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Abstract

We examine normal aging from the perspective of topological patterns of structural brain networks constructed from two healthy age
cohorts 20 years apart. Based on graph theory, we constructed structural brain networks using 90 cortical and subcortical regions as a set
of nodes and the interregional correlations of grey matter volumes across individual brains as edges between nodes, and further analyzed
the topological properties of the age-specific networks. We found that the brain structural networks of both cohorts had small-world
architecture, and the older cohort (N � 374; mean age � 66.6 years, range 64–68) had lower global efficiency but higher local clustering
in the brain structural networks compared with the younger cohort (N � 428; mean age � 46.7, range 44–48). The older cohort had reduced
emispheric asymmetry and lower centrality of certain brain regions, such as the bilateral hippocampus, bilateral insula, left posterior
ingulated, and right Heschl gyrus, but that of the prefrontal cortex (PFC) was not different. These structural network differences may
rovide the basis for changes in functional connectivity and indeed cognitive function as we grow older.
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1. Introduction

The two main organizing principles found in the brain,
i.e., segregation and integration of information processing
(Friston et al., 2002; Sporns et al., 2000), provide the the-
oretical framework for studying the brain as a network. One
approach to studying such a complex network has been the
application of graph theory (Bullmore and Sporns, 2009).
This theory has been used to study human brain networks
from both structural and functional data. Functional brain
networks have been constructed from the data of functional
magnetic resonance imaging (fMRI) (Achard et al., 2006;
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Ferrarini et al., 2008), electroencephalography (EEG) (Ru-
binov et al., 2007) and magnetoencephalography (MEG)
(Stam, 2004), and these show some degree of convergence.
Structural networks have used regional cortical thickness or
volume (Bassett et al., 2008; He et al., 2007) or diffusion
tensor imaging (DTI) based fiber-tracking information
(Hagmann et al., 2007) to help understand the architecture
of the brain upon which any functional network must be
based. Understanding the structural network is therefore a
first step in explaining functional connectivity. While the
large-scale connectivity structure of the human brain repre-
sents a relatively invariant characteristic (Sporns et al.,
2005), the precise combinations and topological patterns
may be influenced by many factors, such as genetic differ-
ences, sex, pathologies, and/or simply normal aging. The

latter is the focus of this paper.
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Most studies on human brain aging show shrinkage of
the adult brain as it ages, with a reported reduction of about
5% in brain weight per decade after the age of 40 years
(Kemper, 1994). However, this change is not uniform over
the whole brain. Grey and white matter show different
patterns of change (Raz et al., 2005). Even within the
cortex, decline is most consistently reported in the superior
and inferior frontal gyri and the superior temporal gyrus
(Fjell et al., 2009). Other cortical regions showing age-
related decline include the middle frontal gyrus, middle
temporal gyri, precuneus, inferior and superior parietal cor-
tices, fusiform and lingual gyri, and the temporo-parietal
junction, but the change is less consistently seen in the
inferior temporal lobe and the anterior cingulate cortex
(Fjell et al., 2009; Raz et al., 2004). In general, age-associ-
ated changes are more prominent in the association cortex
rather than primary cortex (Raz, 2000). Age-related changes
in the white matter, which relate more to microstructural
change, tend to show an anterior-posterior gradient, with
frontal white matter being affected more than the temporal,
parietal and occipital white matter, and the anterior part of
the corpus callosum more than the posterior part (Head et
al., 2004; Salat et al., 2005). These changes in the cortex and
the white matter are likely to have an impact on networks
between brain regions.

Aging is also related to a decline in information-process-
ing resources, such as working memory capacity, attention
regulation and processing speed, and this change is likely to
be related to brain structural changes (Buckner et al., 2005).
A recent study (Seeley et al., 2009) has shown strong
convergence between intrinsic functional connectivity and
structural covariance, with functional network maps closely
mirroring cortical atrophy patterns in five neurodegenera-

Fig. 1. The graphs show correlations between two regions (left rolandic
difference in slope is significant (p � 0.0001) (40� � 60�). The 90 grey
of regions for correlation. The general linear model was used with gende
tive syndromes. Aging-related brain network changes have
previously been examined from a functional (Achard and
Bullmore, 2007) but not a structural perspective.

In this paper, we examine the structural brain network
changes in relation to normal aging by studying two age
cohorts 20 years apart. Similar to recent work (Bassett et al.,
2008; He et al., 2007), we measure cortical and subcortical
volumes using MRI scans, and two cortical areas are con-
sidered anatomically connected if their volumes are signif-
icantly correlated. The meaning of such coupling between
cortical regions (Figure 1) is not well understood (Tootell et
al., 2003), but can be further explored to look into questions,
such as: when one brain region atrophies, are there corre-
lated grey matter (GM) reductions elsewhere? Is age-related
hippocampal degeneration an isolated process or is it related
to degeneration elsewhere? What is the relationship of pre-
frontal lobe volume, another key area in aging (Resnick et
al., 2003), to changes in other cortical regions? The quan-
titative analyses of structural brain networks allow us to
look into these questions from a fresh perspective.

2. Methods

2.1. Study sample

The two cohorts of interest are part of the Personality and
Total Health (PATH) through Life project (Anstey et al.,
2008; Sachdev et al., 2006). PATH is a longitudinal study of
three cohorts aged 20–24 (20�), 40–44 (40�) and 60–64
(60�) years, all comprising community residents recruited
randomly through electoral rolls from the city of Canberra
and the adjacent town of Queanbeyan, Australia. The co-
horts are examined every 4 years. Enrollment to vote is
compulsory for citizens of Australia, thereby making the

um vs. left heschl gyus) in the 40� (left) and 60� (right) cohorts. The
regions defined in this study resulted in 4,005 (90 � 89/2) possible pairs
anner as fixed factors.
opercul
matter
electoral roll an excellent resource for epidemiological sam-
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ples. At wave one, each cohort comprised about 2,500
individuals (the 40� cohort � 2,354; the 60� cohort �
,222) who participated in an interview. The Wave two
cans were used in the present study. The 20� cohort did
ot have brain scans. In the 40� and 60� cohorts, about
ne in five participants were offered a brain MRI scan. In
he 40� cohort, 656 were approached and 431 underwent
cans, and in the 60� cohort the corresponding figures were
58 and 374, respectively. The reasons for not undergoing
n MRI scan after having initially been selected included
ubsequent withdrawal of consent, medical conditions con-
radicting MRI, and claustrophobic or undue anxiety about
he procedure. Age, gender, and years of education, along
ith other clinical data, were recorded during the interview.
he study was approved by the ethics committees of the
ustralian National University, Canberra and the University
f New South Wales, Sydney, Australia.

