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in Neuropsychiatric Disorders
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Abstract

Neurological and psychiatric disorders disturb higher cognitive functions and are accompanied by aberrant
cortico-cortical axonal pathways or synchronizations of neural activity. A large proportion of neuroimaging stud-
ies have focused on examining the focal morphological abnormalities of various gray and white matter structures
or the functional activities of brain areas during goal-directed tasks or the resting state, which provides vast quan-
tities of information on both the structural and functional alterations in the patients’ brain. However, these studies
often ignore the interactions among multiple brain regions that constitute complex brain networks underlying
higher cognitive function. Information derived from recent advances of noninvasive magnetic resonance imaging
(MRI) techniques and computational methodologies such as graph theory have allowed researchers to explore the
patterns of structural and functional connectivity of healthy and diseased brains in vivo. In this article, we sum-
marize the recent advances made in the studies of both structural (gray matter morphology and white matter fi-
bers) and functional (synchronized neural activity) brain networks based on human MRI data pertaining to
neuropsychiatric disorders. These studies bring a systems-level perspective to the alterations of the topological
organization of complex brain networks and the underlying pathophysiological mechanisms. Specifically, nonin-
vasive imaging of structural and functional brain networks and follow-up graph-theoretical analyses demonstrate
the potential to establish systems-level biomarkers for clinical diagnosis, progression monitoring, and treatment
effects evaluation for neuropsychiatric disorders.
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Introduction

Neurological and psychiatric disorders have had an
enormous impact on human health in modern society.

According to the statistics from the World Health Organiza-
tion (www.who.int) and several related epidemiological
studies, the number of ill populations is large. For example,
it is estimated that there were 35.6 million people living
with dementia worldwide in 2010, and this number is
expected to increase to 65.7 million by 2030 and to 115.4 mil-
lion by 2050 (www.alz.co.uk). The onset of schizophrenia
typically occurs in young adulthood, with a global lifetime
prevalence of about 18 million (van Os and Kapur, 2009) or
more than 24 million people worldwide as of 2011; about
50 million people worldwide have epilepsy, and depression
affects about 121 million people worldwide (Hyman, 2008).
Similar high-morbidity situations occur in many other neuro-
psychiatric disorders. From an age perspective, the attention-
deficit/hyperactivity disorder (ADHD) affects about 3% to

5% of children globally (Nair et al., 2006), the onset of schizo-
phrenia mostly occurs in young adulthood, and Alzheimer’s
disease (AD) emerges within an aged population, whereas
depression can appear at almost every stage over the lifespan.
In total, more than one billion people suffer from neurological
or psychiatric disorders during various stages of their life.
The psychotic mechanisms of these neuropsychiatric diseases
are very complex and have attracted significant interest.
However, understanding the pathophysiological mecha-
nisms underlying these diseases is a great challenge, and find-
ing biomarkers that would be valuable for clinical diagnosis,
monitoring disease progression, and evaluating treatment
effects has been especially difficult.

Research has suggested that neurological and psychiatric
disorders disturb higher cognitive functions and are accom-
panied by structural and functional alterations in neural sys-
tems. Many studies have focused on the relationship between
these diseases and the brain. With the advent of the non-
invasive noninvasive magnetic resonance imaging (MRI)
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technique, it is now possible to observe aberrant cortico-
cortical axonal pathways or neural activity synchronizations
in vivo. Traditionally, the relationships between neuroimaging
data and neuropsychiatric disorders have been widely inves-
tigated by examining the focal morphological abnormalities of
various gray and white matter structures or the functional ac-
tivation of brain areas during cognitive or emotional process-
ing (for reviews, see Apostolova and Thompson, 2007; Kakeda
and Korogi, 2010; Mitterschiffthaler et al., 2006). These studies
have provided vast quantities of information on both the
structural and functional changes that occur in diseased
brains; however, the relationships between these regions are
usually ignored. Given that the human brain is structurally
and functionally organized into complex networks, which
allow for the segregation and integration of information pro-
cessing, the questions that arise regarding how these neuro-
psychiatric diseases affect the topological organization of
brain connectivity networks still remain to be elucidated.

Recent advances on multi-modal neuroimaging tech-
niques and the development of computational theory of
massive data, especially the application of graph theoretical
approaches to human brain networks, have allowed re-
searchers to explore the structural and functional connectiv-
ity patterns of the human brain, which is also known as the
‘‘connectome’’ (Biswal et al., 2010; Sporns et al., 2005). For re-
views about these graph-based brain networks studies, see
Bullmore and Bassett (2011), Sporns (2011), Telesford et al.
(2011), He and Evans (2010), Wang et al. (2010a), Bullmore
and Sporns (2009). We conducted a literature search on
PubMed (www.ncbi.nlm.nih.gov/pubmed) using several
key words related to graph theoretical brain network analy-
sis, such as ‘‘graph theory,’’ ‘‘small-world,’’ ‘‘connectome,’’
and ‘‘brain.’’ The studies uncovered were based on MRI,

electroencephalography (EEG), and magnetoencephalogra-
phy (MEG) neuroimaging data, as well as related reviews
in these fields. As shown in Figure 1, the number of publica-
tions related to graph-based brain network analysis from
2005 to 2011 grows year by year, and this growth has been
particularly fast within the last 3 years. Using these ap-
proaches, many studies have shown that the brain networks
in healthy adults have efficient small-world properties, net-
work modularity, and highly connected hub regions in the me-
dial frontal and parietal regions of the brain. The structural
and functional topological organizations reflect the capability
of information to be segregated and integrated in the human
brain, which provides unique insights into how the brain
works at a systems level. Naturally, graph theoretical ap-
proaches have also been employed to investigate aberrant
topological organization of brain networks in various neuro-
logical and psychiatric disorders. Accumulations of infusive
results of the altered topological organization of brain
networks have been uncovered, offering a systems-level per-
spective into the underlying pathophysiological mechanisms
of diseases states. Moreover, these studies have also demon-
strated that network-based neuroimaging analysis could
yield potential biomarkers for the diagnosis, treatment evalu-
ation, and recovery monitoring of neurological and psychiatric
disorders. Several recent reviews have summarized the appli-
cation of graph theoretical methods in neuropsychiatric disor-
ders (Bassett and Bullmore, 2009; Guye et al., 2010; He et al.,
2009a; Lo et al., 2011; Wen et al., 2011a). However, the growth
of studies based on graph theory methods is very rapidly
growing in the past 2 years, especially in the applications to
neurological and psychiatric disorders. From Figure 1, nearly
half of the studies summarized in this review were published
in 2011.

FIG. 1. Number of publications related to graph-based brain network analysis from 2005 to 2011. The figure shown here rep-
resents a literature search result of of the key words ‘‘([‘‘graph theory’’] OR [‘‘graph theoretical’’] OR [‘‘small-world’’] OR [‘‘con-
nectome’’]) AND (‘‘brain’’)’’ on PubMed (www.ncbi.nlm.nih.gov/pubmed). Studies that were not relevant were rejected. The
literature comprises studies based on MRI, EEG, or MEG neuroimaging data, as well as reviews on graph-based brain network
studies. According to the data, the number of publications focused on graph-based brain network analysis grows yearly and
has grown with a burst during the last 3 years. MRI, magnetic resonance imaging; EEG, electroencephalography; MEG, mag-
netoencephalography.
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In this article, we will summarize recent advances made in
the studies of both structural (gray matter morphology and
white matter fibers) and functional (synchronized neural activ-
ity) brain networks based on human MRI data pertaining to
neuropsychiatric disorders. This article is organized into
three sections. First, some basic principles and the application
of graph theoretical approaches will be introduced. Then, we
will survey various applications of graph theoretical ap-
proaches on MRI data, focusing specifically on the topological
alterations that occur in neurological and psychiatric disorders
(Table 1). Although graph theoretical studies based on EEG
and MEG data are not included here, they can be found else-
where (Reijneveld et al., 2007; Stam, 2010a, b; Stam and Reijne-
veld, 2007). Finally, we will highlight the emerging questions
and future challenges that are currently present in this field.

