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Abstract
Individual variability in human brain networks underlies individual differences in cognition and behaviors. However,
researchers have not conclusively determined when individual variability patterns of the brain networks emerge and how
they develop in the early phase. Here, we employed resting-state functional MRI data and whole-brain functional
connectivity analyses in 40 neonates aged around 31–42 postmenstrual weeks to characterize the spatial distribution and
development modes of individual variability in the functional network architecture. We observed lower individual
variability in primary sensorimotor and visual areas and higher variability in association regions at the third trimester, and
these patterns are generally similar to those of adult brains. Different functional systems showed dramatic differences in
the development of individual variability, with significant decreases in the sensorimotor network; decreasing trends in the
visual, subcortical, and dorsal and ventral attention networks, and limited change in the default mode, frontoparietal and
limbic networks. The patterns of individual variability were negatively correlated with the short- to middle-range
connection strength/number and this distance constraint was significantly strengthened throughout development. Our
findings highlight the development and emergence of individual variability in the functional architecture of the prenatal
brain, which may lay network foundations for individual behavioral differences later in life.
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Introduction
People differ in their thoughts and behaviors. These cognitive
and behavioral differences mainly originate from individual vari-
ability in the structural and functional architectures of the brain
(Kanai and Rees 2011). Using histological and neuroimaging tech-
niques, researchers have revealed widespread individual variabil-
ity in various structural and functional characteristics, including
cortical morphology (Good et al. 2001; Hill et al. 2010), cytoarchi-
tectonic mapping (Amunts et al. 2004, 2005), and task-evoked
activation (Baldassarre et al. 2012; Frost and Goebel 2012). These
brain variations across individuals may represent a joint outcome
of complex gene-environment interactions (Hill et al. 2010;
Petanjek et al. 2011; Chen et al. 2012; Gao et al. 2014; Wang and
Liu 2014).

In recent years, researchers have increasingly focused on
inter-subject variability in the functional connectivity architec-
ture of the human brain. Specifically, with the progress
achieved in the resting-state functional MRI (R-fMRI) technique,
researchers have been able to non-invasively map the intrinsic
functional connectivity patterns of the brain by measuring the
correlations of spontaneous low-frequency fluctuations among
regions (Biswal et al. 1995; Fox et al. 2005). A recent R-fMRI
study of the healthy adult brain found that there was higher
individual variability of functional connectivity in the hetero-
modal association cortices, in contrast to lower variability in
the unimodal cortices (Mueller et al. 2013). This spatial pattern
was quite similar to distant connectivity distributions, evolu-
tionary cortical expansion, and hemispheric specialization
(Mueller et al. 2013; Wang and Liu 2014). Moreover, heteromo-
dal regions with higher variability underlie individual differ-
ences in higher-order cognitive functions (Baldassarre et al.
2012; Smith et al. 2013; Liu et al. 2017; Liao, Cao et al. 2017) and
provide valuable information regarding the brain fingerprints
responsible for identifying individuals (Finn et al. 2015; Airan
et al. 2016; Shen et al. 2017; Liu et al. 2018). Interestingly, Gao
et al. (2014) observed that individual variability patterns in the
functional connectivity of healthy adult brains have emerged
by the time of birth. Notably, studies of the brain connectivity
architectures at a time point even earlier than full-term birth
are crucial for obtaining a better understanding of the develop-
ment and emergence of the individual variability patterns of
brain networks before birth.

The third trimester of pregnancy represents a critical period
of rapid neuronal growth and neural circuit establishment
(Sidman and Rakic 1973; Rakic 1972, 1995). Specifically, a large
number of neurons in the cortical plate are connected via cellu-
lar activities such as dendritic arborization, synapse formation
and axonal growth (Molliver et al. 1973; Kostovic and Jovanov-
Milosevic 2006; Bystron et al. 2008). These interconnected neu-
rons are thought to foster the formation and differentiation of
the neuronal circuits that underlie primary sensorimotor pro-
cessing and higher cognitive functions (Dehaene-Lambertz and
Spelke 2015). Several R-fMRI studies have shown dramatic
changes in the functional connectivity architectures of the
brain, including the rapid development of primary regions and
prolonged development of higher-order regions (Fransson et al.
2007; Doria et al. 2010; Smyser et al. 2011; Cao, He et al. 2017),
the medial-to lateral maturation of interhemispheric connec-
tivity (Smyser et al. 2010; Thomason et al. 2013), and the
increased subcortical-motor connectivity but decreased con-
nectivity between the subcortical and heteromodal regions
(Thomason et al. 2015; Toulmin et al. 2015). However, further
studies are needed to elucidate whether the individual

variability patterns in the functional connectivity architecture
of the human brain emerge in the third trimester of pregnancy
and, if so, to further characterize how they develop during this
critical prenatal phase.

To address these issues, in the present study, we employed
R-fMRI data and voxel-wise whole-brain functional connectiv-
ity analysis to investigate the early development of individual
variability in the human brain networks in 40 preterm and
term infants aged 31.3–41.7 postmenstrual weeks at the time of
the scan. We aimed to delineate both the spatial distributions
and development patterns of individual variability during the
third trimester. Specifically, we sought to determine (i) whether
the spatial patterns of individual variability in the functional
connectivity architecture previously observed in heathy adults,
has already emerged during the prenatal phase; (ii) how the
individual variability in functional connectivity develops over
time during this critical period; and (iii) how the anatomical
distances in the brain constrain the development of individual
variability in the functional connectivity architecture.

Materials and Methods
Participants

Fifty-two normal preterm and term infants at postmenstrual
ages ranging from 31.3 to 41.7 weeks at the time of the scan
were included in the present study. These infants were
recruited from Parkland Hospital in Dallas and selected after
rigorous screening procedures, which were conducted by a neo-
natologist (L.C.) and an experienced pediatric neuroradiologist
(N.R.) based on the infants’ ultrasound and clinical MRI data as
well as the infants’ and mothers’ medical records. Notably,
ultrasound scans are routinely ordered and performed and the
clinical MRI sequences included high-resolution (in-plane) T1-
weighted, T2-weighted, and FLAIR (Fluid-Attenuated Inversion-
Recovery) MRI. These infants were part of the cohort used to
study normal prenatal and perinatal development in our previ-
ous studies (Yu et al. 2016; Cao, He et al. 2017; Ouyang et al.
2017; Feng et al. 2018). The exclusion criteria included evidence
of bleeding or an intracranial abnormality by serial sonography;
maternal drug or alcohol abuse during pregnancy; grade I–IV
intraventricular hemorrhaging; hydrocephalus; germinal
matrix hemorrhage; periventricular leukomalacia; hypoxic-
ischemic encephalopathy; lung disease or bronchopulmonary
dysplasia; body or heart malformations; chromosomal abnor-
malities; necrotizing enterocolitis requiring intestinal resection
or complex feeding/nutritional disorders; defects or anomalies
in the forebrain, brainstem or cerebellum; brain tissue dyspla-
sia- or hypoplasia; abnormal meninges; alterations in the pial
or ventricular surface; or white matter lesions. Written and
informed parental consent was obtained from each infant’s
mother and/or father. This study was approved by the
Institutional Review Board. Data from 12 infants were excluded
from further analysis due to excessive head motion (see “Image
Preprocessing”). Therefore, the R-fMRI data for the remaining
40 normal preterm and term infants (29 males) were subjected
to further analysis. Table 1 presents the detailed demographic
information of the infants.