.1.1. The younger cohort (40�)
The younger cohort comprised 431 subjects in wave 2 of

he 40� cohort who had MRI scans, but one subject’s scan
as lost due to an operational error, one did not have a

omplete protocol, and one subject was found to have a
arge cyst across the right occipital, posterior temporal, and
arietal lobes, leading to his exclusion, thereby leaving 428
ubjects (mean age � 46.7 (1.4), m/f � 197/231) for final
nalysis.

.1.2. The older cohort (60�)
The older cohort comprised 374 subjects in Wave 2 of

he 60� cohort, aged 64–68 years (mean age � 66.6 (1.4),
/f � 204/170, mean MMSE � 29.35 (1.09)) at the time of

xamination and scanning.

.2. MRI data acquisition

T1-weighted 3D structural scans were acquired in coro-
al plane on a 1.5 T Gyroscan NT Intera (ACS-NT, Philips
edical Systems, Best, Netherlands) scanner with spatial

esolution of 1 � 1 mm2 in-plane and 1.5 mm slice thick-
ness. About midway through the scanning of the younger
cohort, for reasons outside the researchers’ control, the
original scanner (scanner A) was replaced with an identical
Intera Philips scanner (scanner B). Although there was a
change of the scanner during the study, there was no sig-
nificant alteration in acquisition parameters. The first 163
subjects of the 40� cohort were scanned with scanner A for
T1-weighted 3D structural MRI with TR � 8.84 ms, TE �
3.55 ms, flip angle � 8°, matrix size � 256 � 256 and

OV � 256, yielding in-plane resolution of 1 � 1 mm/pixel
nd slice thickness � 1.5 mm with no gap between slices.
he acquisition parameters of T1-weighted 3D structural
RI for the remaining 268 subjects (431–163 � 268) of the

0� cohort on scanner B were TR � 8.93 ms, TE � 3.57
s, flip angle 8°, matrix size and FOV remained the same

s scanner A, producing the same in-plane resolution and

lice thickness. To ensure the reliability and compatibility T
f the data from the two scanners, we took three steps to
xamine the possible scanner impact. First, we compared
he subjects of the 40� cohort scanned on the two scanners
n sociodemographic and imaging parameters. There were
o differences in age (p � 0.377) or years of education (p �
.588), but more women were inadvertently scanned on
canner B than A (p � 0.003). Second, we examined the
olumetric measures of total intracranial volume (TIV) (p �
.697), GM volume (p � 0.934), white matter (WM) vol-
me (p � 0.165), or cerebrospinal fluid (CSF) volume (p �
.820) obtained from the two scanners, and found no dif-
erences. Third, we calculated the interregional correlations
f the cortical and subcortical volumes of every pair of
egions for 167 subjects scanned with Scanner A and 268
ubjects with Scanner B separately. The 90 grey matter
egions defined (see subsections of “Computation of re-
ional GM volume” and “Construction of structural net-
orks”) resulted in 4,005 possible pairs of regions for cor-

elation for the subjects scanned in each scanner. No
ignificant difference was found in any of these correlations.
s the scanning of the 60� cohort occurred after the com-
letion of the younger cohort, they were scanned with scan-
er B with the identical acquisition parameters as used for
he 40� cohort scanned with scanner B.

.3. Image preprocessing

T1-weighted structural MRI scans of both cohorts were
egmented into GM, WM and CSF using SPM5 (Ashburner
nd Friston, 2005). The segmentation results were inspected
isually. After initial rigid-body alignment of GM and WM
mages to achieve good intersubject scan coregistration, we
pplied the diffeomorphic anatomical registration through
xponentiated lie algebra (DARTEL) (Ashburner, 2007), a
ecently published nonlinear diffeomorphic registration al-
orithm which notably improves the intersubject scan reg-
stration and had been implemented in SPM5 for the con-
truction of the two cohort-specific templates (one for each
ge-specific cohort) of matrix size 121 � 145 � 121 and an
sotropic resolution of 1.5 mm. An affine transformation
rom DARTEL templates to MNI-space (Evans et al., 1994)
as calculated and applied to each segmented grey matter

mage and they were resampled with an isotropic voxel size
f 2 mm. Both steps were modulated by multiplication with
he determinant of Jacobian transform to preserve the GM
olume.

.4. Computation of regional GM volume

The structural networks were constructed using 90 cor-
ical and subcortical regional GM volumes. The region
ames and their corresponding abbreviations are listed in
upplementary Table 1. Automated anatomical labeling
AAL) (Tzourio-Mazoyer et al., 2002) was used to define
hese 90 anatomical regions. We calculated the regional GM
olumes for each individual GM image in the MNI space.

o mask individual images, the AAL template was resa-
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mpled with voxel size 2 mm and had the same direction
matrix with individual images. Regional GM volume of
each subject was thus calculated as the mean value of all the

voxels within the region (vROI �
1

N�i�ROI vi) defined by

AAL.

2.5. Construction of structural networks

The approach of characterizing brain connectivity using
cortical connection matrices and graphs has the important
advantage of an efficient and complete structural description
which allows computation and comparison of different con-
nection topologies within a common theoretical framework.

In graph theory, a network is defined as a set of nodes
and the edges between them. In our work, each graph node
was an anatomical region defined by the AAL template.
Ninety nodes representing 90 anatomical regions (see Sup-
plementary Table 1) were therefore employed to construct a
network for each cohort. Each AAL defined regional GM
volume was calculated using the general linear model to
remove the effects of subjects’ gender, total GM volume,
and different scanners. The residuals represented regional
GM volume corrected for gender, total GM volume, and
scanner, which were then used for the subsequent analysis.