Graph Theoretical Approaches

Essential principles

In graph theory, a network can be represented as a graph
G(N,K), with N denoting the number of nodes and K denoting
the number of edges in graph G. Accordingly, a graph G can
be numerically stored as an N · N matrix, which is also
known as an association matrix. A network can be classified
as directed or undirected depending on whether the edges
have a sense of direction. Additionally, a network can be clas-
sified as unweighted (binary) or weighted if the edges in the
graph are assigned with different strengths. Several key net-
work metrics are illustrated next. For more details of graph
theory methods, please refer to previous studies (Boccaletti
et al., 2006; Kaiser, 2011; Rubinov and Sporns, 2010).

Small world and efficiency

The clustering coefficient and shortest path length are two
basic properties of a network. The network clustering coeffi-
cient is calculated by averaging the clustering coefficient
over all nodes in the network. In contrast, a nodal clustering
coefficient is the number of edges linked to the node divided
by all the possible edges in its neighborhood. It quantifies the
extent of cliquishness, and a higher value expresses a higher
local efficiency of information transfer. Likewise, the shortest
path length is calculated by averaging the minimum number
of connections that link any paired nodes in the network. It
quantifies the global efficiency and the ability for information
integration. These two metrics can be adopted to classify
different types of networks such as regular, random, and
small-world networks (Watts and Strogatz, 1998). The regular
network has a higher clustering coefficient but a lower short-
est path length, indicating good local efficiency, but poor
global efficiency (Latora and Marchiori, 2001). In contrast to
the regular network, the random network has a lower cluster-
ing coefficient but a higher shortest path length, thus indicat-
ing poor local efficiency, but good global efficiency. In
comparison, the small-world network model possesses both
a relatively higher clustering coefficient and shortest path
length, indicating better local efficiency than the random net-
work and a better global efficiency than the regular network.

Modularity and hierarchy

Modularity and hierarchy are also important parameters for
describing the organization of a network. Modularity reflects

the degree of how a network is organized into a modular or
community structure. A module refers to a set of nodes with
denser connections among them, but with sparser connections
among the others within the network (Newman, 2006). The hi-
erarchy reflects a ‘‘top-to-bottom’’ organizational structure of
the network and is numerically estimated by the power-law re-
lationship between the clustering coefficient and the degree of
the nodes in the network (Ravasz and Barabasi, 2003).

Nodal properties

Nodal properties in a network can be characterized by sev-
eral metrics such as the degree, efficiency, and the between-
ness, eigenvector, and page-rank centrality. The degree of a
node is the number of all the edges that link to the node,
which represents the most local and directly quantifiable
measure of centrality. The nodal efficiency is numerically
the inverse of the averaged shortest path length between
the node and each of the other nodes, reflecting the ability
of information transfer from itself to the other nodes in the en-
tire network (Achard and Bullmore, 2007). The nodal be-
tweenness centrality is a number that represents the
shortest path between any two nodes that pass the node, in-
dicating an intersection of various arteries in the network
(Freeman, 1979). The eigenvector centrality is simply the
first eigenvector of the adjacent matrix corresponding to the
largest eigenvalue (Bonacich, 1972). With its recursive prop-
erty, the eigenvector centrality is able to capture an aspect
of the global centrality features of the graph. The Google
page-rank centrality algorithm is calculated by using an iter-
ation strategy (Boldi et al., 2009) and is a variant of the eigen-
vector centrality that introduces a small probability of
random dampening to handle walking traps on a graph.
Although the page-rank centrality is a variant of eigenvector
centrality, a recent resting functional MRI (R-fMRI) study has
demonstrated quite different results while using these two
centrality measures in an undirected and weighted brain net-
work (Zuo et al., 2011). Moreover, they showed a high corre-
lation between the degree centrality and page-rank centrality.

Graph Theoretical Brain Network Analysis
in Healthy People

When applying graph theory methods to modeling human
brain networks with neuroimaging data, the brain regions or
the voxels can naturally be defined as the nodes in a graph
(or network). In structural brain networks, the edges can be
calculated by estimating the gray matter morphological corre-
lation in structural MRI (sMRI) data (Chen et al., 2008; He et al.,
2007) or by measuring the characteristics of white matter fibers
between two brain nodes, such as fiber number, fractional an-
isotropy, apparent diffusion coefficient, or distance in diffusion
tensor imaging (DTI) data (Gong et al., 2009b; Hagmann et al.,
2007, 2008; Iturria-Medina et al., 2008), known as structural
connectivity. In functional brain networks, the edges can be es-
timated by computing the Pearson’s correlation (Dosenbach
et al., 2007; Fair et al., 2007; He et al., 2009c), partial correlation
(Ferrarini et al., 2009; Salvador et al., 2005), or the wavelet cor-
relation coefficient (Achard et al., 2006; Meunier et al., 2009a,
2009b) between two time courses of the nodes in the functional
MRI (fMRI) data, known as functional connectivity (Biswal
et al., 1995; Friston et al., 1993). Moreover, current human
brain network analyses have studied the simplest cases of
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undirected graphs, while few but an increasing number of
studies have focused on directed graphs. Figure 2 illustrates
the schematic representation of network construction using
sMRI, DTI and fMRI data.

Once the brain nodes and edges are extracted from neuro-
imaging data, graph theoretical algorithms can be further
applied to the constructed networks. Small-world topologi-
cal properties have attracted considerable attention, for quan-
titatively representing both the information segregation and
integration abilities of the human brain. A series of these at-
tractive network organizations have been revealed in healthy
structural and functional human brain networks constructed
using a variety of approaches (Hagmann et al., 2007, 2008; He
et al., 2007; Salvador et al., 2005). In these efficient networks,
several brain areas are identified as hubs, bridging disparate
regional brain areas together to achieve a high global network
efficiency; for instance, the precuneus, the insula, the superior
parietal cortex, and the medial prefrontal cortex (Buckner
et al., 2009; Gong et al., 2009b; Hagmann et al., 2008; He
et al., 2007). Interestingly, a recent diffusion MRI study
shows that the brain structural networks have the ‘‘rich-
club’’ topological organization (van den Heuvel and Sporns,
2011), which was characterized by a tendency for high-degree
nodes to be more densely connected among themselves
rather than the nodes of a lower degree (Colizza et al.,
2006). The members of this club comprise the precuneus
and superior frontal and superior parietal cortex as well as
several subcortical regions (e.g., the hippocampus, putamen
and thalamus). Importantly, several studies have also demon-
strated modular (or community) organizations in human

brain networks, which mostly include the sensorimotor, vi-
sual, control, and default-mode network (DMN) and subcor-
tical system modules (Chen et al., 2008; Ferrarini et al., 2009;
He et al., 2009c; Meunier et al., 2009b). Interestingly, the mod-
ular organizations found in functional networks are approxi-
mately in accordance with those in structural networks,
which may reflect shared organizational principles underly-
ing both the anatomical and functional connectivities.

