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Abstract: Lifespan is a dynamic process with remarkable changes in brain structure and function. Pre-
vious neuroimaging studies have indicated age-related microstructural changes in specific white matter
tracts during development and aging. However, the age-related alterations in the topological architec-
ture of the white matter structural connectome across the human lifespan remain largely unknown.
Here, a cohort of 113 healthy individuals (ages 9–85) with both diffusion and structural MRI acquisi-
tions were examined. For each participant, the high-resolution white matter structural networks were
constructed by deterministic fiber tractography among 1024 parcellation units and were quantified
with graph theoretical analyses. The global network properties, including network strength, cost, topo-
logical efficiency, and robustness, followed an inverted U-shaped trajectory with a peak age around
the third decade. The brain areas with the most significantly nonlinear changes were located in
the prefrontal and temporal cortices. Different brain regions exhibited heterogeneous trajectories: the

Additional Supporting Information may be found in the online
version of this article.

Conflict of interest: The authors report no biomedical financial
interests or potential conflicts of interest.
Contract grant sponsor: 973 program; Contract grant number:
2013CB837300 (to N.S.); Contract grant sponsor: Natural Science
Foundation of China; Contract grant numbers: 81471732, (to N.S.),
31221003 and 81030028 (to Y.H.), 81201122 (to H.J.N.), 81171409
and 81220108014 (to X.N.Z.); Contract grant sponsor: Beijing New
Medical Discipline Based Group; Contract grant number:
100270569, (to N.S.); Contract grant sponsor: Fundamental
Research Funds for the Central Universities; Contract grant num-
ber: 2013YB28 (to N.S.); Contract grant sponsor: National Science
Fund for Distinguished Young Scholars of China; Contract grant

number: 81225012, (to Y.H.); Contract grant sponsor: Key
Research Program and the Hundred Talents Program of the
Chinese Academy of Sciences; Contract grant number: KSZD-EW-
TZ-002 (to X.N.Z.)

*Correspondence to: Ni Shu, State Key Laboratory of Cognitive
Neuroscience and Learning & IDG/McGovern Institute for Brain
Research, Beijing Normal University, Beijing, China.
E-mail: nshu@bnu.edu.cn

Received for publication 29 December 2014; Revised 8 May 2015;
Accepted 1 June 2015.

DOI: 10.1002/hbm.22877
Published online 14 July 2015 in Wiley Online Library
(wileyonlinelibrary.com).

r Human Brain Mapping 36:3777–3792 (2015) r

VC 2015 Wiley Periodicals, Inc.



posterior cingulate and lateral temporal cortices displayed prolonged maturation/degeneration com-
pared with the prefrontal cortices. Rich-club organization was evident across the lifespan, whereas hub
integration decreased linearly with age, especially accompanied by the loss of frontal hubs and their
connections. Additionally, age-related changes in structural connections were predominantly located
within and between the prefrontal and temporal modules. Finally, based on the graph metrics of struc-
tural connectome, accurate predictions of individual age were obtained (r 5 0.77). Together, the data
indicated a dynamic topological organization of the brain structural connectome across human life-
span, which may provide possible structural substrates underlying functional and cognitive changes
with age. Hum Brain Mapp 36:3777–3792, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Lifespan is a dynamic process with significant changes
in brain structures and functions (Craik and Bialystok,
2006; Sowell et al., 2004). Advanced neuroimaging techni-
ques have allowed for the examination of these age-related
changes in vivo (Bartzokis et al., 2012; Fair et al., 2008;
Shaw et al., 2008). Longitudinal structural MRI studies
have demonstrated increasing white matter (WM) volumes
and inverted U-shaped trajectories of gray matter (GM)
volumes in developing children and adolescents (Giedd
et al., 1999). After maturation, both cerebral WM and GM
exhibit degenerative processes with healthy aging (Mad-
den et al., 2012; Sowell et al., 2003).

With the technique of diffusion tensor imaging (DTI),
the microstructural changes of cerebral WM under various
conditions can be quantified (Basser et al., 1994). When fit-
ted with age, the integrity of most major WM tracts exhib-
ited inverted U-shaped trajectories across lifespan, and the
peak occurred at ages varying from 20 to 40 years old
(Hasan et al., 2009a,b; Kochunov et al., 2012; Lebel et al.,
2012; Li et al., 2013; Yeatman et al., 2014). These changes
could be attributable to increases in axon diameter, myeli-
nation, synaptic pruning, and cell shrinkage (Bartzokis
et al., 2012; Morrison and Hof, 1997; Terry et al., 1987).
Besides DTI, other imaging techniques have also revealed
the inverted U-shaped curve over lifespan. Specifically, the
changes of myelin sheath in several fiber bundles have
been found to follow different Poisson trajectories by mag-
netic susceptibility map (Li et al., 2014). However, most
previous studies have focused on the lifespan trajectory of
specific WM tracts. Age-related changes in the interactions
between different brain regions, which can be studied at
system level by network analysis, remain largely
unknown. Describing the brain network and its trajectory
across the human lifespan is a fundamental goal of neuro-
science, the importance of which was recently underscored
by the establishment of the NIH Human Connectome Pro-
ject (Sporns et al., 2005; Van Essen et al., 2013).