To obtain the edges between the nodes, we constructed
the interregional correlation matrix of each cohort by cal-
culating the partial correlation coefficients for all individu-
als in a cohort between the cortical/subcortical volumes of
every pair of regions (nodes) (Horwitz et al., 1987; Whit-
taker, 1990). We use Figure 1 as an example to explain the
idea of constructing one interregional correlation matrix of
an entire cohort. A point (green for younger cohort or red
for older cohort) shows two volumetric measures (regional
grey matter volume corrected for gender, total grey matter
volume, and scanner) for a participant, i.e., the volumes of
left Heschl gyrus (vertical axis) and left rolandic operculum
(horizontal axis) in this case. There are 428 green points
(428 participants in the younger cohort) and 374 red points
(374 participants in the older cohort) in Figure 1. What we
were examining was the interregional correlations (between
left Heschl gyrus and left rolandic operculum in this case) of
the whole cohort. Therefore, only two interregional corre-
lation matrices could be made, one for each age cohort.
Each value of the matrix of the cohort represented the
interregional correlation of two particular grey matter re-
gions. This computation resulted in a pair of (90 � 90)
partial correlations in corrected GM volumes between each
of the 4,005 (N�N � 1� ⁄ 2; N � 90 and is the number of
nodes in the graph) possible pairs of regions. We thresh-
olded the correlation matrix with fixed sparsity which was
the total number of edges in the graph divided by the
maximum possible number of edges (percentage of all pos-
sible edges). A brain structural network graph could then be
constructed with a binarized matrix obtained by threshold-

ing the correlation coefficients of the interregional correla-
tion matrix. Rather than set a static threshold, we thresh-
olded the correlation matrix repeatedly over a wide range of
sparsities and then examined the graph topological attri-
butes of the resulting graphs at each sparsity point. This
enabled us to compare the topological properties of the
network graph between the two age-specific cohorts as a
function of sparsity. Using the nodes and edges defined
above, we constructed an unweighted and undirected graph,
where each node represented a specific GM region and an
edge represented the correlation between two regions.

2.6. Some networks topology properties used in the study

2.6.1. Sparsity
The degree of node i is denoted as Ki, which is the

number of edges that connect it to the other nodes of the
graph. Degree of a node is one of the most fundamental
network measures and many network properties are based
on it. Using Ki, we can then define an important parameter
n our network study, the sparsity of a network. To compare
he topological properties of two networks with the same
umber of nodes, we set the same sparsity value (for the
election of sparsity range, see 2.9 for details) for both
etworks so that they have the same number of edges.

.6.2. Minimum path length and network global efficiency
The minimum (or shortest) path length Lij between two

odes i and j is defined as the least number of edges that
ust be included to connect them. The mean minimum path

ength of graph Lp is defined as the average shortest path
length that connects any two nodes in a network. Minimum
path length is a measure of the extent of average connec-
tivity. Therefore, global efficiency is defined as the inverse
of Lp, i.e., 1/Lp, and has been interpreted as overall routeing
efficiency of the network and regarded as one of the impor-
tant network properties (Latora and Marchiori, 2001).

2.6.3. Clustering coefficient and local efficiency
The clustering coefficient Ci of node i is the ratio of the

number of existing edges to the number of all possible edges
in the node’s direct neighbors (Watts and Strogatz, 1998).
The clustering coefficient for the whole network is the
average clustering coefficient over all nodes in a network
and is expressed as Cp. The clustering coefficient is an index
of local structure, and has been interpreted as a measure of
the local connectivity of a network (Bassett et al., 2008;
Stam and Reijneveld, 2007). A metric Ep is also considered
as a measure for local efficiency. Although both clustering
coefficient and local efficiency can be used to quantify the
degree of local structure of a network, they measure differ-
ent aspects of local network properties. Clustering coeffi-
cient takes into account the number of triangles between a
node and its neighbors, while local efficiency takes into
account the ability of information transfer through the entire

subgraph of a node’s connections.
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2.6.4. Betweenness centrality
Another metric used was the network betweenness cen-

trality. The betweenness Bi of node i is defined as the
number of shortest paths between any two nodes that run
through node i (Freeman, 1977). We can then define the
normalized betweenness centrality bi � Bi/B for every node,
where B is the average betweenness centrality of the net-
work. bi is a measure that captures the influence of a node
ver information flow between other nodes in the network.
he nodes that have high values of bi are considered as hubs
f the structural networks. The differences of the cohorts in

i of our study reflect the aging impact on global roles of
egions in the network.

In our work, Lp, Cp, and Ep of the networks were all
alculated under various sparsities within the small-world
egime. Therefore, a series of networks were generated at a
iven sparsity for the 40� and the 60� cohorts separately.

See Appendix for the mathematical definitions of above-
entioned network properties.

.7. Intra- and interhemispheric connections and
natomical distance

An intrahemispheric connection (or edge) is a connection
etween 2-g regions (nodes) in the same left or right hemi-
phere, and an interhemispheric connection is a connection
etween 2-g regions one of the right hemisphere and the
ther of the left hemisphere. The anatomical distance be-
ween two regions was defined as the Euclidean distance
etween centroids of two anatomical regions.

.8. Small-worldness test

Small-world, characterized by a high degree of clustering
nd short path length linking different network nodes, is an
ttractive model for the description of brain networks be-
ause it not only supports both specialized and integrated
nformation processing but also minimizes wiring costs
hile maximizing the efficiency of information propagation

Achard and Bullmore, 2007; Kaiser and Hilgetag, 2006;
atts and Strogatz, 1998). A network is considered a small-
orld network if it has almost identical path length (� �

p
real ⁄ Lp

rand � 1) but is more locally clustered (� �

p
real ⁄ Cp

rand � 1 and � � � ⁄ � � 1) in comparison with the
matched random networks (Watts and Strogatz, 1998).
Therefore, to examine the small-world properties, the values
of Lp

real, Cp
real of the anatomical network were compared with

Lp
rand and Cp

rand, respectively. In this study, Lp
rand and Cp

rand

were calculated from 2000 random networks generated us-
ing the random rewiring procedure previously described
(Maslov and Sneppen, 2002; Milo et al., 2002). These
randomly generated networks had the same node degree
distribution as the real networks constructed using the re-

gional GM correlations. b
2.9. Small world properties of the two age-specific
cohorts