Subsequently, graph theoretical methods have been used
in studying relationships between human brain network
properties and population attributes such as aging (Gong
et al., 2009a; Meunier et al., 2009a; Tomasi and Volkow,
2011a; Wang et al., 2010b; Wen et al., 2011b; Wu et al.,
2011a), development (Fair et al., 2007, 2008, 2009; Gao et al.,
2011; Supekar et al., 2009), gender effect (Gong et al., 2009a;
Tian et al., 2011; Yan et al., 2011a), intelligence (Li et al.,
2009; van den Heuvel et al., 2009b), and genetic effects
(Brown et al., 2011; Fornito et al., 2011; Schmitt et al., 2008).
Moreover, these graph-based network analysis methods
have been applied to individuals with a variety of different
neuropsychiatric disorders, which is reviewed next.

Graph Theoretical Brain Network Analysis
in Neuropsychiatric Disorders

AD and mild cognitive impairment

AD is the most common type of dementia emerging in the
aged population, and it is a progressive, neurodegenerative
disease that is accompanied by significant impairments in

FIG. 2. A flowchart for the construction of human brain networks using MRI data. First, the gray matter morphological mea-
sures from structural MRI data, the characteristics of the white matter fibers from the DTI data, or the time courses from the
functional MRI data are extracted (A) (B). Second, the ROIs from prior templates (C) or voxels are used for the parcellation
scheme. Third, a pair-wise association between brain regions is then computed, resulting in an association matrix (D). Fourth,
the association matrix (D) is constructed into a binary matrix (E). Fifth, the network properties are calculated by the association
matrix (D) or the binary matrix (E) and finally visualized as a graph (F). MRI, magnetic resonance imaging; DTI, diffusion
tensor imaging; ROI, region of interest.
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multiple cognitive domains such as memory, executive func-
tioning, attention, visuospatial skills, and verbal ability. Tra-
ditional neuroimaging AD studies have found regional gray
matter reductions in the medial temporal lobe and posterior
associative cortices (Dickerson and Sperling, 2005; Frisoni
et al., 2007; Salmon et al., 2008). Recently, the graph-based
network analysis method has been applied to study AD,
and remarkable global property changes were observed in
both the structural and functional networks of the patients
[please see He et al. (2009a) for a review].

From a structural perspective, He et al. (2008) was the first
study that utilized an sMRI-based brain network model to ex-
plore the pattern correlations of cortical thickness in AD.
After constructing graph networks of more than 92 patients
and 97 controls, network metrics such as small worldness,
clustering coefficient, and shortest paths were calculated, in
addition to hub analysis. Compared with normal controls,
the AD patients showed abnormal small-world architecture
and nodal characteristics that were predominantly located
in the temporal and parietal regions of the brain. In particular,
AD patients exhibited decreased cortical thickness intercorre-
lations between the bilateral parietal regions but increased in-
tercorrelations in several select regions such as the lateral
temporal, parietal, cingulated, and medial frontal cortical re-
gions. The clustering coefficient and shortest path lengths
were increased, while the nodal centrality was predominantly
decreased in the temporal and parietal heteromodal associa-
tion cortical regions but increased in the occipital cortical
regions. Furthermore, the AD network was much more sensi-
tive to computationally simulated lesions on the hub nodes
than normal lesions. In a later study, which included 91 AD
patients, 113 mild cognitive impairment (MCI) patients, and
98 healthy aged people, the gray matter volumes were used
to construct cortical networks (Yao et al., 2010). Similar results
were obtained in a previous study, where all three cortical
networks exhibited small-world properties with strong inter-
hemispheric correlations existing between bilaterally homolo-
gous regions. The AD patients showed the greatest clustering
coefficient, the longest absolute path length, and an altered
hub distribution. Furthermore, the small-world measures of
the MCI network exhibited intermediate values.

Many studies employing the DTI technique to examine
changes in white matter tracts in patients with AD have un-
covered abnormalities of brain white matter connectivities in
distributed regions (Bozzali et al., 2002; Rose et al., 2000; Xie
et al., 2006). As the only AD-related DTI study based on a
graph theory approach, Lo et al. (2010) observed that AD pa-
tients had a small-world topology in the white matter network
with an increased shortest path length and a decreased global
efficiency, which is consistent with the aforementioned study
of the gray matter morphological networks. Specifically, they
showed that AD patients had a reduced nodal efficiency that
was predominantly located in the frontal regions, which are
thought to be involved in emotional, memory, and executive
functions. This study showed for the first time that an AD
patient’s brain was associated with disrupted topological or-
ganization in large-scale DTI-based structural networks.

From a functional perspective, Supekar et al. (2008) pro-
vided the first demonstration of abnormal small-world orga-
nization in brain functional networks in AD by using R-fMRI.
After constructing a functional brain network for each of the
21 AD patients and 18 healthy controls, the network metrics

were measured. In the low-frequency interval of 0.01 to
0.05 Hz, they found that the AD patients showed a loss of
small-world properties, characterized by a significantly
lower clustering coefficient, especially for the bilateral hippo-
campus. This was quite different from the gray matter struc-
tural network studies, which indicated a disruption in local
neighboring connectivity. In addition, by comparing the clus-
tering coefficient of distinguished AD participants and con-
trols, a sensitivity of 72% and a specificity of 78% were
determined. Dai et al. (2011) used the regional gray matter
volume and the regional functional connectivity strength
combined with the amplitude of low-frequency fluctuations
and regional homogeneity as features to distinguish AD pa-
tients from healthy controls. This multi-modal imaging and
multi-level characteristics with multi-classifier (M3) method
led to a classification accuracy of 89.47% with a sensitivity
of 87.5% and a specificity of 90.91%. This result suggests
that these network indices may serve as useful biomarkers
for AD diagnosis. In a larger database study, graph theoreti-
cal approaches of R-fMRI enabled Buckner et al. (2009) to
identify stable network hubs of brain functional networks
that were predominantly located in the heteromodal areas
of the association cortex by analyzing fMRI data in both rest-
ing and task states. Prominent hubs were located within the
posterior cingulate, lateral temporal, lateral parietal, and
medial/lateral prefrontal cortices. The study also assessed
the preferential vulnerability of these identified hubs to AD
pathology. Furthermore, they utilized positron emission to-
mography (PET) amyloid imaging in 39 older adults (10
AD patients and 29 controls) and demonstrated that these
cortical hubs had a large overlap with the brain regions exhib-
iting high amyloid-beta deposition, as found in AD patients.
The highly consistent pattern of hubs between the database
and imaging methods suggests that the cortical functional
network possesses a stable architecture. In an MCI study of
neuronal dysfunction and disconnection of cortical hubs,
Drzezga et al. (2011) found disruptions of whole-brain connec-
tivity in amyloid-positive MCI patients in typical cortical hubs
(posterior cingulate cortex/precuneus). This strongly overlap-
ped with regional hypometabolism. The hubs studies suggest
that some cortical hubs, such as those in the posterior cingu-
late and precuneus, may serve as important indicators during
disease progression that distinguishes normally aged individ-
uals from AD patients. In addition, a study by Sanz-Arigita
et al. (2010) reported inconsistent results with Supekar et al.
(2008). Sanz-Arigita et al. (2010) found that the characteristic
path length of AD functional networks is closer to the theoret-
ical values of random networks, and no significant differences
were found in the clustering coefficient. They also observed
increased AD synchronization involving the frontal cortices
and generalized decreases located in the parietal and occipital
regions. AD-induced changes in the global brain functional
connectivity specifically affected long-distance connectivity.
Interestingly, the edge definition methods were quite different
between these two studies (Sanz-Arigita et al., 2010; Supekar
et al., 2008), which may be a potential reason for their incon-
sistent results. Therefore, the choice of edge definition meth-
ods should be considered during brain network construction
in graph-based analysis.