Recent works have suggested that large-scale WM struc-
tural networks can be mapped from diffusion MRI tractog-
raphy and analyzed with graph-theoretical approaches,

that is, the so-called structural connectome (Bullmore and
Sporns, 2009). Using connectome-based approaches, many
studies have shown that human WM networks exhibit
many nontrivial topological properties, such as small-
worldness, modularity, and rich-club organization (Bull-
more and Sporns, 2009; van den Heuvel and Sporns,
2011). Specifically, several recent studies have demon-
strated that the topological efficiency of WM networks
increases linearly during development (Collin and van den
Heuvel, 2013; Hagmann et al., 2010; Huang et al., 2013;
Yap et al., 2013) and decreases during normal aging (Gong
et al., 2009), providing further insights into the cognitive
decline of this process (Wen et al., 2011). In a recent
review paper, Collin and van den Heuvel (2013) suggested
that the changes of connectome organization throughout
the lifespan should follow an inverted U-shaped pattern.
However, seldom studies have validated the hypothesis
and little is known about the age-related alterations of the
topological organization of human WM networks across
the lifespan.

In this study, we used diffusion MRI deterministic trac-
tography and graph-theoretical approaches to examine
age-related alterations in the topology of WM structural
networks in a cohort of healthy subjects ranging from 9 to
85 years old. At a system level, we aimed to chart the age
trajectories of human WM networks from both global and
regional perspectives, to provide a complete view of the
topological changes of the structural connectome over age.
These studies are important for elucidating the path by
which optimal healthy development and aging are pro-
moted and distinguishing early brain changes in neuro-
psychiatric diseases from normal development and aging
processes.

MATERIALS AND METHODS

Participants

This study included 113 healthy, right-handed subjects
(age range, 9 to 85 years; mean age, 38.2 6 21.4 years; 50
females) from the NKI/Rockland Sample (NKI-RS), which
is provided by the Nathan Kline Institute (NKI, NY)
and publicly available at the International Neuroimaging
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Data-sharing Initiative (INDI) online (http://fcon_1000.
projects.nitrc.org/indi/pro/nki.html) (Nooner et al., 2012).
The NKI Institutional Review Board approved the research
protocol to collect and share the data. A detailed description
of the subjects’ INDI database identifiers and corresponding
demographic information is provided in a previous study
(Cao et al., 2014). The gender distributions in the different
age groups are presented in Supporting Information
Figure S1.

Data Acquisition

All participants were scanned with a Siemens Trio 3.0
Tesla MRI scanner. Among other imaging sequences,
depending on the indication, a high-resolution 3D
T1-weighted image was acquired using a magnetization
prepared rapid gradient echo sequence with 1 mm iso-
tropic voxels [repetition time (TR)/echo time (TE) 5 2500/
3.5 ms, inversion time 5 1200 ms, field of view (FOV)
5 256 3 256 mm2, 192 slices]. The diffusion MRI scan was
acquired with conventional acquisition parameters with
2 mm isotropic voxels and 64 gradient directions
(b 5 1000 s/mm2, 12 nondiffusion b 5 0 images, TR/
TE 5 10,000/91 ms, FOV 5 256 3 256 mm2, 58 slices). Fur-
ther details regarding the acquisition protocol of the study
images are available on the INDI website.

Data Preprocessing

GM/WM segmentation

GM and WM segmentation was implemented by SPM8
software (http://www.fil.ion.ucl.ac.uk/spm/software/
spm8). First, individual T1-weighted structural images
were coregistered to the b 5 0 images using a linear trans-
formation. The transformed structural images were then
segmented into GM, WM, and cerebrospinal fluid (CSF)
by a unified segmentation algorithm (Ashburner and Fris-
ton, 2005). The brain size for each participant was obtained
by computing the total GM, WM, and CSF volumes.

DTI data preprocessing

The preprocessing included eddy current and head
motion correction, estimation of the diffusion tensor and
calculation of the fractional anisotropy (FA). Briefly, the
eddy current distortions and motion artifacts in the DTI
data were corrected by applying an affine alignment of
each diffusion-weighted image to the b 5 0 image. Accord-
ingly, the b-matrix was reoriented based on the transfor-
mation matrix (Leemans and Jones, 2009). After that, the
diffusion tensor elements were estimated (Basser et al.,
1994) and the corresponding FA value of each voxel was
calculated (Basser and Pierpaoli, 1996). All preprocessing
procedures of the DTI data were performed with the FDT
toolbox in FSL (http://www.fmrib.ox.ac.uk/fsl).

Network Construction

Nodes and edges are the two fundamental elements of a
network. In this study, we constructed individual WM
structural networks using the following procedures.

Network node definition

The Automated Anatomical Labeling (AAL) template
(Tzourio-Mazoyer et al., 2002) was subdivided into 1024
regions with equal size (H-1024) to define the network
nodes (Zalesky et al., 2010). The procedure has been previ-
ously described (Bai et al., 2012; Cao et al., 2013; Zalesky
et al., 2010) and was performed using SPM8 software
(http://www.fil.ion.ucl.ac.uk/spm/software/spm8). Briefly,
individual T1-weighted images were coregistered to the
b 5 0 images in the DTI space. The transformed T1 images
were then nonlinearly transformed into the ICBM152 T1
template in the Montreal Neurological Institute (MNI)
space. The inverse transformations were used to warp the
H-1024 template from the MNI space to the DTI native
space. Discrete labeling values were preserved using a
nearest-neighbor interpolation method. Using this proce-
dure, we obtained 1024 cortical and subcortical regions,
each representing a node of the brain network (Fig. 1).