Altering sparsity values of a graph would also alter the
graph’s structure. In this work, we used graph sparsity
values rather than correlation coefficients as the threshold-
ing values because if two graphs of the same number of
nodes were constructed by using a correlation coefficient
rather than a sparsity value, then the resulting graphs would
contain different numbers of edges. As a result, the inter-
pretation of topological property comparisons would be
difficult and the between-group difference would not reflect
the difference of the topology properties of the graphs. The
lower threshold of the sparsity Ksparsity � 1n �N� ⁄ �N � 1�
was used to determine the small-world regime, because the
small-world properties were not estimable at a value lower
than this (Achard et al., 2006; Watts and Strogatz, 1998).
The upper threshold was determined as 0.31 by using the
condition � � 1.1, as more noise would be included in the
etwork if the value was higher. Therefore, the sparsity
hreshold was calculated in the range of 0.051–0.31. The
raph properties were systemically explored with an incre-
ent of 0.005 over this range of sparsity values.

.10. Intra- vs. interhemispheric connections, and the
refrontal cortical anatomical distances

The networks series of both cohorts that were within the
mall-world regime of sparsity range (0.051–0.31) were
xamined. To examine the connections between the pre-
rontal cortex (PFC) and the other GM regions of the brain,
e combined 18-g regions (i.e., dorsolateral superior frontal
yrus, middle frontal gyrus, orbital part of superior frontal
yrus, orbital part of middle frontal gyrus, opercular part of
nferior frontal gyrus, triangular part of inferior frontal
yrus, orbital part of inferior frontal gyrus, medial supe-
ior frontal gyrus, and medial orbital of superior frontal
yrus of both right and left hemisphere). The average of
he mean distances between each of the 18 frontal regions
nd the rest of brain GM regions was defined as d �

⁄18�i�F 1⁄Ni�j�R Di,j; where F was the union of 18 frontal
regions and R the union of the rest of the regions that were
connected with at least one of frontal regions and Ni was the
number of connections between the frontal region i and the
rest of regions under a specified sparsity.

2.11. Statistical analysis and computation implementation

All the computations were carried out by implementing
algorithms using Matlab version R2008a (MathWorks,
Natick, MA, USA).

2.11.1. Computation of network properties using a
permutation-based approach

To test the between-cohort differences of the network
properties and betweenness centrality bi, a permutation-

ased approach (Bullmore et al., 1999; He et al., 2008) was
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used to find the significant differences between the cohorts.
To test the null hypothesis that the observed group differ-
ences could occur by chance, we randomly reallocated each
subject’s set of regional GM volume measures to one or the
other group and recomputed the partial correlation matrix
for each randomized group. The corresponding binarized

Fig. 2. Between-cohort differences in path length (Lp) as a function of
parsity. The graph shows the differences (in red, cohort 40� minus cohort
0�) in the Lp between the 60� and the 40� cohorts as a function of

sparsities. The grey lines represent the mean values and 95% confidence
intervals of the between-group differences obtained with 2000 permutation
tests at each sparsity point. The arrows indicate significant (within the
sparsity range of: 0.16 	 Ksparsity 	 0.19) differences in Lp between the
two cohorts after correcting for multiple comparisons using FDR criterion
(p � 0.05). Note that the older cohort has significantly larger Lp values than
the younger cohort over a wide range of sparsity points.

Fig. 3. Between-cohort differences in (a) clustering coefficient Cp and (b)
red, cohort 40� minus cohort 60�) in the Cp and Ep between the older a
he mean values and 95% confidence intervals of the between-group diffe
ndicate significant differences (p � 0.05) in C and E between the two gr
p p

older cohort show larger Cp and Ep values in the brain networks than younger co
matrix was obtained using the same sparsity threshold as in
the real brain networks. The network parameters were cal-
culated for each randomized group and differences between
the randomized groups were obtained. This randomization
procedure was repeated 2000 times and the 95 percentile
points of each distribution were used as the critical values
for a one-tailed test of the null hypothesis with a probability
of Type I error of 0.05 after FDR (false discovery rate)
correction for the multiple comparisons (Genovese et al.,
2002). The procedure was repeated at every sparsity thresh-
old value of the brain networks. Both between-cohort dif-
ference in path length Lp as shown in Figure 2 and the
between-cohort differences in clustering coefficient Cp and
Ep as shown in Figure 3 were obtained in this fashion.

.11.2. Computation of differences in regional volumes
We examined the differences in the partial correlations of

ean regional GM volumes in the 40� and 60� cohorts. Two
orrelations of the same two regional GM volumes, one from
ach cohort, were compared, if at least one of the correlations
f the pair was significant (p � 0.05, corrected using FDR).
e used the following statistics to test the significant differ-

nce between the pair: r1 and r2 were the correlations of the
pair; using the Fisher’s r-to-z transform (Fisher, 1915), we
transformed the two correlations into Z1 and Z2 using Zi �

⁄ 21n �1 � ri� ⁄ �1 � ri�, then calculated the z-statistic using

� �Z1 � Z2� ⁄ �1 ⁄ �N1�3��1 ⁄ �N2�3�.

. Results

.1. Regional GM volume difference between the
ohorts

The results in Figure 4 show that the 60� cohort had
ignificantly lower GM values in 86 out of 90 regions in

ficiency Ep as a function of sparsity. The graphs show the differences (in
ger cohorts as a function of sparsity thresholds. The grey lines represent
obtained with 2000 permutation tests at each sparsity value. The arrows
ter correcting for multiple comparisons using FDR criterion. Note that the
local ef
nd youn
rences
oups af
hort over a wide range of thresholds.
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comparison with the 40� cohort. The only three regions in
hich the 60� cohort had higher GM values were right

enticular nucleus (putamen) and right and left thalamus.
eft lenticular nucleus (putamen) did not show a significant
ifference between the two cohorts. All results were ob-
ained with the mean regional GM volumes based on linear
egression after controlling for sex and scanner effects. An
DR with p � 0.05 had been applied to correct for the
ultiple comparisons.

