in colored and black lines,

respectively.
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2007]. Limbic/paralimbic regions have been shown to be
highly interconnected with the prefrontal regions and sub-
cortical regions, and are mainly involved in emotional
processing and the maintenance of a conscious state of
mind [Mesulam, 1998]. In this study, most global hubs
were frontal and parietal regions, especially in the young
(12 of 16) and middle (9 of 14) groups. Previous studies
have also demonstrated that identified global hubs were
mainly prefrontal and parietal regions, providing a poten-
tial explanation for their well-documented activation by
many cognitive functions [Bullmore and Sporns, 2009].
Moreover, although the identified global hubs varied
among three age-specific groups, most of these regions
were found to show high regional efficiency or node
betweenness in the structural [Chen et al., 2008; Gong
et al., 2009b; He et al., 2007, 2008; Iturria-Medina et al.,
2008] and functional [Achard et al., 2006; He et al., 2009b]
human brain networks (Table III). It was noted that the
substantial discrepancies of identified global hubs between
this study and the previous studies could be due to the
different neuroimaging modalities, subjects’ characteristics
and computational methods.

We also found significant changes in node betweenness
with decreasing and increasing in both periods (see Fig.
2). This finding was consistent with a previous study
which indicates both negative and positive age effects on
the regional efficiency in cortical regions [Gong et al.,
2009a]. The most of these identified regions were associa-
tion cortices (7 out of 9) in the period from young to mid-
dle age. From middle to old age, the regions were
association (7 out of 14) and paralimbic/subcortical (7 out
of 14) regions. These results supported the view that age-
related changes are mainly characteristic of association
cortex as opposed to primary cortex [Albert and Knoefel,
1994]. Our results were also similar to the result by a pre-
vious study that old age is associated with significantly

reduced nodal efficiency in several regions of the frontal
and temporal neocortex [Achard and Bullmore, 2007]. We
also tried to interpret this phenomenon by previous results
in the dynamic course of brain maturation. A previous
study indicates that relative regional differences in cortical
GM volume with age occur in the frontal, parietal and
temporal lobes [Smith et al., 2007]. Importantly, the dis-
crepancies in node betweenness between middle and old
groups were more notable than those between young and
middle groups (see Fig. 2). Thus, our results suggested
that the organization of structural brain networks changed
slightly from young to middle age, whereas it altered
greatly from middle to old age.

Modularity and Age-Related Changes

Our results indicated the existence of modular organiza-
tion in the structural brain networks in three age-specific
groups. The organization consisted of modules of tightly
connected brain regions. Each module in a network has
intramodule connections that are denser than its intermod-
ule connections. High local clustering represents a general
organizational principle throughout many larger-scale
brain networks and may contribute to the balance between
brain functional segregation and integration while conserv-
ing connection length, efficient recurrent processing within
modules, and efficient information exchange between
modules [Bassett and Bullmore, 2006; Chen et al., 2008;
Latora and Marchiori, 2001; Sporns et al., 2000]. Thus, this
finding of modular organization in structural brain net-
works was consistent with the pre-stated results of eco-
nomical small-world attributes, indicated by higher local
and global efficiency than comparable random and regular
networks, respectively. Moreover, we noted that the struc-
tural brain networks were organized with topological
modules that closely overlap known functional domains
such as auditory and language (Module I in young and
middle), memory and emotion processing (Module II in
young and middle), visual and ‘‘default’’ network (Module
III in young and middle), motor and somatosensory (Mod-
ule IV in young, middle, and old), cognitive processing
and learning (Module V in young), and decision-making
(Module V in middle). The modules in the old group were
quite different from those in the young and middle
groups. Specially, Module I was primarily associated with
memory, as well as auditory and language functions;
Module II was mainly involved in the visual system; Mod-
ule III was involved with emotion formation and process-
ing; Module V was similar to Modules II and V in the
middle group, which were mainly associated with mem-
ory, emotion, and cognitive processing. These results were
also in accordance with several recent studies on the mod-
ular organization of human brain that utilized structural
and functional network analyses [Chen et al., 2008; Hag-
mann et al., 2008; He et al., 2009b]. For the full discussion,
see Supporting Information Text S1.

Figure 5.