WM tractography

Diffusion tensor tractography was implemented with DTI-
studio software (https://www.dtistudio.org/), using the "fiber
assignment by continuous tracking (FACT)" method (Mori
et al., 1999). All of the tracts in the dataset were computed by
seeding each voxel with an FA that was greater than 0.2. The
tractography was terminated if it turned at an angle greater
than 45 degrees or reached a voxel with an FA of less than 0.2
(Mori et al., 1999). For each subject, tens of thousands of stream-
lines were generated to etch out all of the major WM tracts.

Network edge definition

For the network edges, two regions were considered struc-
turally connected if there were at least one fiber streamline
with two end-points that were located in these two regions
(Bai et al., 2012; Shu et al., 2011; Zalesky et al., 2011). Specifi-
cally, we defined the number of interconnecting streamlines
ended in two regions as the weights of the network edges.
As a result, we constructed the H-1024 fiber number
(FN)-weighted WM network for each participant, which was
represented by a symmetric 1024 3 1024 matrix (Fig. 1).

Network Analysis

Small-world properties

To characterize the topological organization of WM
structural networks, several following graph metrics were
assessed: network strength (Sp), cost, global efficiency
(Eglob), local efficiency (Eloc), shortest path length (Lp),
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clustering coefficient (Cp), small-world parameters (k, c,
and r), and robustness (Achard et al., 2006; Rubinov and
Sporns, 2010; Watts and Strogatz, 1998). For regional char-
acteristics, we considered the nodal efficiency (Achard and
Bullmore, 2007). See the Supporting Informations for
detailed definitions of these network metrics. All network
analyses were performed using in-house GRETNA soft-
ware (http://www.nitrc.org/projects/gretna/) and visual-
ized using BrainNet Viewer software (http://www.nitrc.
org/projects/bnv/) (Xia et al., 2013).

Rich-club organization

A “rich-club” in networks is defined as the phenomenon
that the high-degree nodes of a network tend to be more
densely connected among themselves than expected by
chance (Colizza et al., 2006; McAuley et al., 2007). The
brain’s rich-club has been described previously (Collin
et al., 2013; van den Heuvel et al., 2012; van den Heuvel and
Sporns, 2011). For the weighted networks, the rich-club coef-
ficient (RC) /wðkÞ is given by (Opsahl et al., 2008):

/wðkÞ ¼ W>kXE>k

l¼1
wranked

l

with E>k denoting the subset of edges between the hub
nodes with a strength> k, W>k denoting the total sum

weights of this subset, and Wranked denoting the ranked
collection of weights in the network, with weights W

representing the number of fiber streamlines of the edges.
/ðkÞ was normalized relative to the /randomðkÞ of a set of
comparable random networks (n 5 500) of equal size and
degree sequence, giving a normalized RC /normðkÞ ¼ /ðkÞ=
/randomðkÞ (Colizza et al., 2006; McAuley et al., 2007). Here,
the threshold k is defined as the mean plus one standard
deviation (mean1std) of nodal strength across regions. On
the basis of the categorization of the nodes of the network
into hub and non-hub regions, edges of the network were
classified onto rich-club connections, linking hub nodes to
hub nodes; feeder connections, linking hub nodes to non-
hub nodes and local connections linking between non-hub
nodes.

Modularity

The modularity Q(p) for a given partition p of the brain
network is defined as (Newman and Girvan, 2004):

QðpÞ ¼
XNm

s¼1

ls

L
2

ds

2L

� �2
" #

where Nm is the number of modules, L is the number of
connections in the network, ls is the number of connections
between nodes in module s, and ds is the sum of the

Figure 1.

The flowchart of WM network construction by diffusion MRI. (1)

The coregistration of a T1-weighted image (A) to b 5 0 image (B)

for each subject. (2) The nonlinear registration from the individual

T1-weighted image in DTI space to the ICBM152 T1 template in

the MNI space (D), resulting in a nonlinear transformation (T). (3)

The application of the inverse transformation (T21) to the H-1024

template in the MNI space (E), resulting in subject-specific parcel-

lation in the DTI native space (F). All registrations were imple-

mented in the SPM8 package. (4) The reconstruction of the

whole-brain WM fibers (C) was performed using deterministic

tractography in DTI-studio. (5) The weighted networks of each

subject (G) were created by computing the number of the stream-

lines that connected each pair of brain regions. The matrix and 3D

representation (axial view) of the WM structural network of a

representative healthy subject are shown in the right panel. The

nodes are located according to their centroid stereotaxic coordi-

nates, and the edges are coded according to their connection

weights. The network was visualized using BrainNet Viewer soft-

ware (http://www.nitrc.org/projects/bnv/). See the Methods and

Materials for further details. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com]
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degrees of the nodes in module s. The modularity index
quantifies the difference between the number of intramod-
ule links of actual network and that of random network in
which connections are linked at random. The aim of this
module identification process is to find a specific partition
(p) which yields the largest network modularity, Q(p). Sev-
eral optimization algorithms are currently available with
different advantages, here, we adopted a simulated
annealing approach (Newman, 2006).