Collectively, these previous studies have demonstrated
that the brain networks in AD still retain small-world char-
acteristics as the healthy controls. However, the patients’
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structural brain networks exhibit a tendency toward regular
configurations with a less global integration, which could
be used to explain the decline of memory and cognitive func-
tions. Given that several previous studies have demonstrated
that the brain networks are composed of different modules
(He et al., 2009c; Meunier et al., 2009a), future works would
be interesting to ascertain which modules show the most dis-
rupted changes in the brain networks in AD. Notably, these
results of structural brain networks in AD (He et al., 2008;
Lo et al., 2010) were different from those of the functional
brain networks derived from the fMRI data (Supekar et al.,
2008), which needs to be clarified in future studies.

Multiple sclerosis

Multiple sclerosis (MS) is a chronic, inflammatory, pro-
gressive, and degenerative disease of the central nervous sys-
tem that is usually accompanied by widespread lesions in
white matter structures. He et al. (2009b) investigated struc-
tural brain networks using measurements of cortical thick-
ness from the sMRI data of 330 MS patients. Their results
showed for the first time that the structural cortical networks
in MS patients demonstrated efficient small-world architec-
ture regardless of the locations of the lesions; however, the
small-world efficiency of the structural brain networks in
MS was significantly disrupted in a manner proportional to
the extent of the total white matter lesion loads. Regional ef-
ficiency was also decreased in several specific brain regions
including the insula and precentral gyrus as well as regions
of the prefrontal and temporal association cortices. This
study also demonstrated that sMRI-based network analysis
could emerge as a new way of describing disease progres-
sion. The following DTI study by Shu et al. (2011) reported
that MS patients exhibited efficient small-world properties
in their white matter structural networks. However, de-
creased global and local network efficiencies were found in
MS patients compared with control subjects, with the most
pronounced changes observed in the sensorimotor, visual,
DMN, and language areas. Furthermore, the decreased net-
work efficiencies were correlated with the expanded disabil-
ity status scale scores, disease durations, and total white
matter lesion loads. By applying a split-half method, they
revealed a high reproducibility of their findings. Taken to-
gether, these two studies suggest a disrupted integrity in
the large-scale anatomical brain networks in MS and provide
structural evidence for the notion of MS as a disconnection
syndrome.

Although MS patients were found to show decreased
global and local efficiencies in structural brain networks, it
is still largely unclear whether the patients also show alter-
ations of functional brain networks. Furthermore, it re-
mains unknown whether and how the white matter lesions
in specific locations affect topological organization of brain
networks.

Schizophrenia

Schizophrenia is a heterogeneous disorder with variations
in expression and pathophysiology (Shenton et al., 2010).
Recent studies are inclined to regard schizophrenia as a
type of disconnection syndrome (Friston, 2005). After con-
structing the structural brain networks by calculating the
inter-regional covariations of gray matter volume derived

from the sMRI data of 203 schizophrenia patients and 259
healthy controls, Bassett et al. (2008) focused on the topolog-
ical organization pattern of these networks. They found that
changed topology in the multimodal brain network of people
with schizophrenia is characterized by a reduction in hierar-
chy and the loss of frontal and the emergence of nonfrontal
hubs, as well as an increased connection distance in the pa-
tients’ networks. These topological changes in patients may
represent the neurodevelopmental abnormalities found in
schizophrenia.

The very first DTI study of white matter pathology in
schizophrenia focused on the local lower diffusion anisotropy
in the white matter of schizophrenic patients (Buchsbaum
et al., 1998). In recent years, three DTI studies have analyzed
the network based on DTI tractography (van den Heuvel
et al., 2010; Wang et al., 2012; Zalesky et al., 2011). van den
Heuvel et al. (2010) examined the DTI tractography-based
structural brain networks of 40 schizophrenia patients and
40 healthy controls. Although the patients displayed a pre-
served, overall small-world network organization, signifi-
cantly longer node-specific path lengths were found in
specific frontal and temporal regions of the brain, especially
in the bilateral frontal cortex and temporal pole regions.
The frontal hubs of patients had a significant reduction of be-
tweenness centrality. These findings indicated that the schizo-
phrenia had impacted the global network connectivity of the
frontal and temporal brain regions. In another study examin-
ing the DTI tractography-based structural brain networks of
74 schizophrenia patients and 32 age- and sex-matched con-
trols, similar results were found (Zalesky et al., 2011). Small-
world attributes were found to be conserved in schizophrenic
patients; however, impaired connectivity in the patient group
was found to involve a distributed area in the medial frontal,
parietal/occipital, and the left temporal lobe. Furthermore,
the cortical intercorrelations were found to be sparse and
less efficient in 20% of the patients, and the intellectual perfor-
mance was found to be associated with brain efficiency in con-
trol subjects, but not in patients. Wang et al. (2011b) examined
the topological properties of human brain anatomical net-
works derived from 79 schizophrenia patients and 96 age-
and gender-matched healthy subjects. They revealed a lower
global efficiency in the patients’ group associated with which
the deleterious effects appear to be localized as reduced re-
gional efficiency in hubs such as the frontal associative corti-
ces, the paralimbic/limbic regions, and the left putamen.
Additionally, the global efficiency in patients was negatively
correlated with the score on the Positive and Negative Symp-
tom Scale in schizophrenia. The DTI tractography-based struc-
tural brain network is a valid framework describing the white
matter fiber pathway between cortices for information flow.
Thus, the aberrant topological patterns of the networks
revealed changes in the contact between cortices in schizo-
phrenia patients. These findings suggest that complex brain
anatomical network analysis may potentially be used to detect
imaging biomarkers for schizophrenia.