Data Acquisition

All infants were scanned during natural sleep without sedation
and were well-fed prior to the scan. Earplugs, earphones, and
extra foam padding were applied to reduce the sound of the
scanner while the neonates were asleep. Images were acquired
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using a Philips 3 T Achieva MR scanner with an 8-channel
SENSE head coil at the Children’s Medical Center at Dallas.
R-fMRI scans were obtained using a T2-weighted gradient-echo
EPI sequence: repetition time = 1500ms, echo time = 27ms, flip
angle = 80°, in-plane imaging resolution = 2.4 × 2.4mm2, in-
plane field of view = 168 × 168mm2, slice thickness = 3mm with
no gap, and slice number = 30. Two hundred and ten whole-
brain EPI volumes were acquired. A co-registered T2-weighted
structural image was acquired with a turbo spin echo sequence:
repetition time = 3000ms, effective echo time = 80ms, in-plane
imaging resolution = 1.5 × 1.5mm2, in-plane field of view = 168
× 168mm2, slice thickness = 1.6mm with no gap, and slice num-
ber = 65. The acquired T2-weighted image was zero-filled to a
256 × 256 image matrix.

Image Preprocessing

The R-fMRI images were preprocessed using Statistical Parametric
Mapping (SPM8, http://www.fil.ion.ucl.ac.uk/spm) and Data
Processing Assistant for Resting-State fMRI [DPARSF, (Yan and
Zang 2010)]. The first 15 volumes were discarded to allow the
signal to reach a steady state; thus, 195 time points remained for
each infant. The remaining data were corrected for the acquisi-
tion time delay between slices and head motion between
volumes. Here, the data from 12 infants were removed because
of head-motion displacement >5mm, rotation >5°, or a mean
frame wise displacement (mFD) (Power et al. 2012) > 1mm. The
individual functional data were first co-registered to the corre-
sponding high-resolution T2-weighted structural images using a
linear transformation. The individual T2-weighted images were
then non-linearly registered to a 37-week brain template (Serag
et al. 2012). A customized template was generated by averaging
the resulting normalized T2-weighted structural images of all
infants and used for the second registration of individual
T2-weighted images. The co-registered functional data were nor-
malized to the custom-made template by applying the transfor-
mation parameters estimated during the second registration of
T2-weighted images and resampled to 3mm isotropic voxels. In
addition, previously reported templates of the cortex, deep gray
matter, white matter, and cerebrospinal fluid tissue templates
recorded at 37 weeks (Serag et al. 2012) were also registered to
the customized template to generate the gray matter mask.
Next, the normalized functional imaging data were smoothed
with a Gaussian kernel (full width at half-maximum of 4mm)
and temporally bandpass filtered (0.01–0.10Hz). Finally, several
nuisance variables, including Friston’s 24 head-motion para-
meters (Friston et al. 1996), and average signals from white mat-
ter and cerebrospinal fluid tissue were removed using a
multivariate linear regression analysis to reduce the effects of
non-neuronal signals. The resulting residuals were subjected to
further analysis.

Individual Functional Connectivity Matrices

For each infant, we first calculated the Pearson correlation coef-
ficients between the time series of all pairs of voxels within a

gray matter mask (Nvoxel = 7 101), which was predefined by
thresholding the combined cortex and deep gray matter proba-
bility templates. Fisher’s r-to-z transformation was then per-
formed to improve the normality of correlation coefficients.
The absolute values of the correlation matrix were used in all
subsequent analyses to retain the strength of both synchro-
nous activity (positive correlation) and asynchronous activity
(negative correlation) between pairs of voxels. Furthermore, the
connectivity terminating within 10mm of each voxel was set to
zero to avoid potential sharing of signals between nearby voxels
(Cao, He et al. 2017). For each infant, we obtained one 7 101 ×
7 101 matrix that captured the basic functional connectivity
architecture of the whole brain.

Individual Variability of Functional Connectivity

We performed the qualitative and quantitative analyses
described below to examine the development of individual var-
iability in the functional connectivity architecture (Fig. 1).

(i) Sliding window analysis: An across-subject sliding window
analysis was performed for all infants in ascending order of
age, with a fixed number of infants (here M = 10) and a step
size of one (i.e., infants 1–10 in window 1, infants 2–11 in win-
dow 2… infants 31–40 in window 31). This method generated 31
overlapping subgroups of infants with window ages ranging
from 33.4 weeks to 40.6 weeks. This approach allowed us to
qualitatively examine continuous changes in individual variabil-
ity patterns of functional connectivity with age across infants.
For a given subgroup with M infants, we calculated the voxel-
wise individual variability values for the functional connectiv-
ity architecture using the functional connectivity matrix
obtained above. Specifically, the individual variability value of
voxel i was defined as follows:

= − [ ( ( ) ( ))] ( )V E corr F S F S1 , 1i i p i q

where p, q = 1,2…M (p ≠ q); M is the number of infants in the
subgroup; and Fi(Sp) is an N-length (Nvoxel = 7101) vector of
functional connectivity values of voxel i in infant p. The term
corr calculates the correlation coefficients between any two
functional connectivity profiles, which are then averaged to
represent the similarity within M infants. This measurement of
individual variability in functional connectivity has been
recently used in adults and neonates (Mueller et al. 2013; Gao
et al. 2014).

(ii) Group-based statistical analysis: We performed the analysis
described below to quantify the significant differences in indi-
vidual variability patterns among different age groups. Briefly,
we first divided all infants into three groups of different age
bins representing early preterm, preterm and term equivalents
(Group 1:31.3–35.3 weeks [n = 14]; Group 2:35.6–38.4 weeks [n = 12];
and Group 3:38.7–41.7 weeks [n = 14], respectively). This approach
allowed us to perform statistical comparisons to evaluate age-
related changes in individual variability patterns of functional
connectivity. For each group, the individual variability of func-
tional connectivity was computed using Equation (1). Notably, a

Table 1 Demographic information of the infants in the main data analysis

Number of infants Birth or scan Age range (weeks) Weight range (kg) Male, n(%) White, n(%) Mode of deliverya

40 At birth 25.1–40.7 (33.2 ± 4.5) 0.8–4.0 (2.1 ± 0.9) 29 (73) 30 (75) C: 24 V: 16
40 At scan 31.3–41.7 (37.0 ± 2.7) 1.4–4.1 (2.6 ± 0.7) 29 (73) 30 (75) C: 24 V: 16

Note: aC stands for C-section and V for vaginal birth. The feeding practice for all infants was breast-feeding.
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term group containing 10 infants born after 38 weeks was addi-
tionally selected as the control group for comparison (Term
Group: 38.4–41.0 weeks [n = 10]). Furthermore, we also estimated
the similarity of spatial patterns of individual variability between
all 31 windows and the Term Group by calculating the Pearson
correlation coefficients.

We employed a predefined functional parcellation atlas that
was derived from 1 000 healthy adults using a clustering
approach (Yeo et al. 2011) to further examine whether individ-
ual variability in functional connectivity exhibited different
developmental patterns across brain systems. The functional
atlas of adult brains was transformed to the infant template
space using non-linear registration. Because only cortical
regions were included in this atlas, we also added a predefined
subcortical mask for infants (Serag et al. 2012). Therefore, we
obtained a customized parcellation atlas with eight brain sys-
tems: the visual, somatomotor, dorsal attention, ventral atten-
tion, limbic, frontoparietal, default mode, and subcortical
systems. For each window/group, we calculated the mean vari-
ability values of all voxels within each system to represent the
system-specific variability.