Statistical Analysis

Age effects

To determine whether age effects on network metrics
were linear or nonlinear, both the linear regression model
and the Poisson model were fitted separately after regress-
ing out the effects of gender and brain size (Yan et al.,
2011). The model for detecting age-related linear changes
was formulated as follows:

Y ¼ b01b13age

and the Poisson model for detecting age-related nonlinear
changes was formulated as:

Y ¼ w13age3e2w23age1w3

Each fitting parameter of the two models, as well as the
fit as a whole, was assessed for significance using F-tests
(Lebel et al., 2012; Yeatman et al., 2014). Then, the Akaike’s
information criterion (AIC) (Akaike, 1974; Hurvich and
Tsai, 1989) was used to determine the best-fitting model.
AIC reflects a trade-off between the likelihood and com-
plexity (i.e., number of parameters) of a model. The regres-
sion model with the lowest AIC value was chosen as the
best model to fit the data. Identification of age of peaks
(AoPs) or troughs along the developmental trajectory is
critical to the study of timing differences in maturation/
degeneration across brain regions. The AoP was calculated
using the derivative of the Poisson curve as follows, in
which w2 is the second parameter from the above Poisson
model:

AoP ¼ 1=w2

Gender Effects

To explore gender-related changes, we adopted the gen-
eral linear model and focused on the positive (fema-
le>male) and negative (male> female) contrasts by
treating gender as a predictor and age and brain size as
covariates. To test for age trajectory differences, separate
fits were performed and the fitting parameters were com-
pared between males and females. If the fitting parameters
were not significantly different, genders were combined
for the final fitting.

Support Vector Regression Analysis

For age prediction, we used support vector regression
(SVR) with a linear kernel function and the default settings
of C 5 1 and epsilon 5 0.001 in the LIBSVM Toolbox
(http://www.csie.ntu.edu.tw/�cjlin/libsvm/) (Dosenbach
et al., 2010; Iuculano et al., 2014). Leave-one-out cross-vali-
dation was used to evaluate the SVR model. Each subject
was designated the test subject in turns while the remaining
ones were used to train the SVR predictor. The decision
function derived from the training subjects was then used to
make a prediction about the test subject’s age. Pearson cor-
relation coefficient between the actual and predicted ages
was calculated to assess the prediction accuracy. All global
and local network metrics, including the network strength,
cost, global and local efficiency, small-world parameters,
RC, modularity, robustness, anatomical distance of the con-
nections, and nodal efficiency were used as features for the
SVR predictor. Permutation test was implemented to obtain
the significance of prediction accuracy by retraining each
prediction model 10,000 times after randomly permuting
the age labels. The P-value was calculated by counting the
number of permutations achieving higher Pearson correla-
tion coefficient than the nonpermutated data.

Reproducibility Analysis

Effects of brain parcellation

In addition to the high-resolution parcellation, we also
used the low-resolution AAL (L-AAL) template (Tzourio-
Mazoyer et al., 2002) with 90 brain regions to define net-
work nodes. For each participant, the L-AAL FN-weighted
WM network was constructed and analyzed with the simi-
lar procedure that was performed in the H-1024 network.
Statistical analyses were used for both global and regional
network properties to investigate the effects of age on the
topological organization of L-AAL WM networks.

Effects of curve fitting approaches

In addition to the Poisson model, we also used a non-
parametric local smoothing spline model to estimate the
age-related trajectory of network metrics (Fjell et al., 2010).
The estimation of the smoothing spline model was per-
formed in R software (http://www.r-project.org/). The
smoothness parameter of cubic smoothing spline functions
was optimized by minimizing the generalized cross-
validation criterion (Ziegler et al., 2012).

RESULTS

Age-Related Changes in Small-World and

Network Efficiency

First, we observed prominent small-world organization
in WM networks across the lifespan: for each subject, the
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WM network has similar characteristic path length and
higher clustering compared with the matched random net-
works. Regarding the efficiency metrics, both global and
local efficiency exhibited an inverted U-shaped trajectory
with age (Eglob: r2 5 0.34, P< 1025; Eloc: r2 5 0.24, P< 1025)
(Table 1 and Fig. 2A). All small-world properties also
exhibited a nonlinear trajectory with age, including the Lp

(r2 5 0.34, P< 1025), Cp (r2 5 0.17, P 5 4 3 1025), gamma
(r2 5 0.08, P 5 0.02), and sigma (r2 5 0.09, P 5 0.005) (Table
1 and Fig. 2B). See Table 1 for additional details of other
network metrics. Most global network metrics peaked at
approximately the third decade, suggesting an important
time point of maturation and degeneration of the human
brain WM network.

For nodal efficiency, 212 of 1024 regions exhibited nonlin-
ear changes with age (P< 0.05, Bonferroni correction), and
the most prominent alterations were located primarily in the
bilateral prefrontal cortices (superior and middle frontal
gyri, anterior cingulate cortex, and precentral gyrus), supe-
rior and middle temporal gyri, putamen, and caudate
nucleus (Fig. 3A). The peak ages for nodal efficiency varied
across areas, from 20 years for the superior and middle fron-
tal gyri to 40 years for the bilateral lingual gyrus, posterior
cingulate cortex, lateral parietal, and temporal lobe (Fig. 3B).
Notably, most of the regions with late age of peaks were
within the default-mode network (DMN) (Raichle et al.,
2001), suggesting that the prefrontal cortex reaches matura-
tion/degeneration earlier than the posteromedial cortex and
lateral temporal regions of the DMN. Importantly, homo-
topic regions exhibited similar age-related trajectories of
nodal efficiency, suggesting synchronous changes of homo-
topic regions across lifespan (for more details, see the Sup-
porting Information and Supporting Information Fig. S2).