The ratio of intermodule connections.
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We also found no significant difference with regard to
the modularity of the global brain networks among three
age-specific groups [see Supporting Information Fig. S1].
This finding was consistent with that of a previous study,
in which no significant difference was found between the
young and old groups with regard to modularity, imply-
ing that modular organization is conserved over the adult
age range considered [Meunier et al., 2009a]. Nonetheless,
there were notable discrepancies in the composition and
topological roles of modules among brain networks in this
study. First, comparing the composition of the modules
among three age groups, we found that the modular orga-
nization of the young and middle groups were very simi-
lar but quite different from that of the old group (Figs. 3
and 4). A new module (Module VI) in the old group repre-
sented the separation of all subcortical regions from the
areas known as Modules I and V in the young group. The
constitution of the modules in the middle group resembled
that in the young group (see Fig. 4). However, the regions
in the old group were assembled more densely, leading to
the overnumbered regions in modules (see Fig. 4). This
finding may indicate that the modular organization of
structural brain networks changes greatly until old age.
Second, the number of connectors in the old group
was also less than that in the young and middle groups
(Table IV). The connectors were crucial for the global coor-
dination of information flow in the brain networks and
were of great importance for maintaining network
integrity [He et al., 2009b; Sporns et al., 2007]. Moreover,
the modules in the old group seemed to be more locally
organized, resulting in fewer intermodule connections as
compared with the numbers in the young and middle
group (see Fig. 5). The intermodule connections facilitate
communication between different modules and contribute
to the network bridges that serve as pivotal connections
for the information flow of the whole brain network [Chen
et al., 2008; He et al., 2009b]. This finding was in accord-
ance with a previous study on age-related changes in
modular organization of human brain functional networks,
in which the number of intermodule connections to frontal
modular regions was significantly reduced in an old group
[Meunier et al., 2009a]. As a result, three connector-mod-
ules were identified in both the young and middle groups,
whereas no connector-module was found in the old group
(Table IV). The connector-module may play a critical role
in coordinating activity across the brain network as a
whole and in mediating interactions between modules
[Meunier et al., 2009a]. Combined with the findings in the
small-world properties and node betweenness, these
results may reveal that the structural brain network
changed slightly, shifting into a more distributed organiza-
tion during the transition from young to middle age, and
then organizing into a localized organization with great
alteration in old age. Our findings were also in agreement
with a recent study on functional brain networks, which
indicated the organization of multiple functional networks
shifts from a local anatomical emphasis in children to a

more ‘‘distributed’’ organization in young adults over de-
velopment [Fair et al., 2009].

METHODOLOGY

The human brain structural network was first con-
structed by using cortical thickness measurements [He
et al., 2007], because of strong correlations between regions
that are axonally connected [Lerch et al., 2006]. We used
the measurement of RGMV to construct structural brain
networks, as applied first by a previous study on the hier-
archical organization of human cortical networks [Bassett
et al., 2008]. Although there is still no direct proof that cor-
relations of gray matter volume across subjects are indica-
tive of axonal connectivity via white matter tracts, strong
correlations between brain regions known to be anatomi-
cally connected have been observed in previous optimized
voxel-based morphometry studies [Mechelli et al., 2005;
Pezawas et al., 2005]. Thus, the RGMV as the measure-
ment of structural connectivity is currently considered as
exploratory and should be investigated further in future
studies. Salvador et al. showed that regional volume had a
positive correlation which its mutual information that
measured the functional connectivity between the region
and the rest brain regions [Salvador et al., 2008]. A previ-
ous study also indicates that network properties (e.g.,
small-worldness and degree distribution) change with the
alterations of topological organization introduced by the
different parcellation schemes [Wang et al., 2009a]. Thus,
the comparison of network parameters across studies must
be made with reference to the spatial scale of the parcella-
tion schemes [Zalesky et al., 2010]. While this study was a
cross-sectional study, a longitudinal analysis would also
be useful to investigate the change in structural brain net-
works with normal aging. Because all subjects in this
study were more than 20 years old, young and adolescent
subjects are expected to be included in future studies of
brain network development. It is also important to investi-
gate the topological properties and modular organization
of human brain networks with normal aging, in combina-
tion with functional and structural studies.

CONCLUSION

In this study, we quantitatively analyzed the changes in
small-world properties and modularity of structural brain
networks with normal aging, using the structural MRI.
Our results indicated that normal aging had a notable
effect on the topological organization of structural brain
networks. These findings were compatible with previous
studies on the small-world and modular organization of
brain functional and structural networks, thus enhancing
our understanding of the underlying physiology of normal
aging in the human brain.
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