Much more studies have been conducted on functional net-
works than structural networks in schizophrenia. Liu et al.
(2008) was the first that provided the graph analysis of
brain functional networks in schizophrenia using R-fMRI
data. By constructing the individual resting state functional
brain network of each of the 31 patients and 31 normal sub-
jects, they found various disrupted topological properties in
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the patient group such as lower clustering coefficients, small-
worldness, network efficiency, and longer absolute path
length. The nodal characteristics were significantly altered
in many brain regions located in the prefrontal, parietal,
and temporal lobes. In addition, various topological measure-
ments such as clustering and efficiency were negatively corre-
lated with illness duration in schizophrenia. Wang et al.
(2010c) revealed significant reductions in local, but not global,
efficiency in the schizophrenia group. In addition, the net-
work ‘‘hub’’ regions related to memory recollection, such as
the bilateral dorsal anterior cingulate gyrus, showed reduced
gray matter volume in schizophrenia patients. Similar to pre-
vious studies, Yu et al. (2011b) also found decreased small
worldness values in both hemispheres, but longer shortest
path length and lower global efficiency in the left task-related
networks in the schizophrenia group. To determine whether
the topological properties of functional network connectivity
are also altered in schizophrenia (Yu et al., 2011a), they de-
fined the graph node by using independent component anal-
ysis and constructed a functional brain network of 19 healthy
controls and 19 schizophrenia patients. These results demon-
strated altered topological properties in eleven independent
components involving frontal, parietal, occipital, and cerebel-
lar areas. High clustering coefficients were observed in the
patient group. Furthermore, the topological measures of the
whole network and the specific components in schizophrenia
were correlated with the negative symptom score of the Pos-
itive and Negative Symptom Scale. Lynall et al. (2010) con-
structed a functional brain network in the 0.06–0.125 Hz
frequency interval of 12 patients and 15 normal controls.
Patients with schizophrenia exhibited a topological decrease
in strength and an increase in the diversity of functional con-
nectivity. They also showed reduced clustering and small
worldness, reduced probability of high-degree hubs, and in-
creased robustness to random attack. They found that the
functional connectivity and topological metrics were corre-
lated with each other and with behavioral performance on a
verbal fluency task. In a study of childhood-onset schizophre-
nia (Alexander-Bloch et al., 2010), there was a reduced mod-
ularity of brain functional networks due to the relatively
reduced density of intra-modular connections between neigh-
boring regions. Not surprisingly, a decreased clustering coef-
ficient and increased complementary measures of global
efficiency and robustness were observed in the patients
group. These findings suggested that the functional brain net-
work of schizophrenia patients evolved into a random net-
work pattern from the small-world patterns. In addition, a
study of at-risk subjects with elevated symptoms (Lord
et al., 2011) reported a reduction in the topological centrality
of the anterior cingulate cortex (ACC), indicating a reduction
in the contribution of the ACC to task-relevant network orga-
nization in at-risk subjects with elevated symptoms relative to
both the controls and the less symptomatic at-risk subjects.
These findings provide evidence of network abnormalities
and ACC dysfunction in people with prodromal signs of
schizophrenia. Moreover, the ACC region may serve as a po-
tential biomarker in diagnosing schizophrenia.

The brain networks of schizophrenia patients appear to
have decreased local clustering coefficient together with de-
creased hierarchy and modularity. It is gradually being recog-
nized to exhibit random network model characteristics in the
context of comparisons to healthy individuals. However,

schizophrenia is a psychiatric disorder with large individual
variations. Thus, the studies on different subtypes will pro-
vide more intriguing results.

Epilepsy

The first temporal lobe epilepsy (TLE) study based on
structural networks using the graph theory method was by
Raj et al. (2010). This study was composed of 14 patients with
TLE with normal MRI (TLE-no) and 30 controls. Cortical thick-
ness was used to construct the structural brain network. The
network metrics were then used to classify TLE and normal
subjects. This proposed network approach improved the accu-
racy of classifying subjects into two groups (control and TLE)
from 78% to 93% for non-network classifiers. Another more
recent large-sample TLE study of 122 TLE patients and 47
age- and sex-matched healthy controls (Bernhardt et al., 2011)
reported that the networks in TLE patients still remained within
a small-world topology; however, the network of patients dem-
onstrated an increased path length and clustering coefficient, al-
tered distribution of network hubs, and higher vulnerability to
targeted attacks compared with healthy controls.

Using graph theoretical approaches (Liao et al., 2010), the
first study of R-fMRI analysis of brain functional networks in
mesial TLE (mTLE) included 18 mTLE patients and 27 healthy
controls. The mTLE patients were associated with increased
connectivity within the medial temporal lobes but decreased
connectivity within the frontal and parietal lobes. Between
the frontal and parietal lobes, a large number of areas the
DMN showed a decreased number of connections to other re-
gions. Furthermore, altered small-world properties, along
with a smaller degree of connectivity, smaller absolute cluster-
ing coefficients, and shorter absolute path length were ob-
served in the patient group. These analogical findings were
reported in another functional study of 14 Generalized
Tonic-Clonic Seizures epilepsy patients and 29 normal subjects
(Song et al., 2011). In addition, decreased functional connectiv-
ities within the DMN and the reduced degree of some brain
areas within the DMN, including the anterior medial prefron-
tal cortex, the bilateral superior frontal cortex, and the poste-
rior cingulate cortex, were shown in their study. Vlooswijk
et al. (2011) recruited 41 adult patients with cryptogenic
localization-related epilepsy and 23 healthy controls. By ap-
plying graph theoretical network analysis on fMRI data,
they found a disruption of both local segregation and global
integration, as well as the association of intellectual decline
with local segregation in the patient group. The most recent
graph theoretical study on epilepsy was from Zhang et al.
(2011c) and was based on both the DTI and R-fMRI datasets
obtained from 26 patients with idiopathic generalized epilepsy
characterized by tonic-clonic seizures and from 26 age- and
gender-matched healthy controls. The patients had lost opti-
mal topological organization in both the structural and func-
tional brain network, indicated by altered nodal topological
characteristics in several distributed cortical and subcortical
regions. Most importantly, a decreased degree of coupling be-
tween the structural and functional networks and a negative
correlation with epilepsy duration were revealed in patients.

The network topology modifications in epilepsy patients
exhibited complex transitions: some studies showed a transla-
tion toward a more regular network configuration, whereas
others studies showed a trend toward a more random
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configuration. The differences in results could be explained by
several factors such as the different epilepsy phenotypes and
the modalities of connectivity measurement used in these stud-
ies.

Depression

Using R-fMRI, Zhang et al. (2011a) utilized graph-based
network analysis to characterize network topological proper-
ties, and individual brain networks were constructed for 30
drug-native, first-episode major depressive disorder (MDD)
patients and 63 healthy control subjects. Although both the
MDD and control groups showed small-world architecture
in their brain functional networks, the MDD patient group
showed altered quantitative values in the global properties,
characterized by a lower path length and a higher global effi-
ciency, implying a shift toward randomization in their brain
networks. Furthermore, increased nodal centralities were
found in MDD patients who were predominately located in
the caudate nucleus and DMN. Further, there were reduced
nodal centralities located in the occipital, frontal (orbital
part), and temporal regions. The altered nodal centralities in
the left hippocampus and caudate nucleus were also corre-
lated with disease duration and severity in MDD patients.
Jin et al. (2011) constructed the resting functional networks
in 16 first-episode, un-medicated adolescents with MDD
and 16 healthy controls. Disrupted topological properties of
networks as well as the dysregulation of distributed brain re-
gions were observed in depressed adolescents. Furthermore,
the degree of amygdala was positively correlated with the
duration of depression. Tao et al. (2011) investigated the alter-
ation of the functional connections in the brain for 15 first-ep-
isode and 24 longer-term, drug-resistant patients suffering
from severe depression. Compared with the brain functional
network constructed from healthy control subjects, the great-
est change in both groups of depressed patients was the
uncoupling of the so-called ‘‘hate circuit,’’ which involves
the superior frontal gyrus, insula, and putamen. Other
major changes occurred in regions related to risk and action
responses, reward, and emotion, as well as attention and
memory processing. Their findings suggest reduced cognitive
control over negative feelings toward both oneself and others
in patients with depression. Currently, there is no study
showing alterations of topological organization in the struc-
tural brain networks in depression patients.

Stroke

Crofts et al. (2011) used a DTI tractography network that
assesses the connectivity between brain regions in nine
chronic stroke patients and 18 age-matched controls.
Reduced communicability was found in patients in regions
surrounding the lesions located in the affected hemisphere.
The communicability was also reduced in homologous loca-
tions in the contralesional hemisphere for a subset of these re-
gions in the patient group. They interpreted this as evidence
for secondary degeneration of fiber pathways, which oc-
curred in remote regions that were interconnected, directly
or indirectly, within the area of primary damage.