Age-Related Changes in the Modular

Structure of WM Network

To evaluate the age-related alterations in modularity
and modular structure, we first performed individual

module analyses. The modularity values were greater than
0.6 for all subjects, and a significant modular structure of
the WM network across lifespan was observed compared
with the matched random networks (all Z> 20). The mod-
ularity and module number did not exhibit significant
trends with age (all P> 0.05), suggesting that major organi-
zation remains stable across lifespan. To investigate the
group-based module structure of the WM networks, we
calculated the mean network by averaging the connection
matrices of all subjects, which was thresholded by the
group mean sparsity and followed by a modular analysis.
Twelve modules were identified for the group-averaged
network, as shown in Figure 4A. Most of the modules
were distributed in a symmetric pattern, including bilat-
eral pre/postcentral gyrus modules, dorsal lateral frontal
modules, and temporo-parietal modules, while some mod-
ules were distributed along the cortical middle line, con-
sisting of regions from bilateral hemispheres, such as
supplementary motor area module, medial superior frontal
module, orbital frontal module, and occipital lobe module.
For the subcortical regions, most of regions from the same
subcortical structures were assigned to the same modules
(Fig. 4A). Then, the connection strengths of both intramod-
ule and intermodules across the 12 modules were calcu-
lated for each subject. Significant age-related nonlinear
changes of intramodule and intermodule connections were
observed, and were especially located in the bilateral pre-
frontal and temporal cortices (P< 0.05, Bonferroni correc-
tion) (Fig. 4B,C and Supporting Information Table S1).

Age-Related Changes in the Rich-Club

Organization of WM Network

To quantify the rich-club organization, we calculated the
RC and normalized RC individually (van den Heuvel and
Sporns, 2011). The normalized RC values were greater
than one for all participants, suggesting a characteristic
rich-club organization across lifespan. When fitted with
age, both the RC and normalized RC decreased linearly

TABLE 1. Age-related trajectories of global network metrics across lifespan

Network metrics

H-1024 L-AAL

Curve shape R2 P value AoP (years) Curve shape R2 P value AoP (years)

Sp 2 0.35 <1025 33.1 2 0.35 <1025 32.1
Cost 2 0.36 <1025 29.7 2 0.35 <1025 29.1
Eglob 2 0.34 <1025 34.1 2 0.32 <1025 33.2
Eloc 2 0.24 <1025 32.9 2 0.29 <1025 33.0
Lp 22 0.34 <1025 33.4 22 0.33 <1025 32.2
Cp 22 0.17 4 x 1025 26.2 22 0.27 <1025 23.2
Lambda 21 0.01 N.S. — 21 0.02 N.S. —
Gamma 22 0.08 2 x 1022 33.7 22 0.20 <1025 29.8
Sigma 22 0.09 5 x 1023 32.9 22 0.21 <1025 30.6
Robustness 2 0.34 <1025 32.6 2 0.19 <1025 34.1

Note: 21: linear decrease with age; 2: inverted U-shaped trajectory; 22: U-shaped trajectory; N.S.: not significant.
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with age (RC: P 5 0.002; normalized RC: P 5 0.0001) (Fig.
5B). As shown in Figure 5A, for the childhood and young
adult groups, the hub regions were mainly distributed in
the medial frontal, parietal, and occipital cortices. In con-
trast, reduced frontal regions and their connections in the
rich-club component were observed for the most elderly
group (>70 years old) compared with the younger groups.
We further investigated the age-related changes of the
strength of the rich-club (between hub nodes), feeder
(between hub and non-hub nodes), and local (between
non-hub nodes) connections, all of which exhibited a non-
linear inverted U-shaped trajectory across lifespan (rich-
club: r2 5 0.23, P< 1025; feeder: r2 5 0.36, P< 1025; local:
r2 5 0.24, P< 1025) (Fig. 5C).

Age-Related Changes in the Distance of

Structural Connectivity

The anatomical distance of the edges was defined as the
mean physical length of the fiber pathways connecting
two regions (Fig. 6A). Figure 6B provides several represen-
tative short (<75 mm) and long-distance (>75 mm) WM
connections. The average anatomical distance of the net-
work exhibited an inverted U-shaped trajectory with age
(r2 5 0.32, P< 1025) (Fig. 6C). When classified by anatomi-

cal distance, the absolute amounts of both short-distance
and long-distance connections increased during childhood
and adolescence and decreased in older age (short:
r2 5 0.23, P< 1025; long: r2 5 0.39, P< 1025) (Fig. 6C). How-
ever, the proportion (percent) of short connections exhib-
ited a U-shaped trajectory with age, whereas long-distance
connections exhibited an inverse trajectory with age
(r2 5 0.35, P< 1025) (Fig. 6C).

Gender Effects

For the global network metrics, no significant gender effect
or trajectory differences between genders were observed (all
P> 0.2) (Supporting Information Fig. S3). At the regional
level, the gender effect did not survive after the multiple
comparison correction and the fitting parameters between
genders showed no significant difference (all P> 0.05).

Age Prediction

When all of the global and local network metrics were
combined as input features for age prediction, a high esti-
mation accuracy was obtained, with a correlation r 5 0.77
between the actual versus predicted ages (P< 1024) (Fig.

Figure 2.

The lifespan trajectories of the global network metrics of the

WM network. (A) The lifespan trajectories of global and local

network efficiency. (B) The lifespan trajectories of small-world

properties (Lp, Cp, gamma, and sigma). The blue dots represent

the adjusted values of each subject after controlling for gender

and brain size. The curve-fitted lines are shown in red. The

orange bars at the bottom denote the age of peak and its 95%

confidence interval. Significant age-related nonlinear trajectories

were found for these global network metrics (all P< 0.05).