Individual Variability and Connection Distance

We further investigated whether the development of individual
variability of functional connectivity was constrained by the
anatomical distance. Specifically, all functional connections
were divided into three bins according to their Euclidean dis-
tance, Dij (which was considered an approximate anatomical
distance): short-range (10–30mm), middle-range (30–60mm)
and long-range distance (>60mm). The connectivity numbers
and strength for each distance bin were quantified for each
voxel. Briefly, for each infant, the whole-brain functional con-
nectivity matrix was first thresholded with a predefined r = 0.2
(here, r represents the correlation between blood oxygenation
level-dependent signals, corresponding to the significance level
at P = 0.005). Next, for a given voxel i, the connectivity number
was calculated as the total number of remaining connections

to which each voxel was linked within every distance bin. The
connectivity strength of voxel i within each bin was computed
using the following equation:

∑( ) =
−

| | ( )
≠

S i
N

r
1

1
2

j i
ij

voxel

where Nvoxel = 7101 and the distance between voxel i and j lies
within the specific bin. Next, the values were averaged across
infants to represent the mean connectivity number/strength at
different distance bins for each age group. Finally, we com-
puted across-voxel Pearson’s correlation coefficients between
the mean number/strength of the distance-dependent connec-
tions and individual variability maps.

Statistical Analysis

For the quantitative statistical analyses, we compared the vari-
ability values across different groups of infants using a non-
parametric permutation approach (10 000 permutations) to iden-
tify significant developmental changes. Specifically, in each per-
mutation, the infants in two groups (i.e., Group 1 vs. Group 2)
were randomly reallocated to two new groups, and then an indi-
vidual variability map was calculated for each newly generated
group using Equation (1). After 10 000 permutations, a null distri-
bution of group differences in variability values for each voxel
was obtained for statistical comparisons. Moreover, we calcu-
lated the largest edge connected-components in the randomized
group-difference maps to obtain the null distribution for a clus-
ter size with 10 000 permutations. Significant correction for mul-
tiple comparisons was performed with P < 0.01 for voxels and P
< 0.05 for the cluster size. Similarly, significant differences in the
means and standard deviations of global and system-level vari-
ability values between different age groups were also determined
using the permutation approach. Furthermore, the non-
parametric Kruskal-Wallis H test was performed to estimate the
differences in variability values across different systems within
the same age group using SPSS 20.0 software (IBM Corp.,

Figure 1. The flow chart of individual variability analysis of functional connectivity. For details, please see the Materials and Methods.

4 | Cerebral Cortex

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhy302/5232539 by Beijing N

orm
al U

niversity Library user on 29 D
ecem

ber 2018



Armonk, NY, USA), at a significance level of P < 0.05, with
Bonferroni correction for multiple comparisons.

Validation Analysis

To evaluate the reliability of our findings, we examined the
influences of different strategies and factors in the image pre-
processing and the variability analysis. The validation analyses
are described in detail below.

For the image preprocessing steps, we evaluated the influ-
ences of different brain templates during spatial normalization,
global signal removal and head motion. (1) In our main analy-
sis, all infants were registered to a 37-week template, which
might induce anatomical bias due to up-registering immature
brains to the older template. To address this issue, we con-
ducted an additional region-wise analysis (46 regions of inter-
est (Makropoulos et al. 2016)) using the age-specific templates
(Serag et al. 2012) for each infant during normalization. Given
that the regional atlas of infants was too coarse for detailed
information detection, we also conducted a voxel-level analysis
using the age-specific template of each window/group during
normalization. (2) Given the debatable application of global sig-
nal removal in analyses of the whole-brain network during
R-fMRI data processing (Murphy and Fox 2017), we used the
data without performing the global signal regression in the
main analysis. In addition, we also evaluated our results using
data from which the global signal was removed because several
studies suggested that this procedure might partially reduce
the influences of non-neuronal signals (Satterthwaite et al.
2013; Power et al. 2014, 2017). (3) In our main analysis, we
excluded the data from infants with head-motion displacement
>5mm, rotation >5°, or mFD >1mm, and regressed out
Friston’s 24 head-motion parameters (Friston et al. 1996) during
the preprocessing steps (Yan et al. 2013). This procedure mod-
erated the influence of head motion on the estimates of indi-
vidual variability in the functional connectivity architecture.
Furthermore, we conducted three separate analyses under
more strict thresholds to validate our major findings.

For the variability analysis, we validated the effects of differ-
ent window lengths, intra-subject variance, prematurity, tem-
poral signal-to-noise ratio (tSNR), and unprocessed correlation
matrix. (1) In the across-subject sliding window analysis, the
optimal selection of window length remained unclear; thus, we
considered two additional window lengths (8 infants and 12
infants) to validate the main results. (2) The intra-subject vari-
ance may be a confounding factor in the variability estimation.
However, this parameter is difficult to assess because repeated
scans are not available in the current study. To make the
approach applicable, we split the data from one session into
two halves to estimate the intra-subject variance (Mueller et al.
2015), followed by a regression analysis. (3) To further exclude
the influence of prematurity on the estimation of individual
variability in functional connectivity, we regressed out the
effects of birth age for validation. (4) We calculated the relation-
ship between age and the tSNR/mFD, as well as the relationship
between variability values and the averaged tSNR/mFD to
explore the possibility that the changes of individual variability
with age were driven by the tSNR or head motion during data
collection. Here, tSNR values were calculated for each infant
within the mask in which the blood oxygenation level-dependent
signal values were > 400 (Van Dijk et al. 2012). (5) The absolute
operation may disrupt the continuity of the original functional

connectivity profiles; therefore, we also calculated the inter-
subject variability of the original functional correlation matrix
only after Fisher’s r-to-z transformation and without using abso-
lute values. For details, see the Supplementary Material.

Reproducibility Analysis

To determine the reproducibility of our results, we performed
the following analyses using another independent imaging data-
set from the developing Human Connectome Project (dHCP:
http://www.developingconnectome.org/project/) (Supplementary
Table S1). Considering that the publicly available dHCP dataset
only included R-fMRI data in term infants, we validated the
reproducibility of the spatial distribution of individual variability
patterns only in the Term Group. In the dHCP dataset, forty term
infants were scanned using multiband-MRI during natural sleep.
After excluding the infants with head-motion displacement
>5mm, rotation >5°, or mFD >1mm, the imaging data from
15-term neonates (mean age: 39.2 weeks) were used for the vari-
ability analysis. The effects of head motion were further explored
by performing the analysis on data from 10 infants (mean age:
39.0 weeks) with a stricter head-motion threshold (excluding dis-
placement movement >3mm, rotational movement >3°, or mFD
>1mm). For details, see the Supplementary Material.

To calculate the individual variability of functional connec-
tivity in term infants from the dHCP dataset, we estimated the
individual functional connectivity matrix as follows. First, we
defined a rough gray matter mask by combining the cortex and
deep gray matter probability templates after thresholding with
a value of 0.2. Using the predefined rough mask, we extracted
the effective R-fMRI time series of all infants. The final gray
matter mask (Nvoxel = 11 698) was generated by intersecting
masks across infants. For each infant, the Pearson correlation
coefficients between pairs of voxels were calculated within the
predefined gray matter mask, resulting in an 11 698 × 11 698
matrix, which was preserved after Fisher’s r-to-z transforma-
tion and absolute operation. Finally, for all fifteen infants, the
variability map was calculated using Equation (1) (here Nvoxel =
11698, M = 15). Additionally, we regenerated the variability
maps using the data from infants using three separate analyses
with different head-motion exclusion thresholds and scrubbing
methods for head-motion corrections (Power et al. 2012). We
wrapped the individual variability maps of the dHCP data into
the 37-week infant template using non-linear registration and
nearest neighbor interpolation approaches to compare the spa-
tial similarity between the two independent term groups (dHCP
data and our data). Then, we computed Pearson correlation
coefficients for the individual values across voxels between the
two maps in the same coordinate space.