.2. Correlation differences between the cohorts

As shown in Supplementary Table 3, we found three
egional pairs showing significantly lower positive correla-
ions in the 60� cohort and one decreased negative corre-

lation. By contrast, three anatomical region pairs were
found to show increased positive correlations and seven
increased negative correlations in the same older cohort in
comparison with the younger cohort.

3.3. Small world properties of the two age-specific
cohorts

Over the entire range of sparsity examined (0.051 	

Ksparsity 	 0.31), both networks had approximately equiva-
lent shortest path length (�p � 1) and had much greater local
nterconnectivity (� � 1) than the comparable random net-
ork (Watts and Strogatz, 1998) (Figure 5). Thus, both

ohorts demonstrated small-world topology properties with

Fig. 4. Regional grey matter volume comparisons between the 40� (black)
et al., 2002), grey matter density was 40� � 60� in 86 regions, 60� � 40
right- and left-hand side), and 40� � 60� in one region (left-hand side le
cohort, scanner and gender as fixed factors. More details are listed in Sup
in the Supplementary Table 1.
� � �� ⁄ �� � 1.
3.4. Age related structural brain network efficiency

3.4.1. Global network efficiency
Over the whole range of sparsity threshold values inves-

tigated within the small-world regime (0.051–0.31), the
older cohort showed slightly but significantly longer char-
acteristic path lengths than the younger cohort, as shown in
Figure 2 using permutation test at each sparsity point (cor-
rected for multiple comparisons with FDR criterion; p �
0.05, within the sparsity range: 0.16 	 Ksparsity 	 0.19).

.4.2. Local network efficiency and clustering coefficient
The local efficiency and clustering coefficient were ex-

mined by using two measures, i.e., Ep and Cp, respectively,
as shown in Figure 5. Contrary to the reduced global effi-
ciency in the 60� cohort as measured with the greater

inimum path lengths in comparison with the 40� cohort,
ver the same range of the sparsity points within the small-
orld regime, both local efficiency Ep and cluster coeffi-

cients Cp of the older cohort were found to be significantly
higher than the younger cohort. The cluster coefficient Cp is
considered a measure of the tendency of the network ele-
ments to form local clusters. In the sparsity range 0.23 	

Ksparsity 	 0.27, the 60� cohort had significantly higher (p �
.05; FDR corrected for multiple comparisons) Cp values.
ignificantly higher (p � 0.05; FDR corrected for multiple
omparisons) Ep values were detected in some of the spar-
ity points within the range 0.23 	 Ksparsity 	 0.31 in the

60� (grey) cohorts. Out of 90 regions defined by AAL (Tzourio-Mazoyer
regions (right-hand side Lenticular nucleus, putamen and thalamus of both
r nucleus, putamen). The multivariate general linear model was used with
tary Table 2 and the abbreviations for the different regions are expanded
and the
� in 3
nticula
plemen
60� cohort.
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3.4.3. GM regions with altered betweenness centrality
The GM regions with ranked betweenness centrality for

both cohorts are shown in Figure 6. These GM regions were
examined and the ranks were identified by using normalized
nodal betweenness centrality bi and a node (GM region) was
onsidered a hub when its betweenness centrality was greater
han 1.5. We calculated the bi of each node of both cohorts’

networks at a specific sparsity threshold of 0.061. This thresh-
old ensured that all GM regions were included in the brain
networks, i.e., there was no disconnected node in the network,
while minimizing the number of false-positive paths (edges).
There were 12 regions that had changed significantly in the
two cohorts as shown in Supplementary Table 4. In compari-
son with the younger cohort, the older cohort had significant
decreases in centrality in both right and left hippocampus (right
hand side: the 40� cohort: bi � 4.22; the 60� cohort: bi �
0.22 p � 0.029; left hand side: the 40� cohort: bi � 3.47; the
60� cohort: bi � 0.78; p � 0.01) and insula (right hand side:
the 40� cohort: bi � 3.36; the 60� cohort: bi � 0.00 p � 0.01;
eft hand side: the 40� cohort: bi � 1.66; the 60� cohort:

i � 0.31 p � 0.049), left posterior cingulate gyrus (the 40�
ohort: bi � 3.10; the 60� cohort: bi � 0.61 p � 0.029) and

Fig. 5. Small-world properties of brain structural networks. The graphs
show the changes in � � Cp

real ⁄Cp
rand and L � Lp

real ⁄Lp
rand in the structural

etworks of both the 40� (left panel) and the 60� (right panel) cohorts as
function of sparsity thresholds. At a wide range of sparsity (0.051–0.31),
oth networks have � � 1, � � 1 (i.e., the real networks show approxi-

mately equivalent path lengths and higher clustering coefficients compared
with 2000 rewiring random networks), which implies prominent small-
world properties. Note that as the values of sparsity thresholds increase, the
� values decrease rapidly, but the � values change only slightly. The
rrows point to a range of sparsity in which the small-world properties are
stimable because the average degrees of networks are larger than ln(N) (N
s the number of nodes that represent grey matter regions).
right Heschl gyrus (the 40� cohort: bi � 1.57; the 60� cohort: u
i � 0.16 p � 0.029). While these regions were hubs in the
40� cohort, as their bi � 1.5, they were no longer hubs in the
0� cohort.

.5. Intra- vs. interhemispheric connections, and the
refrontal cortical anatomical distances of the two cohorts

We found that the 60� cohorts had more interhemi-
pheric connections (edges) than the 40� cohort as shown
n Figure 7. Over 50% of the edges of the 60� cohort
etwork graphs were interhemispheric, while the 40� co-
ort networks’ interhemispheric connections were consis-
ently below 50% of the total.

As shown in Figure 8, the connections between PFC and
he other regions were longer for the older cohort in all
parsity values within the small-world regime.

. Discussion

We used the correlations between regional grey matter
olumes to develop a network model of the brain in two
epresentative cohorts of healthy individuals to examine the
ffect of age, after correcting for possible confounding ef-
ects of sex and level of education. We found that similar to
ther studies (Bassett et al., 2008; Chen et al., 2008; He et
l., 2007), the structural networks of both cohorts exhibited
mall-world characteristics. The main group differences were
educed global efficiency, increased local network clustering
nd reduced centrality of certain brain structures in the older
ohort, in particular the bilateral hippocampus, bilateral insula,
eft posterior cingulate and right Heschl’s gyrus.