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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Figure 3.

The distribution of regions with significant age-related altera-

tions and the age of peaks across regions. (A) A 3D representa-

tion of brain regions with significant age-related alterations of

nodal efficiency. The red nodes represent regions with inverted

U-shaped trajectories with age (P< 0.05, Bonferroni correction);

node size represents the significance of the age-related altera-

tions. Two representative nodes were selected to depict the

age-related trajectory curves of nodal efficiency, one is located

in the right middle frontal gyrus (MFG.R) (upper right panel) and

the other is in the left middle temporal gyrus (MTG.L) (lower

right panel). (B) A 3D representation of the age of peaks across

the regions with nonlinear trajectories (P< 0.05). Different col-

ors of regional surface (from blue to red) represent different

age of peaks. To present the early and late age of peaks, two

nodes located in the left dorsal superior frontal gyrus

(SFGdor.L) and the right posterior cingulate gyrus (PCG.R) were

selected to depict the trajectory curves, respectively. The age of

peaks (695% confidence interval) were marked with orange

bars. The surface visualization of WM networks was accom-

plished using the BrainNet Viewer software (http://www.nitrc.

org/projects/bnv/).
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7). Among all of these metrics, nodal efficiency showed
the best prediction ability (r 5 0.72).

Reproducibility of Findings

L-AAL parcellation

The results exhibited similar lifespan trajectories for all
global network properties compared with those from H-
1024 parcellation (Table 1 and Supporting Information Fig.
S4A). Highly significant correlations between the global
network metrics from different parcellations were

observed (all r> 0.45, P< 1026) (Supporting Information
Fig. S4B). For regional alterations with age, comparable
spatial distributions, and age of peaks of brain regions
with nonlinear trajectories were found (P< 0.05, Bonfer-
roni correction) (Supporting Information Fig. S4C).

Nonparametric fitting

By fitting with a local smoothing spline model, similar
lifespan trajectories and age of peaks for most global and
regional network properties were estimated (Supporting
Information Fig. S5). Only some metrics with less

Figure 4.

The modular structure of the group-averaged WM network and

lifespan trajectories of the connection strength of intramodule

and intermodules. (A) The left panel is a 3D representation of

the group-based modular structure (axial view) from top to bot-

tom, with the bottom to top representation shown in the right

panel. The modular structure of the subcortical regions was

showed in the middle, with three axial slices overlaid on the vol-

ume template. Twelve modules were identified for the mean

WM network and represented by different colors. Significant

age-related nonlinear changes of intramodule and intermodule

connections were found and were primarily located in the bilat-

eral prefrontal and temporal cortices (P< 0.05, Bonferroni cor-

rection). The dots with different colors corresponding to each

module represent the intramodule connection strength (B) and

the dots in gray represent intermodule connection strength (C)

after controlling for gender and brain size. The curve-fitted lines

are shown in black. The bars at the bottom denote the age of

peak and its 95% confidence interval. M1: left dorsal frontal cor-

tex; M2: medial superior frontal cortex; M3: supplementary

motor area; M4: right dorsal frontal gyrus; M5: orbital frontal

cortex; M6: right inferior frontal and parahippocampal cortex;

M7: left temporo-occipital cortex; M8: right pre- and postcentral

gyrus; M9: left middle temporal cortex; M10: left pre- and post-

central gyrus; M11: the right middle and inferior temporal gyrus;

M12: the occipital cortex.
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significant age-related alterations, such as Cp, gamma and
sigma, the estimated age of peaks are more sensitive to the
fitting approaches.

DISCUSSION

In this study, we investigated the age-related changes in
the structural connectome in a cohort of healthy subjects
from 9 to 85 years old. Our main results are summarized
as follows. First, the topological efficiency of the WM
structural networks exhibited an inverted U-shaped trajec-
tory across lifespan, with the peak age at approximately
the third decade. Second, the brain areas and connections
with the most prominent changes were located in the pre-
frontal and temporal cortices, with heterogeneous trajecto-
ries across regions. Third, the hub integration decreased
linearly with age, especially accompanied by the loss of
frontal hubs and their connections. Finally, based on the
graph metrics of structural connectome, accurate predic-
tions of individual age were obtained. Together, our
results provide new insight into the age-related changes in
the brain structural connectome over the human lifespan,
which are crucial for our understanding of the human con-
nectome and how it may give rise to brain function,
including the occurrence of brain disorders across the
lifespan.

Age-Related Alterations in the Global Topology

of the WM Network

One of the most important findings was an inverted U-
shaped trajectory of the topological efficiency of the WM
network across lifespan, which is consistent with the
hypothesis proposed by Collin and van den Heuvel (2013).
With the similar diffusion MRI technique, Hagmann et al.
(2010) observed a linear increase in network efficiency dur-
ing late development, and Gong et al. (2009) revealed a
reduction in local efficiency during aging. In the present
cross-sectional study, the subject ages ranged from 9 to 85
years old; thus, both the late developmental and aging
stages were integrated into one cohort. Interestingly, A

negative quadratic trajectory of the global efficiency was

also found in structural covariance networks (Wu et al.,

2012) and an inverted U-shaped trajectory of the local effi-

ciency was identified in functional network (Cao et al.,

2014). The similar age-related trajectories between struc-

tural and functional connectome across lifespan may sup-

port the notion that the structural changes are the

underlying substrate of brain function changes. However,

the relationship between structural and functional connec-

tivity is not simply one-to-one correspondence (Greicius

et al., 2009; Hermundstad et al., 2013; Honey et al., 2009;

Horn et al., 2014), some functional connections within the

Figure 5.