Results
Development of Individual Variability of Functional
Connectivity

Sliding Window Analysis
We obtained temporally continuous patterns of individual vari-
ability in the functional connectivity of infants across all time
windows (Fig. 2). At ~33 weeks (Window 1:33.4 ± 1.1 weeks), we
observed lower variability in primary sensorimotor and visual
areas and higher variability in association regions (Fig. 2A).
This spatial pattern is generally similar to that observed in
adult brains (Mueller et al. 2013), suggesting that the individual
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variability in the functional connectivity architecture of the
brain has occurred by this stage. As development progressed,
the variability values of the medial sensorimotor, occipital pole
and lateral temporal regions decreased with age (Fig. 2A). At
approximately the time of a normal birth (Window 31:40.6 ± 0.5
weeks), the individual variability pattern of the brain networks
(Fig. 2A) was highly similar (r = 0.93, P < 0.001) to that of term
control babies (40.0 ± 0.9 weeks) (Fig. 3A). Interestingly, the

mean variability of the whole brain decreased with develop-
ment, whereas the standard deviation of variability increased
(Fig. 2B). This observation implies that, although the global
level of individual variability decreased, the heterogeneity of
the individual variability across brain regions increased with
age. Finally, the across-voxel spatial similarity of variability
maps between each window and the term infant control group
increased significantly with age (r = 0.97, P < 0.001, Fig. 2C).

Figure 2. Results of the across-subject sliding window analysis of individual variability patterns in functional connectivity during the third trimester. (A) Spatial patterns

of voxel-wise individual variability under each window age. (B) Continuous changes in variability of functional connectivity with the linearly decreasing global mean

and the linearly increasing standard deviation. (C) The spatial similarity of individual variability maps between each window and term controls linearly increased with

age (r = 0.97, P < 0.001). Values were mapped onto the cortical surface using BrainNet Viewer (Xia et al. 2013). PMA (weeks), postmenstrual age in weeks.

Figure 3. Results of the group-based statistical analysis of individual variability. (A) Individual variability maps of the voxel-wise functional connectivity in Group 1

(31.3–35.3 weeks), Group 2 (35.6–38.4 weeks), Group 3 (38.7–41.7 weeks), and the Term group (38.4–41 weeks). (B) The areas showing significant differences (voxel P <

0.01, cluster P < 0.05, cluster size > 3 726mm3 for Group 3- Group 1, and cluster size > 3 510mm3 for Group 3- Group 2, 10 000 permutations) in connectivity variability

between groups. The blue clusters represent significant decreases detected by the permutation test. The values were mapped onto the cortical surface using BrainNet

Viewer (Xia et al. 2013). (C) The means and standard deviations of individual variability values in the four age groups are shown. *P < 0.05, 10 000 permutations,

Bonferroni corrected.
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Group-based statistical analysis
We obtained individual variability maps for the three age
groups and the Term Group (Fig. 3A), as well as the group dif-
ferences (Fig. 3B). Briefly, the variability values of Group 3
exhibited significant decreases in medial supplementary motor
areas and the lateral precentral gyrus compared with those of
Group 2 (Fig. 3B, voxel P < 0.01, cluster P < 0.05, and cluster size
>3 510mm3, 10 000 permutations). Compared with Group 1,
Group 3 showed significantly decreased variability values in the
paracentral lobule, pre-/post-central gyrus, and visual regions
(Fig. 3B, voxel P < 0.01, cluster P < 0.05, and cluster size >3 726
mm3, 10 000 permutations). Furthermore, the global mean val-
ues of individual variability decreased significantly with age
(Fig. 3C, Group 3- Group 2: P = 0.05, uncorrected; Group 3- Group
1: P = 0.024, Bonferroni corrected; 10 000 permutations); the
standard deviation of the variability values increased signifi-
cantly with age (Fig. 3C, Group 3- Group 2: P = 0.02, uncorrected;
Group 3-Group 1: P = 0.001, Bonferroni corrected; 10 000 permu-
tations). Moreover, we observed increasing spatial similarity
between each of the three groups and the Term Group over the
course of development (r = 0.61, P < 0.001 for the spatial corre-
lation between Group 1 and the Term Group; r = 0.70, P < 0.001
for the spatial correlation between Group 2 and the Term
Group; and r = 0.97, P < 0.001 for the spatial correlation between
Group 3 and the Term Group). Notably, no significant differ-
ences in individual variability were observed between either
Group 2 and Group 1 or the Term Group and Group 3.

Non-uniform Development of Individual Variability
across Brain Systems

Sliding Window Analysis
Visual examination revealed distinct developmental curves of
individual variability across different brain systems (Fig. 4A).
The somatomotor system exhibited relatively low inter-subject
variability, which decreased dramatically across windows,
whereas the visual, subcortical, and dorsal and ventral attention
networks demonstrated moderate variability that mainly
decreased after around 38 weeks. Meanwhile, the default mode,
frontoparietal and limbic networks consistently displayed high
functional variability that showed little change with age.

Group-based Statistical Analysis
For each age group, the inter-subject variability values among
eight systems were significantly different from each other, as
identified by the Kruskal-Wallis H test (all P < 0.001). In all four
groups, the variability values of primary systems (the somato-
motor and visual systems) were consistently lower than those
of the other six systems (Fig. 4B, P < 0.001, Bonferroni cor-
rected). The attention systems (i.e., the dorsal and ventral
attention networks) exhibited moderate variability values that
were significantly lower than the values of the limbic, fronto-
parietal, default, and subcortical systems in Group 3 and the
Term Group (Fig. 4B, P < 0.001, Bonferroni corrected). These
findings indicated that the primary brain systems exhibited a
relatively lower variability than the higher-order cognitive sys-
tems, regardless of the group considered. Finally, between-
group comparison analyses revealed that only the somatomo-
tor system exhibited significant age-related decreases with
development (Group 2- Group 1: P = 0.02, uncorrected; Group
3-Group 2: P < 0.01, Bonferroni corrected; Group 3- Group 1: P <
0.01, Bonferroni corrected; 10 000 permutations, Fig. 4C).

Relationship between Individual Variability and
Distance-Dependent Connectivity

Across-subject sliding window analysis revealed that both the
number and strength of functional connections increased with
age within each distance bin (Fig. 5A and B). Moreover, the vari-
ability exhibited strengthened correlations with both the num-
ber and strength of different anatomical-distance connections
with age (Fig. 6). Goodness-of-fit was compared using Akaike’s
information criterion (AIC) for the regression model: linear and
quadratic relationships. Of these relations, the quadratic relation
was the best-fitting model for the enhanced negative correlation
between variability and the number/strength of short-range con-
nections with age, with the turning points located at postmenstr-
ual ages of 35.5 and 35.6 weeks, respectively (Fig. 6A). The linear
relation was the best-fitting model for the enhanced negative cor-
relation between variability and the number/strength of middle-
range connections with age (Fig. 6B). Finally, the quadratic rela-
tion was the best-fitting model for the increased positive correla-
tion between variability and the number/strength of long-range
connections with age, with the turning points located at post-
menstrual ages of 35.5 and 35.6 weeks, respectively (Fig. 6C).
Based on these findings, a brain node with more numerous and
stronger short- and middle- range connections tends to exhibit
lower individual variability, whereas long-range connections are
associated with higher individual variability. This effect of dis-
tance on individual variability increased with age during early
development. These results were further confirmed by group-
based analyses (Supplementary Tables S2 and S3).