There are two functional network studies on stroke pa-
tients. The first, Wang et al. (2010d), constructed a functional
brain network from 21 brain regions for each of the 10 first-

onset stroke patients and separately for two groups of healthy
subjects of 36 and 12.They revealed that in the patient group,
the motor execution network gradually shifted toward a ran-
dom mode during the recovery process and that increased re-
gional centralities within the network were observed in the
ipsilesional primary motor area, while the contralesional cer-
ebellum and the ipsilesional cerebellum showed decreased re-
gional centrality. In the study by Nomura et al. (2010), which
included 21 patients and 21 healthy subjects, there were cor-
relations between the degree of network damage and a de-
crease in functional connectivity within the network while
sparing the nonlesioned network. In addition, they uncov-
ered differences in the graph theory properties of the intact
nodes within the damaged network compared with the un-
damaged network, providing evidence of dysfunction.

Other neuropsychiatric diseases

Attention-deficit/hyperactivity disorder. Wang et al.
(2009b) were the first to use R-fMRI to investigate boys
with ADHD by applying graph theoretical approaches. The
authors found that the functional brain network in both the
diseased and healthy groups exhibited an economical small-
world topology. However, children with ADHD were associ-
ated with abnormal small-world topology characterized by
significantly increased local efficiencies combined with a de-
creasing tendency in global efficiencies, suggesting a shift to-
ward regular networks. Furthermore, decreased nodal
efficiency was found in the orbitofrontal cortex, which is asso-
ciated with the executive function network, and in several re-
gions belonging to the temporal and occipital cortices.
Increased nodal efficiency was also exhibited in the inferior
frontal gyrus, which is critical for response inhibition. The al-
tered nodal efficiency suggests that the nodal roles in the
brain functional networks are profoundly affected by this dis-
order. Together, these findings imply a loss of the optimal or-
ganizational pattern of the brain functional network in
ADHD children during development.

Autism spectrum disorder. Autism or autism spectrum
disorder (ASD) is a neurodevelopmental disorder character-
ized by social deficits, communication difficulties, and/or
cognitive delays. Increasing studies have revealed altered
brain connectivity in ASD (Belmonte et al., 2004; Di Martino
et al., 2009; Wicker et al., 2008). Currently, there are no MRI
studies based on graph theoretical network analysis in
ASD. Supekar et al. (2009) compared functional network
properties between 23 children (age 7–9 years) and 22
young-adults (age 19–22 years). The functional networks of
the children had less hierarchical organization and exhibited
more short connections than those of young adults, indicating
a germinating of long-range connections and pruning of
short-range connections during the development of large-
scale brain network. A later EEG study from Barttfeld et al.
(2011) revealed that the functional networks of ASD subjects
lacked long-range connections whereas showed increased
short-range connections, suggesting an abnormal develop-
ment of brain functional networks.

Obsessive-compulsive disorder. Zhang et al. (2011b)
studied the alterations in the functional connectivity patterns
of the brain’s top-down control network constructed using
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data from 18 patients with obsessive-compulsive disorder
(OCD) and 16 healthy controls using graph theory-based ap-
proaches. A direct between-group comparison of the func-
tional connectivity revealed significantly decreased functional
connectivity in the posterior temporal region and increased
connectivity in the cingulate, precuneus, thalamus, and cere-
bellum, which is related to control in the patient group. Subse-
quent graph theoretical analysis also demonstrated abnormal
functional organization in the patient group compared with
the small-world architecture in the control group, which is in-
dicated by significantly higher local clustering. The results pro-
vide empirical evidence for aberrant functional connectivity in
large-scale brain systems in people with OCD.

Amyotrophic lateral sclerosis. Verstraete et al. (2011) uti-
lized DTI data to examine the topology of structural brain
networks in 35 patients with amyotrophic lateral sclerosis
(ALS) and 19 healthy controls. They demonstrated a signifi-
cant reduction in overall efficiency and clustering as well as
an impaired sub-network of regions in ALS patients. The re-
gions were centered on primary motor regions, including sec-
ondary motor regions as well as high-order hub regions (right
posterior cingulate and precuneus). Notably, these areas were
interlinked and targeted to the motor connectome. Their find-
ings suggest a widespread disruption in the structural brain
networks in ALS, which was compatible with their previous
study (Verstraete et al., 2010). These findings demonstrated
that the structural connectome approaches have potentials
to uncover useful biomarkers for ALS diagnosis (Filippini
et al., 2010; Turner et al., 2009).

Traumatic brain injury. Nakamura et al. (2009) examined
the changes in the topological properties of the brain func-
tional network derived from each of the six participants at
separate time points between 3 and 6 months during recovery
after severe traumatic brain injury using R-fMRI and graph
theoretical approaches. They found alterations of network
properties, including a change in the degree of distribution,
reduced overall strength in connectivity, and increased
small-worldness alterations of network properties, which is
suggestive of a network recovery after severe brain injury.
Thus, graph-based network approaches may be useful in
evaluating the adaptation of intrinsic brain networks to neu-
ral disruption during recovery.

Addiction. Using graph theory analysis, Liu et al. (2009)
studied the brain functional network topological properties
of a specific population of chronic heroin users and illustrated
their impairments. Twelve chronic heroin users and twelve
controls were involved in this study. The results showed a
typical small-world configuration in both groups; however,
a smaller extent of small-worldness was found in the drug
users. In addition, abnormal topological properties were ex-
plored in the brains of chronic heroin users, shown in detail
as the dysfunctional connectivity in the prefrontal cortex,
ACC, supplementary motor area, ventral striatum, insula,
amygdala, and hippocampus, an area responsible for de-
creased self-control, impaired inhibitory function, and deficits
in stress regulation, which are symptoms characterized by
chronic heroin users. Yuan et al. (2010) also studied the abnor-
mal topological properties of functional brain networks in
heroin-dependent individuals. Eleven abstinent, heroin-

dependent patients and 11 age-, education-, and gender-
matched, healthy, right-handed individuals were recruited.
Some of the key areas of drug addiction-related circuits and
stress regulation were shown to have abnormal topological
properties. Moreover, the duration of heroin use was posi-
tively correlated with the degree length in the right parahip-
pocampal gyrus, left putamen, and bilateral cerebellum, but
negatively correlated with the shortest absolute path length
in the same areas. Chanraud et al. (2011) concentrated on a
specific population of alcoholics and evaluated the disruption
of the brain functional network constructed during both rest-
ing and task states. Fifteen alcohol-dependent subjects and 15
healthy controls were included in this study, and group-level
differences were found. During the resting state, alcoholics
had lower efficiency indices between the posterior cingulate
and multiple cerebellar sites but greater efficiency in regions
with longer sobriety. In contrast, while in the task state, alco-
holics showed more robust connectivity between the left pos-
terior cingulate and left cerebellar region, which suggests
compensatory networking.