Rich-club organization and its lifespan trajectories. (A) The rich-

club organization of different age subgroups. The red nodes rep-

resent the hub regions with mean Z-scores of the nodal

strength as nodal size. The orange lines represent the WM con-

nections between hub regions identified from the average matrix

of different subgroups. (B) Lifespan trajectory of normalized RC

with age. (C) Lifespan trajectories of the strength of the rich-

club, feeder and local connections. The blue dots represent the

adjusted values after controlling for gender and brain size. The

curve-fitted lines are shown in red. The orange bars at the bot-

tom denote the age of peak and its 95% confidence interval.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

r Zhao et al. r

r 3786 r

http://wileyonlinelibrary.com


default mode network were found precede the maturation

of structural connectivity (Supekar et al., 2010; Zielinski

et al., 2010). Although increased coupling between struc-

tural and functional connectivity during the early develop-

ment was reported (Hagmann et al., 2010), the relationship

between structural and functional connectome across the

entire lifespan should be further studied.
The age-related changes in the WM connectome archi-

tecture can be attributed to an adjustment in the strength
of the structural connectivity (Collin and van den Heuvel,
2013), which is supported by the similar nonlinear trajecto-
ries of the integrity of the major WM tracts across lifespan
(Kochunov et al., 2012; Lebel et al., 2012; Mwangi et al.,
2013; Yeatman et al., 2014). Increased structural connectiv-
ity during development can be ascribed to increases in
axonal diameter and myelination, as well as synaptic
pruning and modification (Morrison and Hof, 1997; Paus,
2010; Rademacher et al., 1999; Yeatman et al., 2014).
Decreased structural connectivity during aging may be
due to neuronal shrinkage, loss of small axon fibers and
WM degeneration (Bartzokis et al., 2012; Terry et al., 1987;
Yeatman et al., 2014). These changes in microstructural
properties result in considerable changes in the connec-
tome architecture, including continuing increases in the
capacity for information integration and a topology that is
increasingly capable of facilitating higher order cognitive
functions during development. Importantly, we found that
the peak ages for network efficiency in information trans-
fer occurred around the third decade, consistent with pre-
vious findings suggesting that the maturation of the WM
lasts into the third and fourth decades (Kochunov et al.,

Figure 7.

The prediction of individual age based on the graph metrics of

structural connectome. The scatter plot depicts actual versus

predicted age bounds of 95% confidential interval. Pearson cor-

relation coefficient between the actual and predicted ages was

calculated to assess the prediction accuracy. [Color figure can

be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 6.

The lifespan trajectories of the structural connectivity distance.

(A) The distance of the anatomical connections is defined as the

mean physical length along the fiber pathways connecting two

regions. (B) Four representative short- (<75 mm) and long-

distance fiber connections (>75 mm) are shown in the right

panel. IFOF: inferior fronto-occipital fasciculus; CC: corpus cal-

losum. (C) The lifespan trajectory of the mean network distance

and the trajectories of the number and percent of short- and

long-distance connections. The blue dots represent the adjusted

values after controlling for gender and brain size. The curve-

fitted lines are shown in red. The orange bars at the bottom

denote the age of peak and its 95% confidence interval. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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2012; Lebel et al., 2012; Westlye et al., 2010; Yeatman et al.,
2014). Moreover, we found that several other nontrivial
topological properties, such as small-world parameters
and robustness, also showed nonlinear alterations across
lifespan with a peak age around the 3rd decade. Notably,
the peak ages for network efficiency or small-world
parameters fell within the range reported for peaks of
average level of cognitive performance with age in 30s
(Salthouse, 2005; Schroeder and Salthouse, 2004). The
changes of WM connectome architecture may be the
underlying basis of cognitive abilities and the quantified
graph metrics of brain connectome may be measurable
biomarkers of these variations.

Age-Related Alterations Across Brain

Regions and Connections

The brain regions and connections with the most signifi-
cant nonlinear age-related changes were primarily located
in the frontal and temporal cortices. These results are com-
patible with the postmortem findings for the most promi-
nent age-related changes in neuronal size in the frontal
and temporal lobes (Terry et al., 1987). Neuroimaging
studies have also reported that the integrity of the WM
tracts in the frontal and temporal cortices, such as the
genu of the corpus callosum, superior longitudinal fascicu-
lus and uncinate fasciculus, follows an inverted U-shaped
trajectory across lifespan (Hasan et al., 2009a; Kochunov
et al., 2012; Lebel et al., 2012). In addition, structural, func-
tional, and metabolic alterations with age also predomi-
nantly occur in the prefrontal cortices with a quadratic
trajectory (Shaw et al., 1984; Sowell et al., 2003; Wang
et al., 2012).