Validation Results

To test the reliability of our results, we evaluated the effects of dif-
ferent processing steps and variability analysis factors on our main
findings, including different brain templates during spatial normal-
ization (Supplementary Figs S1 and S2), global signal removal
(Supplementary Fig. S3), head motion (Supplementary Fig. S4), slid-
ing window sizes (Supplementary Figs S5 and S6), intra-subject
variance (Supplementary Fig. S7), prematurity (Supplementary
Fig. S8), and use of the original matrix (Supplementary Figs S9 and
S10). Our main findings remained largely unchanged following
the implementation of these strategies (for details, see the
Supplementary Results and Supplemntary Figs S1–S10).

Reproducibility Results

Visual examination indicated that the functional variability
maps of 15-term babies from the dHCP data (mean age: 39.2
weeks) were generally similar to those obtained from our main
analysis of 10-term babies (mean age: 40.0 weeks) (Fig. 7A).
Specifically, we consistently observed lower individual variabil-
ity in medial/lateral motor areas, moderate variability in medial
occipital areas and higher variability in association regions.
However, we also noticed that the two groups showed rela-
tively distinct patterns in the parietal-temporal association
area and the visual cortex, which may be due to different scan-
ning parameters, scanning status and sample heterogeneity
between the two datasets. Nonetheless, these two maps dis-
played a significant spatial correlation across all voxels (Fig. 7B,
r = 0.62, P < 0.001). Using a scrubbing procedure and a stricter
head-motion threshold (excluding the infants with displace-
ments >3mm, rotation >3°, or mFD >1mm), we still observed
high spatial similarity between the dHCP dataset and our data
(Supplementary Fig. S11, all P < 0.001). Together, these results
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suggest high reproducibility in individual variability patterns
between the datasets.

Discussion
Using R-fMRI data obtained from neonates aged ~31–42 post-
menstrual weeks, we demonstrated the individual variability
patterns of functional connectivity during prenatal brain devel-
opment. Specifically, we observed lower individual variability
in primary sensorimotor and visual areas and higher variability

in association areas, suggesting that individual variability pat-
terns in the functional connectivity architecture have already
emerged at approximately the beginning of the third trimester.
Moreover, individual variability showed non-uniform changes
across different brain systems, with dramatic decreases in the
sensorimotor network, moderate decreases in the visual, dorsal
and ventral attention and subcortical networks, and minimal
changes in the default mode, frontoparietal and limbic net-
works. Finally, individual variability patterns were strongly cor-
related with the short- to middle-range connectivity and the

Figure 4. System-level individual variability changes during the third trimester. (A) Continuous changes in system-level individual variability of functional connectiv-

ity over the course of development, as revealed by the across-subject sliding window analysis. The differences of system-level individual variability within groups (B)

and between groups (C) are shown. *P < 0.05, 10 000 permutations, Bonferroni corrected. PMA (weeks), postmenstrual age in weeks.

Figure 5. Across-subject sliding window analysis results reveal continuous changes in short-, middle-, long-range connectivity during the prenatal period. The mean

number (A) and strength (B) of connections at different distances increase with age. PMA (weeks), postmenstrual age in weeks.
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effects of the distance increased with age. Collectively, these
findings highlight the developmental patterns of individual
brain variability during the third trimester, providing insights
into the network substrates underlying individual differences
in cognition and behaviors later in life.

Spatial Distribution of Individual Variability of the
Prenatal Brains

We observed relatively lower individual variability in the pri-
mary sensorimotor and visual regions and higher variability in
the association cortex during the third trimester. This spatial

pattern was remarkably similar to that in both adults (Mueller
et al. 2013) and neonates (Gao et al. 2014), suggesting that the
adult-like individual variability is established during the prena-
tal phase. However, the overall variability values in the prena-
tal brain (~0.87–0.92) were greater than those in neonates
(~0.84) (Gao et al. 2014) and adults (~0.61) (Mueller et al. 2013),
possibly due to the immature and relatively random state of
the connectivity architecture of functional networks (Cao, He
et al. 2017). Specifically, the limbic system, which showed lower
variability in adults, ranked the highest in the eight systems
and consistently demonstrated only limited changes during the
prenatal period, which may be related to the lack of emotion

Figure 6. The relationships between individual variability and connectivity number/strength tend to be strengthened with development. (A) The quadratic relations

between the variability and the number/strength (left/right panels) of short-range connections. (B) The linear relations between the variability and the number/

strength (left/right panels) of middle-range connections. (C) The quadratic relations between the variability and the number/strength (left/right panels) of long-range

connections. The black cross represents the turning point. The dot here represents the correlation values between variability and connectivity number/strength. The

closed circles represent significant correlations (P < 0.05) and open circles represent non-significant correlations. PMA (weeks), postmenstrual age in weeks.
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and memory load before birth (Rifkin-Graboi et al. 2015). The
default mode regions showed moderate individual variability in
adults (Mueller et al. 2013) but exhibited high variability in neo-
nates (Gao et al. 2014) and preterm babies in this study, per-
haps due to the prolonged maturation of synchronization after
birth (Gao et al. 2009, 2017). Meanwhile, the somatomotor and
visual networks demonstrated lower variability values consis-
tent with what is observed in adults, neonates (Mueller et al.
2013; Gao et al. 2014) and preterm babies. These lower values
are mainly explained by the primary cortex developing prior to
higher-order regions; focusing prenatal resources on the
regions that are most important for early survival (Collin and
van den Heuvel 2013; Cao, Huang et al. 2017). Interestingly, the
variability in the right pre- and post-central areas exhibited
lower values (Fig. 3A) and greater age-related variations
(Fig. 3B) than the contralateral areas. This kind of asymmetric
pattern was previously observed in structural development in
neonates from 26 to 36 gestational weeks (Dubois et al. 2010)
and one-month-old infants (Li et al. 2014). Here, we provided
preliminary evidence for functional lateralization in the prena-
tal brain development.

It is interesting to discuss the mechanisms underlying indi-
vidual variability during the third trimester. Previously, Mueller
et al. (2013) suggested that the higher variability in association
areas observed in adults is attributable to the relatively pro-
longed maturation in the presence of fruitful environmental
factors and weaker genetic influences. However, this mecha-
nism may be different from that in neonates (Gao et al. 2014)
and preterm-born babies, considering the relatively limited
exposure to the outside environment during early develop-
ment. On the one hand, during the fetal and perinatal periods,
the transient neuronal circuitry, which appears in the cerebral
wall at the age of 8 weeks and disappears after the sixth post-
natal month, underlies unique functions that may determine
the developmental plasticity of the cerebral cortex and lead to
the observed variability in infants (Kostović and Judaš 2006;
Kostović et al. 2014). The growing projections and corticocorti-
cal pathways may also be engaged in transient connections,
which show variable path lengths and are retracted or reorga-
nized during peri- and post-natal development (Kostovic and
Goldman‐Rakic 1983; Kostovic and Jovanov-Milosevic 2006;
Kostović and Judaš 2006; Kostović et al. 2014). Morphological
research provides evidence for high structural variability in the
association areas (particularly the prefrontal cortex) of adults
and children (Rajkowska and Goldman-Rakic 1995). Neurons in
layer III of the lateral prefrontal cortices rapidly increase from
27 to 32 weeks of gestation (Mrzljak et al. 1988). Around the
same time, remarkable growth and refinement of connections
in the association areas (e.g., prefrontal cortex) occurs and con-
tinues into post-natal periods (Kostovic and Goldman‐Rakic

1983; Mrzljak et al. 1988, 1991, 1992; Zikopoulos and Barbas
2010; Kostović et al. 2014). This development is responsible for
making the connectivity map variable across individuals. On
the other hand, structural imaging studies have demonstrated
genetic effects on nearly all white matter tracts in neonates
(Lee et al. 2015) and minimal environmental effects on white
matter development between twins and singletons during the
first two years of life (Sadeghi et al. 2017). Functional imaging
studies in 0- to 2-year-old infants also suggest that the environ-
mental effects on the brain were fewer than the genetic effects
(Gao et al. 2014). Therefore, we speculate that both neurogen-
esis and genetic influences are likely to contribute to the com-
monality and uniqueness of individual functional networks
during prenatal development.