Two cortical areas are considered anatomically con-
ected if their volumes are significantly correlated. The
eaning of such coupling between cortical regions is not
ell understood (Tootell et al., 2003), but this coupling

ould be explored in two levels. At the first level, we could
irectly use such concurrent brain region volume changes to
xamine atrophy rates and patterns (or distributions) of
ifferent populations. For example, if a region has shown
ge- or neurodegenerative-related atrophy and this particu-
ar region is positively correlated to a different region, then
his coupling demonstrates that these two regions (for in-
tance, the posterior cingulate/precuneus and medial tem-
oral atrophy as found in Alzheimer’s disease (AD)) are
ndergoing similar atrophy. Such statistical associations
etween brain regions were first investigated using anatom-
cal correlations across brain regions by Lerch et al. (Lerch
t al., 2006). In their study (Lerch et al., 2006), the authors
roposed several measurements of assessing group differ-
nces, such as correlation slope, and correlation variance,
tc. Correlation slope could be used to investigate the rate of
trophy between different brain regions among different
opulation groups. For example, correlation slope could be

sed to examine whether the associated atrophy between
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posterior cingulate and medial temporal lobe changes across
different age groups and/or AD and control groups. In a
recent study (Seeley et al., 2009), the authors reported five
different syndromic grey matter atrophy patterns in five
neurodegenerative syndromes using similar methods. At the
second level, we could use the quantitative analyses of
structural brain networks to make sense of these concurrent
brain region volume changes and relate these concurrent
regional grey matter changes to functional changes for in-
stance. This study focuses on the second level.

4.1. Reduced global network efficiency in the older
cohort

The older cohort had longer characteristic path lengths
for a range of sparsities, suggesting lower global network
efficiency. Short path lengths have been shown to benefit
effective interactions between cortical regions and subcor-
tical areas. There is evidence that many aspects of brain
anatomy can be explained in terms of minimizing axonal
wiring or metabolic running cost (Achard and Bullmore,
2007; Buzsaki et al., 2004; Chklovskii et al., 2002). Inter-
estingly, increased characteristic path lengths have also
been reported in AD (He et al., 2008; Stam et al., 2004) and
schizophrenia (Liu et al., 2008). In particular, normal aging
and AD have some similarities in ultrastructural brain
changes, including the presence of ubiquitin-immunoreac-
tive dystrophic neurites in the cerebral cortex and granular
degeneration of myelin in WM (Dickson et al., 1992). In-
teractions between interconnected areas of brain are be-
lieved to form the basis of cognitive processes (Friston et

Fig. 6. Changed betweenness centrality (brains are in axial view). (a) The 4
f betweenness centrality of the region at sparsity value � 0.061, and the

are right-hemispheric. See Supplementary Table 4 for more details and the
1. It is noted that the importance/connectivity of both right- and left-hand
al., 2002). It is therefore noteworthy that an fMRI study
(Achard and Bullmore, 2007) showed that while the brain
functional networks were small-world and economical (La-
tora and Marchiori, 2001), there was a reduction of network
efficiency with age.

4.2. Increased local network efficiency (clustering) in the
older cohort

The older cohort demonstrated increased local efficiency,
i.e., higher Ep and clustering coefficient Cp, compared with
he younger cohort. Given that the small-world model re-
ects an optimal balance between local specialization and
lobal integration from the graph theory point of view, the
onger paths combined with higher clustering in the older
ohort networks suggest a disturbance of optimal regula-
ion, making their networks more like regular rather than
andom network configurations (see Figure 9). This is be-
ause a highly regular network is defined as having long
ath lengths and dense clustering. The increase of Cp and Ep

in the aging brain network might reflect brain plasticity, in
an effort to compensate for the loss of global efficiency by
using direct connections between regions. More interhemi-
spheric connections in the older cohort over the whole range
of small-world regime (Figure 7) may also be a response of
older age to this compensatory requirement. It has previ-
ously been reported that older adults have reduced hemi-
spheric asymmetry (Cabeza, 2002) as demonstrated in some
fMRI studies of episodic memory (Madden et al., 1999),
semantic memory (Stebbins et al., 2002), working memory
(Reuter-Lorenz et al., 2000), perception (Grady, 2000) and

ort; (b) the 60� cohort. The radius of sphere is in proportion of the value
bi � 1.5) are labeled and green nodes are left-hemispheric and red nodes
iations for the different regions are expanded in the Supplementary Table
ippocampus is reduced (from hub to non-hub) in the 60� cohort.
0� coh
hubs (
abbrev
inhibitory control (Nielson et al., 2002). The higher regional
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GM correlations and more interhemispheric connections in
the older cohort would enable them to effectively recruit
compensatory brain resources. It should be noted that we
found significantly greater Cp and Ep values in the older
ohort in the range of higher sparsity values (0.23–0.31),
uggesting relatively weak correlations. This implies that
ith aging, declining neurobiological efficiency of the orig-

nally fine-structured networks leads to increasing reliance
n a combination of compensatory processes, but these are
ot as efficient. The compensation in the older brain is

Fig. 7. (a) The percentage of inter-hemisphere connections at the sparsitie
line the 40� cohort, and there are more inter-hemispheric connections in the
40� cohort; and (c) the 60� cohort at sparsity � 0.061 (245 edges in e
left-hemispheric) and green (right-hemispheric) ones are the intra-hemisp
herefore likely to entail increased cognitive effort. i
.3. Differences in betweenness centrality in the
tructural networks of the two cohorts

Betweenness centrality describes the importance of a
articular node and its relationship with rest of the nodes in
he network. Two important age-related volumetric changes
re in the hippocampus and PFC. In comparison with the
ounger cohort, the older cohort had significantly lower
entrality in both right and left hippocampi (Figure 6).
tructural MRI research shows a 2–3% per decade decline

the smallworld regime. The dotted red line is the 60� cohort and green
ohort than the younger cohort. The network connectivity graphs for (b) the
ph). The blue edges are inter-hemispheric connections while the brown

onnections.
s within
older c

ach gra
n the volume of the hippocampus and parahippocampal
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gyrus (Hedden and Gabrieli, 2004), and after the age of 60,
hippocampal volume tends to predict explicit memory per-
formance (Rosen et al., 2003). The findings in fMRI studies
of reduced activity in hippocampus with aging (Daselaar et
al., 2003; Mitchell et al., 2000; Park et al., 2003) are con-
sistent with our findings.