Importantly, we noticed asynchronous maturation/
degeneration across regions. The posterior cingulate and
lateral temporal cortices displayed prolonged maturation/
degeneration compared with the prefrontal cortices. Previ-
ous neuroimaging studies also revealed different lifespan
trajectories for different WM tracts, with peak ages varying
from 20 to 40 years old (Hasan et al., 2009a,b; Kochunov
et al., 2012; Lebel et al., 2012; Li et al., 2013; Yeatman et al.,
2014). Specifically, WM connectivity peaks later in the pos-
terior cingulate and temporal cortices relative to the frontal
WM (Bartzokis et al., 2001; Kochunov et al., 2012; Lebel
et al., 2012). The earlier peak ages in prefrontal cortices
may indicate the earlier maturation during development
or the vulnerability to aging of these regions compared
with posterior cortices. Evidence from structural MRI
study has shown that the frontal lobe is among the first to
become impaired in aging (Raz, 2000). Several DTI studies
have also suggested that the anterior WM composed of
small, thinly myelinated fibers (Bartzokis et al., 2012;
Glasser and Van Essen, 2011) are more susceptible to
aging than the posterior WM (e.g., through myelin loss or
damage) (Ota et al., 2006; Pfefferbaum et al., 2000; Salat
et al., 2005a). Moreover, an anterior-posterior gradient for

GM shrinkage and WM degeneration with aging has been
consistently reported (Raz et al., 1997; Salat et al., 2005b).
In contrast, regions that were affected last by aging were
primarily distributed throughout the DMN. The hierarchi-
cal maturation/degeneration across regions suggest possi-
ble neural mechanisms for critical time points in the
maturation and decline of related cognitive functions.

Age-Related Alterations in the

Modular Structure

Through the modular analysis, significant age-related
nonlinear changes of intramodule and intermodule con-
nections were found primarily located in the bilateral pre-
frontal and temporal cortices. Prefrontal cortex is involved
in some higher level function such as planning, reasoning,
decision-making, and executive functions (Alvarez and
Emory, 2006; Craik and Bialystok, 2006), which undergo
dramatic changes with age. An age-related association
between frontal volume and executive function across life-
span was found by Zimmerman et al. (2006). Temporal
cortex was also found showing prominent age-related
changes in neuronal size (Terry et al., 1987). Interestingly,
the peaks for prefrontal and temporal modules were con-
sistent with the range reported for the peaks on various
cognitive measures such as inductive reasoning, spatial
visualization, episodic memory, and perceptual speed
(Salthouse, 2009), suggesting that the age-related adjust-
ment of module organization may support for alterations
of cognitive ability across lifespan.

Age-Related Alterations in Rich-Club

Organization

The rich-club organization of the WM networks was evi-
dent across lifespan, indicating that the rich-club structure
is a common and basic property of large-scale brain struc-
tural networks, which may support for efficient global
information transfer in the brain (Colizza et al., 2006;
McAuley et al., 2007; van den Heuvel et al., 2012). Consist-
ent results showed that it is found among the first to
develop in the neural circuitry of C. elegans (Towlson
et al., 2013) and already present by 30 week gestation of
the newborn human brain (Ball et al., 2014; van den Heu-
vel et al., 2014). Although all of the strength of the rich-
club, feeder, and local connections exhibited inverted U-
shaped trajectories with age, the RC and normalized RC
decreased with age. This may due to the preference of
enhancing non-rich club connections compare with rich-
club connections during the development of brain. Rich-
club nodes were essential infrastructure for the integration
of different sets of functional domains (van den Heuvel
and Sporns, 2013) and were found having high metabolic
energy and long maturational trajectories (Collin et al.,
2014). In our results, inhomogeneous age-related changes
with heavy loss of frontal hubs and their connections
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around 70 years were found. This is consistent with our
regional efficiency and module findings and is supported
by previous researches that frontal connections are more
susceptible to aging (Ota et al., 2006; Salat et al., 2005b).
The reorganization of rich-club structure further mani-
fested that frontal hubs contribute much in forming the
efficient backbone for whole brain communication during
the early and middle age and start to be replaced by other
rich-club members in the late age. However, the biological
mechanisms for the reorganization of this core architecture
and whether the variations were the substructure of
changes of cognitive functions with aging need further
study.

Age-Related Alterations in Distance-Dependent

Structural Connectivity

Although both short and long-distance connections
increased during development and decreased during
aging, the relative proportion of the short-range connectiv-
ity decreased with maturation, suggesting the presence of
dual changes in functional integration and segregation
with wiring distance (Supekar et al., 2009). The long-range
connections decreased their proportion during aging, sup-
porting the idea that long-range connections are more vul-
nerable to normal aging (Tomasi and Volkow, 2011).
Importantly, our findings parallel this alteration pattern of
distance-dependent functional connectivity with age in the
same cohort (Cao et al., 2014).

Methodological Issues

Several methodological issues should be addressed.
First, the samples were obtained using a cross-sectional
design. Future studies with longitudinal MRI data are
required to validate the findings observed here. Second,
the edges of the WM networks were reconstructed by
deterministic tractography, which may result in the loss of
existing fibers due to the “fiber crossing” problem (Mori
and van Zijl, 2002). Nevertheless, our results were cross-
validated by different brain parcellations (H-1024 and L-
AAL). Future studies should employ more advanced trac-
tography techniques, such as probabilistic tractography to
define the network edges (Gong et al., 2009). Third, we uti-
lized DTI tractography to construct the WM networks. The
combination of the multimodal MRI techniques (structural
and functional MRI) would yield a comprehensive under-
standing of the relationship between structural and func-
tional changes across lifespan (Betzel et al., 2014; Chan
et al., 2014). Finally, to support the nonlinear changes in
the structural networks as a neural basis of cognitive
changes with age, further studies of cognitive function and
brain structure are needed to assess the relationships
between brain maturation, aging, and cognitive changes
across lifespan.
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