Age-related Changes in Individual Variability of
Functional Networks during the Prenatal Phase

When exploring the effects of age on individual variability, the
overall variability level decreased with development, with het-
erogeneous patterns for different regions. These variability
decreases may be associated with the ordered developmental
trajectory from random to well-organized structures (Cao, He
et al. 2017). In this sense, the regional developmental heteroge-
neity was consistent with previous findings demonstrating the
varying changing rates of the functional properties of different
regions during this period (Cao, Huang et al. 2017; Keunen et al.
2017). Notably, the most rapid decreases appeared in the senso-
rimotor system, as its early establishment is vital for the early
life of an infant (Buckner and Krienen 2013; Cao, Huang et al.
2017). More specifically, the medial primary sensorimotor areas
showed lower variability during the whole third trimester,
whereas the variability of the lateral sensorimotor areas was
initially high and then decreased with age (Fig. 3A). By the time
of birth, the medial and lateral primary areas all showed lower
variability (Fig. 3A). Therefore, our findings indicated the
medial-to-lateral development pattern of variability in the sen-
sorimotor system, which is compatible with the order of devel-
opment of interhemispheric connectivity (Smyser et al. 2010;
Thomason et al. 2013). Notably, higher-order functional net-
works, such as the default mode and frontoparietal networks,
showed high and unchanging variability values during this
period, which were consistently reported as being immature in
previous studies (Fransson et al. 2007; Smyser et al. 2010; Cao,
He et al. 2017). Interestingly, the quantification of changes in
cortical microstructural properties using diffusion MRI indi-
cated a contrasting pattern, with the cortical microstructure of
primary sensorimotor regions exhibiting the slowest changes
and higher-order regions exhibiting the most rapid changes
(Deipolyi et al. 2005; Yu et al. 2016).

Figure 7. (A) The spatial patterns of individual variability in term infants from our dataset and the dHCP dataset. (B) A significant spatial correlation across voxels was

identified between the two independent term groups (r = 0.62, P < 0.001).

10 | Cerebral Cortex

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhy302/5232539 by Beijing N

orm
al U

niversity Library user on 29 D
ecem

ber 2018



Previous prenatal studies based on cellular-level analyses
reported the differential timing of developmental events across
regions in the transient subplate, where the somatosensory
areas develop earlier than the visual regions (Kostovic and
Rakic 1990; Tau and Peterson 2010). Lamination also occurs ini-
tially in the primary sensory and motor cortices at 25 weeks of
gestation (Kostović et al. 1995). Synaptogenesis begins earlier in
the primary motor area, and later in the prefrontal cortex
(Huttenlocher 1984, 1990; Huttenlocher and Dabholkar 1997;
Tau and Peterson 2010). The global pattern of the progression
of white matter myelination follows a caudal-to-rostral gradi-
ent and central-to-peripheral order (Qiu et al. 2015). Moreover,
a histological study of neonatal brains revealed the presence of
granular layer IV in all neocortical areas, in which the primary
cortical areas are identified based on their cytoarchitecture,
whereas association cortices are less clearly delineated
(Kostovic and Rakic 1980). These cellular-level processes are
believed to establish the fundamental anatomical organization
for the initial function of neural circuits (Tau and Peterson
2010). Thus, our findings at the systems level are consistent
with these cellular-level speculations. Notably, the variability
value of the subcortical system was the second highest in very
preterm babies but rapidly decreased with age (Figs. 4A and B),
possibly because the subcortical areas undergo a period of
extensive development during the prenatal period, strengthen-
ing their intra- and to-cortical connections (Tau and Peterson
2010; Thomason et al. 2015; Toulmin et al. 2015). Additionally,
matured myelin is first detected in subcortical regions between
20 and 28 weeks of gestation, followed by cortical regions
including the precentral and post-central gyri and the optic
radiation at 35 weeks of gestation (Iai et al. 1997). Collectively,
our studies provide critical evidence for the medial-to-lateral
and the primary-to-higher-order maturation trajectories during
the third trimester from the perspective of inter-subject con-
nectivity variability.

Distance Constraints on Individual Variability
Enhanced with Development

Human brain networks exhibit a complex architecture with
highly specialized local areas and sparsely linked distant areas
for efficient information segregation and integration processing
(Achard and Bullmore 2007; Bullmore and Sporns 2012; van den
Heuvel and Sporns 2013; Liao, Vasilakos et al. 2017). Functional
variability in neonates and adults positively correlates with the
degree of long-range connectivity but negatively correlates
with local connectivity (Mueller et al. 2013; Wang and Liu 2014).
Thus, the relatively uniform and rich local connectivity may be
associated with limited functional variability, whereas high
functional variability may be induced by the emergence of dis-
tant connectivity for global information integration. Indeed, we
observed negative correlations between variability values and
both the numbers/strength of short- to middle-range connec-
tions, as well as positive correlations between variability values
and the number/strength of long-range connections. This find-
ing implied that the distance constraint on inter-subject variabil-
ity is established before birth. Moreover, short- to middle- range
connections predominantly develop during the third trimester
(Cao, He et al. 2017), which may account for the rapid decrease
in individual variability observed in the present study.

It is important to note that the strength of both the negative
and positive correlations between variability and short- and
long-range connectivity significantly improved with age during
the third trimester. Previously, these distance effects on brain

connectivity have been reported in infants aged 0–2 years (Gao
et al. 2014). During the prenatal period, the brain’s functional
networks are relatively immature (Fransson et al. 2011; Smyser
et al. 2011), and distance-dependent connectivity in brain net-
works rapidly develops with age (Cao et al. 2016; Cao, He et al.
2017; Toth et al. 2017). Specifically, we observed that the nega-
tive correlation between variability and short-range connectiv-
ity was rapidly enhanced after 36 weeks. Moreover, the turning
point for the positive correlation between variability and long-
range connectivity with age was also observed at approxi-
mately 36 weeks. This result is supported by a previous MRI
study in which the proportion of myelinated whiter matter in
the whole brain increased from 1% to 5% between 36 and 40
gestational weeks (Hüppi et al. 1998). Based on these previous
findings and our results, a gestational age of 36 weeks could be
considered an important turning point during the prenatal
development. Taken together, the increased distance con-
straint on inter-subject connectivity variability may result from
the improved functional status of these connections.