There was no evidence of reduced betweenness central-
ity of the PFC for the older cohort. Given that structures of
PFC undergo the largest age-related volumetric changes in
adulthood, with an estimated average linear decline of about
5% per decade (Resnick et al., 2003) after the age of 20, this
is an unexpected finding. PET and fMRI studies show that
older adults sometimes have increased activity in PFC re-
gions compared with younger adults (Cabeza, 2002; Grady
et al., 1998). Older adults experience greater difficulty than
younger adults in performing executive processes if they
fail to achieve this increase (Hedden and Gabrieli, 2004).
PFC is one of the more flexible structures in the brain, and
compensatory processes in the aged brain may largely re-
side in it (Park and Reuter-Lorenz, 2009), which may ex-
plain the lack of alteration of betweenness centrality of this
region with aging. The increased anatomical length of con-
nections between PFC and the rest of brain regions in the
60� cohort (see Figure 8), may indicate the extended com-

Fig. 8. The average anatomical distance between the combined frontal
region (9 GM regions in each hemisphere, including dorsolateral superior
frontal gyrus, middle frontal gyrus, orbital part of superior frontal gyrus,

rbital part of middle frontal gyrus, opercular part of inferior frontal
yrus, triangular part of inferior frontal gyrus, orbital part of inferior
rontal gyrus, medial superior frontal gyrus, and medial orbital of
uperior frontal gyrus) and other brain GM regions under various
parsity values within the small-world regime. Red line is the 60�

cohort and green line the 40� cohort.
pensatory efforts in the older cohort. l
4.4. Biological basis of the age-related network

A number of local and global morphological changes
occur in the brain with aging and these may underlie the
network differences. At the local level, dendritic arbors and
dendritic spines of the pyramidal neurons undergo regres-
sion with aging in specific cortical regions and layers (Duan
et al., 2003). These are associated with loss of myelinated
axons in the deeper layers of the cortex and the white matter
(Peters et al., 2000). This is likely to affect local and global
corticocortical circuits. The changes in white matter with
age include reduction in volume and the appearance of
signal hyperintensities suggestive of ischemic change, both
seen more in the anterior brain regions (Head et al., 2004;
Wen and Sachdev, 2004). How these anatomical changes
translate into network efficiency is however difficult to
predict, as there are likely to be both functional and struc-
tural compensations. One example of possible functional
compensation is the increased activation of the PFC asso-
ciated with reduced hippocampal/parahippocampal activa-
tions during memory tasks in older people (Gutchess et al.,
2005). Our structural data are consistent with the functional
compensation hypothesis to explain this observation. Our
results also support the suggestion that older brains have a
greater degree of bilaterality (Cabeza, 2002). It is also in
line with the “compensatory scaffolding” hypothesis (Park
and Reuter-Lorenz, 2009) which posits that additional cir-
cuits are recruited by the aging brain to shore up the de-
clining circuits whose functioning has become noisy and
inefficient. Creating scaffolds is suggested to be an active
process throughout life, but in old age this may be acceler-

Fig. 9. (a) Clustering coefficients under various sparsities within the small-
world regime (0.051–0.31). The 40� cohort’s Cp values are shown in
reen solid line, and the 60� cohort in red dotted line. The figure also
hows the mean clustering coefficients from 100 random graphs with blue

ine.
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ated as a compensatory mechanism. Scaffolds are not
merely functional entities, but may have an underlying
structural change. However, the use of scaffolds is less
efficient than the finely honed network of a younger brain.

A network approach provides the scaffolding for the
computational architectures that mediate cognitive func-
tions. It is therefore reasonable to assume that the behavioral
consequences of damaging a network will reflect the dis-
ruption of the computational architecture it supports (Me-
sulam, 2009). In a review article, Buckner et al. (Buckner et
al., 2008) observed that there was a convergence of the
anatomy of the default network which comprised multiple
interacting hubs. The six hubs listed (Buckner et al., 2008)
were ventral medial PFC, posterior cingulate, inferior pari-
etal lobule, lateral temporal cortex, dorsal medial PFC and
hippocampal formation. In our study, we have shown (Sup-
plementary Table 4) that three (inferior parietal lobule,
hippocampus and posterior cingulate) of these six hubs had
significantly decreased betweenness centrality in the older
cohort in comparison with the younger cohort. Several de-
fault-mode regions, such as the posterior cingulate, inferior
parietal lobule and hippocampus were found to have de-
creased activity in aging in resting-state activity fMRI (An-
drews-Hanna et al., 2007; Damoiseaux et al., 2008).

Most of the topological changes in brain networks that
have been observed so far, as reported in the literature, were
associated with disease progression, experience-dependent
plasticity and aging (Bullmore and Sporns, 2009). Structural
changes, e.g., due to aging and neurodegenerative diseases,
place constraints on which functional interactions occur in
the network, i.e., the dynamics of functional networks re-
flect underlying structural changes. Seeley et al. (Seeley et
al., 2009) hypothesized that the functionally correlated brain
regions would show correlated grey matter volumes across
healthy subjects. They have shown strong convergence be-
tween healthy intrinsic functional connectivity, and struc-
tural covariance measured using local region of interest
(ROI) mean grey matter intensities. Furthermore, in their
study of subjects diagnosed as AD, bvFTD (behavioral
variant frontotemporal dementia), SD (semantic dementia),
PNFA (progressive nonfluent aphasia), and CBS (cortico-
basal syndrome), the authors (Seeley et al., 2009) reported
that functional network maps closely mirrored the atrophy
patterns seen in these five neurodegenerative syndromes.