It is interestingly to point out that there are some commo-
nalties and differences in alterations of topological organi-
zation of brain networks among these aforementioned
neuropsychiatric disorders. For instance, both ADHD
(Wang et al., 2009b) and OCD (Zhang et al., 2011b) patients
have been found to show increased local clustering in brain
functional networks, which could be related to greater local
connectivity of the brain. The ADHD and OCD have been
proposed as psychiatric disorders with a development
delay, which provides explanations for the similar disruption
of small-world organization. Despite these similarities, there
are still some differences: ADHD patients showed altered
small-world organization in whole-brain networks (Wang
et al., 2009b), whereas OCD patients showed altered small-
world topology in top-down control networks rather than
whole-brain networks (Zhang et al., 2011b). We also found
that both schizophrenia (Alexander-Bloch et al., 2010; Liu
et al., 2008; Lynall et al., 2010; Wang et al., 2012) and depres-
sion (Zhang et al., 2011a) patients showed similar disrupted
small-world organization as characterized by a random-like
configuration. However, different changing patterns were
also found mainly in the regional connectivity. From these
studies, we speculate that the disorders with similar alter-
ations in brain networks might belong to the same disease
family, whereas the differences in brain networks might re-
flect distinct across-disorder mechanisms. Understanding
the commonalities and differences in network alterations
across different disorders would be very important for
many aspects. For example, (1) it would have potentials for
studying drug intervention that could alter the ‘‘commonly
affected’’ brain organization; (2) it might lead to targeted
computational models for different disorders; and (3) it
would also be useful for uncovering cross-disorder biomark-
ers for disease diagnosis and progression monitoring.

Future Perspectives

This article summarizes the recent application of network
analysis techniques based on graph theory to study the abnor-
mal topological characteristics in the structural and functional
human brain networks derived from sMRI, DTI and/or fMRI
data of patients with neurological or psychiatric disorders.
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These novel methods have brought to us revolutionary in-
sights into the intrinsic networks of the human brain and the
underlying disease mechanism in patients. These findings
have proved that these modern approaches are efficient. How-
ever, we should acknowledge that studies of the complex
brain networks of people with neuropsychiatric disorders,
even in normal subjects, are still at the early stage. To validate
and improve such methods, vast studies should be performed
to evaluate the various parameters and strategies used in brain
network analyses, such as DTI parameters (Vaessen et al.,
2010), node definition (Wang et al., 2009a; Zalesky et al.,
2010), overlapping (Wu et al., 2011b; Yan et al., 2011b), and re-
liability (Bassett et al., 2011; Braun et al., 2012; Park et al., 2012;
Telesford et al., 2010; Wang et al., 2011; Whitlow et al., 2011).
There are still many challenging issues in this new research
field that need to be addressed.

First, there are many different methodological choices at
several steps of the construction of the whole-brain structural
and functional network and parameters of the subsequent an-
alyses. We do not yet fully understand their impact; for in-
stance, the effect of the definition of nodes and edges.
Given the limitation in methodology, it is hard to construct
a human whole-brain network on a micro- and meso-scale
corresponding to single neurons and at the synaptic and cor-
tical column level respectively, due to the enormous number
of neurons (Sporns et al., 2005). On a macro-scale, some pres-
ent studies usually define a node as the region in the brain
that uses various templates or a parcellation scheme (Bassett
et al., 2008; Crofts et al., 2011; Dosenbach et al., 2007; Fair
et al., 2007; Gong et al., 2009b; He et al., 2007; Wen et al.,
2011b). The frequently used templates include the automate
anatomical labeling template (Tzourio-Mazoyer et al., 2002),
Brodmann areas (Brodmann, 1909), Harvard-Oxford atlas
(Smith et al., 2004), automated nonlinear image matching
and anatomical labeling package (Collins et al., 1995; Robbins
et al., 2004), FreeSurfer parcellation (Dale et al., 1999; Fischl
et al., 1999, 2002), and some other user-defined functional
regions of interest (ROIs) (Dosenbach et al., 2008; Fair et al.,
2007). The other studies directly use the voxels as nodes in
the network (Buckner et al., 2009; Eguiluz et al., 2005; Tomasi
and Volkow, 2011a; van den Heuvel et al., 2008b; Zuo et al.,
2011). Recent evidence has demonstrated the meaningful in-
fluence of choice of node definition on the topological metrics
of resulting networks (Hayasaka and Laurienti, 2010; Wang
et al., 2009a; Zalesky et al., 2010). Likewise, multiple choices
of the definition of network edges are currently employed
in studies, such as the Pearson’s correlation (Fair et al.,
2007; He et al., 2007; Wang et al., 2010b), partial correlation
(Ferrarini et al., 2009; Salvador et al., 2005; Sanabria-Diaz
et al., 2010), wavelet correlation (Achard et al., 2006; Meunier
et al., 2009a; Supekar et al., 2009), and white matter tractogra-
phy in DTI (Gong et al., 2009b; Hagmann et al., 2008; Iturria-
Medina et al., 2008). Furthermore, the weighted (Honey et al.,
2009; Schmitt et al., 2008; van den Heuvel et al., 2008a) or bi-
nary (Chen et al., 2008; van den Heuvel et al., 2009b; Wen
et al., 2011b) edge weights are another parameter that should
be of concern. Furthermore, some studies employed normal-
ized graph metrics such as gamma (normalized clustering co-
efficient), lambda (normalized shortest path length), and
small worldness, whereas others adopted non-normalized
metrics such as clustering coefficient and path length. These
different metrics might partly account for the differences in

results. Encouragingly, some results seem to be robust in
their methodological details; however, given the lack of a
gold standard for the definition of network nodes and
edges, researchers still need to develop a more solid basis
for choosing between alternative options. Furthermore, with
the development of graph theoretical approaches, some rela-
tively new metrics (e.g., rich-club measure and overlapping
modules) are introduced into this field, which provides differ-
ent perspectives into topological organizations in the brain.

Second, the combination of different MRI modalities be-
comes an important future topic to determine the relationship
of the structural and functional connectivity of the brain. Accu-
mulating evidence has shown that the strength of the intrinsic
functional connectivity derived from R-fMRI positively corre-
lates with the strength of the structural connectivity, support-
ing the notion that functionally linked networks are shaped
largely by underlying structural pathways (Damoiseaux and
Greicius, 2009; Greicius et al., 2009; Honey et al., 2009; Teipel
et al., 2010; van den Heuvel et al., 2009a). To date, human
brain functional networks can also be studied with neuro-
physiological data such as EEG/MEG/electrocorticography
(ECoG). Compared with fMRI, EEG/MEG/ECoG techniques
provide better temporal resolution on functional brain net-
works; therefore, there are prominent advantages for the
time-frequency analysis and the studies of dynamical network
configuration between different brain states. Using EEG/
MEG/ECoG data, many studies have shown that brain func-
tional networks had small-world organization in healthy sub-
jects (Bassett et al., 2009; Smit et al., 2008; Stam, 2004), and such
a topology was disrupted in various neuropsychiatric disor-
ders such as AD (de Haan et al., 2009; Stam et al., 2007),
MCI (Buldu et al., 2011), schizophrenia ( Jalili and Knyazeva,
2011; Micheloyannis et al., 2006; Rubinov et al., 2009), and
epilepsy (Baccala et al., 2004; Horstmann et al., 2010; Ponten
et al., 2007). In the future, the combination of multimodal
imaging techniques including MRI, EEG/MEG/ECoG, and
PET will provide integrative information which map out pat-
terns of brain networks that underlie cognition and behaviors
in human neuropsychiatric disorders.