Limitations, Technical Considerations, and Future
Directions

Several issues need to be addressed. First, preterm birth repre-
sents a major risk factor for the potentially adverse development
of functional connectivity (Smyser et al. 2010; Kwon et al. 2015;
Cao, Huang et al. 2017). Currently, examination of preterm-born
babies is widely used to depict developmental trajectories of the
human brain during the third trimester (Fransson et al. 2007;
Doria et al. 2010; Smyser et al. 2010). Considering that the dra-
matic developmental factor during the prenatal phase is very
likely to exceed more the subtle preterm effects (Bourgeois et al.
1989; Kostovic 1990), we cannot exclude the possibility that the
observed variability in development may be affected by exposure
to the extrauterine environment. Our results could be further
confirmed using the rapidly advancing fetal imaging technolo-
gies, which can depict longitudinal brain developmental trajecto-
ries in utero (van den Heuvel and Thomason 2016). Second,
considering the potential bias of head motion on our results, we
processed the R-fMRI data with Friston’s 24-parameter regression
(Friston et al. 1996) to reduce the confounding influence of
motion artifacts. Moreover, our main findings exhibited little
change under different head-motion exclusion thresholds and
correction approaches. Thus, our results in variability were not
attributable to head-motion artifacts. Third, given that global sig-
nal removal is still a debatable practice for physiological interpre-
tations (Murphy and Fox 2017), we did not regress out the global
signal in our main analyses. The validation analysis using the
preprocessed data with global signal removal yielded similar age-
related decreases in individual variability in all regions except for
the visual cortex (Fig. S3E). Specifically, global signal regression
has been shown to partly reduce functional correlations involv-
ing visual regions (Murphy et al. 2009; Chai et al. 2012; Cao, He
et al. 2017). Previous R-fMRI studies on adults have shown that
the use of different acquisition parameters and preprocessing
methods affect the measurement of individual differences (Airan
et al. 2016; Geerligs et al. 2017), further studies are required to
explore whether these factors jointly affect the inter-individual
differences in infants. Fourth, the brain parcellation that we used
for functional system variability analysis was derived from an
adult system parcellation using approximately 1 000 subjects
(Yeo et al. 2011) because of the lack of a specific infant system
parcellation. Although this approach has been widely used in
studies of early brain development (Gao et al. 2014, 2015), we do
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recognize that future studies aiming to depict infant-specific sys-
tem parcellation are urgently needed because of the immature
functional and structural properties of infants compared with
adults. Fifth, the different sleep states among infants may intro-
duce bias in the findings regarding individual variability (Cao,
Huang et al. 2017; Gao et al. 2017). In the present study, all infants
were well-fed and imaged as soon as possible after they fell
asleep; we assumed that this procedure would largely ensure lit-
tle variation in sleep states among the infants. Finally, an
increasingly common view is that mapping functional signals
onto cortical surfaces to leverage surface-based registration and
smoothing may lead to significantly better studies of brain func-
tional connectivity. Currently, some well-developed surface-
based registration pipelines are available for adults and infants at
term age (Glasser et al. 2013; Li et al. 2015). However, surface-
based studies on prenatal brain development remained rare
because of the difficulty in image segmentation caused by the
immature anatomical structure.

In conclusion, our findings highlight the developmental pat-
terns of individual variability in the functional connectivity
architecture during the third trimester. Future evaluations of
the relationship between individual variability in the functional
connectivity architecture during the prenatal development and
individual cognition and behavioral differences later in life are
still needed.
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goal-directed behavior: anatomo-functional considerations.
Int J Psychophysiol. 19:85–102.

Kostovic I, Rakic P. 1980. Cytology and time of origin of inter-
stitial neurons in the white matter in infant and adult
human and monkey telencephalon. J Neurocytol. 9:
219–242.

Kostovic I, Rakic P. 1990. Developmental history of the transient
subplate zone in the visual and somatosensory cortex of the
macaque monkey and human brain. J Comp Neurol. 297:
441–470.

Kwon SH, Scheinost D, Lacadie C, Sze G, Schneider KC, Dai F,
Constable RT, Ment LR. 2015. Adaptive mechanisms of
developing brain: cerebral lateralization in the prematurely-
born. Neuroimage. 108:144–150.

Lee SJ, Steiner RJ, Luo S, Neale MC, Styner M, Zhu H, Gilmore JH.
2015. Quantitative tract-based white matter heritability in
twin neonates. Neuroimage. 111:123–135.

Li G, Nie J, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D.
2014. Mapping longitudinal hemispheric structural asymme-
tries of the human cerebral cortex from birth to 2 years of
age. Cereb Cortex. 24:1289–1300.

Li G, Wang L, Shi F, Gilmore JH, Lin W, Shen D. 2015.
Construction of 4D high-definition cortical surface atlases of
infants: Methods and applications. Med Image Anal. 25:22–36.

Liao X, Cao M, Xia M, He Y. 2017. Individual differences and
time-varying features of modular brain architecture.
Neuroimage. 152:94–107.

Liao X, Vasilakos AV, He Y. 2017. Small-world human brain net-
works: perspectives and challenges. Neurosci Biobehav Rev.
77:286–300.

Liu J, Liao XH, Xia MR, He Y. 2018. Chronnectome fingerprinting:
identifying individuals and predicting higher cognitive func-
tions using dynamic brain connectivity patterns. Hum Brain
Mapp. 39:902–915.

Development and Emergence of Individual Variability in the Functional Connectivity Architecture Xu et al. | 13
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/advance-article-abstract/doi/10.1093/cercor/bhy302/5232539 by Beijing N
orm

al U
niversity Library user on 29 D

ecem
ber 2018

10.1016/j.neuroimage.2018.06.069
10.1016/j.neuroimage.2018.06.069


Liu J, Xia M, Dai Z, Wang X, Liao X, Bi Y, He Y. 2017. Intrinsic
brain hub connectivity underlies individual differences in
spatial working memory. Cereb Cortex. 27:5496–5508.

Makropoulos A, Aljabar P, Wright R, Huning B, Merchant N,
Arichi T, Tusor N, Hajnal JV, Edwards AD, Counsell SJ, et al.
2016. Regional growth and atlasing of the developing human
brain. Neuroimage. 125:456–478.

Molliver ME, Kostovic I, van der Loos H. 1973. The development
of synapses in cerebral cortex of the human fetus. Brain
Res. 50:403–407.

Mrzljak L, Uylings HB, Kostovic I, Van Eden CG. 1988. Prenatal
development of neurons in the human prefrontal cortex: I.
A qualitative Golgi study. J Comp Neurol. 271:355–386.

Mrzljak L, Uylings HB, Kostovic I, van Eden CG. 1992. Prenatal
development of neurons in the human prefrontal cortex. II.
A quantitative Golgi study. J Comp Neurol. 316:485–496.

Mrzljak L, Uylings HB, Van Eden GG, Judáš M. 1991. Neuronal
development in human prefrontal cortex in prenatal and
postnatal stages. Prog Brain Res. 85:185–222. Elsevier.

Mueller S, Wang D, Fox MD, Pan R, Lu J, Li K, Sun W, Buckner
RL, Liu H. 2015. Reliability correction for functional connec-
tivity: theory and implementation. Hum Brain Mapp. 36:
4664–4680.

Mueller S, Wang D, Fox MD, Yeo BT, Sepulcre J, Sabuncu MR,
Shafee R, Lu J, Liu H. 2013. Individual variability in func-
tional connectivity architecture of the human brain.
Neuron. 77:586–595.

Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA.
2009. The impact of global signal regression on resting state
correlations: are anti-correlated networks introduced?
Neuroimage. 44:893–905.

Murphy K, Fox MD. 2017. Towards a consensus regarding global
signal regression for resting state functional connectivity
MRI. Neuroimage. 154:169–173.

Ouyang M, Liu P, Jeon T, Chalak L, Heyne R, Rollins NK, Licht DJ,
Detre JA, Roberts T, Lu H, Huang H, 2017. Heterogeneous
increases of regional cerebral blood flow during preterm
brain development: Preliminary assessment with pseudo-
continuous arterial spin labeled perfusion MRI. Neuroimage.
147:233–242.

Petanjek Z, Judas M, Simic G, Rasin MR, Uylings HB, Rakic P,
Kostovic I. 2011. Extraordinary neoteny of synaptic spines in
the human prefrontal cortex. Proc Natl Acad Sci USA. 108:
13281–13286.

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE.
2012. Spurious but systematic correlations in functional
connectivity MRI networks arise from subject motion.
Neuroimage. 59:2142–2154.

Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL,
Petersen SE. 2014. Methods to detect, characterize, and
remove motion artifact in resting state fMRI. Neuroimage.
84:320–341.

Power JD, Plitt M, Laumann TO, Martin A. 2017. Sources and
implications of whole-brain fMRI signals in humans.
Neuroimage. 146:609–625.

Qiu A, Mori S, Miller MI. 2015. Diffusion tensor imaging for
understanding brain development in early life. Annu Rev
Psychol. 66:853–876.

Rajkowska G, Goldman-Rakic PS. 1995. Cytoarchitectonic defini-
tion of prefrontal areas in the normal human cortex: II.
Variability in locations of areas 9 and 46 and relationship to
the Talairach Coordinate System. Cereb Cortex. 5:323–337.

Rakic P. 1972. Mode of cell migration to the superficial layers of
fetal monkey neocortex. J Comp Neurol. 145:61–83.

Rakic P. 1995. Radial versus tangential migration of neuronal
clones in the developing cerebral cortex. Proc Natl Acad Sci
USA. 92:11323–11327.

Rifkin-Graboi A, Kong L, Sim LW, Sanmugam S, Broekman BF,
Chen H, Wong E, Kwek K, Saw SM, Chong YS, et al. 2015.
Maternal sensitivity, infant limbic structure volume and
functional connectivity: a preliminary study. Transl Psychiatry.
5:e668.

Sadeghi N, Gilmore JH, Gerig G. 2017. Twin-singleton develop-
mental study of brain white matter anatomy. Hum Brain
Mapp. 38:1009–1024.

Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J,
Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, et al.
2013. An improved framework for confound regression and fil-
tering for control of motion artifact in the preprocessing of
resting-state functional connectivity data. Neuroimage. 64:
240–256.

Serag A, Aljabar P, Ball G, Counsell SJ, Boardman JP, Rutherford
MA, Edwards AD, Hajnal JV, Rueckert D. 2012. Construction of
a consistent high-definition spatio-temporal atlas of the devel-
oping brain using adaptive kernel regression. Neuroimage. 59:
2255–2265.

Shen XL, Finn ES, Scheinost D, Rosenberg MD, Chun MM,
Papademetris X, Constable RT. 2017. Using connectome-
based predictive modeling to predict individual behavior
from brain connectivity. Nat Protoc. 12:506–518.

Sidman RL, Rakic P. 1973. Neuronal migration, with special refer-
ence to developing human brain: a review. Brain Res. 62:1–35.

Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M,
Miller KL, Nichols TE, Robinson EC, Salimi-Khorshidi G,
Woolrich MW, et al. 2013. Functional connectomics from
resting-state fMRI. Trends Cogn Sci. 17:666–682.

Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ,
Neil JJ. 2010. Longitudinal analysis of neural network devel-
opment in preterm infants. Cereb Cortex. 20:2852–2862.

Smyser CD, Snyder AZ, Neil JJ. 2011. Functional connectivity
MRI in infants: exploration of the functional organization of
the developing brain. Neuroimage. 56:1437–1452.

Tau GZ, Peterson BS. 2010. Normal development of brain cir-
cuits. Neuropsychopharmacology. 35:147–168.

Thomason ME, Dassanayake MT, Shen S, Katkuri Y, Alexis M,
Anderson AL, Yeo L, Mody S, Hernandez-Andrade E, Hassan
SS, et al. 2013. Cross-hemispheric functional connectivity in
the human fetal brain. Sci Transl Med. 5:173ra124.

Thomason ME, Grove LE, Lozon TA Jr., Vila AM, Ye Y, Nye MJ,
Manning JH, Pappas A, Hernandez-Andrade E, Yeo L, et al.
2015. Age-related increases in long-range connectivity in
fetal functional neural connectivity networks in utero. Dev
Cogn Neurosci. 11:96–104.

Toth B, Urban G, Haden GP, Mark M, Torok M, Stam CJ, Winkler I.
2017. Large-scale network organization of EEG functional con-
nectivity in newborn infants. Hum Brain Mapp. 38:4019–4033.

Toulmin H, Beckmann CF, O’Muircheartaigh J, Ball G, Nongena
P, Makropoulos A, Ederies A, Counsell SJ, Kennea N, Arichi
T, et al. 2015. Specialization and integration of functional
thalamocortical connectivity in the human infant. Proc Natl
Acad Sci USA. 112:6485–6490.

van den Heuvel MP, Sporns O. 2013. Network hubs in the
human brain. Trends Cogn Sci. 17:683–696.

van den Heuvel MI, Thomason ME. 2016. Functional connectiv-
ity of the human brain in utero. Trends Cogn Sci. 20:931–939.

Van Dijk KR, Sabuncu MR, Buckner RL. 2012. The influence of
head motion on intrinsic functional connectivity MRI.
Neuroimage. 59:431–438.

14 | Cerebral Cortex

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhy302/5232539 by Beijing N

orm
al U

niversity Library user on 29 D
ecem

ber 2018



Wang D, Liu H. 2014. Functional connectivity architecture of the
human brain: not all the same. Neuroscientist. 20:432–438.

Xia M, Wang J, He Y. 2013. BrainNet viewer: a network visuali-
zation tool for human brain connectomics. PLoS One. 8:
e68910.

Yan CG, Craddock RC, He Y, Milham MP. 2013. Addressing head
motion dependencies for small-world topologies in func-
tional connectomics. Front Hum Neurosci. 7:910.

Yan C-G, Zang Y-F. 2010. DPARSF: a MATLAB toolbox for
“Pipeline” data analysis of resting-state fMRI. Front Syst
Neurosci. 4:13.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D,
Hollinshead M, Roffman JL, Smoller JW, Zollei L, Polimeni JR,
et al. 2011. The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J Neurophysiol.
106:1125–1165.

Yu Q, Ouyang A, Chalak L, Jeon T, Chia J, Mishra V, Sivarajan M,
Jackson G, Rollins N, Liu S, et al. 2016. Structural development
of human fetal and preterm brain cortical plate based on
population-averaged templates. Cereb Cortex. 26:4381–4391.

Zikopoulos B, Barbas H. 2010. Changes in prefrontal axons may
disrupt the network in autism. J Neurosci. 30:14595–14609.

Development and Emergence of Individual Variability in the Functional Connectivity Architecture Xu et al. | 15
D

ow
nloaded from

 https://academ
ic.oup.com

/cercor/advance-article-abstract/doi/10.1093/cercor/bhy302/5232539 by Beijing N
orm

al U
niversity Library user on 29 D

ecem
ber 2018


	Development and Emergence of Individual Variability in the Functional Connectivity Architecture of the Preterm Human Brain
	Introduction
	Materials and Methods
	Participants
	Data Acquisition
	Image Preprocessing
	Individual Functional Connectivity Matrices
	Individual Variability of Functional Connectivity
	Individual Variability and Connection Distance
	Statistical Analysis
	Validation Analysis
	Reproducibility Analysis

	Results
	Development of Individual Variability of Functional Connectivity
	Sliding Window Analysis
	Group-based statistical analysis

	Non-uniform Development of Individual Variability across Brain Systems
	Sliding Window Analysis
	Group-based Statistical Analysis

	Relationship between Individual Variability and Distance-Dependent Connectivity
	Validation Results
	Reproducibility Results

	Discussion
	Spatial Distribution of Individual Variability of the Prenatal Brains
	Age-related Changes in Individual Variability of Functional Networks during the Prenatal Phase
	Distance Constraints on Individual Variability Enhanced with Development
	Limitations, Technical Considerations, and Future Directions

	Supplementary Material
	Funding
	Notes
	References