We have also noticed that brain networks share the
topological properties of small-world networks, be it func-
tional networks constructed from the data of fMRI (Achard
et al., 2006; Ferrarini et al., 2008), EEG (Rubinov et al.,
2008), MEG (Stam, 2004), etc. or structural networks using
regional cortical thickness/volume (Bassett et al., 2008; He
et al., 2007) or DTI fiber-tracking information (Hagmann et
al., 2007). Structural and functional networks are related as
evidenced by the fact that they share many common topo-
logical features, such as modules and hubs. However, dis-

covering that brain networks are small-world networks is
only the first step towards a comprehensive understanding
of how these networks are organized and how they generate
complex dynamics.

Some recent studies have shown that the modularity of
structural networks can determine the hierarchical organi-
zation of functional networks (Muller-Linow et al., 2008). A
resting-state fMRI study (Achard and Bullmore, 2007) re-
ported that older people had a reduced network efficiency
compared with younger population. Similar findings using
structural networks were reported (He et al., 2008), i.e.,
when comparing AD patients with healthy controls, AD
patients had lower network efficiency. A question of interest
for our study is whether our findings of age-related altera-
tions in the structural networks can be related to functional
alterations as reported in the literature.

4.5. Limitations of this study

Our study has several limitations. First, unlike functional
imaging data, such as fMRI, EEG, or MEG, which can yield
a network for a single subject, the anatomical connectivity
matrix used here is estimated on the basis of interregional
correlations in a group of subjects. Second, our conclusions
are based on the examination of two cohorts only, about 20
years apart in age. Even though PATH is a longitudinal
study of three cohorts aged 20–24, 40–44 (40�) and
60–64 (60�) years, the youngest cohort did not have brain
scans. As a result, only two cohorts with narrow age range
were used in our study. Aging effects are best determined in
a longitudinal study of the same cohort to avoid cohort
effects. However, it has been shown that while changes in
cortical thickness can be observed as early as the third
decade of life, they are most obvious by the sixth decade
(Salat et al., 2005). Our study therefore demonstrates the
change from middle age to early old age. This is also the
period that vascular risk factors are likely to become in-
creasingly prominent, and these factors have been related to
changes in cortical volume (Raz et al., 2005). Third, true
structural connectivity should be supported by fiber-track-
ing, e.g., using DTI, to demonstrate a physical connection
between two cortical regions that are correlated with each
other. It is possible that correlations between cortical re-
gions may emerge even if they are not directly connected,
either by their connectivity to a third region, or because of
shared mechanisms in development or degeneration. Our
results therefore need support from studies using DTI for
the network analysis. Additionally, the structural network
should be related to the functional network obtained by
fMRI data in the same individuals.

5. Conclusions

Our data suggest that structurally the brain is a network
with small-world properties, and the network properties
change with age, showing reduced global network effi-

ciency, increased local network clustering and the reduced
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importance of several default regions (e.g., hippocampus,
posterior cingulate and inferior parietal lobule) as hubs.
Aging reduces hemispheric asymmetry, which is consistent
with the functional data suggesting increased bilateral acti-
vation in older individuals. The centrality of the PFC is not
diminished with age, which may reflect brain plasticity. The
morphological basis of changes in the network are not fully
understood, but it is likely that age-associated ultrastructural
changes, such as loss of dendritic length and density,
changes in synaptic activity and axonal changes may con-
tribute. These structural network changes may provide the
basis for changes in functional connectivity and indeed
cognitive function as we grow older.
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Appendix 1. Mathematical expressions of network
topology properties used in this study

Computation of network topology properties

We provide brief definitions for each of the graph met-
rics employed in this study.

A graph G defined in our work was composed of nodes,
and unweighted and undirected connected edges, where
each node represented a specific GM region and an edge
represented the correlation between two regions.

The degree of node i is denoted as Ki, which is the
number of edges that connect it to the other nodes of the
graph. Using Ki, we can then define an important parameter
n our network study, the sparsity of a network:

Ksparsity �
1

N(N � 1)�i�G
Ki; �A.1�
here N is the number of nodes in the graph G. t
The minimum (or shortest) path length Li,j between two
nodes i and j is defined as the least number of edges that

ust be included to connect them. The mean minimum path
ength of graph is defined as the average shortest path length
hat connects any two nodes in a network. However the
efinition becomes problematic because if there is no con-
ection between two nodes i and j, we would have Li,j → 
.
o address this problem, we used the “harmonic mean”
istance between pairs of nodes proposed by (Newman,
003), which is defined as:

Lp �
N(N � 1)

�
i�j�G

(1 ⁄ Li,j)
. �A.2�

Obviously, the nodes that are not connected make no con-
tribution to the equation.

The clustering coefficient of a node is the ratio of the
number of existing edges to the number of all possible edges
in the node’s direct neighbors (Watts and Strogatz, 1998):

Ci �
PGi

Ki(Ki � 1) ⁄ 2
; �A.3�

where Gi is the subgraph which consists of all the direct
eighbors of the ith node, and PG is the number of edges in
he subgraph Gi. The clustering coefficient for the whole

network CP is then defined as the average clustering coef-
ficient over all nodes in a network:

Cp �
1

N�
i�G

Ci. �A.4�

metric also considered as a measure for local efficiency
bout node i is defined as (Latora and Marchiori, 2001):

Ei �
1

NGi
(NGi

� 1) �
j�k�Gi

1

Lj,k

; �A.5�

here NG is the number of nodes in the subgraph Gi. The
mean local efficiency of a graph is then the average of all
the local efficiencies of the nodes in the graph:

Ep �
1

N�
i�G

Ei. (A.6)

An intrahemispheric connection (or edge) is a connection
etween 2-g regions (nodes) in the same left or right hemi-
phere, and an interhemispheric connection is a connection
etween 2-g regions one of the right hemisphere and the other
f the left hemisphere. The percentage of interhemispheric
onnections is calculated as 2�i�LEFT,j�RIGHT ei,j ⁄ ��i�j�G Ki�;

where LEFT and RIGHT represent regions within the left or
right hemisphere respectively, and ei,j is the connection
etween node i and node j. ei,j � 0; if nodes i and j are not

directly connected; and ei,j � 1; if nodes i and j are directly
onnected. The anatomical distance between two regions
as defined as the Euclidean distance between centroids of
wo anatomical regions i and j.
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Appendix. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.humimm.2008.
03.038.
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