Third, the stability and reproducibility of graph theoretical
brain network metrics also attracts a great deal of attention.
Recent DTI studies (Bassett et al., 2011; Vaessen et al., 2010)
reported consistently high reproducibility of basic connectiv-
ities and several graph metrics in structural brain networks.
In functional networks, high reproducibility of graph metrics
(Buckner et al., 2009; He et al., 2009c; Telesford et al., 2010)
and high reliability in local low-frequency fluctuations (Zuo
et al., 2010a), ROI-based functional connectivity (Shehzad
et al., 2009), independent components (Zuo et al., 2010b),
and different strategies for confound correction (Braun
et al., 2012) were also reported. However, in test-retest stud-
ies, the global networks metrics were sensitive and depen-
dent on several factors, including scanning time interval,
network membership, and network type (Wang et al.,
2011). Park et al. (2012) revealed that the local brain networks
are temporally stable but that long-range integration exhibits
dynamic behavior throughout a day. These findings provide
important implications on how to choose reliable analytical
strategies and network metrics of interest. Taken together,
the graph theoretical brain network analysis has acceptable
reliability and reproducibility, but more systematic evalua-
tion and improved methodology is still needed.

BRAIN GRAPH ANALYSIS IN DISEASE 359



Fourth, there are a few articles discussed in this article that
concentrate on the topological architecture of the large-scale
neuronal networks during the performance of tasks. Bassett
et al. (2009) found a positive correlation between the superior
task performance of working memory and the cost efficiency
of the b-band brain network. Wang et al. (2010b) revealed a
longer path length in older adults in their investigation of
an age-related functional network during memory encoding
and recognition tasks. Many previous studies have shown
cognitive function impairments in people with neurological
and psychiatric disorders; however, studying the impaired
brain networks under a task condition may offer new insights
into the pathological reconfiguration of neuronal ensembles
that underlie the changes of cognitive states. A directed net-
work or a dynamic network model may better describe the in-
formation flow in the brain during task states. Although most
graph theoretical studies model brain networks as simple un-
directed networks overlooking the information flow, the
brain networks are actually regarded as directed networks
within some of the regions sending information, while others
receive information. Recent studies have taken these into ac-
count (Cecchi et al., 2007; Liao et al., 2011; Yan and He, 2011),
and their results would be helpful to better understand the
causes and effects of neuropsychiatric diseases. The brain net-
works are rapidly and continually adjusting to behavioral
changes or cognitive demands (De Vico Fallani et al., 2008)
or even switching to resting states (Chang and Glover,
2010; Kang et al., 2011). Modeling dynamic structural or func-
tional networks in patients may facilitate the monitoring of
disease course and recovery.

Fifth, we still know very little about how brain networks
relate to individual characteristics and genetic factors. Li
et al. (2009) and van den Heuvel et al. (2009b) demonstrated
the correlation between network topological metrics and the
intelligence quotient (IQ) in the structural and functional
brain network, respectively. Interestingly, in both studies,
the findings consistently revealed that the path length of the
brain network had a strong negative correlation with IQ. Cor-
relations were also observed between the cortical fiber con-
nectivity of specific regions and cognitive functions such as
processing speed, visuospatial, and executive functions
(Wen et al., 2011b). Using resting state EEG, sMRI, and R-
fMRI imaging data of twins, Smit et al. (2008), Schmitt et al.
(2008), and Fornito et al. (2011) revealed genetic effects on net-
work properties including clustering coefficient and cost effi-
ciency. Of note, some neurological and psychiatric disorders
are regarded to have links with a specific gene; for instance,
the carriers of the APOE-4 gene are more vulnerable to suffer
from AD. Accordingly, the relationship between brain net-
work properties and individual traits and genetic factors is
of great interest and should be investigated in the future.

Sixth, any disease has a gradual process of change. The to-
pological organization of brain networks should change
gradually at the conversion stage as the disease progresses
(Bernhardt et al., 2011; Wang et al., 2010d). Longitudinal
studies will be valuable in clarifying the progression of the
disease and to evaluate treatment effects. Moreover, the spe-
cific topological alternations of structural or/and functional
brain networks in distributed neurological and psychiatric
disease might serve as potential biomarkers for disease diag-
nosis. A relatively high classification rate has been reached in
AD (Dai et al., 2011; Supekar et al., 2008), MCI (Wee et al.,

2011), and epilepsy (Raj et al., 2010). Particularly, the co-mor-
bidity of the diseases confounds diagnosis and treatment
strategies, leading to a limited treatment effect. For instance,
depression and schizophrenia commonly occur simulta-
neously in adolescents. The challenge of how to establish
meaningful biomarkers for clinical use will still require tre-
mendous efforts.

Finally, the collection and distribution of neuroimaging
data are necessary and momentous for the investigation of
structural and functional brain connectivity in diseases.
There are several MRI neuroimaging databases of normal
healthy people, such as fMRIDC (www.fmridc.org), the
‘‘1000 Functional Connectomics Project’’ dataset (http://
fcon_1000.projects.nitrc.org/), and NIHPD (https://nihpd
.crbs.ucsd.edu/nihpd/), which provide large numbers of
high-quality samples and could serve as a baseline for disease
studies. Currently, several databases of neuropsychiatric
disorders are also available online, including ADNI (North
American ADNI [http://adni.loni.ucla.edu/], European
ADNI [www.centroalzheimer.org/sito/ip_eadni_e.php],
Australian ADNI [www.aibl.csiro.au/adni/]), OASIS (www.
oasis-brains.org), and ADHD200 (http://fcon_1000.projects.
nitrc.org/indi/adhd200/). Since independent datasets can
be combined and shared (Biswal et al., 2010), the cumulative
databases of both healthy and diseased populations can pro-
vide great opportunities for investigating brain alternations
in related diseases. Predictably, more databases of other neu-
rological and psychiatric disease would be shared in the fu-
ture for the exchange of knowledge. However, with the
increase of imaging resolution, dataset size, and methodolog-
ical complexity, it is very important and necessary to improve
computational performance. Several high-performance com-
puting approaches have been introduced into the field of neu-
roscience, such as parallel computing (Tomasi and Volkow,
2011a, 2011b) and graphics processing unit assistant comput-
ing (Eklund et al., 2011; Wu et al., 2010). Meanwhile, several
toolboxes are currently available online for the graph theoret-
ical analysis of brain networks such as the Brain Connectivity
Toolbox (www.indiana.edu/*cortex/connectivity.html) and
the Brainwaver (http://cran.r-project.org/web/packages/
brainwaver/). More relevant toolboxes are under develop-
ment. The visualization of the brain network is also an impor-
tant part of the graph theoretical approach. An intuitive
and elegantly visualized brain network will help researchers
highlight the emphasized results and make it more easily un-
derstood. Meanwhile, a flexible and user-friendly brain net-
work visualization tool will provide researchers with
convenience. There are several universal or specialized
brain network visualization tools available on the web, such
as Pajek (http://pajek.imfm.si/doku.php), Caret (http://
brainvis.wustl.edu/wiki/index.php), Connectome Viewer
Toolkit (www.cmtk.org), eConnectome (http://econnectome.
umn.edu/), and BrainNet Viewer (www.nitrc.org/projects/
bnv/). These methods are under development and should
be seriously considered for the future research of human
brain network mapping.

Conclusion

Taken together, the accumulating evidence suggests that
applying graph theoretical approaches to neuroimaging
data offers new insight into the topological principles and
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pathological fundamentals of brain networks in neurological
and psychiatric disorders. Combined with advances in brain
imaging techniques and improved multiple analytical
approaches, future studies in neurological and psychiatric
disorders may further uncover the biological substrates un-
derlying brain connectivity and provide clinical diagnostic
assistance for such diseases.
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